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Abstract 

We describe the design of a compact, wireless sensor 
module meant to capture expressive gestures in real-time 
when worn at the hands and feet of a dancer.  Each 
sensor node includes a 6-axis inertial measurement unit 
(IMU) that contains three orthogonal gyroscopes and 
accelerometers in order to capture local dynamics, as 
well as a capacitive sensor to measure node-to-node 
proximity. The nodes are designed to be easily 
augmented with other digital or analog sensors. The 
onboard radio transceiver supports a power-efficient, 
high-speed RF network capable of real-time data 
acquisition from several devices simultaneously, thereby 
meeting the requirements of instrumenting a small dance 
ensemble for interactive applications. This paper 
describes the application goals, presents the prototype 
hardware design, introduces concepts for feature 
extraction, and shows early test results. 

1. Introduction 
Many wireless interfaces have been developed to 

capture dance gesture over the last decade or two.  
Several have been built into shoes, such as the 1980’s 
Taptronics, featuring piezoelectric pickups at the toe and 
heel [1] and the Expressive Footwear by our group at the 
MIT Media Lab [2]. Originally realized in 1997, this 
system was an early implementation of a dense, 
multimodal wireless sensor cluster (now becoming 
common in sensor networks) that measured 16 variables 
including many degrees of both contact and free-gesture 
control. Other examples of wearable dance 
instrumentation typically use bendable sensors that span 
primary joints, e.g., the elbows and knees. Architectures 
of this sort have been introduced by DIEM in 
Copenhagen [3] and by Mark Coniglio of Trokia Ranch 
in New York [4]. Although these systems have become 
wireless, they employ a single radio in a beltpack or 
backpack, hence the various sensors need to be tethered 
across the body to this central dispatcher. Extreme (and 
expensive) versions of these types of wearable joint-bend 
interfaces can be found in full-body motion capture 
outfits (Goniometers) for computer graphics, such as 
exoskeletons and flexible fiber-optic angle-sensing 
systems such as the ShapeWrap by Measurand [5]. 

The systems above were developed for solo 
performers, and many do not scale well to ensemble 
performances. For instance, the Expressive Footwear 
system used all bandwidth provided by the on-shoe 
radios at their given transmit frequencies to achieve 60 
Hz full-state updates. As its basestation sported a pair of 
receivers, it was only capable of addressing two shoes 
(although several performances were done with a pair of 
dancers wearing one active shoe each), and no provision 
was included to sense upper body and arm motion. Some 
of the centralized backpack systems enable more than 
one dancer to be accommodated, but again, wires need to 
be run from the various sensor locations to the central 
body-worn data concentrator or transmitter. 

Another approach to gesture tracking for dancers 
avoids any body-worn hardware and exploits computer 
vision, processing video from a camera (or cameras) 
watching the stage. This technique has been established 
for over a decade now, and systems like the Very 
Nervous System [6], Eyes Web [7], Big Eye, and Jitter 
are used by many composers – others, (e.g., [9]) have 
developed their own video analysis tools. This approach 
is processor intensive, and although the underlying 
technology and algorithms are steadily improving, 
computer vision is further limited by constraints on 
lighting and choreography; robustness to clutter and 
dynamic background remains problematic, and obtaining 
multiple relevant features reliably from a dance ensemble 
in real-time can be difficult. 

Accordingly, we have developed a compact and 
relatively unobtrusive wireless sensor package with the 
aim of instrumenting the hands and feet of a small dance 
ensemble for real-time collective gesture tracking and 
musical feedback. This paper details our approach, 
presents results from current hardware, and describes 
work in progress on feature extraction for describing 
ensemble activity. 

2. Goals 
The motivation for this project is the fairly recent 

opportunity to leverage low-power, high-bandwidth RF 
solutions and compact inertial sensors to create a 
wearable wireless motion sensing system meeting the 
demands of many points of measurement and high data 
rates. Our goal is to implement such a system for an 
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interactive dance ensemble, which is in some ways an 
ideal situation for pushing high performance 
requirements. A highly active environment of human 
motion demands an unencumbering yet sturdy wearable 
design. Obtaining detailed information about the 
movement of the human body and the interaction of 
multiple human bodies demands many points of 
measurement. Most importantly, using this information 
as a vehicle for interactive performance, specifically with 
musical feedback, demands real-time data collection and 
reduction (e.g., order of 100 Hz full state updates). In the 
broader scope, we hope to test the applicability of this 
system to other applications, such as analyzing the 
dynamics of team sports, physical therapy, biomotion 
measurement & analysis, and personal physical training.    

3. Hardware Design 
The main successor to the Expressive Footwear 

project up to now has been the Sensor Stack [9].  This is 
a modular wireless sensing cluster developed by our 
group that can be configured with a variety of small 
stacking sensing panes, each of which are dedicated to a 
particular modality (e.g., inertial, tactile, or ambient 
sensing). Our goal with the Stack was to move away 
from the large single circuit board developed for the 
Expressive Footwear and adopt a more compact and 
configurable geometry. Projects in which we have used 
the Stack include a pair of shoes designed for portable 
biomotion analysis and physical therapy via interactive 
music [10]. A single Stack layer measures 1.4”x1.4”, 
about the size of a large wristwatch, but the large 
connectors required caused the Stack system to protrude 
significantly when several boards were used. In addition, 
the RF transceiver used at the time was capable of only 
115 kbps. Although this is a factor of nearly 6 above the 
data rate of the Expressive Footwear board, it is still too 
small to enable a performance with multiple dancers. 
Assuming that each node transmits a 16-byte packet 
including a header, 6 12-bit inertial sensor values, and 3 
16-bit capacitive or other analog measurements, two 
dancers wearing 4 nodes each should require 102.4 kbps. 
However, because of the time overhead associated with 
blocking reads/writes, it is difficult for a low latency 
protocol to achieve the full bandwidth. In practice 
(although this depends on the particulars of the 
implemented low-level RF protocols) achieving adequate 
reliability has restricted the system to 60% of the 
available bandwidth, thus pushing the requirements for 
two dancers up to 170.7 kbps.  

Although compact sensor clusters have been 
developed at other institutes, none have the 
characteristics that we need for unobtrusively 
instrumenting a dance ensemble. The rich ancestry of 
Motes are quite established in sensor networks, but most 
support mainly peer-peer routing at lower data rates than 
needed here. Likewise, the Smart-Its and its descendants 
[11] are designed to work at data rates similar to the 

Stack. Flety and collaborators at IRCAM [12] have built 
wireless sensor networks that use a similar transceiver as 
used in the Stack (hence also exhibit limited data rate) 
and others that use the WiFi 802.11 standard, which 
tends to be much too power hungry for efficient 
continuous operation with a modest battery. Emmanuel 
Tapia of the MIT Media Lab has designed very compact 
wireless accelerometer sensors capable of higher data 
rates [13], but our application requires more sensor 
degrees of freedom. 

The design presented here includes a full six axis 
IMU, node-to-node capacitive proximity sensing, and 
flexible expansion capabilities, combined with a Nordic 
nRF2401 radio. The sensor node (Fig. 1) measures 
1.65”x1.65”x0.5”, not including the protruding antenna 
and external lithium polymer battery. It is thus slightly 
wider but much slimmer than the Stack. We chose to 
mount the RF transceiver on a daughter card, both to save 
board space and to achieve optimal RF performance. We 
also chose to decouple the battery from the main circuit 
board, so that it could be affixed to a strap rather than 
adding to the bulkiness of the sensor package. Screw 
mount holes are provided so that the node can easily be 
built onto a strap that secures it to the wrists or ankles. 

 

Figure 1. Sensor node and battery pack. 

The nRF2401 data radio is a small, low-power, 2.4 
GHz device providing up to 1Mbps data rates. Our 
communications protocol is a TDMA scheme [14] in 
which a basestation polls the network for data at the 
sampling rate, and each node responds within a 
preprogrammed time slot. The basestation then transmits 
the data to a central computer via USB for processing. 
Using this scheme, one basestation can handle full state 
updates at 100Hz for over 30 nodes. This is a significant 
bandwidth improvement over previous designs.  The 
workable RF range on these devices appears to be on the 
order of 50 feet, depending on the local RF environment. 

The IMU is made up of Analog Devices ADXRS300 
rate gyros and ADXL203 accelerometers, as well as 
associated analog circuitry. Sensor signals are collected 
by the 12-bit analog to digital converter built into the 



  
 

onboard processor, a TI MSP430. This microcontroller 
was favored because of its low power consumption, 
capable A/D, and ample I/O, as well as its use in several 
of our group’s ongoing projects. 

The node-to-node capacitive proximity sensor 
operates by alternating transmit and receive modes on 
each of the sensor nodes, while the body is grounded – at 
any time, one node transmits while the others listen. 
During transmit mode, the microcontroller drives an LC 
oscillator, which generates a high amplitude (tens of 
volts) pulse at 90 kHz. During receive mode, this signal 
is picked up, amplified, and sampled in quadrature to 
determine its amplitude without the need for phase 
coherence. The transmit and receive modes on each node 
are able to share the same electrode very efficiently, 
thanks to an amplifier design inspired by Joshua Smith’s 
School of Fish [15]. The capacitive electrode can be 
integrated into the strap securing the sensor package to 
the body using conductive textiles such as Bekiweave 
[16]. 

Additional capabilities include a free digital input for 
interfacing with a Polar heart rate monitor, a free SPI 
interface for connecting with other digital devices, and a 
free analog input with associated signal conditioning 
circuitry for handling an additional resistive sensor, such 
as a pressure sensor, bend sensor, or photoresistor. All of 
these optional signal lines are broken out to a compact 
expansion port, which also acts as the programming 
interface. 

Power consumption is always of prime importance in 
the design of wireless sensors; the power source tends to 
be the largest and most cumbersome component of the 
system. Unfortunately, our desire to operate continuously 
with three rate gyros prevents this design from meeting 
traditional low-power requirements. Each gyro may 
consume up to 30mW, and their slow setup time prevents 
them from being power cycled. The data radio is also 
power hungry, but this can be managed in code by 
minimizing the amount of time spent in receive and 
transmit modes. Ultimately, we chose to operate the 
system with lithium polymer batteries because they are 
lightweight, compact, and rechargeable. With two 
145mAh cells in series, as pictured above (Fig. 2), the 
node can operate for four hours on one charge. 

4. Results 
The major advantage of having large enough 

bandwidth to operate multiple sense points on multiple 
wearers simultaneously is the ability to obtain detailed 
information about the correlations present in group 
activity. In the context of a dance ensemble, time and 
spatial correlations can be used to determine which 
dancers are moving together, or perhaps moving 
complimentarily in a call-and-response fashion. With this 
in mind, our preliminary analysis focuses mainly on the 
feasibility of extracting simple features that can be used 
to describe general group dynamics. The ability to detect 

specific gesture patterns on an individual sensor node 
will be discussed below in future work. 

The first task was to quantify both time separation 
and spatial similarity of gestures performed by multiple 
users. For simplicity, the network was limited to three 
sensor nodes, each worn on the right wrist of three test 
subjects. In a pair of tests, subjects were asked to raise 
and lower their right hands, first simultaneously and then 
in sequence. In the last test, subject one raised and 
lowered a hand as before, subject two performed a 
qualitatively “similar” but distinct gesture, and subject 
three performed a qualitatively “completely different” 
gesture. 

To find the time separation between similar signals, 
cross-correlation is a natural choice. Here we have 
favored the similar measure of cross-covariance, because 
of the bias present in the raw inertial data. For each 
segment of test data, subject one was regarded as the 
reference and cross-covariance was calculated for the 
other subjects with respect to subject one. It can be seen 
that the location of maximum cross-covariance correctly 
estimates the time lag between similar gestures 
performed in succession (Fig. 3). As might be expected, 
cross-covariance also appears to be useful for 
determining the time delay between disparate gestures, 
but with diminishing accuracy. 

 

Figure 3. Raw pitch gyro data and resulting cross-covariance 
for hands raised and lowered in sequence. 

The nature of cross-covariance as a signal-matching 
technique would suggest that the peak magnitude gives a 
measure of the strength of the correlation at the location 
of the peak. In the context of our sensor data this 
translates loosely into a measure of spatial similarity 
between gestures. Indeed, Figure 4 illustrates that as the 
disparity between gestures increases, the height of the 
peak cross-covariance decreases. This is a satisfying 
result in that a cross-covariance calculation can be used 
to determine both the time and spatial correlation of 
group movements. 

Another useful group feature is the mean activity on 
each sensor axis. To determine this, the windowed 
variance of each sensor signal is calculated and then the 
results are averaged across subjects (Fig. 5). Windowed 
variance on individual sensor nodes can be used to 
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Figure 5. Raw pitch gyro data and average windowed variance 
across subjects as hands are raised and lowered in unison. 

Figure 4. Raw pitch gyro data and resulting cross-covariance 
for one subject raising and lowering a hand, one subject 

performing a “similar” gesture, and one subject performing a 
“different” gesture. 

determine when gestures begin and end if there is enough 
pause between successive motions. Average windowed 
variance across the group extends beyond this to provide 
a measure of the predominant axes of collective motion 
during a period of activity. For instance, when most of 
the group is raising and lowering their hands, the average 
variance on the pitch gyro dominates (Fig. 5). This 
supports our intuition that raising and lowering the hand 
involves a rotation in pitch and little other activity. 
Extracting this information from average windowed 
variance may simplify the task of detecting specific or 
generic classes of gestures by determining which sensor 
signals are most important, or by defining a subgroup that 
is performing a similar gesture before applying heavier 
analytical techniques. One can also imagine a situation in 
which the correlation measurements discussed above are 
desired, but it is unclear who should be interpreted 
reasonably as a “reference” for the rest of the group. By 
comparing the average group variance to the individual 
variance, one can determine if the motions of one subject 
are characteristic of the entire group, or lie outside the 
norm.  

5. Future Work 
We plan to focus on extracting more sophisticated 

features from the data of individual nodes and training 
gesture models on these features, to investigate the 
possibility of classifying specific gestures being 
performed. Models for complex gestures could be based 
on a highly specific set of movements as defined by a 
choreographer, or based on sequences of smaller gesture 
units. In either case, group features as we have discussed 
here will greatly reduce the complexity of the problem, as 
it may no longer be necessary to detect a particular 
gesture being performed by every limb of every dancer. 
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