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Abstract 

 
This paper introduces a compact, wireless, 

wearable system that measures signals indicative of 
forces, torques and other descriptive and evaluative 
features that the human body undergoes during bursts 
of extreme physical activity (such as during athletic 
performance). Standard approaches leverage high-
speed camera systems, which need significant 
infrastructure and provide limited update rates and 
dynamic accuracy. This project uses 6 degree-of-
freedom inertial measurement units worn on various 
segments of an athlete’s body to directly make these 
dynamic measurements. A combination of low and high 
range sensors enables sensitivity for both slow and fast 
motion, and the addition of a compass helps in 
tracking joint angles. Data from the battery-powered 
nodes is acquired using a custom wireless protocol 
over an RF link and analyzed offline. Several 
professional pitchers and batters were instrumented 
with the system and data was gathered over many 
pitches and swings. We show some biomechanically 
descriptive parameters extracted from this data, and 
highlight ongoing work and system improvements.  
 
1. Introduction & Prior Work 
 

Baseball players, especially pitchers, push their 
bodies to the edge of human capability.  Maintaining 
performance and arm/shoulder health at a professional 
player level requires close monitoring and interaction 
with coaching and medical teams, who judge and 
advise players mainly based on visual observation, 
allowing players only so many throws per day, etc. 
Nonetheless, injury can be frequent.  In 1973, 50% of 
pitchers reported shoulder or elbow pain sufficient 
enough to keep them from throwing [1].  By 1999 that 
number had grown to over 75% [2].  Andrews [3] 
reports that from the periods of 1995-1999 and 2000-
2004, the need for elbow surgery in professional 
baseball pitchers increased twofold (for college 
pitchers fourfold and for high-school pitchers sixfold).  
Accordingly, there is a need for an easily deployed 

system that can allow coaches and sports medicine 
practitioners to quantitatively measure relevant aspects 
of player performance.  Such data can be leveraged in 
evaluating and comparing players, better predicting 
their performance during a game, and identifying and 
measuring changes in playing technique that either 
indicates the beginning of an injury or predicts that an 
injury is probable.  If the data from this system can be 
applied in real time, it could also be useful for 
interactive therapy during recovery and training. 

The most common instrument used to quantitatively 
measure subjects in sports medicine research clinics is 
the optical motion tracker [4,5,6].  These systems track 
the position of reflective markers attached to the body 
of the subject with an array of high-speed, IR-
illuminated video cameras, producing a series of 
positions that are converted into joint angles to drive a 
stick-figure animation.  These systems typically record 
in the vicinity of 200 Hz, which can be slow for a 
detailed analysis of physical performance, as players 
can exhibit brief extreme bouts of very fast motion.  
Although higher speed is possible on some models, 
this tends to require even more detailed setup, 
calibration, and illumination – constraints that already 
pose difficulties for rapid implementation and make it 
impossible to use this system for players in their 
natural settings – e.g., practicing in the mound, 
bullpen, or batting cage.  Active magnetic motion 
trackers (such as made by Polhemus and Ascension) 
[7] can also involve considerable setup and calibration 
(especially if any ferrous material is nearby), exhibit 
limited sampling rates if many sensors are used, restrict 
the sensing area to a small region, and tend to require 
the pickups to be wired to a large beltpack.  
Goiniometers, exoskeletons, and mechanical encoders 
can directly measure joint angle [8,9,10], but require 
attachment at both ends of a joint, which can be 
inconvenient and constraining for the players.  
Similarly, resistive bend sensors integrated into smart 
garments have been used for motion capture [11], but 
must be sized to individual subjects and may be subject 
to speed and reliability limitations when monitoring 
high-intensity sports gesture. 



Due to the very high speeds at which activities like 
pitching occur, there do not exist any off-the-shelf 
products that can accurately measure the dynamics 
(and directly infer the forces and torques) at which the 
body is moving during peak activity - information that 
would aid in gaining a better understanding of, for 
example, the extreme biomechanics of shoulder and 
elbow.  The tracking systems described above must 
double-differentiate their position measurements in 
estimating force – a process that is intrinsically noisy.  
Accelerometers, in contrast, directly measure 
acceleration, which is proportional to force, providing 
a much cleaner measurement.  Accordingly, designing 
a player monitoring apparatus around multipoint 
wireless inertially-measuring sensors promises several 
advantages, including direct inference of forces and 
torques, and a simple system of compact, untethered 
nodes that can be easily applied to the body and used 
anywhere the team desires, as it doesn’t require a 
structured environment. 

Wearable inertial sensors have been used for motion 
classification and tracking in prior work – for example, 
in monitoring the activity of people at home, mainly 
for medical purposes [12,13,14].  SHIMMER [15] is a 
wearable, wireless health research platform with a 3-
axis accelerometer and Bluetooth radio together with a 
microSD slot for copious on-node data storage. These 
systems lack sufficient sensor degrees of freedom, 
sampling rate, and dynamic range for our applications 
and often employ limited sensing channels to mitigate 
costs.  

Wired [16, 17] and wireless [18,19] systems of 
nodes employing gyroscopes and/or accelerometers 
with magnetometers and sometimes even ultrasound 
have been used for generic motion tracking – these 
systems lack the dynamic range and sampling rate 
capabilities needed to make the measurements required 
for the very fast activities monitored in this study.  

Commercial systems that leverage arrays of 
inertially-sensing nodes have recently been appearing – 
these are primarily aimed at the healthcare, physical 
therapy and biomotion measurement markets – for 
example, the IDEEA LifeGait System from Mini-Sun 
uses wired accelerometers distributed on the body to 
determine parameters of gait and motion [20].   

Some other research groups have applied wireless 
inertial sensor nodes to sports. Recent projects, for 
example, have explored interactive golfing practice 
[21, 22], and an early study [23] took an initial look at 
pitching analysis with wired accelerometers.  Wireless, 
limb-mounted inertial nodes have also been used for 
exercise coaching [24] and mobile interactive 
entertainment driven by exercise [25].  Again, the 
dynamic range and sampling rate for these systems are 
far below our goals for this project. 

Our work has evolved from a lineage of projects at 
the MIT Media Lab.  The Lab’s initial foray into 
baseball was an interactive batting analyzer by 
Gerasimov called “Swings That Think.” [26].  Here, a 
gyro wired into a bat informed a classifier that would 
output a simple verbal assessment after each swing. 
The project discussed in this paper came from systems 
that our research group designed for interactive dance.  
Initially focusing on a highly instrumented pair of 
wireless sensor shoes for a solo dancer [27], this work 
evolved into an array of compact wireless IMU’s that 
each conversed with a common basestation using a fast 
1 Mb/s radio and a simple TDMA protocol.  Termed 
“Sensemble” [28], this setup was designed for a real-
time instrumented dance ensemble, with each dancer 
wearing nodes at the wrists, ankles, and perhaps head.  
Fast data fusion at the base station and host computer 
produced a finite set of parameters that a composer or 
choreographer could author interactive content upon.   
Our first proof-of-concept baseball nodes adopted the 
Sensemble system, adapting it to instrument pitchers 
by replacing the 300°/s gyros and 5-G accelerometers 
with gyros that range up to 11,000°/s and 
accelerometers that work up to 120 G’s in order to 
sample peak pitcher dynamics [28, 29, 30].  The 
system would acquire 5.6 seconds of 1 kHz sampled 
data in onboard flash memory after the user indicated 
that sampling should begin via a synchronization and 
activation message sent wirelessly from the base 
station – data could subsequently be read off all nodes 
via our custom TDMA downlink.  Biomechanical 
results from these tests, made with players at Red Sox 
spring training in 2006, were summarized in [30]. 

 
 

 
 

Figure 1: Block Diagram of a SportSemble Node 
 
 



2. The SportsSemble System 
 

We subsequently evolved our Sensemble system 
into a node dedicated to wearable monitoring of 
athletic gesture, specifically for measuring baseball 
players’ pitching and batting.  A block diagram of our 
resulting SportSemble node is given in Figure 1, a 
photograph of an actual node is shown in Figure 2, and 
more details on the design of this system can be found 
in [31]. Each node measures about 2.2 inches by 2.0 
inches and weighs 44 grams with battery and 
attachment bracelet. The battery is a 145mAh lithium 
polymer rechargeable that was seen to continuously 
power a node for up to 3 hours of use.  Two orthogonal 
daughter cards (in addition to the main board) house 
high-range gyros and accelerometers in order to span 
all 6 inertial axes.  The embedded radio (a 2.4 GHz 
Nordic nRF2401a, which has a maximum bandwidth 
of 1 Mbps and an output power of +4dBm) is mounted 
on a daughter card to isolate the RF electronics from 
the main board and enable an easy upgrade of the RF 
hardware. The embedded radio interfaces to the 
microcontroller directly via a Serial Peripheral 
Interface (SPI).  Each node has a unique address, and 
radio communication to the base station exploits a 
custom frequency-hopping protocol described below.  
A node consisting only of microcontroller, radio, and 
USB interface is connected to a laptop and works as 
the base station for all nodes.   

 

 
 

Figure 2: Photograph of working SportSemble node 
 

Each of the wearable battery-powered nodes has 
three single-axis ±120G ADXL193 accelerometers, 
three single-axis ADRX300 gyroscopes, a 3-axis ±8G  
LIS302DL accelerometer and a HMC6343 digital 
compass.  The bi-range accelerometers let us record 
slow motion with the low-G device, and fast motion 
with the high-G units, thus providing high resolution 
across the entire gesture.  The gyros, which normally 

saturate at ±300°/s were specially biased and strapped 
to respond up to 12,000°/s, as described in [32] and 
originally implemented in our earlier trials [28]. 

The output from the 3 analog High-G 
accelerometers (which have a 400 Hz bandwidth) and 
gyroscopes (which have a 2 kHz bandwidth) are 
digitized into 12 bits by the microcontroller at a 1 kHz 
rate after passing through first-order analog filters to 
suppress noise and/or basic aliasing. The additional 
sensors (low-G accelerometer and compass) talk via a 
common digital I2C interface.  The low-G 
accelerometer is sampled at 100 Hz and the compass at 
10 Hz – adequate for measuring the slow motions that 
they were intended for. The onboard MSP430 
microcontroller used with the SportSemble had 116 kB 
of onboard flash memory, enabling each node to store 
about 11 seconds of data sampled at 1 kHz.  
 
3. Communications and Embedded Code 
 

At a high level, the firmware running on the nodes 
is simple: wait for a basestation beacon via the radio 
and react based on the command encoded in the 
beacon’s packet. Reacting can be one of 4 things: do 
nothing, erase flash, begin sampling data to onboard 
flash, or return a sample to the base station. The 
firmware for the base station also has 3 basic functions; 
simple beaconing at 200Hz (these packets contains no 
data, but simply ensure that all nodes keep 
synchronization), receiving commands via the USB, 
transmitting them to the network of nodes when 
appropriate, and returning the results of commands via 
USB to the host laptop.   

When a data collection run is initiated, a command 
is broadcast from the base station that erases the 
contents of Flash memory on all nodes.  The nodes 
then wait until they receive a “Sample2Flash” 
command, at which point they sample all sensor 
signals as described earlier and write the results to 
Flash memory, proceeding until the Flash is full.  A 
full-color LED onboard each node changes color to 
designate the node’s state – initialized and erased, 
sampling, or full.  Once sampling is completed, the 
data is read from each node byte-by-byte, with the base 
station requesting sequential packets from the nodes.  
If a received data byte fails a CRC test, it is re-
requested – this insures that all node data arrives at the 
base station and host computer intact.  Data can be 
wirelessly read from all five wearable nodes used in 
our tests within 35 seconds in good RF conditions. To 
mitigate problems with RF interference, a simple 
frequency-hopping scheme is employed on readout that 
sequentially jumps to an adjacent channel after the 
node transmits the desired data record.  A control 



packet, which can be sent when the nodes are 
initialized, sets the base RF channel used and the hop 
count – this way the channels can be selected to avoid 
noisy bands in different environments where the 
system is deployed.  More details on our 
communication scheme can be found in [31]. 
 

 
 

  
 

Figure 3: Setup with reference camera tracking system 
(top), pitcher w. targets (left) & reconstruction (right) 

 
4. System Deployment & Test 
 

Before the nodes were used for field measurements, 
all inertial sensors were tested and calibrated on a 
variable speed rotating platform, as described in [31]. 
To evaluate this system, we compared the IMU array 
to an optical tracking system.  A series of professional 
baseball players was used for this experiment. After 
IRB approval and informed consent and under the 
direction of the subjects’ coaches, a series of 4 
professional baseball pitchers underwent simultaneous 
biomechanical testing utilizing both the camera-based 
motion tracking system and our newly-developed IMU 
array.  Strobe signals from the optical tracker were also 
sampled by our base station in order to synchronize 
and align the data taken by the optical and wearable 
systems [31]. 

The optical motion analysis system (from XOS 
Technologies), employing “high-speed” cameras 
operating at 180 Hz, allowed positional tracking of 
each pitch. A series of 10 motion analysis cameras 

were set-up on a regulation-sized pitching mound 
(Figure 3). Subjects were fit with both passive 
reflecting targets for the camera-based motion analysis 
and a 5 segment wireless IMU array.  Inertial 
measurement units were carefully affixed to the chest, 
upper arm, forearm, wrist, and waist (Figure 4) with 
standard body tape, such as sports pre-wrap [31]. 

 

    
 

Figure 4: Nodes initially applied to player (left) and fully 
taped up during data taking (right) 

 

When the player was ready to record a pitch, swing 
or baseline calibration, the operator entered a laptop 
command that instructed the base station to transmit a 
“Sample2Flash” code, putting all nodes into 
acquisition mode.  After the 11 seconds of sampling 
elapsed, another laptop command was entered to dump 
all data back to the base station and laptop (the player 
could continue throwing or swinging during this 
period, although this data wasn’t recorded).  Once all 
data was transferred, all flash was erased, and the 
above process was repeated to record more data. 

Each pitcher threw ten recorded fastballs using a 
regulation baseball off a regulation pitcher’s mound. 
Using positional data from the camera-based tracking 
system, real-time 3D cartoon reconstructions of each 
pitch were made (Fig. 3, right). The acceleration phase 
of the pitching cycle was isolated, and kinematic 
parameters of the shoulder were calculated from 
simultaneous recordings of position, acceleration, and 
velocity by the two systems [31]. Maximum 
acceleration and velocities were compared at the wrist, 
shoulder, and hand.  A commercial radar gun 
monitored the speed of each pitch, which was manually 
logged. 

The system was then utilized to evaluate a series of 
five professional baseball batters.  Players were fit with 
a 5-segment wireless IMU array.  Inertial measurement 
units were affixed to the chest, upper arm, forearm, and 
to the bat itself.  Players were then asked to perform 5 
free swings.  The IMU node was removed from the bat 
and affixed to the waist.  Players then hit a ball off a 
tee for five additional swings.  Relative speeds of the 



bat, hands, forearm, and chest were calculated.  
Ball/bat Impact times were calculated and hand speed 
at impact determined. 

In the results presented below, an assembly error in 
the first order front-end filter limited the analog 
bandwidth of the IMU signals to ~50 Hz.  We 
examined the impact of this in our data in two ways – 
by compensating the low passed data offline by a 
matched high pass filter (rolling off noise at high 
frequency), and also by taking representative data with 
the hardware filters working properly.  Although there 
may be subtle fine structure in the higher bandwidth 
data, the peak values, averages, and timings derived 
from the low-passed data presented here look to differ 
from full bandwidth results by under 3%, hence any 
distortion in these results look to be marginal. 
 

 
 
Figure 5:  IMU-Measured Multipoint Accelerations during 

a pitching cycle 
 

 

 
 

 
 
Figure 6: IMU-inferred shoulder internal rotation over time 

during the pitch cycle for two different players 

 
Location  Average Peak g-Forces 

Hand 90 
Wrist 80 

Forearm 70 
Chest 10 
Waist 8 

 
Table 1: Average G-Forces in Pitch Acceleration 

 
5. Results 
 

5.1. Pitching. 
 

A rapid rise in elbow extension velocity and 
humeral internal rotation was recorded in both the 
optical system and with the wearable IMUs.  The 
acceleration phase of the pitching cycle (Figure 5) lasts 
from peak external rotation of the shoulder to the time 
of ball release and was identified as a sudden peak in 
the acceleration forces in the hand and upper extremity.  
The acceleration components plotted here point along 
the centripetal axis (directed down the arm), hence are 
unipolar.  In our series, the average acceleration phase 
lasted 0.022 seconds. The high-speed motion-tracking 
camera system was able to capture four data points 
during this phase of the pitching cycle. The IMU array 
captured 30 data points during this same period.  

Resultant g-forces were calculated from the IMUs.  
Average g-forces at the hand are depicted in Table 1. 
Peak hand forces averaged 90 g’s in the acceleration 
phase of the pitch and were appropriated captured by 
the accelerometer chosen. As expected, g-forces at the 
chest and waist were considerably slower at 10 and 8 
respectively. 

Shoulder internal rotation values were estimated 
from the IMU measurements as detailed in [31].  
Graphs of shoulder internal rotation velocities 
demonstrated a similar pattern, as throwing mechanics 
are very similar at this level of participation. Each 
graph, however, demonstrated a unique signature 
describing the individual’s shoulder mechanics. 
(Figure 6) 

Peak shoulder internal rotation velocity was 
identified for each pitch – averages and standard 
deviations were calculated between all throws made by 
each player (Table 2).  There was no statistical 
difference between average shoulder internal rotation 
velocity measured from the optical system compared to 
the IMU array.  The average standard deviation of the 
IMU array was about 6% whereas the average standard 
deviation of the optical system was 15%. 

 



 
Table 2: Average shoulder internal rotation velocity 

(deg/sec) for each subject.  Average pitch velocity (from 
radar) is listed in the first column on the left. 

 
5.2. Batting. 
 

A similar rapid rise in g-forces and angular 
velocities were seen during batting swings (Figures 7 
& 8).   Due to the very high shock transmitted through 
the bat at impact, the node was removed from the bat 
during swings that used a tee to avoid IMU damage. 

 

 
Figure 7.  IMU-Measured G-forces during a representative 

swing of a baseball bat (free swing) 
 

 
Figure 8.  IMU-Derived swing speeds from the batʼs sweet 

spot during a representative swing (free swing) 
 
Impact could be detected from the hand node, as 

seen by a disruption of the bat speed curve (Figure 9).  
Relative body segment velocities & timing differences 
were determined for each swing (Figure 10) [31]. 

Average bat speed during a free swing was 227.5 
MPH. Average standard deviation was 9.7 MPH.  
Average hand speed at impact was 74.5 MPH. 

 

 
 

 
Figure 9: Hand node resultant velocities during a free 
swing (top) and after hitting a ball from the tee (bottom).  

 
Approximate bat speed can be predicted from hand 

speed by knowing the length of the bat and its angular 
velocity.  This calculation was used to predict bat 
speed at the time of impact when a node was removed 
from the bat itself (nodes cannot withstand the force of 
impact if left on the bat).  For each of the 5 players, 
this calculation was verified using the free swing data 
(where a node was left on the bat for each swing).  
Average error in this calculation was 4.8 ± 0.5 %. 
 

 
 

Figure 10: Graphs of body segments over time.  Impact is 
seen at 920ms.  Hand speed at ball impact was 74MPH 

 
7. Conclusions and Future Work 
 

We have presented results from, to the best of our 
knowledge, the first application of an array of wireless 
inertial measurement units to measuring dynamic and 



kinematic properties of pitchers and batters in action.  
Our system provides a self-contained wireless data 
acquisition studio, where complex fixed infrastructure, 
such as needed by standard optical tracking systems, is 
not needed.  We have seen indications that the 
calculation of forces and torques with the inertial 
system (measurements of special interest in player 
evaluation and injury prediction) seem to be much 
cleaner than those inferred from the optical system.  
We have performed some crosschecks to validate that 
the data from the inertial system is compatible with 
that produced from the optical tracker – validating joint 
angle estimates across both systems awaits further 
analysis, however, as described below.  Our system 
was seen to sample 7-8 times more quickly than the 
optical tracker used in these tests, and provides much 
more granularity in the measurements, which should be 
extremely useful when analyzing the extremes of 
athletic motion (e.g., the critical acceleration peak for 
pitching was only sampled at 4 points by the optical 
system).  Although the error in the pre-sampling analog 
filters prevented our system from measuring high-
frequency data in these tests, preliminary testing has 
indicated that the results presented here are still valid.  
This problem has now been fixed, and upcoming tests 
will exhibit full bandwidth, which will enable the 
analysis of fine structure in pitching dynamics. 

Persistent difficulties with the embedded software 
before our spring training deadline prevented the 
dataset presented here from also including information 
from the magnetometer (compass) and low-G 
accelerometer – also, although our high-rate gyro 
measurements produced good data, lower rate 
phenomena (such as during pitch windup, etc.) had 
insufficient signal-to-noise to enable a useful 
integration across a pitch.   

Accordingly, we have incorporated lessons learned 
here into a new SportSemble node design (Figure 11).  
The basic system is identical to the one used in the 
study presented here, except that we have also added 3 
axes of low-rate gyros to enable good signal-noise 
performance for low angular rate activity, enabling us 
to have very wide dynamic range in both accelerometer 
and gyro subsystems (ultimately, one would like a log 
response in these components for sports research, but 
log inertial sensors appear to be thusfar unavailable).  
We have also upgraded the embedded processor to an 
AVR32 – this device proved to be much more capable 
than the MSP430, making the embedded software 
design easier, hence resolving the problems that we 
encountered in the tests presented here with reading the 
low-G accelerometer and the magnetometer.  Finally, 
our new design supports a micro-SD slot, allowing us 
to install copious memory.  This has revolutionized our 
testing – now we log all data right into the slotted flash 

chip.  Accordingly, we use the radio only for 
synchronization and transmission of basic commands – 
bulk data is RF-transferred from the nodes only on 
occasion for spot checking.  After a day of running, the 
SD memory cards are manually removed from the 
nodes’ slots and their contents are copied to a PC 
before they are erased for subsequent tests.  This 
allows us to operate much more quickly out on the 
field, and record every pitch and hit that the players 
generate.  We have recently gone to spring training to 
take new data with this design, and analysis results are 
forthcoming. 

 

 
 
Figure 11: New SportSemble Node with AVR32, 12 inertial 
sensors for 6-axes of dual range, & SD-slotted memory.  

 
Our new tests will provide us the capability of 

fusing data from all 12 inertial sensors with the 3 
magnetometer values to estimate joint angles – this 
should allow us to track body position across very high 
dynamic range.   

Although the RF datalink worked well in our lab, 
when moving to an outdoor location without nearby 
walls to reflect the nodes’ signals, we encountered 
substantial problems in signal absorption by the body – 
when the player was facing away from the base station, 
our bit error rate could become very high.  Although 
this is much less of a problem with the new system, 
which doesn’t rely on the RF channel to download 
data, putting a power amplifier on the base station’s 
transmitter or moving to a sub 900 MHz carrier that 
exhibits less corporal absorption would allow 
commands to be very reliably received. 

Further development with this system will work on 
shrinking the nodes, improving the user-interface 
software, and making it much easier to apply and 
remove in the field, allowing coaches to use it as a 
standard tool.  Systems like ours promise to soon 
enable wide-ranging practical and clinical applications 
for athletes, including injury prevention (youth 
pitching), aiding in conditioning/training, and 
improving post-operative rehabilitation 
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