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Abstract— In order for nodes in a sensor network to
meaningfully correlate their sensor readings, they must
first determine their position in a globally shared coor-
dinate system. Though there are many approaches which
are suitable for achieving localization in the general case,
sensor nodes are uniquely suited to use their sensing
capabilities to aid them in this task. Global events which
are detected in the environment surrounding the sensor
network can serve as points of correspondence which,
through collaborative processing on the network, provide
nodes with sufficient information to compute their position.

We have implemented an algorithm based on this
approach in the Pushpin Computing sensor network: a
dense, 55 node network which is spread over an area of
0.5 square meters. By queuing off of the minimum number
of ultrasound pulses and light flashes needed to determine
2D coordinates using a simple lateration approach, we
show that nodes in the Pushpin network can compute
their position with an average error of 5-cm and a error
standard deviation of 3-cm. In this paper we present this
localization system and characterize its accuracy in our
hardware testbed.

I. I NTRODUCTION

In contrast to typical communication networks, sensor
networks are envisioned to derive their utility largely
from an awareness of their physical environment at
the most basic level. Such an awareness might simply
involve each sensor node monitoring its own locality and
routing the raw data back to a base station. However, the
real potential for sensor networks lies in the ability to
correlate sensed data among nodes over both space and
time. Thus, determining and maintaining a shared global
coordinate system and time base among all nodes in a
sensor network (termed ‘localization’ and ‘synchroniza-
tion,’ respectively) are fundamental tools for processing
and acting upon sensor data. The work presented in
this paper focuses on localization. We refer interested
readers to [17] for an excellent introduction to all aspects

of synchronization and to [1] for a tutorial essay on
localization.

There are many classes of localization schemes, a
reflection of the flexibility afforded by the ability of
each node in a sensor network to sense (and in some
cases act) locally as well as communicate with nearby
nodes. For example, manually coding each sensor node
with its location is clearly one solution, albeit an un-
desirable one due to scalability considerations. Robot-
assisted sensor networks (see [9]) might be a viable
alternative. Similarly, providing a location system via a
fixed infrastructure, such as beacons that broadcast their
position, has been explored in [19], among others. GPS is
an extreme version of this method. Deploying nodes rich
in computational, range-finding, and/or energy resources
to help lighter weight nodes localize themselves has
been extensively explored, as in [6]. Alternatively, each
node can be individually equipped with range-finding
hardware to detect relative positions of other nodes,
as demonstrated in [27]. Most wireless communication
systems can serve this purpose by considering received
signal strength, although this is known to be quite
inaccurate in many cases. Taking this idea to its logical
conclusion, [3], [13] consider network hops as the base
metric of physical distance, essentially equating physical
topology with network topology. Section II covers some
of these methods in more detail.

In this work, we present a sensor network localization
algorithm and implementation that leverages the fact that
an individual node’s measurements of global stimuli (i.e.
stimuli which can be detected by every node in the
sensor network) are spatially and temporally correlated
with measurements taken at other nodes. One example of
this might be a lightning strike or a thunder-clap. These
signals could be detected by nodes over an area of several
square kilometers. For example, NASA Kennedy Space
Flight Center has implemented a system to localize



lightning strikes using a sensor array that is deployed
across an area of 10-km [25]. Fireworks, munitions, and
other explosive devices produce similar correlated global
stimuli of different modalities (i.e. light and sound).
Any pair of signals with coincident time origin and
different propagation speeds can, in principle, provide
useful localization constraints. For example, the distance
to an impact could be estimated by the difference in
arrival time of sound traveling through the ground and
sound traveling through the air.

In our experimental setup, a handheld device called the
“Pinger” is used to generate an external, global stimulus
consisting of visible light and ultrasound to aid the sensor
network in its localization task. Although artificial, the
pinger device is meant to simulate a natural global event
that might be detected by a sensor network deployed “in
the field.” No knowledge of the pinger position is known
ahead of time, nor is the position of pinger constrained
in any way except as to be somewhere (anywhere)
above the sensor network. In particular, the pinger does
not serve as a base station with a known position.
Our algorithm uses in-network comparison of ultrasound
time-of-flight measurements of signals emitted by this
device to allow for lateration, a technique for finding
a node’s position given the distance of the node from
several known points. In essence, the technique presented
here is similar to a situation in which many hikers
who can speak to each other over radio are lost in the
wilderness and all witness several lightning strikes and
their resulting thunder claps. By keeping track of the
delays between seeing a flash of lightning and hearing
the corresponding thunder clap and then comparing these
times, the hikers can determine their relative positions.

In addition to the algorithm itself, we also present ini-
tial results from an implementation on the Pushpin Com-
puting sensor network platform, a dense one-hundred-
node network spread over an area of approximately two
square meters. (At the time of this writing, only 55 of
the 100 nodes are being used, but the remaining 45 will
be available after minor maintenance.) Specifically, we
cover details of the implementation, which uses the dif-
ference in time of arrival between a flash of light a ping
of ultrasound as the global stimuli; a characterization and
dicussion of localization accuracy (about 5-cm average
error with a standard deviation of about 3-cm); possible
applications and future work.

II. RELATED WORK

Due to its fundamental role in correlating sensor
readings, localization has become a subject of significant

interest in sensor network research. The localization
systems that have been proposed vary widely depending
on the design constraints of the specific problem under
consideration, but they can generally be classified ac-
cording to the type of range measurement and the type
localization algorithm they use.

A. Ranging and Localization Methods

Both acoustic ranging [6], [19], [27] and received
signal strength [7] are distance metrics commonly used
in sensor network localization. Savvides et al. [23]
discuss the trade-offs between using acoustic ranging
and received signal strength. They conclude acoustic
ranging is generally more reliable than received signal
strength because acoustic ranging depends only on the
time difference between received signals, while received
signal strength relies on signal amplitude, which is
very sensitive to environmental factors. Also of note
is the potential for ultra-wideband (UWB) radio for
localization based on RF time of flight [14], although
this field is still evolving. Similarly, there has been some
recent research into using directional radio antennas for
localization [11].

It has been proposed in [3], [7], [13] that localization
can be accomplished without the aid of specialized sens-
ing hardware. These authors propose that large, dense
networks of a thousand or more nodes can reliably equate
physical distance to logical distance over the network
(hop count). Simulations show large sensor networks
successfully performing localization with a network hop
distance metric. As seen in Figure 3, given the scale
lengths of the Pushpin network (mean distance between
nodes, mean communication range, and square root
of the area spanned by the entire network), network
topology does not map well to physical topology in our
case. However, as sensor networks grow in node number
and density, this approach will become more accurate.

The distributed localization algorithm can generally
be chosen independently of the method for finding
inter-node distance. Most localization algorithms require
anchor nodesin the network – nodes that have been pre-
programmed with their location [6] or localized using
specialized hardware such as GPS [23]. An unlocalized
node measures its distance to the anchor nodes and
uses this information in conjunction with the anchor
coordinates to calculate its position in any of a variety
of ways, such as determining whether it is bounded by
a polygon defined by the anchor points [7], [10], or
employing lateration [13], [23], a technique described
later in this paper. A good comparison of several methods



can be found in [10].
Some recent research in anchor-free localization in-

volves distributed mesh relaxation [8], [18]. Unfortu-
nately, this techniques is prone to error from false
minima occurring during relaxation. Possible solutions
to this problem are discussed in [18].

B. Hardware Testbeds

There are a handful of examples where localization
algorithms based on acoustic ranging have been imple-
mented on hardware testbeds. In the AHLoS system
[23], heavy-weight nodes equipped with GPS help light-
weight nodes to localize using lateration. In this case,
both received signal strength and ultrasound time of
flight were considered as potential ranging techniques.

Another technique very similar to the Pushpin local-
ization scheme was demonstrated in the Calimari system
[27], where sensor nodes equiped with speakers and
microphones determined inter-node distance by measur-
ing acoustic time of flight of audible chirps sent out
by individual nodes. Because the Calimari system relies
solely on signals which are generated by its sensor nodes,
it does not require any external infrastructure or stimulus
in order to perform localization. On the other hand, each
node must be equipped with a full suite (receiver and
transmitter) of range-finding hardware. Calimari’s range
measurements are also inherently limited by the low
frequency (long wavelength) of the audio signal used
to chirp between neighboring nodes. The reported error
of the Calimari system is 30-cm.

Another novel localization approach involving acous-
tic time of flight is described in [6]. In this system, a
Berkeley mote sends an acoustic, pseudo-random noise
signal to several iPaq base station nodes which have been
pre-programmed with knowledge of their own position.
These heavy weight nodes collaboratively estimate the
position of the mote by correlating the received pseudo-
random noise with a known version of the same signal.
Once obtained, the position estimate is transmitted back
to the mote over the network. Localization error of 10-
cm has been achieved using this technique.

In the Cricket system [19], [20], which is related to
early work at AT&T [26] and Intersense [5], mobile
devices called listeners monitor RF packets and ultra-
sound pulses from an infrastructure of beacons which
are distributed throughout an indoor environment. Each
beacon is pre-programmed with its location and transmits
this information over RF while simultaneously sending
out an ultrasound pulse. Aided by signals from several
beacons, a listener can determine its location and orienta-

Fig. 1. An expanded view of the four modules and diffuser
comprising a single Pushpin node.

tion in three dimensions. The Cricket localization system
achieves an average error of 1-cm.

III. E XPERIMENTAL TESTBED

Pushpin Computing began as an initiative to explore
very dense distributed sensor networks. The Pushpin
research is driven by the vision that sensor networks will
some day be small and dense enough to coat surfaces
in an “electronic skin” with sensing and processing
capabilities comparable to our own [15]. That said, the
Pushpin network may also be considered a “model”
of larger sensor networks; it is a testbed on which
sensor network algorithms can be rapidly prototyped
on hardware with realistic communication and sensing
characteristics.

A. Hardware

The Pushpin network consists of 100 nodes mounted
on a powered substrate. For this paper, however, only



Fig. 2. The Pushpin sensor network with 55 nodes as configured
when all the data presented here was taken. The visible portion of the
surface they are mounted on is approximately 1-m on a side. Forty-
five more nodes lie in wait. The large circuit board protruding from
the bottom of the image is a gateway Pushpin that communicates
between Pushpins outfitted with IR communication modules and a
serial port on the desktop computer. This is the primary channel of
collecting data off the network.

55 nodes were used. Although repositioning a node is
a trivial matter no more difficult than repositioning a
thumbtack on a soft corkboard, for the sake of con-
sistency all data presented herein was taken with the
Pushpins positioned as shown in Figure 2.

A Pushpin node has a modular, stacked architecture
comprised of four circuit boards, one each devoted
to power, communication, processing, and sensing, as
illustrated in Figure 1. Each node receives power and
ground through a pair of tensile pins located on the
bottom of its power layer. These pins make contact with
two parallel metal sheets embedded in a polyurethane
foam substrate measuring 1.2-m by 1.2-m by 0.02-m.

The Pushpin processing board contains an 8051-core
8-bit, 22-MIPS microcontroller made by Silicon Labs
(formerly Cygnal) [24]. This processor has 2.25-Kbytes
of RAM and 32-Kbytes of non-volatile flash memory, as
well as a host of on-board digital and analog peripherals
used for sensing and actuation.

The Pushpin processor transmits and receives data at
96-kbps using infrared communication hardware on the
communication module, where an IR transceiver points
in each of the four cardinal directions, thereby enabling

communication with neighboring nodes. In order to more
evenly disperse the transmitted IR in all directions, a
frosted polycarbonate ring is placed around each Push-
pin. Figure 3 shows the IR communication radius of
several nodes. The short range of the IR communica-
tions enables the Pushpins to become an exceptionally
compact platform that realizes a wireless sensor network.
RF communication would be difficult to constrain at this
short range; any node broadcasting RF would likely be
received by the entire network.

The sensing module used here includes a phototran-
sistor, 40-kHz ultrasound transducer, and electret micro-
phone. The phototransistor and the ultrasound transducer
were specifically included for use in the localization
process, whereas the microphone is meant for general-
purpose audio sensing in future applications. In addi-
tion to amplified versions of all three sensor channels,
enveloped versions of the ultrasound and audio micro-
phones are available, as is the raw signal from the pho-
totransistor. For actuation, the sensing module includes
an RGB LED that is used to indicate the status of the
node or as a display element when a node participates
as a “smart pixel” in a distributed display task.

B. Software

Programming an entire network of sensor nodes can
be an onerous task. We have addressed this bottleneck
by creating a bootloader that always resides in the flash
memory of every Pushpin. The bootloader performs
version checking, error detection, and error correction
on software updates received through the Pushpin IR
communication hardware, and then writes the updates to
bootable non-volatile program memory. We use a large
108-LED “IR spotlight” to send updates to every Pushpin
simultaneously from a desktop computer where new
code is written and compiled. Using this interface, we
can reprogram all nodes with a new operating system and
program software in less than a minute, thus significantly
reducing the time required for a debug cycle.

Once a software update is complete, the bootloader
hands control over to Bertha, the Pushpin operating
system compiled with application code. Bertha manages
the hardware on the Pushpin, making basic services
available to application code through a set of simple
APIs. Some of the services provided by Bertha in-
clude a real time clock, random number generation,
sensor/actuator access, and access to interrupt routines.
The localization software, for example, uses the interrupt
routines and the real time clock to measure the difference
in arrival times between a light flash and ultrasound ping.
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Fig. 3. The neighborhood of nodes with which a Pushpin can communicate varies considerably from Pushpin to Pushpin. The dark, solid
circle in each of the above frames indicates a Pushpin that is constantly transmitting packets via IR. The circle with bold outlines indicate
which of the surrounding nodes reliably receives the packets directly from the originating node. The single outlined node in frame 4 indicates
a node that sporadically enjoyed good reception. Aside from this one exception, all other nodes in the neighborhood received virtually 100%
of the transmitted packets. Note that there was no other network traffic and the neighborhoods shown only depict one-way communication.
In particular, note the transmitter in frame six belongs to the neighborhood of the transmitter in frame 2, but not the other way around;
clearly, the neighborhoods shrink if two-way communication is required for membership. The data presented above were taken from the
Pushpin testbed as configured in Figure 2.

Perhaps the most important service provided by Bertha is
a comprehensive communication library which includes
an implementation of directed diffusion [4] for basic
network routing. For the sake of simplicity, each node
in this experiment was pre-programmed with a globally
unique network address to identify it for the purpose of
communication and data analysis.

C. Pinger

We have created a handheld device, as shown in
Figure 4, called the “pinger” composed of a camera
flash and an array of 40-kHz ultrasound transmitters.
A button mounted on the top of the pinger triggers
a simultaneous flash of light and burst of sonar from
the array. Given knowledge of the propagation speeds
of these two signals, a sensor node can determine its
distance to the point from which they were emitted (a
‘point of correspondence’) by measuring the difference
of their arrival times. Assuming all nodes in the network
measure the difference of arrival between the flash and
ultrasound pulse, a simple comparison of these measure-
ments indicate which nodes could possibly be nearby and

which nodes are further off. Such correspondence points
serve to constrain the localization problem.

It should be noted that the approximately 1-centimeter
wavelength of the 40-kHz sultrasound places a the-
oretical upper limit on the accuracy of the time of
flight measurement made by this system using a simple
rising edge discriminator. Furthermore, the array of nine
ultrasound transmitters is roughly of the same scale as
the inter-node distance between Pushpins, so it certainly
isn’t an ideal point source and contributes to overall
error.

IV. L OCALIZATION SYSTEM

This section gives an overview of the localization
system developed and implemented on the Pushpins. As
previously mentioned, this algorithm combines aspects
of ultrasound time of flight and lateration into an ap-
proach that does not require any prior knowledge of
the location of any of the sensing nodes or the pinger
emitting the pulse of ultrasound and flash of light. To the
best of our knowledge, we believe our method is unique
in this sense.



Fig. 4. The “pinger” delivers a simultaneous flash of light and burst
of 40-kHz ultrasound. Each Pushpin can measure the difference in
time of arrival of these two signals and use this to calculate the
distance between itself and the Pinger.

A. Establishing Anchor Nodes

The first flash of light signals the begining of the lo-
calization process. The flash of light is detected roughly
simultaneously by all nodes, which each start a hardware
timer that runs either until they detect an ultrasound
pulse or the timer overflows. If the timer overflows, the
node assumes it has missed the ultrasound pulse and
it stops participating in the localization algorithm alto-
gether. If the sonar pulse is received, the node computes
the distance from itself to the pinger, which is simply
proportional to the time of flight of the ultrasound pulse
and is easily calculated given the speed of sound in air.

After a short delay ensuring every node has had a
chance to hear the sonar ping, a leader election algorithm
begins to determine which node was closest to the
pinger. The leader election algorithm consists primarily
of pairwise comparisons of each node’s measured time of
flight for the ultrasound pulse in question. These pairwise
comparisons continue until the network agrees which
node is closest to the pinger event. This node is elected
as an anchor point. A new anchor point is elected in this
manner each time the pinger is triggered. In parallel with
this process, newly elected anchor points compute their
position. Figure 5 illustrates the process of computing
anchor node coordintates.

The anchor point elected first is arbitrarily chosen to

be the origin of the new coordinate system, and is given
the coordinates(0, 0) (frame A). The second anchor
point is assigned coordinates on the new Y-axis. To
determine this anchor’s y-coordinate, anchor points 1
and 2 share information over the network about their
respective distances to the first and and second pinger
location. Using these distances, which show up as the
boldface and hairline dotted lines in frameB, the base-
line distance - which is the y-coordinate of the second
anchor - can be computed using basic trigonometry. The
coordinates of the final anchor point are placed in the
+X-halfplane. These coordinates are computed using
the triangle relations illustrated in frameC of the figure.

An important assumption is made about the geometry
of this trigonometric calculation: the pinger assumed to
always be triggered directly above some node in the
network. The node immediately below the pinger is
nearest to the pinger, thus it will become an anchor node.
With this assumption, any node can compute its baseline
distance to an anchor point by solving a simple right
triangle relation. Without this assumption, additional
constraints would be necessary to determine the baseline
distance to an anchor. The right angle constraint was
chosen because it is easily justified for a dense sensor
network: If the pinger is held at a random location above
the Pushpin network, the inter-node spacing is small
enough that the pinger is not likely to be more than a
few centimeters away from being directly above some
node. Also, considering that the width of the ultrasound
transmitter array on the pinger is roughly as wide as
the average distance between nodes, this is not a very
severe constraint. We discuss possible departures from
this assumption in Section VII.

B. Lateration

Once three anchor points have been established, there
is sufficient information to find a complete localiza-
tion solution by solving a set of linear equations. This
technique, called lateration, is described in [10], among
others, and is summarized below. In general, lateration
can be used to find the coordinates of a node given
any number of anchor points. However, for the sake
of creating a simple implementation that runs efficiently
on the 8-bit Pushpin microcontroller, we have restricted
ourselves to the case where only three anchor points
(the minimal number required for 2D coordinates) are
considered. We discuss the possibility of using more than
three anchor points in section VII.

To find the coordinates(x, y) of noded using basic
lateration, we proceed as follows. Given the coordinates



Fig. 5. A) Each firing of the ultrasound/light pinger allows the network to select a single anchor point, namely the node closest to the
location of the pinger. B) Once two anchor points are selected, they can determine the distance separating them by simple geometry. C) Three
non-colinear anchor points guarantee that a planar coordinate system can be built up. D) The orientation and handedness of the coordinate
system is arbitrarily, but consistently, chosen.

of three anchor points{a,b,c} and the distances from
each anchor point to noded, we can assert that the
coordinates ofd must satisfy the following Euclidean
distance metrics.

(xa − x)2 + (ya − y)2 = d2
a

(xb − x)2 + (yb − y)2 = d2
b

(xc − x)2 + (yc − y)2 = d2
c

where(xi, yi) are the coordinates of anchori anddi is
the distance from noded to anchori, for all i ∈ {a, b, c}.
All quantities exceptx andy are known. We can linearize
this system by subtracting the third equation from the
first two and collecting terms:

2(xa − xc)x + 2(ya − yc)y

= x2
a − x2

c + y2
a − y2

c + d2
c − d2

a

2(xb − xc)x + 2(yb − yc)y

= x2
b − x2

c + y2
b − y2

c + d2
c − d2

b

We now have a linear system of the formA

(
x
y

)
= b.

If A is non-singular, the solution to this equation can be
trivially computed by inverting a two-by-two matrix.

V. RESULTS

Unless otherwise noted, the results presented in this
section were derived with the Pushpin sensor network
configured as described earlier. Specifically, the config-
uration included 55 Pushpins arranged as depicted in
Figure 2 and five localization trials each consisting of
three ultrasound/light pings that were randomly located
(but non-colinear) within the 1 cubic meter space above
the Pushpin network.

A. Ultrasound Time of Flight

In order to provide a useful baseline in our error
analysis of the Pushpin localization scheme, we have
characterized the accuracy of the time of flight mea-
surements taken at a single node. The accuracy of the
lateration algorithm depends heavily on accurate range
measurements. Hence, any improvements to the range-
finding measurement due to calibrating the ultrasound
sensor on the Pushpins would increase localization ac-
curacy as well.

The error plot in Figure 6 shows the results of an
experiment in which the pinger was held directly in front
of a stationary Pushpin at distances between 0-m and 3.5-
m with 0.1-m increments. The plot shows what appears
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Fig. 6. Characterization of the error in the time of flight measurement
taken at a single Pushpin. Four measurements were taken at each of
the 10-cm intervals.

to be a baseline error of 0.13-m that increases linearly
with increasing actual distance. We postulate that the
error in the ultrasound time of flight measurement is due
to some combination of dispersion, speckle, changing
air currents, interference among ultrasound transmitters,
ring-up time for the ultrasound receiver, time walk from
decreasing signals with a constant threshold, and part
variability. This error was compensated for using a
linear calibration based on these measurements. Several
Pushpins were characterized in this manner and their cal-
ibration coefficients averaged to arrive at the calibration
coefficients ultimately applied to every Pushpin node.
Once the ultrasound receiver was calibrated, the average
error of the range measurements was reduced to 0.03-m.

B. Localization Error Analysis

In this section, we assess the performance of the Push-
pin localization system. The objective is to determine
the average error betweenestimatedcoordinates(x̂, ŷ)
produced by the algorithm in section IV and a set of
coordinates(x, y) measured manually with the aid of
simple image manipulation software, which we will refer
to as measuredcoordinates. The following metric was
used to compute the average absolute coordinate error
for N sensor nodes:

eabs =
∑N

i=1

√
(xi − x̂i)2 + (yi − ŷi)2

N
(1)

In order to find the measured coordinates, the array
of Pushpins was photographed using a digital camera.
A 0.1-m by 0.1-m square was included in the image to
provide a reference for image scale and to verify that
no measurement error would be introduced by image
warping caused by the camera lense. The coordinates
were extracted manually on a computer from this digital
image.

A Pushpin that was wired to the serial port of a
PC was used to query the network for the estimated
coordinates of each node. The entire data collection
process took less than 30 seconds for 55 Pushpins. Once
the data was collected, outliers were manually rejected.
An outlier was considered to be any coordinate that was
more than 0.5-m away from the average of its neighbors’
localized coordinates. This criteria for rejecting outliers
was chosen because it could be easily implemented
as an ad hoc post-processing step of the localization
algorithm by using simple neighber-to-neighbor network
transactions. We found that there were typically 3-4
outliers per localization trial.

As given, the algorithm produces a set of coordi-
nates in an arbitrary reference frame that depends on
the position of the three anchor points which in turn,
are determined by the location of the pinger at each
light/ultrasound event. To account for this, the measured
and estimated coordinate systems must somehow be
aligned. We considered two different methods of aligning
the coordinate systems: (1) A tranform comprised of
only a translation, rotation, and reflection; and (2) a
more general homogeneous affine tranform that could
also include scaling and shearing. When equation 1 is
applied to estimated coordinates tranformed as in (1),
we refer to this asunscaled error, since the distance
metric in these coordinates has not been scaled by the
tranformation, and still reflects absolute distances in the
physical world. The error in coordinates tranformed as
in (2) is refered to asscaled error.

Homogeneous affine transformations are a superset of
translations and rotations, so we expect the scaled error
to be smaller than the unscaled error since the scaled
error includes extra degrees of freedom that allow for
a better fit to the measured coordinates. The degree
to which these two approaches produce similar results
tells us how immune the estimated coordinate system
is to shearing and scaling. Immunity to scaling and
shearing is desirable in many applications where the
distances measured in the estimated coordinate system
must correspond to real, absolute distance in the physical
world. For applications where only relative distance



TABLE I

LOCALIZATION ERROR (SCALED)

.

Trial# mean error (m) error standard devi-
ation (m)

1 0.0451 0.0291
2 0.0583 0.0402
3 0.0478 0.0303
4 0.0450 0.0268
5 0.0501 0.0260

measurements are necessary, minor scaling and shearing
effects can be tolerated.

1) Scaled Error:Finding the scaled error is a straight-
forward matter of finding the linear least squares approx-
imation. More explicitly, an affine transformationA must
be found that, given homogeneous estimated coordinates
(x̂, ŷ, 1) in the estimated coordinate system, yields a
pair of coordinates(x̂′, ŷ′, 1) in the actual coordinate
system. The goal is to minimize the error between
the transformed, estimated coordinates(x̂′, ŷ′, 1) and
the measured coordinates(x, y, 1) for every node in
the network. This can be accomplished by solving the
following linear system:

A

 x̂1 x̂2 x̂N

ŷ1 ŷ2 ... ŷN

1 1 1

 =

 x1 x2 xN

y1 y2 ... yN

1 1 1


AX = B

where X is an array of untransformed, estimated coor-
dinates and B is an array measured coordinates. This
over-determined linear system has a linear least squares
solution of the form:

A = BXT (XXT )−1 (2)

Figure 7 depicts the estimated coordinates after being
transformed as in equation (2). Once transform (2)
has been applied, the error metric (1) can determine
the average absolute error between the measured and
estimated coordinates.

We applied this technique in five seperate localization
trials. For each localization trial, the mean absolute error
and standard deviation were found. These calculations
are tabulated in Table I.

2) Unscaled Error: For the sake of simplicity in
finding the unscaled error, we first aligned the origins of
the estimated coordinate system with the origin of the
actual coordinate system (to find the proper translation),
and then reflected and rotated the localized coordinate
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Fig. 7. Scaled Error: Estimated Pushpin coordinates after being fit
to measured coordinates using a least mean squares approximation.
The crosses denote measured coordinates and the circles denote
coordinates estimated using lateration. The line connecting each cross
to a circle indicates which estimated coordinate corresponds to which
measured coordinate.

TABLE II

LOCALIZATION ERROR (UNSCALED).

Trial# mean absolute error
(m)

absolute error stan-
dard deviation (m)

1 0.0609 0.0277
2 0.0558 0.0387
3 0.0661 0.0493
4 0.0627 0.0393
5 0.0593 0.0399

system about the origin so as to minimize error described
in equation (1). Figure 8 depicts the data after being
rotated and translated as just described. The resulting
error and error standard deviation using this approach is
tabulated in Table II.

C. Diagonal Wipe Demonstration

As a first test of our localization algorithm, we devised
a simple visual demonstration meant to show that each
node knows its coordinates. Once all nodes localize
themselves, by referencing their common timebase as
synchronized by the flashes, they individually simulate
a visual “wipe” effect by animating a line that starts at
x=-1 meter and moves toward x=+1 meters parallel to
the Y-axis. Once the line passes the position a node has
localized to, the node changes color from green to red.
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Fig. 8. Unscaled Error: Estimated Pushpin coordinates after being fit
to measured coordinates using only a translation, rotation, and reflec-
tion. The crosses denote measured coordinates and the circles denote
coordinates estimated using lateration. The line connecting each cross
to a circle indicates which estimated coordinate corresponds to which
measured coordinate.

The results of this demonstration visually verify that the
nodes have been spatially localized. In essence, the lo-
calized sensor network is being used as a simple display.
Figure 9 shows a time lapse of the wipe demonstration.

VI. D ISCUSSION

The results in Section V have immediate implications.
The diagonal wipe demonstration in Section V-C indi-
cates that the basic localization algorithm is functioning
well. This is verified by the relatively low localization
errors and standard deviations found in Section V-B.
Furthermore, the error results using the unscaled method
of calculating error are comparable to the error results
using the scaled method, indicating that the localized
coordinate system is nearly free of distortion due to
scaling and shearing. As expected, the the error resulting
from the scaled method is slightly lower than the error
resulting from the unscaled method, with the exception
of trial 2 which is close enough to suggest that the
discrepancy may not be statistically significant (we are
looking into this). Also encouraging is the consistency
between trials of mean error and error standard deviation.

Although these results are promising, there is plenty
of room for improvement and additional verification.
In particular, some recent papers [16], [21] compute

the Cramer-Rao bound (CRB), a statistical technique
that provides a lower bound on the variance of any
unbiased estimator, for the lateration problem. Their
results suggest the error variance of the location estimate
can be very high near the edges of the convex hull
created by the anchor nodes. These papers also find
that the CRB is extremely sensitive to anchor number,
location, and geometry. Generally speaking, a higher
number of anchors drastically reduces the CRB, hence
incorporating additional pinger events may considerably
improve our results.

Furthermore, it would be useful to establish the CRB
for the specific estimation method described in this
paper. In particular, the approximation that the pinger is
held over an anchor node should be carefully checked via
the CRB to ascertain whether anchor location uncertainty
introduces significant error in the localization estimate.
In principal, it should be possible to reduce location
errors and variances to approximately 1-cm, which is
the theoretical bound on the accuracy of ultrasonic
measurement given a unipolar threshold detection on a
fixed-frequency point source.

In addition, this algorithm should be able to adapt
to measurement outliers and faulty hardware. A set of
simple heuristics for detecting failures and correcting
them would adequate for eliminating the most common
errors. The approach described in section V-B for remov-
ing outliers by direct neighbor-to-neighbor comparison
of coordinates is an example of one such a heuristic.

VII. F UTURE WORK

The approach and results in this paper have demon-
strated that global stimuli can be used to generate anchor
points and localize nodes via lateration in a hardware
testbed. Improved position accuracy, robustness to node
failure and measurement error, and a thorough error
characterization using the CRB are natural avenues of
improvement for the current approach. However, we still
seek to create a more general localization framework that
frees us of some of the restrictions and assumptions made
in our work thus far.

First, the algorithm should rely as little as possible
on the mechanism for generating global stimuli and
instead treat such stimuli as parts of the environment
rather than additional infrastructure. This work at least
shows progress toward this goal by obviating the need
for prior knowledge of the absolute position of the source
of a pair of global stimuli. However, we would like to
generalize our approach further by instead measuring
the time of arrival of a single global signal. In this



Fig. 9. Starting in the upper left, going from left to right: 1) Two pings have been fired and their respective anchors elected. The first
anchor (origin) is the red node in the middle, the second anchor is the green node in the upper left. The line connecting them defines the
Y-axis in the localized coordinate system. 2) A third ping was fired and the third anchor elected in the upper right. The third anchor defines
the handedness of the coordinate system. In this case, the +X direction is where it normally is for a right-handed coordinate system. All
three anchors are now blue. 3) A simulated diagonal wipe can be seen entering from the -X direction propagating in the +X direction. The
line that delineates the boundary of the wipe is parallel to the Y-axis. 4) The diagonal wipe effect isnot a result of communication among
nodes, but rather the result of all nodes sharing a global time base and coordinate system and using these to individually simulate the same
moving wipe boundary. 5) The wipe maintains its structure as it passes over the network. A green outlier can be seen in the upper left. 6)
The wipe has passed, but will wrap around toroidally.

scenario, the absolute time origin of the signal becomes
another parameter to be estimated. The solution to this
higher dimensional search problem requires additional
constraints and more computation, but these are readily
available either from additional participating nodes, or
from additional global events.

We would also like to move away from the restriction
that the pinger must be triggered above some node in
the network. This would allow nodes to localize off
of a broader range of events, and more importantly,
would eliminate any error introduced from uncertainty
in the pinger location. Unfortunately, by removing this
assumption, the localization problem is no longer linear,
hence it must be solved using an iterative, non-linear
optimization approach. Several such approaches are well
known in the field of optimization, and some of these
have recently been applied to the problem of localizing
sensor nodes. Some work in this area includes mesh
relaxation [8], semi-definite programming [2], non-linear
least squares [12], and distributed Kalman filters [22].
We have preliminary simulation results suggesting a

mesh relaxation approach with an appropriately chosen
cost function can reliably solve the generalized Pushpin
localization problem, but this algorithm has yet to be
implemented on our hardware testbed.

Finally, as mentioned earlier, localization is a funda-
mental tool for building applications with sensor net-
works. Now that we are well on our way to having
the tool, the challenge now is to exploit it. An obvious
choice as to where to begin in this regard is to create
a more compelling and visually complex display appli-
cation than the diagonal wipe demonstration presented
in Section V-C. A first step in this direction might
include using the pushpin array to do both simple shape
recognition and display. Further on is the possibility of
creating the sensor network version of PostScript. If we
were also to pursue synchronization as one of our goals,
it may be possible to employ the microphone-equipped
nodes as an acoustic phased array. Such a system would
demonstrate the ability to first localize itself, and then
to further localize events in its environment, in this case
audio sources.



VIII. C ONCLUSION

We have developed and implemented a sensor net-
work localization algorithm that combines aspects of
ultrasound time-of-flight range-finding with in-network
lateration to arrive at a localization method free of the
need for prior knowledge of absolute position. This
method relies on correlated light flashes and ultrasound
pulses to elect anchor points used in a standard linear
lateration algorithm. We explored two methods of calcu-
lating localization error, both of which resulted in a mean
absolute error of approximately 5-cm and standard devi-
ation of approximately 3-cm. In addition to determining
localization error, a simple visual demonstration making
use of the localization data was implemented.
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