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Modern lighting systems typically provide a number of control parameters, e.g.
colour and intensity, which allows nearly infinite possible configurations in one
single room. The growing complexity of control makes it increasingly challenging
for the user to configure the system and fully utilize the additional degrees of
freedom. In contrast, an intuitive control interface takes into account the
perceptual meaning of the lighting configurations. Unfortunately, collecting
user ratings to construct perceptual models for lit spaces is cumbersome.
To address this problem, we introduce an image-based mapping method
that can rapidly evaluate the perceptual impression of lighting scenes using
photographs or renderings. We discuss potential applications, guidelines and
limitations of this method. In summary, we were able to closely approximate
ratings-based mapping (normalized dissimilarity value 50.04). Among three
dimensionality reduction methods, principal component analysis achieved the
lowest dissimilarity and required the least images with a resolution as low as six by
six pixels. Furthermore, simulations revealed that one perceptual model might
suffice for the same type of offices. Offices of different types, on the other hand,
require new mapping.

1. Introduction

With the advent of solid-state lighting, our
ability to control artificial lighting for indoor
illumination has substantially improved.
LEDs can provide high dimming speed and
dimming resolution, which is being explored
in concepts such as visible light communica-
tion. They also enable high spatial resolution,
e.g. for LED walls, displays and strips.
Colour mixing using multiple emitters with
different wavelengths permits the user to
select from a palette of millions of colours.

These new degrees of control enable new
experiences for indoor illumination. For
example, in the office environment, we can
dynamically introduce accent lighting to

create a pleasant ambiance or adapt the
lighting for various activities, for example
work with displays, presentations, highly
focused tasks, creative brainstorms, and
restorative breaks. Numerous research pro-
jects have shown that different lighting con-
ditions are required for different tasks.1–3

In order to advance new applications, we
need to improve upon our current lighting
control solutions. A lighting system with four
solid-state luminaires, each with three colour
channels (RGB) and 8-bit dimming reso-
lution, can produce over a billion possible
lighting compositions. The nearly infinite
numbers of solutions make the complexity
of control unacceptable for the end-user.
Currently, preprogrammed lighting scenes
are commonly used to improve usability.
This approach reduces the number of lighting
combinations to only a handful, restricting
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the richness of the system in favour of
simplicity.

An approach that could preserve the rich-
ness while reducing the complexity is to
discover a better representation of the control
capabilities. In other words, instead of using a
large set of device-centred control dimen-
sions, e.g. dimmers for 8-bit RGB colour
channels, we introduce a small set of abstract
user-centred control dimensions that corres-
pond to the user’s perception, e.g. dimmers
for focus and restoration. We also refer to this
method as perceptual mapping and percep-
tual control for lighting.

A lighting system with 4 RGB-luminaires
would need 12 device-centred control dimen-
sions. These dimensions access the complete
solution space. Using the perceptual control
approach, we can compress the solution space
to two or three abstract user-centred control
dimensions that establish a new control map.
The control map gives the user access to a
continuous subset of the most interesting and
relevant lighting configurations. We locate
this subset using a very small number of
landmark lighting scenes. Landmark lighting
scenes are example scenes designed by a
practitioner, the user or computer generated
based on domain knowledge.

It is possible to discover latent dimensions
for lighting control using user ratings of
lighting scenes. In the past, researchers
applied the semantic differential method4 in
combination with a mood board,5 and obser-
vations6 to collect data and construct latent
models. Their work offered insight into
human judgment of lighting7 and lighting
design.8 More recently, researchers have
demonstrated that the perceptual model
could improve user interface design for light-
ing control4 and for context-aware lighting.9

Context-awareness is a form of computing
that uses sensors and other inputs to infer
the user’s context, e.g. identity, location,
and activities. Based on this information,
the system automates control operations,

for example to maximize energy savings and
user comfort without burdening users with the
additional control tasks. While it is also
possible to use device-centred control dimen-
sions for context-aware applications,9–11 this
approach is challenged by the curse of
dimensionality, which means that when the
number of control dimensions increase, e.g. by
adding more colour channels and spatial
resolution, the design of control rules becomes
exponentially more complex. The perceptual
control approach addresses this problem. It
reduces the number of control dimensions in a
meaningful way and simplifies the integration
of sensing and lighting output. Therefore, this
method has the potential to improve the
usability of complex lighting systems and
opens up possibilities for automation.

Using ratings to build perceptual models is
limited due to observer fatigue. Moreover,
collecting user ratings is time-consuming.
In this paper, we introduce an image-based
approach that can accelerate this process and
rapidly construct a perceptual model. Images,
such as photographs or simulations, have
been proven to be useful for lighting evalu-
ation and control.12–16 Camera imaging has
also been utilized for context-aware applica-
tions,10,11,13 such as using images and quan-
titative features for daylight controls as well
as tuning light levels based on user
perception.

In our work, we use images to evaluate
lighting scenes in order to establish a latent
model that could describe the perceptual
meaning of these scenes. The image-based
model establishes a representation of the
relative relationships of lighting scenes. We
call this approach image-based mapping –
a method for rapid computational analysis of
lighting scenes. If the image-based map can
approximate user ratings, then we can use
only user ratings of a few scenes to label many
scenes for perceptual control.

In this paper, we evaluate our method’s
ability to approximate user ratings and how
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the image-based map generalizes for different
variations of spaces. Little is understood how
the perceptual controller generalizes for other
spaces because previous research focused
on a single space. This examination explores
the generalizability of image-based mapping
and perceptual lighting control. The outcome
helps to prioritize future research in these
areas.

In the first experiment, we evaluated the
performance and limits of image-based map-
ping for approximating ratings. We computed
two-dimensional representations of six light-
ing scenes using photographs of the experi-
ment room – Lighting Lab – and compared
the outcome to a representation derived from
user ratings of the same space and lighting
scenes. We introduced a dissimilarity meas-
ure, which is the basis of our evaluation.
We examined three dimensionality reduction
techniques for image-based mapping and
different parameters for the image datasets,
e.g. image resolution and angle of view.

In the second experiment, we explored the
generalizability of the perceptual control
approach. For this experiment, we created
simulations of 16 different spaces and
computed image-based mapping for each
space. We compared their outcomes to exam-
ine whether the perceptual control map could
be generalized within certain constraints for
different types of spaces with different furni-
ture and lighting. In the Applications and
Outlook section, we offer our vision of
potential applications for lighting design and
control, and how this approach could
improve today’s practice.

2. Background

Flynn et al.7 were pioneers in applying
multivariate statistics to study the perception
of lighting. The authors reasoned that envir-
onmental cues facilitated or altered through
illumination should be measurable as a con-
sistent change of impression under varying

lighting conditions. They exposed study
participants to six lighting scenes and asked
them to rate the conditions using semantic
differential scales, for example, spacious/
cramped and sociable/unsociable. Applying
factor analysis on the ratings, Flynn et al.
found five perceptual factors that would
explain the variance in impression and
named them evaluative, perceptual clarity,
spatial complexity, spaciousness and formal-
ity. This work has been influential for
contemporary lighting research.3 Other
researchers discovered perceptual dimensions
such as coziness/liveliness/tenseness17 and
activity/warmth/attention.5

Aldrich4 introduced a lighting controller
that was derived from user’s perceptual
ratings of lighting scenes. Using multivariate
statistics and test subjects’ aesthetic judg-
ments of varying illumination settings in the
same scene, he established two fundamental
perceptual dimensions for the scene – colour
temperature and appearance. A user interface
based on these two degrees of freedom was
more intuitive than a conventional, luminaire-
by-luminaire control interface. Task fulfil-
ment time was reduced to half. The new
interface also allowed the user to access a
wide range of lighting conditions, which is an
improvement over preprogrammed lighting
scenes.

Zhao et al.9 identified control dimensions
that correspond to the user’s activities and
derived a contextual two-dimensional – Focus
and Casual – representation for a context-
aware lighting controller in an office space.
Using the focus/casual map, Zhao et al.
achieved significant energy savings. Users
reported that the lighting changes supported
their tasks because the transitions were in
accordance with their activities.

Quantification of perception can also be
found in other domains of research, for
example machine interpretation of music
and music recommendation. Whitman18

introduced an approach that links acoustic
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analysis of musical compositions to manually
drafted descriptions of meaning. The acoustic
analysis does not directly provide the percep-
tual meaning of the music but reveals how
different songs relate to each other. This is
useful, for example, for classifying a large
collection of music with only a small subset of
labelled songs, which have manually drafted
descriptions of meaning. Today, Whitman’s
work is used for music recommendation in a
popular online radio application Spotify.19

Our approach for image analysis builds on
a similar principle: the measurement of simi-
larity of lighting scenes. The measurement of
similarity relies on good visual features that
contain the most relevant information in the
image. Features could be edges, shapes,
colours and other defining characteristics.
Several feature detection methods such as
linear and non-linear dimensionality reduc-
tion methods as well as other machine learn-
ing approaches and neural networks have
been developed and constantly improved.

Dimensionality reduction methods are
promising tools for the extraction of percep-
tual information in images. However, lighting
artifacts are often an unwanted factor in
image analysis for object recognition because
changing lighting conditions complicate the
prediction. For lighting applications, we need
to identify features that specialize on extract-
ing information about lighting and perception
of rooms. In this paper, we evaluate three
possible algorithms for image-based mapping.

Related research has considered lighting
designs by optimising a perception-based
image quality function.20,21 The goal is to
discover the best lighting configurations, for
example, to maximize visibility of objects or
scenes. In our work, we created the initial
landmark lighting scenes in collaboration
with a lighting designer. However, we can
imagine a scenario that incorporates lighting
optimization algorithms to assist the discov-
ery of landmark lighting scenes in the future.
The focus of this paper is image-based

mapping of predefined lighting scenes and
the evaluation of how this map differs from a
model derived from user ratings and how it
varies for different variations of spaces and
interior design.

3. Image-based mapping

We used Radiance RGBE Encoding (.hdr) for
the images. RGBE is an image format
introduced by Ward and Simmons.22 This
encoding is an improvement over the RGB
standard, both regarding precision and
regarding dynamic range. Each colour
channel – red, green, and blue – has the
precision of 32 Bit floating-point values
instead of 8 Bit in the standard RGB
encoding.

We performed several processing steps to
generate formatted datasets. First, we took
into account the logarithmic relationship of
human perception and stimulus intensity as
stated in Fechner’s Law23 and used the loga-
rithm of the weighted channel intensities. A
small offset offset¼ 0.1 was empirically chosen
and added to avoid log(0). The following
function was applied to each channel C.

C0 ¼ logððCþ offsetÞÞ ð1Þ

We reshaped the processed pixel matrix
(height�width� 3) to a vector (1� (height �
width� 3)). The image vectors were concate-
nated to form an image data matrix (number
of images� (height�width� 3)). The labels of
the images, which were the names of the
respective lighting scenes, were stored in a
separate vector (1� number of images). The
order of the image vectors in the image data
matrix and the associated labels in the label
vector were jointly randomized. The rando-
mized matrices together produced a for-
matted dataset.
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The number of observations is the number
of images in the dataset. Each observation
contains n¼ height�width� 3 pixel values.

We performed dimensionality reduction on
the dataset using the MATLAB toolbox for
dimensionality reduction by Van der
Maaten24 with target dimensionality of two
and visualized the landmark lighting scenes in
the resulting representation. We considered
several dimensionality reduction techniques
for image-based mapping, which are dis-
cussed further below.

Advanced machine learning techniques,
such as dimensionality reduction techniques,
are used to analyse underlying structures –
embeddings – in datasets. They have demon-
strated outstanding performance in extracting
features in images. Dimensionality reduction
is also used for data visualization, where high
dimensional data are organized into a two-
dimensional space for graphical display (see
Van der Maaten24 for further information on
dimensionality reduction).

4. Definition of dissimilarity

In order to compare image-based and rating-
based representations, we computed a dis-
similarity value

D ¼ eðSImg, SRateÞ ð2Þ

This measure of error indicates the differ-
ence between two two-dimensional represen-
tations of lighting scenes. A linear
transformation is first applied to align the
two representations and the error is computed
based on the remaining distances of the
landmark lighting scenes. In other words,
this measure evaluates the dissimilarity of the
relative positions of the landmark lighting
scenes. We did not consider the linear trans-
formation as an error itself. In the
Applications and Outlook section, we talk
more about potential solutions to transform

the image-based mapping results to align with
predefined axes.

A dissimilarity value of 0.09 and 0.04
means, for example, that the coordinates of
the landmark lighting scenes in the first
representation are shifted by 30% and 20%,
respectively, in the second representation.
We choose D¼ 0.09 to be the threshold of
an acceptable dissimilarity value. This thresh-
old should be reviewed in the future because
the requirement for precision might change
depending on the desired application.
The dissimilarity value is useful for relative
comparison and could become a benchmark
value.

First, we calculated the centroid of the
lighting scenes for both two-dimensional rep-
resentations using

Cx,Cy

� �
¼

1

N

XN
j¼1

Sj,x,
1

N

XN
j¼1

Sj,y

" #
¼ �Sx, �Sy

� �
ð3Þ

where N is the number of scenes and
Sj ¼ ½Sj,x , Sj,y� is the x,y-coordinates of
the j-th scene in the two-dimensional repre-
sentation. We applied an offset to the two-
dimensional map so that the centroid became
the origin. We then normalized the map so
that the coordinates of the landmark lighting
scenes were between �1 and 1. This was
achieved by dividing the x,y-coordinates with
the maximum x- and y-value, respectively.

Next, we performed procrustes analysis25

on the normalized image- and rating-derived
representations S0Img and S0Rate to determine
the linear transformation that would align the
two representations. Finally, the dissimilarity
value D is the sum of squared errors of the
transformed landmarks S00Img, standardized by
a measure of the scale of S0Rate

D ¼

P2
d¼1

PN
j¼1ðS

0
Rate,j,d � S00Img,j,dÞ

2P2
d¼1

PN
j¼1ðS

0
Rate,j,dÞ

2
ð4Þ
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5. Experiment 1

In the first experiment, we examined whether
image-based mapping can approximate
rating-based mapping of lighting scenes. We
took photographs of six preset landmark
lighting scenes in the Lighting Lab and
applied image-based mapping using three
dimensionality reduction techniques: a linear
technique (PCA), a non-linear technique
(Isomap), and a technique (t-SNE) that is
especially useful for data visualization. They
were chosen for their respective properties.
Furthermore, we generated several datasets
by varying parameters such as sample size,
image resolution, angle and field of view and
dynamic range. To examine the effects of
these parameters, we applied image-based
mapping for each variation using PCA. PCA
was selected because it was established as the
most suitable technique in the before-
mentioned comparison of dimensionality
reduction methods.

We compared image-based mapping results
to a rating-based map that was established in
a prior study from user ratings of the same
lighting scenes in the Lighting Lab. The
dissimilarity of the image- and rating-based
representations as defined above was the basis
of our evaluation.

5.1 The Lighting Lab

The Lighting Lab is a windowless office
(4.2m in length, 2.8m in width, and ceiling
height of 2.6m) with two tables in the centre
and chairs along their edges facing each other.
The table height was 0.7 m. There were books,
objects, sketching paper, pens, an office phone,
a mug, a laptop computer and some other
office supplies on the table. Additionally, there
were three decorative paintings on the walls
and a white file cabinet with books.

The lighting installation consisted of six
5-channel wall washing luminaires (Philips
Color Kinetics SkyRibbon IntelliHue Wall
Washing Powercore) with dimensions

0.56m� 0.10m and two 5-channel recessed
downlights (Philips Color Kinetics SkyRibbon
IntelliHue Linear Direct Powercore) with
dimensions 1.2m� 0.10m. The light lumin-
aires were divided into six lighting groups as
illustrated in Figure 1.

5.2 Lighting scenes

Six landmark lighting scenes were created
in collaboration with a lighting designer for
the Lighting Lab. The settings of the lighting
scenes are detailed in Table 1. Figure 2 shows
photographs of the scenes.

5.3 User ratings

Ratings of user perception for the six
lighting scenes in the Lighting Lab were
collected and analysed in a previous study.9

Participants (N¼ 17, from 20 to 35 years
old) rated the suitability of lighting scenes for
14 office tasks. They recorded their opinions
on a five-point Likert scale from strongly
disagree to strongly agree, including an option
to give no answer. Each participant rated all
conditions in random order. The office tasks in
the questionnaire were chosen according to
guesses of potentially relevant contextual
dimensions in the office. The tasks were:

� casual conversation with a friend
� informal phone conversation

W-back W-center

D-center D-frontD-back

W-front

D
oo

r

Figure 1 Lighting setup and grouping illustrated by the
dashed outlines and hatching. In the centre are downlight
luminaires (D) and along the walls are wall-washing
luminaires (W)
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� coffee break
� sketching on paper
� study/memorization
� hand-craft
� formal phone conversation
� brainstorming in a group
� programming/CAD or video editing on a
computer
� informal presentation with slides
� creative task using a computer
� (routine) email on computer
� formal presentation with slides
� formal phone conversation.

PCA was applied to discover latent dimen-
sions of user judgment. This analysis was

performed using the PSYCH package in R26

and the Varimax rotation method.27 The data
were formatted in a way that each observa-
tion contained ratings for all questions of one
subject for one lighting scene.

Figure 2 shows the resulting two-
dimensional perceptual representation that
was established using the first two rotated
components. The average component scores
of each lighting scene determined their coord-
inates in this representation. The first two
components were named focus and casual
because focused activities (e.g. sketching on
paper, study/memorization, formal phone
conversation) loaded with the first component
and casual activities (e.g. casual conversation
with a friend, informal phone conversation,
coffee break) loaded with the second compo-
nent. Focus configurations used more uni-
form and brighter lighting, whereas casual
configurations used lighting with warm
colour temperature. Zhao et al.9 gives a
more detailed discussion of these results.

In the following, we refer to this represen-
tation as the rating-based map. We use the
rating-based map as a basis for the evaluation
of image-based perceptual analysis.

5.4 Photography

We used a DSLR camera (Canon, Canon
D5) with an ultra-wide-angle lens. The
camera was equipped with an HDR capable
firmware,28 which we used to take HDR
photographs. In the firmware settings,

Table 1 Lighting configurations, light output and colour

Light group Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Percentage of maximum light output
W-back – 90% – 90% 20% –
W-cent. – 90% 90% 90% 20% –
W-front – 90% – 90% 20% 40%
D-back 60% 4% – 65% 100% –
D-cent. 60% 4% 65% 65% 100% –
D-front 60% 4% – 65% 100% 40%

Colour temperature in degrees Kelvin
All 3000 3000 3000 6500 6500 3000

2
3

6

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

4

5

1

Figure 2 Results from the user ratings. The lighting
scenes are visualized according to the first two rotated
principal components
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we configured the camera to use nine brackets
and two exposure value (EV) increments,
which means that for each HDR photograph,
the camera took nine images and after each
image, the exposure was increased by two
stops. A two stop increase is, for example, a
change in shutter speed from 1/8 of a second
to 1/2 of a second, from 1/2 of a second to 2 s,
and so on. ISO and white balance settings
were fixed to 100 and daylight, respectively.
The image resolution was 5616 by 3744 pixels.

HDR images were computed using nine
photographs for each image, and the
Photosphere command line tool.29 We pro-
vided the software with a calibration file,
which was generated using our camera setup
and a luminance meter. The calibration file
was created from manual calibration in
Photosphere. The output HDR images were
stored with the Radiance RGBE Encoding.
In a post-processing step, the images were
centred, cropped and re-sized to 512 by
512 pixels. We measured a vignetting function
for the camera lens and applied it to the
images.14 We applied an intensity scale factor
based on readings from the luminance meter
to convert pixel values to units of
Wsr�1m�2 .We converted from luminance to
radiance units because analysis software, for
example software that performs glare assess-
ment, expects radiometric input.30 Figure 2
shows the images after post processing.

5.5 Dimensionality reduction methods

We considered three dimensionality reduc-
tion techniques: PCA, Isomap and t-SNE.

Principal component analysis (PCA) is a
linear dimensionality reduction method,

which computes a lower dimensional sub-
space in which the variance of the data is
maximal. PCA is a popular algorithm com-
monly used for face recognition and feature
detection in machine learning applications.
One characteristic of this method is that it
focuses on preserving the global structure of
the data, meaning the large pairwise distances
between samples and is less effective at
conserving local structures, keeping samples
with small pairwise distances close together.31

Isomap, on the other hand, aims to pre-
serve local structures by retaining the geodesic
rather than the Euclidean distance between
data points. The geodesic distance is mea-
sured over the manifold on which the data
points lie. It is the shortest path between two
points in a neighbourhood graph.31

Lastly, t-SNE was developed to visualize
data that lie on several related manifolds,
such as images of objects, which, for example,
could be grouped by colour and the shape of
the objects. This algorithm can reveal both a
global and local structure in the data at
several scales.32 A quality of this algorithm is
that it models dissimilar data points using
large pairwise distances, and models similar
data points using small pairwise distances,
which results in well-separated clusters for
data visualization.

For the comparison of dimensionality
reduction methods, we created an image
dataset using photographs of the six land-
mark lighting scenes (Angle 1, see Figure 3)
and supplemental images with 100 interpol-
ation steps, which generated a final sample
size of 1491 images. Supplemental images
were linear combinations of the original

Angle 1 Angle 2 Angle 3 Crop 1 Crop 2 Crop 3 Crop 4 Crop 5

Figure 3 Angles of view used for comparison
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images. For each step, the multiplicative
weight of one image was increased, and the
other was decreased. The supplemental
images artificially inflated the sample size.
They showed new lighting conditions created
using two lighting scenes. We reduced the
resolution of the photographs from 512 by
512 to 52 by 52 pixels using a bicubic
interpolation algorithm to accelerate
computation.

5.6 Parameters

We generated several datasets by varying
the number of images, image resolution, angle
and field of view and dynamic range.

5.6.1 Number of images
We generated five collections of images

with different total numbers of supplemental
images from 0 to 100 interpolation steps
between unique pairs of lighting scenes.
Image resolution (52 by 52), angle of view
(Angle 1, see Figure 3) and encoding (HDR)
were the same for all images.

5.6.2 Image resolution
We examined the effect of image resolution

using eight collections of images with
resolutions ranging from 1 by 1 to 512 by
512 pixels; 512 by 512 HDR images were
resized using a bicubic interpolation algo-
rithm to create lower resolution images.
Angle of view (Angle 1, see Figure 3) and
encoding (HDR) were the same for all images
and no supplemental images were added to
the datasets.

5.6.3 Angle and field of view
The human field of vision is limited, so is

the field of view of most types of cameras.
One would need to decide the position and
orientation of the camera to collect sample
photographs. What angle of view is the most
suitable for the analysis of interior lighting?
To address this question, we generated
datasets using three different camera

positions and five uniquely cropped images.
We took photographs from three positions
using the wide-angle lens: an overview pos-
ition that showed both workstations at the
shared table and two different seated pos-
itions on each side of the table. For the
cropped images, we generated pictures with a
narrower view by cropping 20% along differ-
ent edges of the undistorted photographs. We
used the MATLAB Camera Calibration
App33 to create a custom calibration file
for the wide-angle lens and to undistort the
original photographs. Figure 3 presents the
photographs from the three camera positions
and the undistorted, cropped images. Image
resolution (52 by 52 pixels) and encoding
(HDR) were constant for all images. No
supplemental images were added.

5.6.4 Dynamic range
We analysed how HDR images compared

to 8-Bit RGB encoded images. We used
five collections of images. The first one
contained HDR photographs. For the other
four, we generated JPEG images with four
different exposure levels from the HDR
photographs using Radiance, a lighting simu-
lation and rendering software.34 We added
supplemental images with 50 interpolation
steps to visualize the distortion caused by the
saturated pixels. All images used the same
angle of view (Angle 1) and had a resolution
of 52 by 52 pixels.

6. Experiment 1: Results and discussion

The analysis using photographs established a
lower dimensional representation that was a
close approximation (D50.04) of the rating-
based representation. The settings that led to
this result are shown in Table 2. The angle of
view, Angle 3, corresponds to where the
participants were positioned in the Lighting
Lab during the user-rating experiment.
Among the three dimensionality reduction
methods, PCA achieved the lowest
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dissimilarity value. A linear transformation
(e.g. translation and orthogonal rotation) was
necessary to align the principal components
with the rating-based map. However, after
a simple transformation, the rating- and
image-based representations exhibited obvi-
ous similarities (see Figure 4). This outcome
demonstrates that it is possible to approxi-
mate human judgment of perceptual differ-
ences of lighting scenes with the analysis
of photographs of the lighting scenes.
The following paragraphs discuss how differ-
ent dimensionality reduction methods and
parameters of the dataset affected the
outcome.

6.1 Comparison of dimensionality reduction

methods

Figure 4 shows the side-by-side compari-
sons of the image- and rating-based maps for
all three dimensionality reduction methods.
PCA achieved the lowest dissimilarity value
(D¼ 0.093). The rating- and image-based
representations exhibited obvious similarities.
One remaining difference was the relative
distance between scene 1 and scene 3. These
two scenes were considered alike when rated
according to their suitability for different
work tasks, but the photographs of these
scenes were comparatively distinct.

Isomap performed nearly as well as PCA
(D¼ 0.110). The relative positions of the
landmark lighting scenes were similar to the
PCA result and the rating-based representa-
tion. The interpolated samples formed a
nonlinear pattern showing the approximated
geodesic distance between samples. In con-
trast, for PCA, the interpolated samples
formed slightly curved lines between the
landmark lighting scenes. Curved instead of
straight lines were to be expected because
pixel intensity is scaled logarithmically,

1

PCA

–1

6 6 6

1
3 5

4

2
1

3
2

5 4

1
3

2

4
5

0

Image-based Supplemental samples Rating-based Difference

1 –1 0 1 –1 0 1

Isomap t-SNE

0

–1

1

0

–1

1

0

–1

Figure 4 Comparison of three dimensionality reduction methods: PCA, Isomap and t-SNE. Each method was applied to
a dataset of 1491, 52 by 52 HDR images of the Lighting Lab. The star-shaped markers show the position of the six
lighting scenes on the image-based representation. The circle-shaped markers show the corresponding positions on
the rating-based map. The black dashed line that connects the markers illustrates the difference between the rating-
based and image-based results. The dot-shaped light grey markers represent the position of the supplemental images
generated from interpolations of the six lighting scenes in the image-based map

Table 2 Using these parameters we achieved the lowest
dissimilarity value D¼0.0396

Dimensionality
reduction technique

Principal component analysis

Number of Images 6 images of the 6 landmark
lighting scenes

Image resolution. 52 by 52 Pixels
Angle of view Angle 3 (see Figure 3)
Dynamic range HDR (.hdr)

10 N Zhao et al.
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whereas the supplemental images were gener-
ated with linear interpolation steps.

Lastly, the t-SNE produced the most dis-
tinct map (D¼ 0.322). Using this algorithm,
the distant data points were positioned with
large distances between each other. Therefore,
on the 2D projection, each landmark lighting
scene became an intersection of several
sequences of samples. Landmark scenes
formed independent islands surrounded by
their closest variations.

The comparison revealed that PCA is the
most suitable algorithm for image-based
mapping for our choice of landmark lighting
scenes. Given that PCA performed best, we
can conclude that the latent structure can be
discovered on basis of the distant samples,
which were the landmark lighting scenes. This
is further confirmed by the comparison of
number of images.

The linear dimensionality technique was
sufficient to discover the manifold or sub-
space of the solution space that was deter-
mined by the landmark lighting scenes. This
means that this result is linked to our choice
of lighting scenes, which we created by
varying brightness, colour temperature and
uniformity of six individually controllable
luminaire groups. The number of design
parameters is relatively low. Therefore,
we were able to visualize them on a two-
dimensional map using the linear technique.
Results from the comparison of image reso-
lution give further insights into the influence
of these design parameters and are discussed
below. These findings suggest that if similar
design choices are made for the landmark
lighting scenes, PCA should be the preferred
method for dimensionality reduction.

If landmark lighting scenes were created
using saturated colours and more spotlights
in addition to our current choices, we believe
that t-SNE could be a better method, because,
in that case, more lighting design dimensions
have to be compressed to the two-dimensional
representation. t-SNE has been proven to be

more suitable for data visualisation of high-
dimensional data. If more complex design
parameters are used, we also need to review
our measure of dissimilarity for evaluation.
Instead of comparing the two-dimensional
representations, we could examine the
number and relative positions of clusters in
the map.

Isomap performed very similar to PCA;
however, Isomap is more computationally
intensive. The comparison of number of
images confirms that PCA is the preferred
choice over Isomap for its simplicity.

6.2 Number of images

When using PCA, the supplemental images
did not increase the similarity to the rating-
based representation (Figure 5). This outcome
was plausible because the most distinct sam-
ples, the landmark lighting scenes, were also
the most influential samples for PCA. In this
specific case, the supplemental images
decreased similarity, due to the additional
information in the dataset. The result is
sensitive to the interpolation method that we
used to generate the supplemental images.
Ideally, we would take additional photo-
graphs of the lit space instead of generating
supplemental images.

As a follow-up analysis, we performed the
same comparison using Isomap for dimen-
sionality reduction. This comparison revealed
the importance of the supplemental samples
for this method (Figure 5). Given that Isomap
preserves local structures, the supplemental
images were necessary and dissimilarity value
increased with decreasing sample size. PCA is
the preferred method, because it only requires
six images of the six landmark lighting scenes
for the analysis.

6.3 Image resolution

Figure 6 shows that the dissimilarity value
increases with decreasing resolution. Image
resolution as low as 6 by 6 pixels was
sufficient to preserve the information in the

Perceptual analysis of lit environments 11
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image. This outcome suggests that image-
based mapping with PCA takes luminous
distribution into account in addition to
brightness and colour temperature of the
lighting scenes. Brightness and colour tem-
perature could be expressed in a single pixel.
However, 6 by 6 pixel images contain infor-
mation of brightness levels on large horizon-
tal and vertical surfaces as well as location.
This outcome reflects our choice of landmark
lighting scenes, which we created by varying
brightness, colour temperature and uniform-
ity using six individually controllable lumin-
aire groups.

Using low-resolution images could further
increase computation speed and is preferred.
However, the target resolution should match
the complexity of lighting design and lighting
effects. For example, the resolution should be
increased to ensure a relevant result in an
application in which there are more local
contrasts than uniform luminance on the
walls and large surfaces.

6.4 Angle and field of view

The outcome of this experiment indicated
that the choice of camera view should be

similar to the first person view of the worker.
This means that the images should show the
scene from a position where the worker sits or
from a position where the worker is most likely
to view the scene. Among the three different
camera positions, the dissimilarity value was
the lowest for Angle 3 (see Figure 3).
Interestingly, Angle 3 was the same position
where the study participants sat during the
human subject study. This relation might have
contributed to the increased similarity with the
rating-based result. The photographs taken
from this angle were a better representation of
the participants’ experience than the other
camera angles. This angle showed a unique
painting, which was illuminated differently
than the painting visible from the other
seated desk position (Angle 1). A filter
attached to the wall-washing luminaire created
a soft rather than hard spotlight on the
painting. The dissimilarity value of the desk
position (Angle 1) was lower than the overview
position (Angle 2). Similarly, among the
cropped images, the picture that best reflected
the study participant’s view, Crop 1 followed
by Crop 5, achieved the lowest dissimilarity
value.
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Figure 5 Comparison of datasets with different total numbers of images using PCA (top) and Isomap (bottom)
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6.5 Dynamic range

As shown in Figure 7, the HDR dataset
achieved the lowest dissimilarity value and
dissimilarity was lower for underexposure
than overexposure. Underexposure is there-
fore recommended if the standard 8-Bit RGB
encoding is used instead of HDR. Among the
tested parameters for mapping using PCA,
the dynamic range is the most impacting

parameter and should be set with care
according to the design.

7. Experiment 2

In the second experiment, we investigated
how the perceptual control map can be
generalized for other kinds of spaces.
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For this experiment, we created simulated
spaces with different space types, furniture
and lighting setups. We compared image-
based mapping of these spaces to each other
and to the rating-based result. This time, we
did not vary parameters for data acquisition
and dimensionality reduction. We used PCA
for dimensionality reduction, image reso-
lution of 52 by 52, HDR encoding and 50
supplemental images for visualisation.

7.1 Spaces

For 3D rendering of simulated offices, we
chose three types of spaces: a one-person
office, a conference room and a small office.
The one-person office has the smallest foot-
print. It is a private space that allows one
person to work comfortably. The small office
is a slightly bigger room that could facilitate
two people. This space could be used for
one-on-one meetings and collaborative work.
The conference room is a large room that
could host a group of people for meetings,
presentations, group discussions, etc.

In order to build examples of the three
types of spaces, we collaborated with
Steelcase, a leading company for office furni-
ture and interior architecture based in the
USA. Steelcase created 3D models of the
three types of offices. They created three
variations for each type. The variations were
windowless, with window and lounge setting.
The lounge setting was furnished with a couch
and coffee table instead of a work desk. These
models comprised Steelcase’s furniture, acces-
sories and space division products.

Next, we added a ceiling lighting system to
these spaces. The lighting system was mod-
elled after the system in the Lighting Lab,
which was used for the collection of user
ratings. The position and quantity of lighting
luminaires were adapted for each type of
simulated space to fit the room size. As a
constraint, the distance between the wall-
washing luminaires was constant and the

downlighting luminaires were always grouped
as two continuous strips.

For the one-person office (see Figure 8(1)–
(6)), we reduced the number of luminaires to
adapt to its small footprint. We used four
wall-washing and six downlighting luminaires
instead of six wall-washing luminaires and
eight downlighting luminaires as were origin-
ally installed in the Lighting Lab.

The small offices (see Figure 8(11)–(16))
were the most alike to the Lighting Lab in size
and shape. Hence, we were able to use the
same number of luminaires as the original
setup in the Lighting Lab.

For the conference rooms (see Figure 8(7)–
(10)), we added eight downlighting luminaires
to the existing eight and doubled the output
capacity of the wall-washing luminaires
in Spaces 8–10 to compensate for the size of
the room.

Figure 9 shows the layouts of the resulting
lighting installations. By altering the layout of
the lighting installation, we created 16 simu-
lated offices based on the 9 variations of
spaces as shown in Figure 8. There are one or
two lighting installation layouts per variation
of spaces.

7.2 Lighting scenes

The six landmark lighting scenes were
similar to the ones used in the Lighting Lab.
We adapted them according to the new layout
of the lighting installation.

We made two changes for one-person
offices to accommodate the new lighting
layout and the small space. For scene 3, the
gallery lighting scene, which formally used a
combination of two wall-washing spotlights
and four downlights, was reduced to only
using two downlights to achieve a similar
effect. Scene 6, the low light presentation
mode, which previously used two wall-
washing luminaires and two downlights, was
reduced to only two wall-washing luminaires

14 N Zhao et al.
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and half of the light output to achieve a
similar effect.

For Scene 6, we positioned the light always
on the opposite side of the viewing direction.
This means that we used different luminaire
to illuminate Scene 6 depending on the layout
of the lighting installation.

We did not alter the lighting scenes for the
small offices and for the conference rooms.
However, as mentioned before, the light
output was doubled for the large conference
rooms. As an example, Figure 10 shows the

six lighting scenes for the conference room
with a diffusely lit window (Space 9).

7.3 3D rendering

HDR renderings were created using the 3D
Rendering and Animation Software
KeyShot.35 Keyshot is a commercial software
for 3D rendering and animation which has
been suggested as an educational tool by
Santamarı́a-Peña et al.36 and has been used to
render architectural interiors. This software
uses a ray tracing technique to simulate global

1 2 3 4 5 6 7 8

9

One person office

Conference room
Diffusely lit window
Lighting layout C

Conference room
Lounge setting
Lighting layout E

Small office

Lighting layout G

Small office

Lighting layout F

Small office
Diffusely lit window
Lighting layout G

Small office
Diffusely lit window
Lighting layout F

Small office
Lounge setting
Lighting layout G

Small office
Lounge setting
Lighting layout F

Lighting layout A Lighting layout B Lighting layout A Lighting layout B Lighting layout A Lighting layout B Lighting layout C Lighting layout D

One person office One person office
Diffusely lit window Diffusely lit window

One person office One person office
Lounge setting Lounge setting

One person office Conference room Conference room

10 11 12 13 14 15 16

Figure 8 Renderings of the variations of simulated offices. One wall was removed to make the inside visible. The
number on top of each image identifies the room

A B C D E F G

Figure 9 Layouts of lighting installation used for the simulated offices. The size of the diagram is an approximation to
the corresponding size of the room. Both downlighting and wall-washing luminaires are divided into sections. The
hatching represents their corresponding lighting (control) group
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illumination (direct and indirect illumination)
and supports HDR outputs. It provides a
range of tunable material parameters, e.g.
diffuse, specular, reflection, and roughness. It
offers several illumination textures, e.g. dif-
fused area lights, point lights and IES pro-
files. We used the diffused area light texture
and configured them by specifying the colour
temperature and light output in lumens. The
maximum light output of each section of the
downlighting luminaires, as illustrated in
Figure 9, was set to be 800 lumens. The
maximum of each section of the wall-washing
luminaires, as illustrated in Figure 9, was set
to be 2000 lumens.

8. Experiment 2: Results and discussion

The simulation results indicated that modifi-
cation of interior attributes in large spaces
(conference room and small office) created a
greater variance in mapping outcome than in
small spaces (one-person office). There were
also more differences in mapping outcome
among the three types of rooms than within
the variations of one type (Figure 11).

We compared the imaged-based maps of
the three types of spaces with the rating-based
map to examine the generalisability of the
Lighting Lab results.

The resulting maps for the six one-person
offices (spaces 1 to 6, see Figure 11(1)–(6) in
comparison to Figure 2) were skewed in
comparison to the rating-based map
(D50.1643). The relative distance between
scene 6 to scene 3 and scene 1 was smaller in
all versions of the one-person office than in
the rating-based map (Figure 2). This out-
come indicated that scene 6 created a dim
diffused effect similar to scene 3 and scene 1,
despite using half of the light output from the
original design. Furthermore, scene 3 became
more similar to scene 6 than scene 2 because
we removed the wall-washing spotlights.

The maps of the small offices were the most
similar to the rating-based map (D50.1363).
The size of the small offices and the lighting
layout were the most similar to the Lighting
Lab. Consistent with this finding, the result-
ing maps for the conference rooms, which
were the most distinct from the Lighting Lab,
were also the most distinct from the rating-
based map (D50.2381).

For each space type, we calculated the
dissimilarity value for each variation in com-
parison to the windowless version to examine
how the modification of furniture, lighting
layout and diffusely lit window influenced the
resulting maps. For one-person offices, con-
ference rooms and small offices, the window-
less versions were called spaces 1, 7, and 11,
respectively.

Among the three types of spaces, the maps
of the one-person offices 1 to 6 in Figure 11
were the least different from the windowless
version (D50.0041). We can reason that
because this type of office has a small foot-
print, light can bounce off nearby wall surfaces
and create a uniform diffused illumination
with little contrast. Therefore, the position of
luminaires and the interior attributes had
diminished impact on the resulting effect.

For the conference rooms, because of the
large footprint, despite the increase in bright-
ness and the number of light sources, the
system produced high contrast and spotty

Scene 1 Scene 2 Scene 3

Scene 4 Scene 5 Scene 6

Figure 10 Renderings of the six lighting scenes for the
simulated space 9
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illumination patterns in the space. Among the
variations, the lounge setting (Nr. 10) caused
the greatest difference, larger than the dif-
fusely lit window (Nr. 9). The different
variations of conference rooms generated
more distinct maps than the one-person
offices (D50.0582).

The comparison of the variations of small
offices (see Figure 11(11)–(16)) showed that
the modification of lighting system layouts
(Nr. 12, 14, 16) caused larger divergence than
a diffusely lit window or change of furniture
(Nr. 13 and 15) (D50.0201).

The outcome of this experiment suggests
that the perceptual control map could be
generalized for spaces of the same type.
Change of lighting layout, furniture and the

addition of a diffusely lit window had little
impact (D50.0582) on the mapping outcome.
Also, the comparison between the rating-
based result of the Lighting Lab and the
Small office confirmed that the similarity of
these two spaces let to a rather low dissimi-
larity value of the derived maps (D50.1363).

The result of the conference rooms was the
most distinct from the rating-based map of
the Lighting Lab (D50.2381). Given the lack
of generalisability from the Lighting Lab to
conference rooms, further studies should be
conducted to collect user ratings of confer-
ence room type spaces to evaluate the image
and rating-based mapping approaches. The
dissimilarity values among the variations of
the conference rooms were small (D50.0582)
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Figure 11 Results of the rendered images. Each diagram shows the resulting map of the simulated office with the
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suggesting that maps for this type of space
might be generalisable if a similar lighting
setup and lighting scenes are used.

9. Applications and outlook

We envision this approach to have an impact
in two ways on today’s lighting practice.

First, we envision this method being used
during the planning phase of a lighting
installation (see Figure 12(a)). Image analysis
could be integrated as a feature of a 3D
rendering or lighting simulation software. To
execute the analysis, the practitioner defines
several views of interest. The software then
visualizes the perceptual map for each view
angle and provides a simple overview of the
expected lighting outcome. Using our
method, a perceptual analysis for the model
could be completed within seconds. Based on
the analysis, the practitioner might decide to
change the room setup, for example, the type
of luminaire, luminaire light output, and wall
colour, and observe how these changes con-
tribute to the visual experience. The practi-
tioner might also compare the computed
perceptual map with a target template to
identify where changes are needed to achieve
the wanted result.

The analysis could be used to optimize the
layout and lighting scenes in a way that

produces the largest perceptual difference
between scenes to ensure a rich and interest-
ing experience. For example in Experiment 2,
Scenes 1, 3 and 6 are located very close to
each other in the derived maps for one person
offices (see Figure 11(1)–(6)). This indicates
that their lighting effects are similar and that
the setup or lighting configuration could be
improved for these lighting scenes. Light
output in Scene 6 could be lowered to increase
perceptual difference between Scenes 3 and 1,
which would alter the perceptual map to
become more similar to the Lighting Lab, as
shown in Figure 2.

For the second application, we envision
this method being applied after the installa-
tion or for system retrofit (see Figure 12(b)).
In this case, several photographs are taken
automatically while the lights are changed to
different preset configurations. Using the
photographs and image analysis, a perceptual
control map is generated for the installation.
The user can use this perceptual map as a
lower-dimensional control interface and more
easily configure the lighting system, similar to
the experiential controller introduced by
Aldrich.4 The user could also use the percep-
tual map to interface with context-aware
applications, for example, to automate the
lighting changes based on outputs of a wear-
able health monitor or other sensors in the
home, smart home agents or security cameras,

Model the space and
lighting setup.

Images-based mapping.

Design iteration,
optimize for highest
perceptual impact.

Modify installation. Images-based mapping.

(a)

(b)

Percetual controller for
lighting installation.

Lighting installation.

Figure 12 Workflow with perceptual analysis (a) during the planning phase and (b) after installation
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similar to the implementation created by
Zhao et al.9

The lower dimensional representation
derived from images requires a linear trans-
formation (e.g. translation and orthogonal
rotation) to align with the rating-based maps
or some general axes that would ensure a
consistant orientation. It is not always
required to give the perceptual map a refer-
ence. For example, we do not need a reference
to maximize the perceptual difference of
lighting scenes. However, if we wish to add
a reference, normally the rating-based map of
the space would not be available for the
transformation. We envision three ways to
acquire the transformation without the
rating-based map.

The first possibility is to collect additional
data through user ratings. The required
human input is reduced because the distances
between landmark scenes can be established
through image-based mapping. As little as
three coordinates would be sufficient to
transform the two-dimensional map. If six
lighting scenes are used, data could be theor-
etically collected for three instead of six
lighting scenes, which would reduce the
amount of human input to half.

The second possibility is to use the rating-
based map generated from our experiment as
a template for the linear transformation. The
simulation study revealed that a general
pattern was present in all 2D representations,
despite differences in room size, the layout of
the lighting system, furniture, scene configur-
ations, etc. In particular, the dissimilarity was
the lowest between variations of the same
type of office. The commonalities among the
simulated spaces were the kind of luminaires
and the basic arrangement pattern, e.g. the
distance between wall washing luminaires,
and a few fundamental attributes of the
scenes. Within these constraints, a template
could be used to transform the image-based
map. Such templates could be created for
each type of space. Our current rating-based

map appears to be most suitable for a small
office.

The third option is to use machine learning
on a large set of space- and perception data.
Our current results are encouraging for this
option because we were able to see prominent
features in the image data.

10. Conclusion

This paper introduced image-based mapping,
an approach that allows a user or practitioner
to rapidly evaluate the perceptual impression
of lighting scenes using images of the lit
environment. We extracted dissimilarity
information from photographs and simulated
renderings of the lit environment and visua-
lized them in a perceptual map. In an experi-
ment to evaluate this method, we found that
we were able to closely approximate human
perceptual ratings (normalized dissimilarity
value50.04).

The comparison revealed that PCA is the
most suitable algorithm for image-based
mapping for our choice of landmark lighting
scenes. The comparison of parameters
confirmed that the latent structure can be
discovered on basis of the distant samples,
which were the landmark lighting scenes.
A very low image resolution, e.g. 6 by
6 pixels can be sufficient for the analysis of
lighting scenes with large uniform luminance
surfaces. However, to ensure a relevant result,
a higher resolution should be used for spaces
with local contrast. We identified the expos-
ure as the most impacting parameter; there-
fore, this parameter needs to be set with care
according to the design.

To study the generalisability of the percep-
tual control map, we compared different
office types using simulation and discovered
high similarities among the maps for different
variations of spaces. Room size had the most
significant effect, whereas furniture and a
diffusely lit window generated less distinct
results. This outcome led us to conclude that
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the perceptual map can be generalized for the
same type of spaces if the lighting installation
and scenes are constrained. We discussed
three methods to generalize the perceptual
control map using image-based mapping.
Possible applications based on these findings
are the computational analysis of visual
impact during the planning phase and auto-
mated calibration for lighting control.
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