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ABSTRACT
Gestures Everywhere is a dynamic framework for multimodal
sensor fusion, pervasive analytics and gesture recognition.
Our framework aggregates the real-time data from approx-
imately 100 sensors that include RFID readers, depth cam-
eras and RGB cameras distributed across 30 interactive dis-
plays that are located in key public areas of the MIT Me-
dia Lab. Gestures Everywhere fuses the multimodal sensor
data using radial basis function particle filters and performs
real-time analysis on the aggregated data. This includes
key spatio-temporal properties such as presence, location
and identity; in addition to higher-level analysis including
social clustering and gesture recognition. We describe the
algorithms and architecture of our system and discuss the
lessons learned from the systems deployment.

1. INTRODUCTION
Modern digital displays are now equipped with a myriad
of sensors to detect a user’s actions. These sensors include
cameras [16], capacitive touchscreens [3], infrared proximity
sensors and beyond [13]. As these displays become pervasive
throughout our workplaces, retail venues and other public
spaces, they will become an invaluable part of the rapidly
growing sensor networks that observe every moment of our
lives. While these sensor networks are becoming ubiquitous,
they are often deployed as independent closed-loop systems,
designed using a single technology for a single application
[12]. Consequentially, multiple systems frequently observe
the same events, but fail to accurately detect these events
because of occlusions, sensor noise or gaps in sensor cover-
age. To truly take advantage of these pervasive networks, we
need dynamic frameworks that support the heterogeneous
sensor data from nearby devices to be shared and fused.
This aggregated data can then be used to make better in-
ferences of higher-level information, such as a user’s precise
location or the classification of a gesture, which can then be
distributed back to nearby pervasive applications through
reusable software abstractions. By developing frameworks
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for sensor fusion and the abstract dissemination of analytical
data, we can maximize the heterogeneous sensor networks
distributed throughout our environments, and provide bet-
ter inference on the events within range of these sensors;
ultimately facilitating improved user experiences on both
interactive displays and devices within their vicinity.

In this paper, we describe Gestures Everywhere, a real-time
system for multimodal sensor fusion, pervasive analytics and
gesture recognition. Gestures Everywhere (GE) is distributed
across 30 digital displays located in key public areas of the
MIT Media Lab and aggregates the real-time data from ap-
proximately 100 sensors that include RFID readers, depth
cameras and RGB cameras. Our system fuses this multi-
modal sensor data from disparate sensors across different lo-
cations using radial basis function (RBF) particle filters and
performs real-time analysis on the aggregated data. This
analysis includes key spatio-temporal properties, such as
presence, proximity, location and identity; in addition to
higher-level analytics, such as social clustering and gesture
recognition. This data is then made accessible to provide
pervasive analytics and gesture recognition support to the
interactive displays and other ubiquitous devices that run
throughout the building. The main contributions of our
work include: (i) a flexible framework for multimodal sen-
sor fusion using RBF particle filters; (ii) a modular infras-
tructure for the abstract dissemination of fused analytical
data; (iii) the integration of these frameworks into a robust,
scaleable, customizable system that supports interactive dis-
plays and pervasive devices within their vicinity. First, we
provide a general overview of our system followed by a re-
view of prior sensor fusion work and a description of the RBF
particle filter. In Section 4, we outline how the RBF parti-
cle filter is applied to estimate spatio-temporal metrics, such
as presence and location. Section 5 presents how this fused
data is then applied to make better inferences of higher-level
information, such as gesture recognition. Finally, Section 6
outlines what we have learned from the development of this
system and Section 7 concludes.

2. SYSTEM ARCHITECTURE
Gestures Everywhere is built on top of an existing interactive-
information system [3], which has been running through-
out the Media Lab since early 2010. This system, referred
to as the “Glass Infrastructure”, consists of over 30 digital-
information displays distributed at key locations throughout
the building. Each 46-inch Samsung display features an in-
tegrated capacitive touch screen and has been extended with



Figure 1: From left to right: (i) two pervasive displays located in a public corridor at the MIT Media Lab; (ii)
two users detected in front of a pervasive display by the RGB-D client application, showing each user’s center
of mass and bounding box; (iii) an overview of the Gestures Everywhere architecture; (iv) the interactive
map application visualizing the real-time location of three anonymized users.

a ThingMagic ultrahigh-frequency (UHF) RFID reader and
custom sensor node [13] containing microphones, motion,
temperature and humidity sensors. An Apple Mac mini,
embedded behind each display, is used to receive events
from the capacitive touch screen and to run an RFID-reader
polling application written in Python. The Apple Mac mini
also runs each display’s user interface, built with HTML,
CSS and JavaScript, running in fullscreen-portrait mode in-
side a WebKit-based browser. The displays provide con-
tinuous place-based information about the lab’s research in
addition to interactive building floor plans, event posters
and event-centric applications.

Building on the Glass Infrastructure, we added 25 Microsoft
Kinects to key displays located throughout the Lab. A
custom-built C++ software application, running on the Ap-
ple Mac mini driving the associated display, manages each
Kinect. This software application (RGB-D client) captures
the depth and RGB images from the Kinect at 30 frames per
second, processing each image locally using a suite of com-
puter vision and machine-learning algorithms. These algo-
rithms extract features for presence estimation and people
detection from the RGB images, in addition to segmenting
a user and estimating their overlapping skeleton model from
the depth data1. The RGB-D client streams these features
to a central server via the Open Sound Control (OSC) net-
work protocol [21]. This includes basic statistics such as
the number of users currently visible at a display, to more
complex features such as the three-dimensional position of
each detected user’s centre of mass (see Figure 1), the color
histogram values of a specific user, or the estimated location
of the 24 joints of a user’s body.

At the core of the GE architecture, a central server receives
the real-time depth and image feature data from the RGB-D
clients. This is in addition to the real-time data from the
network of RFID readers located throughout the building.
To maximize this heterogeneous data, the GE server fuses

1We use the OpenNI and NITE libraries for skeleton fitting,
however all other metrics are estimated directly from the
depth images so we can detect and track a user from the
instant they enter the depth field.

the data using a a series of hierarchical analysis modules.
First, low-level analysis modules use RBF particle filters to
fuse the multimodal data from nearby sensors. Each low-
level analysis module computes a specific spatio-temporal
property, such as presence, proximity, location or identity.
The output of these lower-level modules are then fed into
higher-level modules, which perform more complex analysis
such as social clustering or gesture recognition. Together,
these modules determine whether, which, and how users are
interacting with a particular display and are used by a host
of applications running on the GE infrastructure (see Section
6). To make both the fused data and analysis results acces-
sible to other displays and devices, the GE system provides
application programming interfaces (API), implemented in
both OSC and HTTP/JSON2. These APIs act as an abstrac-
tion layer that supports pervasive applications to query, for
instance, the current location of a specific user or the num-
ber of individuals within the proximity of a display. Once
queried, the system will return the best estimation possible
(using the fused sensor data from disparate sensors at that
location); paired with a probabilistic representation of the
system’s confidence for that estimation. This enables client
applications to respond accordingly, based on the system’s
estimation confidence.

3. SENSOR FUSION
In this section, we describe the RBF particle filter algorithm
used for sensor fusion throughout the GE system. First, we
describe other related work in sensor fusion.

3.1 Related Work
Sensor fusion has received extensive research across a diverse
range of fields in computer science and engineering, includ-
ing aerospace [1]; robotics [18]; people tracking [17, 5]; and
pervasive computing [6]. Bayesian-based techniques, such
as Kalman filters [4], and particle filters [6, 18], are partic-
ularly useful as they provide a powerful statistical tool to
help manage measurement uncertainty and perform multi-
sensor fusion. Particle filters’ main advantages over other

2You can view the real-time output of the GE system via the
Gestures Everywhere website: http://ge.media.mit.edu

http://ge.media.mit.edu


Figure 2: An illustration of fusing the output of three sensors using a Gaussian RBF. The left-hand graph
uses equal weights for each sensor, however the right-hand graph places more weight on the first and second
sensors. Note how changing these weights impacts the resulting likelihood function. The distribution of
particles are shown beneath each graph for t = 0, 1, 2. Particles at time t = 0 are randomly distributed. The
size of each particle reflects that particles’ weight, with larger particles having a larger weight.

Bayesian techniques are their ability to represent arbitrary
probability densities and that they can incorporate virtually
any sensor type [6]. A common approach to sensor fusion
using a particle filter is to model the sensor fusion process as
the product of independent conditional probabilities across
multiple sensors [11]. This approach has been applied widely
to track and identify users by fusing inertial measurement
units and WiFi [20]; vision and RFID data [7]; or a network
of fixed cameras [2]. While this approach provides a conve-
nient method to combine data from multiple sensors, it does
have one disadvantage in that any sensor with a conditional
probability approaching zero, will drive the product of the
remaining sensors towards zero. Consequently, one damaged
or noisy sensor could potentially suppress other functioning
sensors which can make it difficult to implement a robust
model that can be abstracted across a large sensor network.
To mitigate this problem, RBFs can be combined with par-
ticle filters, as this provides an efficient algorithm to com-
bine the sensor data from multiple heterogeneous sources,
while remaining robust to unresponsive sensors. Radial ba-
sis functions have been applied successfully in several con-
texts with particle filters, such as RBF Neural Networks for
sensor fusion [5] and target tracking [19], or using RBFs as
an additional stage for interpolating sparse particles [14].
To provide a flexible framework for sensor fusion, we inte-
grate the RBF directly into the computation of the sensor’s
likelihood model as we now describe.

3.2 Radial Basis Function Particle Filter
Particle filters are a set of on-line posterior density estima-
tion algorithms that probabilistically estimate a dynamic
system’s state from noisy observations. The system’s state
vector could be the one-dimensional presence estimate of a
digital display, or a more complex vector including the posi-
tion, pitch, roll, yaw, and linear and rotational velocities of
a moving object. Particle filters probabilistically estimate a
system’s state, x, at time t using the sensor measurement
yt. This is achieved using a set of N particles, each with

their own state vector and weight {x(i)
t , w
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For Gestures Everywhere, we apply the Sequential Impor-
tance Sample with Resampling (SISR) algorithm to recur-
sively update the particle filter at each time step [18]. SISR
involves updating each particle’s state vector using a predic-

tion model: x
(i)
t = f(x

(i)
t−1); weighting each particle by the

sensor’s likelihood model, given the current sensor measure-

ment and predicted state vector: w
(i)
t = g(yt|x

(i)
t ); normal-

izing the particle weights, and resampling N new particles
for t+1 using importance sampling [18]. To facilitate the in-
tegration of sensor data from several heterogeneous sources,
we represent the sensor’s likelihood model as a radial basis
function:

g(y|x) =

|y|∑
j=1

αj φ(x,yj) (2)

where αj is the weight for the j’th sensor and φ is the radial
basis function. Figure 2 illustrates the resulting function
from fusing three sensors using a Gaussian RBF:
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1
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√
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e
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Approximating the sensor fusion task as an RBF particle
filter has several advantages. First, using an RBF provides
an easy method to control how much we should trust each
sensor, as this can be directly encoded in αj , i.e. sensors
that provide a better estimation of the true underlying state
will have a larger weight. Weights can be set using a-priori
knowledge or directly learned from the data using weighted
least squares. Second, the RBF mitigates an erroneous sen-
sor (with a low weight) from dominating other sensors that
are performing well. Further, the RBF can approximate any
multimodal function, such as the functions shown in Figure
2. As particle filters can converge to the true posterior even
in non-Gaussian, nonlinear dynamic systems, RBFs provide
an excellent compliment to the particle filter. Finally, RBF
particle filters are particularly suited for large-scale sensor
networks as the fusion algorithm can continue to function
even if several of the sensors in a network fail, as the sensor
fusion process simply sets φ(·) for that sensor to zero.



4. ANALYSIS MODULES
In this section, we describe how the RBF particle filters
are applied by Gestures Everywhere to aggregate the multi-
modal sensor data and estimate the system’s spatio-temporal
properties. To address each of the spatio-temporal estima-
tions, we define individual particle filters for each low-level
property. Depending on the estimation task, each particle
filter can represent a local estimate (e.g. the presence esti-
mate at display k), or a global estimate (e.g. the location of
a user within the entire building). Given space limitations,
we only describe the presence and location modules, how-
ever the proximity and identity modules use the same RBF
framework.

4.1 Presence Estimation
Presence information can play a key role in improving the
design of digital displays. For instance, a system that can
sense the presence and approach of people can use that in-
formation to reveal possible interactions [15], even at a dis-
tance. The GE presence estimation for display k is defined
as: x = {p}, where p is a real number in the range [0 1] that
defines the likelihood of a user being present at display k.
The prediction model is set as:

p
(i)
t = p

(i)
t−1γ +N(0,σ) (4)

where γ is empirically set as 0.99 and σ controls how much
each particle randomly explores the state space. To compute
each particle’s weight, features from the RFID reader (y1),
depth camera (y2), and RGB camera (y3) at display k are
plugged into the RBF to give:

w
(i)
t =

3∑
j=1

αj φ(p
(i)
t , yj) (5)

For the RFID reader and depth camera, we directly map
the number of users detected by the RFID reader and user
segmentation algorithm, scaling these values to a uniform
range. For the RGB camera, we extract a movement feature,
m, computed from the RGB image I at frame t:

mt =

[
1

Z

∑
i

∑
j

|It(i, j)− It−1(i, j)|
]

+ mt−1 0.95 (6)

where Z is a normalization constant designed to scale the
movement feature to a uniform range, and i and j are pixel
indices. Each of these features independently provide good
indications of presence, however they all have weaknesses.
For example, the RFID and depth features have excellent
precision and are robust to false positives, however the depth
camera only has a range of approximately five meters and
not every user carries an RFID card. Alternatively, the
movement feature detects presence if a user is moving, but
can fail to detect stationary users and is sensitive to false
positives errors. By applying sensor fusion, the strengths
and redundancies of each feature can be combined to miti-
gate each individual sensor’s weakness. Table 4.2 shows how
the individual accuracy, precision and recall of each of these
sensors can be improved using sensor fusion.

4.2 Location Estimation
Location information is often essential for ubiquitous com-
puting systems [12] as it provides an important source of
context [20]. The location module estimates the location

and orientation of each user within the vicinity of each dis-
play in the building. In addition, the location module con-
tinually tracks each user for the duration that individual is
within the vicinity of a display. A new particle filters is
used to track each new user in range of display k, with each
particle filter using 500 particles. The particle filter used
to estimate each user’s location is defined as follows. The
state vector is x = {x, y, θ, c}, where {x, y} is the user’s es-
timated location, θ is the user’s current heading, and c is
a 10 dimensional vector that represents the user’s hue color
histogram. The location prediction model is defined as:

θ
(i)
t = θ

(i)
t−1 + ϕ (7)

x
(i)
t = x

(i)
t−1 + β cos(θ

(i)
t ) (8)

y
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t = y

(i)
t−1 + β sin(θ

(i)
t ) (9)

c
(ij)
t = c

(ij)
t−1 + δ, 1 ≤ j ≥ |c| (10)

where ϕ, β, and δ are Gaussian random variables drawn
from N(0,σϕ), N(0,σβ), and N(0,σδ) respectively. σϕ, σβ , and
σδ represent the uncertainty that has built up in the user’s
x and y location, orientation and color histogram since the
previous sample. The sensor’s likelihood model is defined
as:

w
(i)
t = α1φ(x

(i)
t , x̂) + α2φ(y

(i)
t , ŷ) + α3φ(θ

(i)
t , θ̂) + α4φ(c

(i)
t , ĉ)

(11)

where x̂, ŷ, θ̂ and ĉ are the center of mass (COM), orienta-
tion and color models of one of the M user’s currently visible
at display k. θ̂ is computed from a normal vector projected
from the user’s skeleton torso. Our user segmentation and
COM estimation algorithms running on each RGB-D client
can robustly detect a new user from the moment they enter
the depth field, however, it takes approximately two seconds
for the OpenNI/NITE skeleton model to automatically be

fitted to each user. The θ̂ feature is therefore not avail-
able for the initial detection of a new user. In this case, we

take advantage of the RBF model and set φ(θ
(i)
t , θ̂) to zero

until new data is received from the skeleton model. The
raw estimate of the user’s center of mass already provides
a robust estimate of the user’s location, however fusing this
with the features from the skeleton model and hue color his-
togram provide an estimate of the user’s current orientation
in addition to robust tracking of a user while they are in
the vicinity of a display. Further, if several depth and RGB
cameras overlap at the same location then the raw sensor
data from each overlapping sensor can be fused to improve
the overall location estimate.

Testing the output of the location module against a one
hour recording of hand-labeled data recorded from six digital
displays throughout the Media Lab, the tracking algorithm
achieved an accuracy of 97% while tracking 51 users in com-
plex scenes with several occlusions. It is important to note
that the location module estimates the location of each user
within each display’s local frame of reference. Consequently,
the location modules can efficiently track a user with as lit-
tle as 500 particles, which is several orders of magnitude
less particles required to accurately track a user throughout
an entire building [20]. Nevertheless, as we know the loca-
tion and orientation of each display within the building, we
can project the user’s location into the building’s coordinate
system so other tracking systems can take advantage of the
fused data, such as those described in [16]. While increasing



Presence Analysis Results Accuracy Precision Recall
RGB Camera Feature 80% 0.77 0.42
Depth Feature 80% 1.0 0.28
RFID Feature 79% 1.0 0.26
RBF Particle Filter 86% 0.99 0.52

Table 1: The results from testing the output of the
presence module against one hour of hand-labeled
data (∼108000 sample points) recorded across six
digital displays located throughout the MIT Media
Lab. Note that the particle filter achieves better
accuracy, precision and recall than any of the indi-
vidual sensors with just 100 particles.

the number of particles can improve the tracking accuracy,
we balance overall accuracy with realtime responsiveness as
the system potentially needs to simultaneously track several
users at each display.

5. GESTURE RECOGNITION
In addition to the spatio-temporal properties described in
section 4, Gestures Everywhere also runs higher-level analy-
sis modules, with the most prominent of these being gesture
recognition. Gesture recognition offers many advantages for
large-scale public displays, as it enables users to start in-
teracting with the display at a distance or on the move.
The gesture recognition module detects if any user at a dis-
play performs any of the gestures within the GE gestural
dictionary. This consists of a set of fundamental gestural
primitives that other ubiquitous applications might want to
recognize. Based on prior research [10], we opted to con-
strain the size of the gestural vocabulary to a small set of
upper body gestures, each with high postural disparity from
the other gestures to ensure high reliability and recognition
rates. This includes a set of core interactions illustrated in
Figure 3 that include pointing; next/previous swipes; and a
‘home’ gesture. These gestures are recognized using the Ges-
ture Recognition Toolkit [8] with a Näıve Bayes classifier [9].
The input to the classifier consists of a twelve-dimensional
feature vector, with the x, y, and z values of the user’s left
and right hands, translated and rotated in relation to the
user’s torso (making each gesture invariant to the location
that the gesture is performed), in addition to the x, y, and
z velocities of the user’s left and right hands. To mitigate
false-positive classification errors, a user’s gestures are ig-
nored if the overall likelihood of the skeleton joint model is
low, such as when the user is occluded by another individ-
ual, or is too close to the depth camera. Client applications
can also actively reduce false-positive recognition errors by
placing additional contextual constraints on what gestures
are actioned. This can include limiting gestures to only be
actioned if the individual is stationary, or using the output
of the location module to filter any gesture events from users
that are not orientated towards a specific target (such as one
of the Glass Infrastructure displays).

6. DISCUSSION
Gestures Everywhere has been deployed throughout the Me-
dia Lab since early 2013. In this section, we describe some
of the real-time pervasive applications that leverage the GE
data and discuss a number of key lessons that have been
learned throughout the systems deployment.

6.1 Pervasive Applications
Public digital displays can significantly benefit from perva-
sive analytics as applications can react to whether, which,
and how users are interacting with a particular display. The
real-time GE analytical data are currently being used to
power a number of pervasive applications that run on the
digital displays located throughout the Media Lab. For ex-
ample, using the proximity and identity data we have built
an on-the-go update application that displays time-sensitive
and location-sensitive information to registered users as they
approach the screens. This includes a personal welcome
screen to users as they enter the building each morning, or
important reminders that can be triggered by both a user’s
current location or time-of-day. This application can also be
used to propagate messages to specific users as they move
about the building. As this application may contain sensi-
tive personal information, the on-the-go application will only
be shown if the user-identification module reaches a specific
confidence threshold; which the user can control via their
personal data-portal on the GE website. This enables users
to control the privacy settings of the system to best match
their individual needs. In addition to on-the-go, we have
integrated the real-time location data into the Glass Infras-
tructure interactive map. The interactive map visualizes the
location of anonymized users as they walk throughout the
building and facilitates users to directly search for another
individuals’ current location within the map (see Figure 1).

6.2 Scaling & System Modularity
Building flexible pervasive systems that can scale to an en-
tire building can be challenging. Our system has currently
scaled to include approximately 100 sensors distributed across
a 100K sq. ft. six-floor building, with a database of 1800
identifiable users. This is managed by one server which runs
all the data collection, sensor fusion, analysis modules and
API interfaces. A core design of the GE architecture that
has facilitated the system to easily scale to an entire build-
ing is that much of the processor-intensive computer vision
and machine learning algorithms are run locally on each of
the devices managing the Glass Infrastructure displays. The
result of this architecture is that the remote RGB-D clients
send pre-computed features to the GE server. This signifi-
cantly reduces the overall-processing overhead and amount
of real-time data being streamed to the server. A second
important design of the system is its abstract modularity.
Each of the system’s components, such as remote sensor
interfaces, spatio-temporal analysis modules, gesture recog-
nition, etc., are separated by robust software abstractions.
These abstractions facilitate new sensors to easily be added
to the system as they are added to the environment; pop-
up displays to rapidly be integrated into the system for a
one-day-event; or additional analysis modules to be added
that build on the output of the existing modules. Further,
our system exposes the data from all of these modules via
two accessible APIs in HTTP/JSON and OSC. This enables
multiple pervasive applications to access the raw, fused, and
analytical data; facilitating the GE data to be used as input
to other pervasive systems that may be added in the fu-
ture to the building’s digital ecosystem. By separating the
remote sensor interfaces from the pervasive analytics, and
abstracting the output of the system from the pervasive ap-
plications that run on top of it, we provide a robust, flexible
infrastructure for dynamically connecting multiple sensing



Figure 3: The core set of gestures recognized by the gesture recognition modules. The pointing, swipe and
tap gestures can all be performed by either the left or right hand.

technologies to multiple applications.

6.3 Privacy
Privacy is clearly an important issue in the development of
any pervasive system. To protect an individuals’ privacy,
personally identifiable data is only released through the GE
system if the user in question allows this. A central design-
philosophy of the system is that users have full control over
their own data and can choose to share their personal track-
ing data with a specific group of individuals; users currently
inside the building; everyone; or no one at all. Users can
easily control their sharing settings at anytime via the Glass
Infrastructure displays or on their personal devices via a web
browser. In addition to controlling how other users view an
individuals data, each registered user has full access and
ownership of their own data. Registered users can login to
the GE system via their personal data-portal and browse
their data repository; facilitating individuals to understand
just how visible they are to the system, who they are shar-
ing their data with and monitor who has been searching for
them.

7. CONCLUSION
In this paper, we have presented Gestures Everywhere, a
dynamic framework for multimodal sensor fusion, pervasive
analytics and gesture recognition. We have described how
our system applies radial basis function particle filters to
maximize the heterogeneous sensor data deployed on a net-
work of digital displays, and demonstrated the integration
of these algorithms into a scaleable system that supports
a network of interactive displays and the pervasive devices
within their vicinity.
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