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Abstract

In this paper we present a garment prototype using strain

sensors to recognize upper body postures. A novel ther-

moplastic elastomer strain sensor was used for measuring

strain in the clothing. This sensor has a linear resistance

response to strain, a small hysteresis and can be fully inte-

grated into textile.

A study was conducted with eight participants wearing

the garment and performing a total of 27 upper body pos-

tures. A Naı̈ve Bayes classification was applied to identify

the different postures. Nearly a complete recognition rate of

97% was achieved when the classification was adapted to

the individual participant. A classification rate of 84% was

achieved for an all-user classification and 65% for an inde-

pendent user. These results show the feasibility to recognize

postures with our setup, even in an unseen user setting.

Furthermore, we used the garment prototype in a gym

experiment to explore its potential for rehabilitation and fit-

ness training. Intensity, speed and number of repetitions

could be obtained from the garment sensor data.

1. Introduction

Clothing is an ideal platform for ubiquitous sensing of

user activities with vast applications in sports and person-

alized health care. Leveraging the full potential of textiles

has tremendous advantages with respect to space available,

comfortability to the wearer and freedom in number and po-

sitioning of sensors. Measuring body postures with textile

sensing systems fully utilize those advantages.

Classical posture measurement was limited to perma-

nently equipped rooms because these systems were fixed

installations. In recent time, however, many new systems

emerged which are portable and can be worn anywhere and

anytime. This opens new applications: textile posture and

movement sensing can be utilized in fitness training and re-

habilitation, e.g. measuring quality and quantity of exercise

conduction, as investigated in this work. Another applica-

tion of portable posture sensing systems is personal preven-

tion, e.g. reporting unfavorable back positions during office

work.

In this paper we will present a portable posture measure-

ment setup with textile integrated strain sensors. These sen-

sors measure the strain in a tight-fitting garment caused by

body movements. We constructed a prototype of the system

and tested it in two experiments. We first performed a study

with eight participants conducting 27 postures. In a further

experiment, the system was evaluated in a real environment

by looking at typical activities in a gym.

After discussing related works in this section, Section 2

is focused on the prototype setup. In particular, the tex-

tile strain sensor is analyzed followed by the placement and

attachment of the strain sensors to the garment prototype.

In Section 3 the posture classification study and results are

presented. The gym experiment and analysis is detailed in

Section 4. Finally, we conclude with a discussion of the

results achieved in this work and give a short outlook.

1.1. Related work

Portable systems for posture measurement are based on

different kind of sensors. Hansson et al. [7] used ac-

celerometers to measure joint angles. In [15] and [9] the

accelerometers were attached to the pants to detect activ-

ities like sitting, standing, walking and lying. Toney [14]

used conventional pressure sensors to measure finger joint

angles. Dunne et al. [3] measured shoulder and neck move-

ments with a textile piezo-resistive pressure sensor. In [8] a

glove was realized using piezoelectric film sensors. Fiber-

optics sensors were used in a pressure suit [2] and to mea-

sure the seated spinal posture [4]. A commercially available

system measuring the posture of the spine is based on ultra-
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sound distance measurements [1]. Measuring upper limb

movements with strain gauges was published in [5] by us-

ing knit strain sensors and in [13] by using a conductive

elastomer. In [6] a textile potential divider was built to mea-

sure strain caused by joint movements.

Our approach is similar to the one of Tognetti et al. [13].

We also use a tight-fitting clothing and strain sensors to

measure body postures. However, while the above cited pa-

per is focused on upper limb postures, we concentrate on the

torso and are able to distinguish between at least 27 different

postures (15 sitting and 12 standing postures), covering the

whole range of upper body postures. Farringdon et al. con-

centrate in [5] on the textile integration of their knit strain

sensor but do not give any measurement results. The fiber-

optic approach of Dunne et al. [4] focuses on measuring the

seated spinal posture and is limited to bending back pos-

tures (one degree of freedom).

2. Garment prototype

A prototype was built (see Fig. 1) with strain sensors at-

tached to the back region of a tight-fitting clothing. These

sensors measure strain in the garment caused by different

body movements and enable to distinguish between a pre-

defined set of body postures. We used a sensor thread with

an elastic range of 100%. More information on the sen-

sor and its fixation to the textile is given in Section 2.1. In

Section 2.2 the positioning of the sensors is described. The

garment that we used for our prototype was a commercially

available catsuit with a front zipper (medium-sized).

textile stretch
sensors

interconnections
to data acquisition unit

central data
acquisition unit
(attached at the

front side)

Figure 1. Architecture overview of a proto-
type recognizing upper body postures using

strain sensors.

The sensors were connected to a small data acquisi-

tion unit, which digitized (four 8-channel MAX147, 12bit)

and transmitted the measured signal to a PC via Bluetooth

(MSP430F149, BlueNiceComIII). A graphical user inter-

face was implemented which visualized the measured strain

values and stored the data into a file. An overview of the

setup is given in Fig. 1 [11].

2.1. Sensor characterization

A novel strain sensor was used which was developed

by EMPA, Switzerland [12]. The sensor thread consists

of a commercial thermoplastic elastomer (TPE) filled with

50wt-% carbon black powder and changes resistivity with

length. It is fiber-shaped with a diameter of 0.3mm and

has, therefore, the potential to be fully integrated into tex-

tile. In this prototype setup, the sensor was attached with

a silicone film (see Fig. 2) which enables a measurement

range of 100% strain. The length of the sensor was chosen

to be 2cm.

In this paper, strain is defined as

strain =
l − l0

l0
· 100[%], (1)

whereas l is the current length and l0 the initial length.

sensor thread

attachment to textile
with silicone film

electrical connections
(conductive epoxy CW2400)

2cm

Figure 2. Sensor thread attached to the textile
with a silicone film.
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Figure 3. Typical response of sensor to a
given strain (sensor length 2cm).

Several measurements were performed in order to char-

acterize the sensor. For these measurements a strain tester
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sensor characteristics while stretching to 50%

sensor characteristics 5 days later

sensor characteristics 19 days later

working range

textile deformation
caused by 50% strain

linear approximation

Figure 4. Repeated measurements after 5 and

19 days (sensor length 2cm, measurement

speed 200mm/min), confirming the long-term

stability of the sensor.

was used and the resistance was measured in parallel. Typi-

cal measurements were done at a speed of 200mm/min and

waiting times at maximal and minimal strain of 3-4sec.

In Fig. 3 a typical resistance vs. time plot is shown. It is

apparent that this sensor has a remarkably small overshoot

and relaxation time for a textile sensor. A typical resistance

vs. strain plot is shown in Fig. 4, indicating a linear rise in

resistance when applying strain and only a small hystere-

sis leading to errors of ±2% in strain when using a linear

approximation. Commercially available strain gauges reach

a higher linearity but at a very reduced working range of

less than 1%. Our sensor thread has a resistance of approx-

imately 700Ω/cm and a high sensitivity 1 of 2kΩ/mm at a

sensor length of 2cm, enabling a direct measurement of the

elongation.
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400mm/min
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100mm/min

50mm/min

linear approximation

Figure 5. Sensor characteristics at dif-
ferent measurement speeds (50mm/min,

100mm/min, 200mm/min, 400mm/min and

600mm/min, sensor length 2cm), covering a
typical motion speed range of the back.

1sensitivity =
δR

δl

The plateau at lower strains in Fig. 4 is caused by a tem-

porary deformation of the textile caused by the large strain

applied. This is not a problem for our application as the gar-

ment is pre-stretched when worn and we, therefore, use the

sensor in the working range only.

To show the stability of the sensor signal, the measure-

ments were repeated after 5 and 19 days. During this

time, no drift in the sensor signal was found (see Fig. 4).

Increasing the strain velocity (50mm/min, 100mm/min,

200mm/min, 400mm/min and 600mm/min) has shown a

marginal rise in resistance. The error increased from ±2%
to ±3.5% when doing a linear approximation over all five

measured speeds (see Fig. 5).

To summarize, the textile strain sensor has the following

properties which qualify the sensor for precise strain pattern

measurement in a garment:

• small hysteresis,

• linear resistance vs. strain characteristic over a work-

ing range of 100% strain,

• minor dependence on the strain velocity resulting in a

total error of ±3.5%,

• stable sensor properties,

• a high sensitivity of 2kΩ/mm (sensor length 2cm),

• thread-like shape.

2.2. Sensor placement

The sensor placement was based on reference strain mea-

surements done with an optical motion tracking system

[10]. Markers were attached to the back region of a tight-

fitting clothing and their spatial position was measured with

five infrared cameras. By analyzing the distance between

the markers, the strain in the clothing could be measured.

We performed reference measurements of 12 different pos-

tures which served as a basis for the sensor placement. In

Fig. 6 an example strain pattern is shown for bending for-

ward.

Figure 6. Example strain pattern for bending

forward using the reference strain measure-

ment method; middle: strain in horizontal di-

rection; right: strain in vertical direction [10].

When placing the strain sensors on the prototype, our

goal was to get a maximal possible coverage of a pre-

defined set of upper torso postures. Hence, we placed sen-

sors on every distinctive position, although, some sensors



might give redundant information. In Section 3.3 we will

show that there is potential to reduce and optimize the num-

ber of sensors.

Using the method described above, 21 sensors were

placed on the back of a catsuit (see Fig. 7, left).
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Figure 7. Left: Placement of 21 strain sen-

sors. Right: Regions of elongation for char-
acteristic movements.

As a generalization, the following correlations between

movements and elongation in the garment can be given. Ad-

ditionally, the numbers of the sensors placed to measure

each movement are listed (see Fig. 7).

• The region in the upper back is stretched in horizontal

direction when the shoulders are moved forward.

⇒ Sensors 1, 2, 3

• Arm movements cause mainly elongations in the

armpit region. ⇒ Sensors 4, 5, 7, 8, 10

• Bending forward causes elongations in vertical direc-

tion, mainly in the lower back region.

⇒ Sensors 6, 12, 16, 19, 21

• Rotations of the torso can be measured in diagonal

direction on the back and the side of the torso.

⇒ Sensors 13, 14, 17, 18

• On the side of the torso, we are able to measure bend-

ing sidewards and lifting the shoulders when measur-

ing in vertical direction. ⇒ Sensors 9, 11, 15, 20

3. Classification of body postures

To evaluate the prototype we conducted a study in which

the strain sensor readings were used to classify a selection

of 27 body postures. A simple classification algorithm was

used in combination with a thorough analysis procedure to

verify the feasibility of our approach. The following sec-

tions present the experimental protocol and summarize the

classification method and results.

3.1. Experimental procedure

A set of frequently used body postures covering the de-

grees of freedom in trunk and arm movement were defined.

This initial set was adapted to cover both sitting and stand-

ing postures resulting in a final set of 15 sitting and 12

standing posture classes. Tab. 1 shows and summarizes the

final posture set that was considered in the study. An ad-

ditional base posture was defined as standing upright with

relaxed arms along the body axis. This posture was used for

a very basic adaptation of the prototype to the user.

Eight male participants aged between 26 and 31 years

were included in the study. The mean body height was

179 cm, standard deviation (SD) 4.1 cm. The mean chest

circumference was 95 cm (SD 4 cm) and the waist circum-

ference was 84 cm (SD 4.1 cm).

Participants were instructed to assume the different pos-

tures for approx. two seconds in a predefined sequence

while wearing the garment prototype. A picture was shown

to the participants to indicate each posture, however, pos-

tures were not explained or trained beforehand. Each pos-

ture was repeated three times and the whole set of postures

was recorded twice, so that each posture was recorded six

times in total (repetitions 1 to 3 and 4 to 6 are referenced

as set 1 and 2 respectively). The complete data set included

1296 postures from the 27 posture classes and eight partici-

pants.

The strain sensor values were acquired using a central

data acquisition unit attached at the waist level (see Sec-

tion 2), recording at a sampling rate of 33.5 Hz. An observer

annotated the postures during the recordings. The record-

ings and annotation were reviewed in a post-processing

step.

3.2. Classification methodology

The strain data of all 21 garment sensors was used as fea-

ture set for the posture classifications. In a pre-processing

step, the strain was normalized by subtracting the mean sen-

sor value of the base posture from each participant’s data

set. This method compensates for the variable body com-

positions and hence a variable strain in the garment among

the different participants.

Different classification strategies were analyzed in order

to describe the influence of user-dependent training on the

discrimination of the different postures. The degree of user-

dependent training was evaluated by using a user-specific

training of the classifier, a training and testing that included

observations from all users and a subject-wise leave-one-

out split that evaluated the classification performance for a

new user of the system.

All classifications were performed on every sample of

the data with a Naı̈ve Bayes classifier using a 5-fold cross-



Table 1. Sitting and standing upper body pos-

tures included in the study. The postures are

visualized at the top of this page.

Base Posture Class

Standing upright - arms relaxed

Sitting Postures Class

Rotation of trunk
1 to the right

2 to the left

Bending trunk sidewards
3 to the right

4 to the left

Lifting shoulders

5 right shoulder

6 left shoulder

7 both shoulders

Slumped 8 shoulders over hip

Bending trunk forward

9 with bent back

10 with straight back

11 bending maxi-

mally, hands beside

the feet

Forced upright 12

Arm postures

13 arms to the front

14 arms to the sides

15 arms overhead

Standing Postures Class

Rotation of trunk
16 to the right

17 to the left

Bending trunk sidewards
18 to the right

19 to the left

Lifting both shoulders 20

Slumped 21

Bending trunk maxi-

mally forward

22 hands approaching

toes

Forced upright 23

Extending arms to the

front

24

Squatted 25 maintaining

straight back

Flexing torso sidewards
26 to the left

27 to the right

validation procedure to split training and testing observa-

tions for the user-specific and all-users evaluations. The

splitting procedure was designed to use each observation

only once for testing. For the new-user evaluation the data

was sliced according to the number of study participants

into eight iterations. For each iteration the data from seven

of eight participants was used for training and the left out

data set for testing.

The class skew due to varying posture lengths was com-

pensated by using an equal number of training samples for

all classes. To compare classification results with unequal

number of test observations in each class, a normalized ac-

curacy measure was used. The total result of a multi-class

classification was derived as mean of the class-relative ac-

curacies (normalized accuracy):

nAccTotal =
1

C

C∑

i=1

Recognizedi

Relevanti
(2)

where C is the total number of classes, Recognizedi and

Relevanti are the number of correctly identified and the

total number of observations in class i respectively.

3.3. Classification results

In the user-specific classification an accuracy of 0.97 was

achieved with minor confusions of the classes 10 (bending

forward) and 25 (squatted) only.

We analyzed the influence of training-testing partitioning

by reducing the number of cross-validations from 5 to 2 and

consequently, reducing the number of training observations

from 80% to 50%. The accuracy dropped to 0.8. From this

result we concluded that differences exist between the two

consecutive posture recording sets (repetitions 1 to 3 com-

pared to repetitions 4 to 6) but only minor variability within

each set. Possible reasons for this result are 1) accurate rep-

etition of the postures within each set but slightly different

postures between the sets, 2) not enough variance in each

set since three repetitions were performed only, 3) sensor

inaccuracies and 4) movements of the clothing in compari-

son to the skin.

Figs. 8 and 9 show the all-user and the new-user classifi-

cation results respectively (actual class in rows, predicted



5 10 15 20 25

5

10

15

20

25

Predicted class

A
c
tu

a
l 
c
la

s
s

Accuracy   nAcc
Total

 = 0.84

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8. Confusion matrix of the all-user

classification of 27 postures.
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Figure 9. Confusion matrix of the new-user

classification of 27 postures.

class in columns). The plot is obtained from the confu-

sion histogram matrix by normalizing each row by the row

sum (number of relevant observations for the corresponding

class). While the all-user analysis achieved a performance

of 0.84, the performance dropped for the new-user evalu-

ation to 0.65. A summary of these classification results is

shown in Fig. 10, including the minimal and maximal re-

sults achieved.

The matrix plots in Figs. 8 and 9 show that certain simi-

lar postures could not be discriminated. Two types of error

were evident: 1) Confusions appeared between the corre-

sponding sitting and standing postures, e.g. postures 13

and 24 (extending the arms to the front while sitting and

standing). 2) Similar postures could not be differentiated

like e.g. postures 10, 11 and 25 (bending the trunk forward

with a bent and a straight back and squatted). Therefore,

the same analysis was repeated for the sitting postures only

(postures 1 to 15). The results increased from 65% to 74%
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Figure 10. Summary of the classification per-

formances.

for the new-user classification. Hence, we conclude that a

posture classification is feasible for many classes even for

new-users, however, sitting and standing can hardly be dis-

tinguished with the current setup.

To show the potential to optimize the number of sensors,

a user-specific classification was performed using 14 empir-

ically chosen sensors (sensor numbers 1, 3, 5, 7, 9, 11, 12,

15-21 in Fig. 7). The result dropped only minimally from

97% to 96%. Therefore, in a next step we will optimize the

number of sensors using for example a Mutual Information

approach.

4. Gym application

4.1. Experiment

In order to show the feasibility of the strain sensitive gar-

ment in a real world application, a gym experiment was per-

formed with one person. Another goal was to demonstrate

the step from classifying static postures to the recognition

of postures during a movement. We performed measure-

ments on the ”Rotary Torso”, the ”Total Abdominal” and

the ”Lower Back” machines varying speed and intensity

(range) of the movements. In the following, we will focus

on the Rotary Torso machine (see Fig. 11). The results of

the two other machines were similar.

Figure 11. Evaluating the strain sensitive gar-
ment in a gym application. Left: Rotary Torso

Start Position; Right: Rotary Torso End Posi-

tion.



In force training, slow and controlled movements are

very important for a balanced training of all muscle groups.

If the movement is done too fast (using a momentary im-

pulse), only muscles which are active at the starting position

are trained. This makes the training less effective. Another

important factor for an intensive training is the usage of the

whole movement range so that again as many muscles as

possible are trained. With this background information, we

measured the following training sequences on the Rotary

Torso machine:

• Movement 1: Optimal execution of the exercise with

a starting position maximally rotated to the left (see

Fig. 11, left) and an end position maximally rotated

to the right (see Fig. 11, right). Starting and end

position are numbered 1 and 5 respectively for later

classification (see Fig. 12).

• Movement 2: Different ranges of movement, starting

with a rotation between the starting posture and

posture 2 (see Fig. 12, −45◦ to −20◦) with equally

increasing steps to a movement between maximal

rotation in both directions (posture 1 to 5 and back to

1, −45◦ to +45◦). Therefore, 4 different movement

ranges were measured.

• Movement 3: Fast performance of the exercise over

the whole range of movement where the subject allows

his momentum to carry him through the motion.

Additionally, the 5 classes shown in Fig. 12 were recorded

separately to be used as training data.

1 Start position (~ -45°)

5Endposition(~45°)

phi

3
(~

0
°)

2
(~

-20°)

4
(~

20°)

Figure 12. Different ranges of movement on
the ”Rotary Torso” machine and its assigned

class numbers.

4.2. Results

A nearest class center algorithm was used for detection

of the exercise posture. The 5 postures shown in Fig. 12

were recorded separately and used as training data. For test-

ing, the continuous data of movements 1 to 3 was used. As

movement 1 is equivalent to the last repetition of movement

2, only results of movements 2 and 3 are shown.

The sensor signals of all 21 sensors were used for classi-

fication of which 2 are shown exemplarily in Fig. 13, lower

plot. The results of the nearest class center classification

are shown in the upper plot. In movement 2, the rotation

angle was gradually increased. This increase was classi-

fied correctly in all 4 repetitions. In the subsequent repe-

titions (movement 3), maximal rotation was performed at

high speed. It can be seen that the algorithm classified all

the repetitions correctly in the sense that the range of move-

ment was recognized correctly (class 1 through 5). From

the classification result, it is even possible to recognize that

the first part of the movement was done faster than the sec-

ond one (going back to the initial position). Based on these

results, the speed of the movement, the repetition frequency

and the number of repetitions of the training sequence can

be calculated.
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Sensor 17 (diagonal at lower back)

Sensor 14 (diagonal at side of torso)

movement 2: increasing rotation angle movement 3:
high speed

Figure 13. Classification result (upper plot)
and 2 example sensors (classification was
done with all sensors). First 4 repetitions

were performed at normal speed with in-
creasing rotation angle, followed by 4 fast
movements using a momentary impulse.

With these results we could show the suitability of the

sensorized garment of Fig. 1 to be used in practical appli-

cations, exemplarily for a gym exercise. However, this ap-

proach could also be used for other applications like e.g.

rowing or nordic walking. For the gym task (Rotary Torso)

we have shown that the following properties of exercising

can be detected:

• Intensity / optimality of training: We are able to

distinguish between 4 steps of intensity when the

system is trained on the user, so that we can detect

whether only part or the whole range of movement is

trained.

• Dynamics of movement: The speed of the movement

can be measured so that fast and unbalanced move-

ments can be recognized.

• Number of repetitions: The number of repetitions can

be recorded and stored as a workout diary.



5. Conclusion and outlook

In this paper a garment prototype to recognize at least 27

upper body postures from 21 strain sensors was presented.

We used a novel textile strain sensor that has a linear re-

sistance vs. strain characteristics and a negligible hysteresis.

The resulting measurement error was ±3.5% over a strain

range of up to 100%.

Using this sensor, a garment prototype was developed by

attaching the strain sensors with a silicone film in the back

region of a tight-fitting garment.

The concept of this setup was proved in a study with

eight participants performing 27 postures. Nearly a com-

plete recognition rate of 97% was achieved with a user-

specific training. This demonstrated the feasibility of our

design concept. A classification rate of 84% was obtained

for an all-user classification and 65% for the new user mode.

Hence a posture classification is feasible even for an unseen

user setting. Two types of error were evident in these classi-

fication modes: 1) Confusions appeared between the same

sitting and standing postures and 2) similar postures could

not be perfectly differentiated. For a reliable discrimination

of sitting from standing, additional information would be

required like e.g. strain sensors at the waist level or pants.

To our knowledge this is the first time that a garment

equipped only with sensor threads has achieved sufficient

accuracy to recognize at least 27 upper body postures.

In the future we would like to further pursue the follow-

ing aspects of our research:

• In this paper we have shown the feasibility of reducing

the number of sensors by using a subset of the sensors

and achieving similar recognition rates. In a next step

we will optimize the number and positioning of the

sensors by analyzing their information value, using

for example a Mutual Information approach.

• So far, the sensor was attached to the textile with a

silicone film. In a next step, we will examine a full

integration into the textile.

• Using a simple linear approximation, the sensor thread

has an error of ±3.5%. By using a more advanced

model, a further reduction of this error is possible.

• A further goal is to proceed from static postures to

dynamic movement measurements.

• We have already shown the feasibility of identifying

exercise execution on a gym machine. Our measure-

ment concept can easily be transferred to other sports

applications like e.g. rowing or nordic walking. We

also plan to investigate new application domains like

e.g. rehabilitation, safety at work or back protection.
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