
Real-time Work Environment Optimization using Multimodal Media and Body
Sensor Network

Nan Zhaoa,∗, Susanne Seitingera, Robert Richerb, Joseph A. Paradisoa

aMIT Media Lab, Massachusetts Institute of Technology, United States
bFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Abstract

The ambient environment has a significant influence on our cognition and behavior. We envision an adaptive space
that improves our productivity and wellbeing at work and related settings by forming a closed control loop around
our responses to the environment’s properties. To explore this vision, we created a responsive office named Mediated
Atmospheres (MA) that can transform it’s ambiance as driven by a network of physiological sensors. We conducted a
user study investigating near-natural use of the system with a panel of non-experts and experts in the field of the built
environment (N=9). Two control modes were implemented: (1) Learning Mode, where the system learns from the
user’s response and (2) Preset Mode, where the office responds to the user’s physiological state based on predefined
rules. Our result showed that using the Learning Mode, participants were able to increase the amount of time in which
they were focused when the system optimized for both focus and stress restoration rather than focus alone. Participants
were able to double the time in which they achieved high-stress restoration when their environment optimized for
restoration rather than focus. Both application modes achieved high System Usability Scores (SUS > 82), which is
evidence that our method for compressing the multivariate control problem into a multidimensional model of the user’s
physiological state is a viable approach for closed-loop control of a multimodal environment. We offer a discussion
on the preferred level of control for an office application.

Keywords: Ubiquitous Computing, Ambient Intelligence, Body Sensor Network, Preventative Care, Affective
Computing, Well-being, Cognitive Performance, Mediated Atmospheres

1. Introduction

A smart living space equipped with sensors and advanced building control technologies offers new possibilities
for personalized health support. Traditionally, building control systems don’t regulate to parameters directly derived
from the users - rather, all feedback variables are canonically derived from sensors fixed in the user’s environment
(e.g., temperature, light, air quality, etc.). As it has become recently possible to unobtrusively measure variables that
correspond to how users physically and/or affectively respond to their surroundings by leveraging simple wearables
or sensors like cameras or thermal monitors trained on the users, these user-based variables can now be inferred and
applied in environmental control methodologies. In this paper, we introduce a vision and prototype for real-time
optimization of the user’s physiological state using multimodal media and a body sensor network.

The research introduced in this paper particularly addresses a growing need in the knowledge economy to improve
work environments. In our modern society, an average person spends 90% of their time indoors, and a third of that time
in a workspace [1], which makes the interior a determining factor for people’s health. The composition of light, sound,
view, and thermal stimuli in buildings has an important impact on well-being and productivity. Personalized control
of the building environment can significantly improve stress levels and productivity and thus reduce absenteeism and
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Figure 1: Closed-loop Mediated Atmospheres system.

complaints in the workplace [2, 3]. In this paper, we discuss the opportunity to enhance productivity and well-being
through advanced control of the ambient environment in the office and related settings.

Building on the overwhelming evidence that the properties of the ambient environment can alter stress response
and cognitive processing [4, 3], we envision a space that can dynamically transform its qualities to support the user
by servoing against data that reflect the user’s response to the intervention. We call this vision Mediated Atmospheres
(MA) [3] — sensing and computation that mediate between occupants’ actions and a responsive environment in a
closed-loop fashion. We aspire to make an environment that acts as an intrinsic extension of their occupants’ sense of
well-being, rather than rooms that regulate partially-related parameters like temperature measured on the wall.

To advance our vision, we created a prototype system for sensor-driven multimodal control of lighting, video
projection, and sound in an office. The prototype office continuously supports the user’s goal by learning and adapting
according to the user’s physiological response. It is equipped with real-time physiological sensing and data processing
capabilities for sensor-features such as heart rate variability, head orientation, brain activation pattern, and facial
expression.

We created an application called Learning Mode, in which the user can specify the desired physiological state as
described by a combination of the aforementioned sensor features. The system learns and re-weights the atmospheric
setting in a user model according to the user’s real-time physiological response and controls ambient changes in a
continuous fashion to help the user achieve the desired physiological state. We conducted a preliminary near-natural-
use study with a panel (N=9) of experts and non-experts in the field of the built environment to examine Mediated
Atmospheres in three aspects:

1. the effect of the system on the user’s ability to achieve the desired physiological state and on their work experi-
ence,

2. the usability of the user interface, the control map, which establishes a multidimensional model of the user’s
physiological state, and

3. the level of control that is needed for Mediated Atmospheres in the workspace.

1.1. Multidimensional Model of the User’s Physiological State

To realize our vision of continuous optimization of the ambient environment, we developed a multidimensional
model to represent the user’s physiological state along with the system’s control state. Existing implementations of
building automation, e.g. Smart Home, both in the commercial and research space, repeatedly demonstrated that
controllability for the end-user is core to the success of the system [5, 6, 7]. Failure often happens because of poor
understanding of technical limitations and reasoning behind system decisions [8]. For this reason, it is crucial to
provide transparency. The design of a clear architecture and a well-founded, explicit relationship between environment
and adaptation is considered the key to unlock context-aware computing at a global scale [9].
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Figure 2: Mediated Atmospheres prototype office in four different atmospheric scenes, side by side.
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Learning Mode Preset Mode

• The user specifies a desired physiological state

• The system continuously learns and re-weights the
atmospheric setting in the user model and updates
the Control Map according to the user’s real-time
physiological response during use

• The system automatically controls the atmospheric
setting according to the user model to help the user
achieve the desired physiological state

• The user can skip a setting or change their goal
state anytime using the GUI

• The system continuously detects the user’s real-
time physiological state

• The system automatically controls the atmospheric
setting according to a user-defined Control Map to
match the detected physiological state

• The user cannot manually skip a setting or set their
goal state

Table 1: Key Feature Highlights of Learning vs. Preset Control Mode.

A transparent interface is ”one that makes explicit the knowledge and processes for which the man and computer
share a common understanding” [10]. Accordingly, we seek an embedded model of the control space (with low-
dimensionality) to adequately represent and reduce the complexity of the multimodal system (lighting network, sound,
and visuals) and frame the user’s understanding of the control algorithms. In the implementation introduced in this
article, we chose a two-dimensional model also called the Control Map. Our approach was to identify the problem-
solving language that a user would use to configure the space based on prior research that investigated typical work
activities and when they require changing of work settings [11, 12]. The selected dimensions are Focus — individual
work involving concentration and attention devoted to a particular task — and Restoration — recharge of diminished
mental resources.

We evaluate the usability of the control map interface through a survey in our preliminary user study with a panel
of experts and non-experts in the field of the built environment. The survey is describe in Section 4.4.

1.2. Level of Control for Human-in-the-Loop Operation

An important aspect of user interaction for building automation is the user’s remaining degree of control, also
called the human-in-the-loop design. Not having control could cause distress and negative feelings, especially when
control over adverse stimuli is not available [13, 14]. Other benefits are, for example, that having a degree of individual
control over lighting can improve work motivation throughout the day [15]. Yet, having to make choices could be
overwhelming and cause concerns of self-presentation [16, 17], especially if the user thinks that an expert could make
better choices, or there is a risk of embarrassment by making the wrong choice.

Given that MA is a dynamic immersive experience, the system could easily cause distraction or discomfort when
undesired behavior occurs, for example, due to sensing and inference limitations or due to a poor model in the ini-
tial learning phase. We seek to understand the appropriate level of user control that maximizes system usability for
continuous multimodal workspace optimization. To examine the impact of the degree of control on system usabil-
ity, we implemented an additional control algorithm called Preset Mode in which the user has a reduced degree of
personalization in comparison to the Learning Mode.

For the Learning Mode, participants can specify the desired focus and restoration goals at any time. The system
adapts the atmospheric setting according to the user’s physiological data and their specified goal. In the Preset Mode,
the system is driven entirely by the user’s physiological data. In this application, the system’s goal is to match the
ambient conditions to the detected physiological state based on preset rules. Study participants experienced both
modes in the preliminary user study. Through the comparison of the results, we derive recommendations for the level
of control for Human-in-the-Loop operation in the office application.
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1.3. Paper overview

This paper is organized in the following way. We first provide an overview of the background. We then introduce
the closed-loop Mediated Atmospheres system and the implementation of the two application modes in detail. Af-
terward, we present the human subject study followed by results and discussion. Finally, we conclude with our main
findings.

2. Background

2.1. The Influence of the Ambient Atmosphere on Focus and Restoration

The same ambient environment can promote different or even reversed effects [4], depending on the desired
activity to be performed in the space. For example, ambient stimuli, such as ceiling height, colors, textures, ambient
noise, and music, even if they do not directly relate to a task, can attract people’s attention and enhance their ability
to focus [4]. For stress restoration, on the other hand, much research has shown the therapeutic effect of nature, e.g.,
exposure to sounds and images of nature can accelerate the physical and mental recovery from a stressful situation
[18, 19, 20, 21, 22]. Besides qualities related to nature, the sense of being away and a feeling of fascination are central
characteristics of restorative environments [23, 24]. Certain lighting conditions are suitable for activities that require a
vigilant state of mind but should be avoided if the reverse effect is desired. High intensity and cool color temperature
lighting have an acute effect on alertness, e.g. elevated heart rate, change of brain activation patterns to a more alert
state [25, 26, 27], and can improve learning performance [28, 29].

In prior work, we introduced a multimodal media prototype office, which uses video projection, sound, and con-
trollable lighting, to create atmospheric scenes [3]. The scenes vary in their themes (such as nature, urban, indoor and
outdoor) as well as their properties (e.g. color, brightness, motion, and repetitiveness). They borrow from existing
environments - for example, a walk through a crowded city, a forest in autumn, an ocean sunset, and a living room
with a glowing fireplace. Through a series of experiments with users, Zhao et al.[3] evaluated the impact and ben-
efit of the atmospheric scenes and showed significant effects on focus and restoration. In this paper we introduce a
sensor-driven, closed-loop controlled MA system that continuously adapts the atmospheric scenes based on the user’s
physiological data and a study on its effect on users.

2.2. Building Automation and Healthcare

Early examples of domestic systems that can respond to the user’s context range from the iconic IR badges at the
dawn of Ubiquitous Computing [30] that, for instance, allowed desk phones to ring in any office a user was visiting
[31] to cars that would automatically adapt the seats and mirrors to conform to a particular driver as determined by
their key fob [32]. This extended to leveraging RFID and/or facial recognition for smart displays that would customize
content depending on who is nearby, starting with installations like the famous ’Bill Gates House’ in the 1990’s [33]
to present developments in Pervasive Displays [34].

Ubiquitous Computing is seen as an integral part of future health care concepts [9]. A living space equipped with
sensors and interactive technologies creates enormous opportunities for smart healthcare, including detecting medical
emergencies, monitoring personal health conditions, and enhancing the user’s well-being. For example, researchers
developed pressure-sensitive floor tiles [35] and distributed sensor networks [36] to detect when a patient falls to timely
notify healthcare personnel. Related research investigated methods for understanding and predicting health trends [37]
and classifying various activities at home [38] from domestic sensor data to aid in providing preventive measures. A
variety of smart health services have been developed for managing chronic diseases, for example, diabetes [39] and
memory loss [40].

Interactive technology such as smart lighting and smart appliances can learn favorite ambient settings to support
daily activities [41]. A classic example in this space is Michael Mozer’s smart house from the early 1990s, where
he used light switch flips and thermostat settings as reinforcement to train a neural net that autonomously controlled
the lighting and heating in his house [42]. Other research leveraged both wearable and infrastructure sensing to build
personalized mobile comfort models that can customize building HVAC response, working to lower energy costs
while maximizing user satisfaction as inhabitants move across entire buildings [43].

Different than prior work, our system forms a closed control loop between the user’s physiological response
and the controllable environment using a body sensor network. Low-cost physiological sensors enabled new control
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Figure 3: System overview.

applications with an emphasis on health and wellbeing. Early work such as the Meditation Chamber [44] and the more
recent example of ExoBuilding [45] use real-time physiological monitoring to manipulate the user’s environment and
to teach the user to control involuntary physiological events. This technique is broadly known as Biofeedback and
usually uses visual or acoustic feedback signals to instigate or compensate physiological states. Biofeedback is used
for treatment of anxiety disorders [46] and treatment for substance abuse disorders [47]. In this work, we go beyond
visualizing the user’s physiological state by delivering multimodal ambient stimuli that have a measurable effect on
the user’s physiological response [3] to support focus and stress recovery. The system is a calm technology [48] which
interacts with the user at the periphery of their attention and thus allows the user to primarily focus on their work task
at hand.

3. Prototype System

3.1. Hardware, sensors, and software

The prototype is in a rectangular windowless office, 4.2 m by 2.8 m with a ceiling height of 2.6 m, shown in Figure
2. Its outputs consist of a lighting network with five-channel color LED fixtures, rear projection on a large surface, and
sound output through a set of wireless noise canceling headphones (Bose, Quite Comfort). The closed-loop system
builds on the open-loop Mediated Atmospheres prototype office introduced in [3, 49, 50].

Sensors in the closed-loop system include a low-cost commercial EEG headband (InteraXon, Muse Headband),
a physiological monitor chest strap (Zephyr, Bioharness 3), and a wide angle USB camera (Genius, WideCam F100)
in combination with a facial feature tracking library (CMU Human Sensing Laboratory and University of Pittsburgh
Affect Analysis Group, Intraface).

The software consists of four independent modules implemented in Python. The Sensor Collection Server man-
ages incoming data streams, data parsing, and logging to storage. The Signal Processing Server receives real-time raw
sensor data from the Sensor Collection Server and computes the focus and restoration indicators as shown in Figure 5.
Figure 4 shows the web-based graphical user interface, the Control Map, which visualized the user’s active state and
the available scenes along the control dimensions. The interface also allows the user to configure the initial position
of the scenes in the Control Map through drag and drop. In the Learning Mode, an addition marker is added to allow
the user to set a goal.

3.2. User Data and Models

For each available scene, we calculate user-specific lightweight statistical models, called Scene Models, using the
P-squared algorithm [51]. These models describe the suitability of each scene for focus and restoration. We use a
”hot-start” approach, where users initiate their Scene Models with manual preference inputs. Users position the scenes
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Figure 4: Control Map. The user’s current physiological state is visualized as a red marker. When the user selects or hovers over the marker, a
visualization with the coordinates, for example (0,0) in this case, pops up. The user’s current goal is visualized as a yellow marker. The user can
change the goal by selecting and dragging the goal marker inside the Control Map. Lastly, the available scenes are visualized as markers in shades
of blue. When the user clicks or hovers over a scene maker it shows a window with a representative image and more details about the scene (e.g.
scene name, id, and coordinates). During the on-boarding of a new user, the user initializes the Control Map by selecting and dragging scenes from
the scene library onto the Control Map at the desired position.

through drag and drop on the Control Map according to their perceived suitability for focus and restoration. When
physiological observations are added, the model slowly shifts towards the actual physiological response. The speed
of adaptation is heuristically determined to reduce the influence of the user’s initial selection by half after 15 minutes.

All incoming sensor data are added to user-specific Physiological Models (see Figure 5) using the P-squared
algorithm [51]. We use multimodal sensing of Heart Rate Variability, Respiration Rate, Electroencephalogram, and
Facial Features for the inference of focus and restoration levels.

3.3. Signal Processing

3.3.1. Heart Rate Variability
Heart Rate Variability (HRV) is an established psycho-physiological measure for stress development and restora-

tion e.g. in [52, 53, 3]. High HRV is generally believed to indicate parasympathetic regulation [53]. Using the Zephyr
Bioharness 3 [54], we recorded RR intervals — the times interval between consecutive heartbeats, which are gen-
erated on the device with the ECG waveform sampled at 1000 Hz. We converted data to an equidistantly sampled
series (18 Hz) by cubic spline interpolation. Overlapping (92%) data arrays of 1024 consecutive RR interval values
were buffered with an update rate of 0.1 Hz, containing approximately 1-minute data. We then applied the standard
deviation of RR intervals (SDNN) method to the buffer to compute HRV.

3.3.2. Head Orientation
Head Orientation indicates where participants directed their visual attention. Previous experiment [3] established

that participants’ head pitch angles correlated with focus and restorative states. As suggested by previous results, We
split Head Orientation into two features. The Viewing Scene feature is close to one when the user’s head orientation
points toward the projection screen and decreases as the user turns away. The Viewing Desk feature is close to one
when the head orientation points towards the desk. Head orientation was measured using a camera with a facial feature
tracking software library (see section 3.1).

3.3.3. Neutral Facial Expression
Neutral Facial Expression is the raw confidence level for a detected neutral facial expression. It lies between 0

and 1, with a value of 1 indicating a confident detection. In a prior experiment, the neutral facial expression was
significantly more often observed in focus environments [3]. Facial expression was measured using a camera and a
facial feature tracking software library (see section 3.1).
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Figure 5: Diagram of the Signal Processing Server.

3.3.4. Respiration Rate
Respiration Rate was included in this configuration because of its important role for self-regulation. Breathing

techniques have been widely used for treatment of many psychiatric disorders, such as anxiety and depression, as well
as for relaxation training and mood regulation for healthy individuals [55]. It is also traditionally part of exercises like
meditation and Qigong. Breathing rate varies in response to a person’s activity and emotional state. Low respiration
rates are generally considered as more relaxed and restorative [55]. In this configuration, we included the respiration
rate measured using the Zephyr Bioharness 3 [54] as an component of the Restoration indicator.

3.3.5. EEG
The electroencephalogram (EEG) is a noninvasive method to monitor the state of the brain. Traditionally, EEG is

used in neuroscience and cognitive science for applications such as sleep and memory research, epilepsy monitoring,
or attention deficit hyperactivity disorder (ADHD) [56]. In our application, we use EEG monitoring to infer the
occupant’s cognitive state. EEG spectral analysis commonly divides the signal into five frequency bands that are
associated with different mental states [57]. Alpha waves can be observed in healthy individuals when they are awake
but are in a relaxed, resting mental state or when their eyes are closed [57, 56]. An increase of Theta activity, on
the other hand, has been associated with a state of drowsiness in adults [58]. Beta and Gamma waves are of higher
frequency and occur during focused mental activity [59, 60]. In our implementation, we used the Muse Headband
and an entropy-based approach to compute focus and relaxation scores from relative spectral band powers. This
method was introduced and evaluated in [61]. For the relaxation score — EEG Alpha-Theta — Tsallis entropy was
computed using the relative spectral power of the Alpha and Theta bands. For the Focus score — EEG Gamma-Beta
— Gamma and Beta bands were used respectively. The samples for each channel were interpreted as random variables
xi, i ∈ {θ, α, β, γ} with the conditions pi ≥ 0 and

∑
i pi = 1. We used order α = 3 [62] Tsallis entropy HTs [63]

defined as:

HTs =
1

α− 1
·
∑
i

(pi − pαi ) . (1)
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3.3.6. Focus and Restoration Indicators
We computed Z-scores for each sensor feature using:

xp,f = (x− µp,f )/σp,f (2)

where x is the sensor data point, p is the occupant’s ID, and f is the sensor feature. µp,f and σp,f denote the mean
and standard deviation of occupant p and sensor feature f . Z-scores are then low pass filtered (rolling mean with a
10 s window) and combined into a weighted sum with equal weights as shown in Figure 5 to compute the focus and
restoration indicators. If a feature is temporarily not available, then its weight is distributed to the other features.

3.4. Control Mode Algorithms

We introduce a dissimilarity (unfitness) metric, which is the Euclidean distance between the focus (f ′s) and restora-
tion (r′s) scores of a scene (s) and the reference focus (f ) and restoration (r) coordinate in the Control Map as defined
by:

ds = ‖(f, r)− (f ′s, r
′
s)‖ . (3)

In the Learning Mode, the user selects a focus and restoration goal by dragging a goal marker on the Control Map.
The marker’s position can be readjusted at any time. For each update cycle the application calculates the dissimilarity
metric for each available scene and the current goal coordinate. The system then displays the optimal scene with the
lowest dissimilarity score.

If the optimal scene is the same as the last active scene, then the system continues to display the active scene.
If a scene change is required, the system then triggers a transition routine. In order to avoid startling the users, our
system smoothly dissolves between different lighting states and images dissolve through a neutral state with no image
displayed, with transitions taking a few seconds to complete.

Using the Skip option, the user can skip the automatically selected scene and change to a the next scene, sorted
by the dissimilarity measure. The Scene Model, which determines the scenes’ coordinates on the Control Map, is
updated with the incoming focus/restoration indicator values (see Section 3.2).

In the Preset Mode, for each update cycle the application calculates the dissimilarity metric for each available
scene and the current focus/restoration indicator coordinate. The system displays the optimal scene with the lowest
dissimilarity score. A heuristically-determined threshold was added to prevent frequent scene changes. The difference
between the dissimilarity scores of the optimal scene and the active scene must be grater than the threshold in order
to trigger a scene change. A scene change leads to a transition routine as described above.

4. User Study

4.1. Participants

The population of interest are knowledge workers, who mainly work in office-type settings. Therefore, the panel
(N=9) consisted of graduate students and local knowledge workers who work in offices. To improve the diversity
of responses for this preliminary experiment, we controlled for the level of expertise of the participants. The panel
comprised of 30% technical experts with special interest in Internet of Things (IoT) and/or Affective Computing, 30%
interior and furniture design experts, and 30% non-experts. To be considered an expert, the participant must have
several years of experience and be actively working in their field.

4.2. Procedure

At any time during the experiment, the participant was allowed to open the office door, leave the office, and
notify the study personnel about any concerns or needs. Each experimental session began with an introduction of the
system. The study personnel demonstrated several atmospheric scenes and explained what physiological signals were
collected. For each mode, the participant received a tutorial from the study personnel. Every participant experienced
both control modes, but their order was selected randomly.
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Figure 6: Experiment procedure.

After the tutorial, the participant configured the application by themselves. Participants were instructed to place
scenes into the control Map (Figure 4) through drag and drop, hence the position of the scenes should reflect their
focus and restoration preferences. For the Preset Mode, they were instructed to only choose four scenes that personally
corresponded to the different axis combinations, and place one into the center of each quadrant. We constrained the
number of scenes to four so it would be easier for participants to remember which scene was associated to which state.
In the Learning Mode, participants were allowed to place as many scenes as they wanted into the control map.

When the participant was finished with the configuration, they worked for 90 minutes on their normal desk-based
work tasks. The system measured the user’s physiological state and controlled the ambient environment during this
work period. After 90 minutes, the participant completed the survey and was asked to take a break. After the break,
the same procedure repeated for the second control mode.

4.3. Goal Achievement Metric
For the Learning Mode we analysed the user’s ability to achieve their self-reported goal by computing the amount

of time relative to the duration of the experiment session in which the user was in the desired state. The desired states
are ”focus” (focus indicator (FI) above average), ”high focus” (focus indicator (FI) above average by 0.5 standard
deviation), ”restoration” (restoration indicator (RI) above average), and ”high restoration” (restoration indicator (RI)
above average by 0.5 standard deviation). For this analysis, participants’ goals are categorized as ”focus” (focus goal
FG > 0 and restoration goal RG < 0 ), ”restoration” (focus goal FG < 0 and restoration goal RG > 0 ) and ”focus
and restoration” (focus goal FG > 0 and restoration goal RG > 0 ).

4.4. Survey
We used the System Usability Score (SUS) [64] with additional survey questions. Participants answered six

additional questions on a 5-point Likert scale supplemented by essay questions, where they were able to write short
paragraphs about their experience. We split each essay into smaller statements and summarized the statements into
overarching themes. Each statement contained either one sub-sentence, one sentence, or multiple sentences that
described a single phenomenon.

5. Results

5.1. Goal Achievement
Table 2 summarizes the result of the goal achievement analysis for the Learning Mode. Participants achieved the

most amount of restoration when the selected goal was restoration (only). When participants selected the focus (only)
goal, their focus time increased and restoration time decreased in comparison to the restoration (only) setting. When
the focus and restoration goal was selected, focus time was even higher than in the focus (only) setting. At the same
time, the amount of restoration time reduced. Despite less time spend on restoration, participants were in fact more
often in the high restoration state when the selected goal was focus and restoration in comparison to focus (only).

Figure 5.1 shows several examples of the learned user model. It visualizes the user’s scene models as 2D his-
tograms of focus (x-axis) and restoration (y-axis) indicators for five most used atmospheric scenes and three examples
for each scene. The area of high numbers of observations (labeled as Very Often in the diagram) corresponds to the
area on the Control Map where the associated scene would be located. The distribution of physiological states are
often unique for each participant and atmospheric setting. For example, for one participant the Sunset scene was more
likely to introduce a restorative state; for another participant it was more likely to reduce restoration and increase
focus.
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Goal Achievement
Goal Setting Focus (FI >0) High Focus (FI >0.5) Rest. (RI >0) High Rest. (RI >0.5)
Restoration
(FG <0, RG >0) 44.6% 6.5 % 65.1% 18.2 %

Focus
(FG >0, RG <0) 64.2 % 26.1 % 51.8% 6.8 %

Focus and Rest.
(FG >0, RG >0) 74.9% 27.8 % 45.0% 7.8 %

Table 2: Result of the goal achievement analysis. Focus and restoration goal achievement are measured as the amount of time in which a phys-
iological state was achieved relative to the duration of the experiment session. We classify measurements of the participant’s physiological state
into Focus, High Focus, Restoration, and High Restoration based the Focus Indicator (FI) and Restoration Indicator (RI). We consider three goal
settings, Focus (only), Restoration (only), and Focus and restoration, which have the specified ranges of Focus Goal (FG) and Restoration Goal
(RG) settings.

Figure 7: Diagram of participants’ physiological states as 2D histograms in the Focus (x-axis) and Restoration (y-axis) map. It shows five of the
most used scenes and three examples for each scene. The duration of time spent in the scene by the example participant is shown in the left upper
corner of each histogram diagram.

11



Figure 8: Results of the Experience Survey. The x-axis represents the user’s ratings from
1 (Not at all) to 5 (Very much).

Figure 9: Results using the System Usability Scale
(SUS). The x-axis shows the two application modes
and the y-axis shows the SUS score. SUS above the
red line (> 68) is considered above average.

5.2. Survey Results
SUS was above General Average Performance (> 68) for both application modes (see Figure 9). Mean SUS

was slightly higher for the Learning Mode (M = 85.0, SD = 8.6) than the Preset Mode (M = 82.2, SD = 8.8).
Ratings from the additional six questions are visualized in Figure 8. Participants reported that both applications were
enjoyable, supporting their work activities, and an improvement to the neutral office. Except for two questions, the
survey results are very similar for both application modes. The difference is that participants felt more in control and
less distracted when they used the Learning Mode in comparison to the Preset Mode.

Participant’s written answers can be summarized into six central topics: Scenes, Self-observation, Adaptive Con-
trol, Outcome, Future Features, and Novelty.

Scenes The first topic, Scenes, discusses the effects and attributes of the atmospheric scenes. Participants choose
scenes from the same scene library in both application modes. The difference between the two modes is that in
the Preset Mode participants were limited to use only four scenes, while in the semi-automatic mode they could
use the entire scene library or as many scenes as they wanted.

For both application modes, participants wrote that being able to switch between different virtual locations im-
proved their focus level and work experience. After using the Learning Mode, participants wrote for example:
”I really enjoy to work in different locations.”(S7), ”I also like discovering the scenes” (S1), ”I liked the pos-
sibility of switching between different scenes to stay focused.” (S5), and ”the scenes help me to feel good or
focused on my work” (S8). After using the Preset Mode, they wrote for example: ”The immersing experience
of relaxing in a forest while working was incredible.” (S9) and ”the four [scenes] allowed me to focus perfectly
on my work but in different ways”(S8).

Sometimes participants discovered something new about themselves through the new experience. After using
the Preset Mode, they wrote for example: ”At first, I wasn’t sure I was going to like the lighting changes, but it
really enhanced my work experience!” (S4) and ”I realized that I focused easily when the lights go[es] down. I
feel more concentrated when people are walking and talking in Shibuya, contrary to what I could think. It put
myself in more safe position to work.” (S8).
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Participants’ comments also showed that on the one hand, the video projection gave them the necessary context
to provide a sense of escape or change of location, but on the other hand lighting and sound had a more lasting
effect when they were visually focused on their work. For example participants commented after using the
Learning Mode: ”[I enjoyed the application] very much because it’s realistic” (S8) and ”I think the effect of
the screen was even more powerful during short breaks in which I was not looking at the laptop or the papers”
(S7) Other participants wrote after using the Preset Mode: ”I think the combination of lighting and sound were
what made the most impact, as opposed to the visual and dynamic scenes on the screen.” (S6) and ”For example
when I started sketching the scene changed from the forest to the library, which was nice. The light was the
main improvement, because it became brighter.” (S2)

Participants commented negatively about peripheral movements and undesired movements in the video projec-
tion. After using the Learning Mode one participants wrote: ”Some movement in ”calm” environments (library,
reading room) distracted me. That student fiddling with his pen drove me nuts.” (S5). Another participant
commented that ”I had to stop each scene with train (chicago or rollercoaster) because [of] the speed sensation
on the train” (S9).

Participants also reacted negatively to interrupting lighting changes and lighting that was not suitable for their
task. One participant wrote after using the Learning Mode ”Some times I got an scene with lighting that was
not appropriate for my reading so I changed the setting.” (S7) Another participant wrote after using the Preset
Mode: ”light changes broke my concentration at times.” (S9)

Self-observation The topic Self-observation discusses statements related to the experience of seeing one’s own
physiological state. Participant were able to use the graphical interface to track their inferred physiological
state in the Focus-Restoration Control Map. They were also able to observe the adaptive settings in the office,
which directly reacts to physiological changes.

Participants positively commented on their learning experience. For example, one participant wrote after using
the Learning Mode: ”I felt like I had a much better understanding of what environments actually do lend them-
selves to different work states” (S6). Another wrote after using the Preset Mode: ”[the application] allowed
me to realize lots of things about my concentration” (S8). In the Preset Mode, ambient changes notified partic-
ipant’s about changes in their physiological state, for example one participant wrote: ”I appreciated the cues,
especially when I was on the distracted side of the spectrum and adjust back to a focused place” (S4) and ”I also
enjoyed the change, it kept me more mindful and aware. When the environment changed, I could understand
very quickly that I was moving outside of the zone I wanted to be in and used that feedback to either understand
I needed a break or make other adjustments to get back to the preferred zone” (S4)

Beside scene changes, repetitive sounds and looping of the video also functioned as a trigger of self-reflection.
One participant wrote after using the Learning Mode: ”[I] would react mostly where something would happen
in the sound (e.g. a voice or some other interruption). In those circumstances I felt prompted back to my task
if I had been procrastinating and otherwise did not feel affected.” (S1) and ”Those bottom up distractions are
distinct from the top-down interest in checking the application, and tended to semi-passively alert me to my
current activity (i.e. am I reading the news or am I working?).” (S1)

Participants responded more often negatively to self-observations in the Preset Mode than the Learning Mode.
They felt distracted by the ambient changes, especially, when they were not able to achieve the desired phys-
iological state. Participants wrote for example: ”I want the focused and relaxed scene[,] but the more I think
about it, the less focused and relaxed [I] am” (S5), ”If I didn’t like the fact that I was in the energizing/distracting
zone, it wasn’t because I disagreed with the program putting me there - it was because I didn’t like that I wasn’t
relaxed or focused” (S4), ”I must admit that becoming conscious of the changes in the scene and what I had
conditioned it to mean to my concentration was a bit distracting” (S9), and ”Distractions were mostly caused
by a transition I didn’t expect (usually during a focused moment)” (S1). For the Learning Mode one participant
wrote: ”I am a procrastinator, so naturally I was interested to check regularly on what the application was doing
or measuring, or to pick a new goal” (S1).

Adaptive Control Comments about sensing, context recognition, and control algorithms were summarized to the
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topic Adaptive Control. This group of comments discusses the perceived intelligent, transparency and useful-
ness of the applications, as well as accuracy and timeliness of sensing and actuation.

For the Learning Mode, participant responded positively about having control, They wrote for example: ”Get-
ting to articulate what my goal is certainly helped the feeling of control” (S4), ”I felt in control because the
controller offered fine grained control over both the target and the scene choice, leaving me free to adjust as
necessary” (S1), ”It was very easy to jump from one scene to another” (S7), ”The App is easy to use and as I
see it, it leads you to set a mood / background to the work you are doing, so the level of control was sufficient
to direct the mood” (S2), ”Totally in control of it, and it was a very conscious decision when I would change
scenes because I realized the scene I had been on did not lend itself well to what I was working on, and a
different scene would” (S6), and ”I could just skip scenes that did not work for me”(S5).

Participants also commented positively on the system’s ability to learn and adapt to their responses. For example
one participant wrote: ”I might have misjudged what [scenes] worked for me, but overtime as the program learns
individual preferences from the feedback - I imagine that would self-correct” (S4).

Negative comments were directed towards the need of selecting scenes during the setup, for example: ”I enjoyed
this application, but I did not like having to consciously think about which environment I should select to help
aid in my work flow” (S6) ”I might have misjudged what worked for me” (S4), and ”When I didn’t feel the
environment hit the goal as well as I wanted, then I felt less in control” (S4).

For the Preset Mode participants commented positively about the system’s timely response to activity changes
and how atmospheric changes would trigger a break or different work activity, for example participants wrote:
”Most of the time I deliberately took a break, the system did exactly the right thing (matched my break state with
a nice scene). Other times, I took a break because the system had transitioned to a break scene unexpectedly.
That’s nice too though, I suppose, to be prompted into taking breaks”, ”sometimes I start an activity and the
scene would follow. [...] Sometimes the scene changes first and then I changed my activity” (S2), ”When the
environment did change, I felt the shift was very accurate based on what I was thinking about at the time” (S4),
and ”I really liked how the scene changed depending on what I was working on because I felt like it allowed me
to not focus on where I was but rather what I was doing” (S6). Participants also mentioned that it was enjoyable
to not be in control for example ”[It] feels like [I was] 50% in control... but it was still fairly interesting ... I
think it is positive to not be in control” (S2).

Sometimes the system did not respond as the participant expected. Participants commented negatively about
frequent and unexpected changes: ”[...] it sometimes changes between focused relaxed and focused energizing
(while I feel I am the same). I don’t know why” (S3), ”And sometimes it felt like it was doing the right thing
and other times I wasn’t sure what prompted the system to transition to another scene” (S1), and ”I did not like
the frequent changes” (S5).

Outcome In some comments, participants described the outcome as a measure of their experience. For example
participants wrote after using the Learning Mode ”[I] worked pretty well!” (S3), ”I think I had (in my view) 2
productive hours of work” (S2), and ”I think I was very focused and relaxed while working” (S7). Similarly,
participants wrote after using the Preset Mode: ”Towards the end, as it became a little more familiar, I found
it to actually help me get farther into that mindset, such as focused/relaxed” (S4) and ”I felt like my work was
greatly enhanced” (S6).

Future Features Comments that describe missing features and expansion of existing features are summarized as
Future Features. After using the Learning Mode, one participant suggested including additional environmental
control: ”I would have wished to further feel the wind and smell from different locations” (S7) and another
participant mentioned additional control over lighting ”The only thing I would have changed is, again, the
brightness” (S5).

For the Preset Mode, in which participants only used four atmospheric scenes, feature requests are related to
adding more scenes: ”I enjoyed the experience but as I only selected four scenes, it end[ed] up being a bit
repetitive.” (S7) and ”would have been nice to add more scenes per zone. Since there are only 4 scenes, they
sometime feel too much in contrast.” (S2).
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Novelty In a few comments, participants described how the novelty of this application distracted them from focusing
on their work, for example: ”Toward the beginning I think the distraction was mostly due to the novelty” (S2)
and ”That impulse [of checking one’s data] is also a function of novelty. I am certain that in more regular
usage that would diminish” (T1). In another comment a participant suggested a longer usage period ”I think the
idea of ambient biofeedback is quite interesting but I guess longer experiments need to be done to experience
complex states such as focus level” (T3).

6. Discussion

6.1. Goal Achievement

The results for goal achievement indicate that in our experiment the user was able to achieve more focus time with
less restoration time when the selected goal was both focus and restoration. This result is in line with the attention
restoration theory, which describes that certain environmental properties, such as sound and images of nature, can
recharge depleted mental resources more quickly than other kinds of environments, e.g. city landscape. Despite
spending less time in the restorative state, participants were able to achieve high restorative states more often.

The differences in participants’ physiological responses, as shown in Figure 5.1, indicate that personalization can
achieve a better outcome than a generalized approach. Additionally, differences in how participants interacted with
the system and their comments indicate that the user’s preference is likely to change over time in a long-term user
study. Some users might need more choices of scenes to keep the experience appealing, while others might settle
on favorite scenes. In the experiment detailed in this paper, some users frequently changed the atmospheric setting,
while others only configure their goal once at the beginning of the session. Some people noted in the comments that
the limited number of scenes will become less interesting after a long time of use, while other participants preferred
to use a few settings. Therefore we believe that personalization and continuous learning are crucial for the Mediated
Atmospheres application. The user could potentially design or record their own scenes by specifying the lighting,
visuals, and sounds.

Our observations also indicate that the adaptive environment can help the user to overcome unwanted behavioral
patterns through repetitions and just-in-time transitions of the scene. Participants reported that a change of atmospheric
scenes prompted them to adapt their activities. Besides scene changes, participants’ also said that repetitions in the
video or sound helped to break procrastination behavior. In some scenes, the video and sound repeated after 10 -
20 minutes by looping back and transitioning with a cross-fade to a random previous position in the video. One
participant commented that the repetition provided a sense of time and a reminder to reflect on one’s active task. These
environmental cues could be used intentionally to calmly — as defined in the foreground/background classification of
Human-Computer Interaction [48] — notify users.

6.2. Multidimensional Model of the User’s Physiological State

Both modes achieve above-average usability compared to the benchmark score. This result suggests that par-
ticipants overall understood the user interface. The control map effectively communicated the system’s control ca-
pabilities as well as the intended use of the system. Some participants even used the control map to monitor their
physiological state. Participants noted that they enjoyed seeing the marker that represented their physiological state
”move around” in the control map and in particularly when it took ”big steps”.

The two-dimensional orthogonal representation of focus and restoration is a gross approximation of complex
phenomena of the human body, which, in reality, are not independent of each other. As our preliminary result indicates,
improved restoration, in fact, leads to higher focus. However, the control map was easy for the user to understand and
is, therefore, a viable approach for future research. Our findings suggest that we could use the control map with only
two instead of four quadrants (Restoration (only) and focus and restoration) for maximizing focus and restoration in
the workspace.

In future research, we plan to include additional control dimensions in the control map. For example, creativity
and sociability are both relevant control dimensions in the workspace. Much research has shown the impact of the
ambient environment on creative cognition and social behavior. Yet we need to develop sensor features that can
evaluate these dimensions.
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The MA prototype introduced in this paper uses multimodal media and sensing. We can easily extend the system
with additional sensors and output modalities. In future research, we plan to include new media outputs, such as
olfactory experiences or a responsive display for increased immersion. While existing research strongly suggests that
scent will have a significant impact on the user’s response, there many remaining questions about how to introduce
the olfactory experience in the multimodal context and how the outcome compares to the existing setup. We will
also explore alternative sensors for non-intrusive, contact-free physiological sensing. Wrist-worn sensors are less
intrusive than sensors in the chest region. However, wrist-worn sensors are prone to motion artifacts, which could be
challenging in the work context, where the user’s hands and arms are moving. Alternative contact-free solutions for
heart rate and respiration rate tracking are Ballistocardiography, radar-based, and vision-based sensors.

6.3. Level of Control for Human-in-the-Loop Operation

The results indicate that the Learning Mode has the preferred level of control. However certain features of the
Preset Mode could be used to enhance the Learning application. Despite a lower level of perceived control and an
increased distraction, the Preset Mode provided an attractive alternative to the goal-driven system through context-
awareness and achieved a similar SUS value. Participants described that they enjoyed losing control in the Preset
Mode. They felt especially supported when the Autonomous system responded as they changed their work task and
transformed automatically according to their activities. This learning suggests that the timing of scene changes in the
Learning Mode should follow the user’s activity change rather than using a fixed or random timing.

The Preset Mode was, on average, more distracting for the participants, because they were notified about every
physiological state change. This made them aware of their physiological state, and sometimes even prompted them
to check the visualization of their physiological signals to learn more. In the Learning Mode, this effect was reduced,
although driven by curiosity, some participants nevertheless checked the graphical interface regularly. We expect that
this kind of behavior and ensuing distractions will decrease over time, as the user becomes more familiar with the
system. However, the preliminary study result suggests that we should limit the means of self-observation in future
implementations to reduce distraction.

From the participants’ answers, we learned that positive self-observation - an indication of the desired state - was
perceived as a reward or a source of motivation, while negative self-observation - when the observation indicated an
undesired state - caused further distress. This finding could be related to the theory of introspective awareness. It was
found that people with heightened ability to perceive their bodily states, e.g. heart rate, also experienced emotions
more intensely [65]. It was also found that the visualization of the desired state or physiological signal could be used
to guide the user to achieve their desired state.

6.4. Ethical Considerations

Thinking forward, preferences and affective response could be aggregated across networked users everywhere,
resulting in a large generated library of scenes calibrated over a multitude of different users. Although this work
points towards improving indoor work environments, it also raises a multitude of ethical questions that inspire rich
debate. Is it proper to degrade a physical workspace if it is virtually compensated or augmented in some way? Could
our interdependence with deeply augmented environments eventually make us incapable of living without them (a
theme explored in speculative fiction for over a century now [66]). In the not too distant future, machine models of
our reactions to controlled stimuli may make us very gullible to persuasion and suggestion. This is a tactic long-
exploited in advertising and recently honed for divergent purposes in today’s online world, often with a negative
consequence. As our digital extension gets to know us at this level of intimacy under the expansion of IoT, it becomes
important to be confident that it is working mainly on our behalf and that the user is, in principle, ultimately in control.
This will undoubtedly be the topic of many important future studies.

7. Conclusions

We introduced Mediated Atmospheres — a closed-loop control system for an office equipped with a sensor net-
work and multimodal media (controllable lighting, projection, and sound). This system adapts the ambient properties
of the workspace continuously according to the user’s physiological states to improve the user’s productivity and
stress restoration in the workspace. The results of a preliminary near-natural use study showed that the closed-loop
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system can create an improvement over the unaugmented office. We found that participants were able to increase
the amount of time in which they achieved deep focus when the system optimized for both focus and stress restora-
tion rather than focus alone. Participants were able to double the time in which they achieved high restoration when
then environment optimized for restoration rather than focus. We measured focus and stress restoration through a
combination of sensor features including heart rate variability, electroencephalogram (EEG), and facial expression.
We achieved a System Usability Score above average, which is evidence that our method for perceptual embedding
using the control map created a useful and transparent interface for closed-loop control of a multimodal environment.
The control map establishes a multidimensional model of the user’s physiological state in relation to system control
space. To gain insight on perceived control, we compared two application modes: Autonomous and Learning Mode.
Surprisingly, both modes achieved similar usability ratings, and ratings on perceived support, despite differences in
perceived control and distraction. This outcome reveals opportunities to combine the advantages of both application
modes. Thinking forward, MA could aggregated preferences and affective response across a network of users, to
generate a large library of scenes calibrated over a multitude of different users. We have concentrated on applications
in an office scenario, but these ideas could apply in many other situations where a user’s stimulation is restricted - e.g.,
in quarantine (as much of this paper is being edited under the COVID-19 lockdown, such applications are poignant),
on extended manned space missions, etc.
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