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Abstract: Linear comparisons can fail to describe perceptual differences between head-related transfer functions (HRTFs),
reducing their utility for perceptual tests, HRTF selection methods, and prediction algorithms. This work introduces a
machine learning framework for constructing a perceptual error metric that is aligned with performance in human sound
localization. A neural network is first trained to predict measurement locations from a large database of HRTFs and then fine-
tuned with perceptual data. It demonstrates robust model performance over a standard spectral difference error metric. A sta-
tistical test is employed to quantify the information gain from the perceptual observations as a function of space. VC 2021
Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creative-
commons.org/licenses/by/4.0/).
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1. Introduction

Individual head-related transfer functions (HRTFs) are complex and vary substantially from person to person because of
anthropometric differences like ear shape, head circumference, and torso size.1 Their high dimensionality and idiosyncratic
nature pose problems for binaural rendering because the apparent realism of any virtual acoustics depends heavily on how
closely matched the HRTF is to that of the individual listener. Indeed, using HRTFs that are different from a listener’s
individual HRTF can result in unacceptable distortions in the perception of sound source direction,2,3 coloration,4 and
width, as well as a potential collapse of externalization.5 But despite understanding these perceptual impacts, it remains
unknown what constitutes a perceptually meaningful acoustic difference between two HRTFs.

It would be of great value to have an HRTF distance metric that varied along perceptually meaningful dimen-
sions. From a basic research perspective such a metric would help us to understand what HRTF cues the brain uses to
construct our internal representation of the spatial acoustic world, and how to design perceptual experiments and select
spatial regions that would reveal the most about our perception of sound source location. From an applied perspective,
such a metric could serve as a loss function for training HRTF prediction methods, a means for validating the reliability
of acoustically captured HRTFs, or a system by which we could select an HRTF which is most appropriate for a given per-
son from a set of HRTFs.

The most frequently used HRTF distance metric is essentially a spectral subtraction, computed as a log-scaled lp
norm directly on the filter representations in the magnitude frequency domain, known as a spectral difference error
(SDE).2 This class of error metrics is robust, easy to implement, and simple to understand, but it can fail to correlate well
with, e.g., errors in a sound localization task. Simple additions such as using a spectral weighting on the residual between
the two HRTFs can reduce the impact of errors at frequencies well outside the range where measurements are reliable, but
cannot solve what is in essence a high dimensional problem.2,6,7 Given the perceptual impacts of coloration shifts, individ-
ual notch position and slope, and cross-frequency interactions to name but a few, it is highly unlikely that a generalizable
perceptual error metric would consist of a simple weighted spectral subtraction.

In this work, we turned instead to a statistical model to develop a more effective error metric for HRTF compar-
ison that is better aligned with perception, focusing here on localization perception. A naive approach to this problem
would entail collecting data in an experimental setting wherein (1) high-fidelity HRTFs are acoustically measured for each
participant, (2) participants are presented with a series of sound sources rendered at different spatial locations using these
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measurements, and (3) are asked to relay their perception of the location of the sources. This data would then be used to
create a model to describe the relationship between a given HRTF and a perceived spatial location. In practice, however,
collecting the comprehensive amounts of data that this would require is costly, time-consuming, and inefficient. Since no
such appropriate datasets exist, learning models with this approach would have to be derived solely from those small,
sparse, noisy datasets that do exist, and the resulting models are likely to be unstable and generalize poorly—a well-known
challenge in classical data learning contexts.8,9

To this end, we propose and demonstrate a more flexible framework for constructing an HRTF perceptual error
metric. We suggest (1) constructing a model that is first built on large amounts of informative, non-perceptual data, that
constitutes a “prior” on the relationship between an HRTF spectrum and its corresponding spatial location; (2) fine-tuning
this model, taking into account sparse, noisy perceptual observations from existing small-scale datasets collected from pro-
cedures like the hypothetical setting described above, which we consider the “posterior” model; and (3) computing mea-
sures of statistical significance as a function of spatial location between the prior and posterior model. This has the benefit
of both validating the model itself, but also informing subsequent collection of perceptual data to further improve the
model in an iterative fashion.

We demonstrate this idea in practice by constructing a neural network model that is designed to predict a spatial
location from a left-right pair of HRTF magnitude frequency responses. The model is first trained on a large database of
acoustic HRTF measurements, and then is fine-tuned using a transfer learning approach incorporating a small set of
observations from a spatial localization experiment. We illustrate the utility of this approach by showing that:

(1) The metric obtained from the “priors” is monotonic and linear with subtended angles between sound sources, in contrast
to SDE which often lacks linearity.

(2) The performance of the fine-tuned model on unseen perceptual data provides insight into model uncertainty as a function
of space; by obtaining measures of confidence for the difference between priors and posteriors at a particular location in
space, we draw conclusions regarding the spatial regions where perceptual data does or does not provide critical informa-
tion over non-perceptual information, and where more perceptual data needs to be collected to be able to draw such a
conclusion.

We feel that this is a promising attempt at using machine learning to get around the problem of HRTF dimen-
sionality and move towards a means for determining meaningful perceptual differences between HRTFs. The details of the
approach follow, along with model validation, and usage examples, some specific applications of which may be found in
the supplemental materials.10

2. Data

Measured HRIRs: (H) consists of a database of acoustic far-field head-related impulse response (HRIR) measurements
captured from 123 subjects. The 201-point, 48 KHz-sampled HRIRs were captured along a 612 point spherical grid
(denoted by G) of directions with 36 equally spaced azimuth locations and 17 equally spaced elevation locations. For the
purposes of this work, we used the corresponding magnitude spectra HRTFs, normalized by the maximum spectral energy
across all of the individual’s measured responses.

Localization Test: (L) is formed by the results of a listening test conducted to evaluate localization perception,
using a subset of 30 individuals from H. The participants were presented with a series of virtual sound sources, rendered
using their measured HRTF, through a pair of headphones. The test was performed in a quiet room, and the participants
were seated at the center of a spherical dome mounted at the center of the room. The participants were asked to identify
the sound source location by pointing with a head-mounted laser pointer to the location on the dome where they per-
ceived the sound to be coming from. This location was registered as azimuth and elevation angles relative to the initial
front direction. Further details regarding the setup, experiment protocol, and spatial processing necessary for synthesizing
the virtual sound sources can be found in Ref. 11.

3. Methods

We propose a computational framework that predicts the perceived spatial location of the sound from a given pair of far-
field left and right HRTFs. To do this, we first constructed a learning model that directly relates this HRTF pair to its
measured source location, relying only on H; we then modified this trained model appropriately using the perceptual data
in L. This two stage framework allowed us to validate the efficacy of the trained model with and without the perceptual
data, implicitly providing insight into the biases induced by the perceptual feedback. We utilized ideas from deep learning
(and more precisely, feed forward convolutional networks) to design this model.

We denote the left and right HRTFs corresponding to azimuth h and elevation / by hLh;/ and hRh;/, respectively,
defined over frequency. We constructed a learning model M that maps these signals to h and /. Ideally, this is a regres-
sion prediction problem from continuous inputs to continuous outputs; however, keeping in mind the sparse structure of
the spatial grid G, and the fact that a discrete output or target space is desirable for neural network training (as highlighted
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in audio applications like those described in Refs. 12 and 13), we transformed the prediction problem into a classification
one. The outputs are denoted by y 2 ½0; 1"612, where yi represents the ith direction from the grid G.

At prediction time, given a new pair of HRTFs, the vector entry with the greatest probability in the prediction ŷ
represents the estimated source location, denoted by ðĥ; /̂Þ. These predictions from M can be used to construct an error
metric for downstream tasks. Given two HRTFs hi and hj from some unknown locations, M estimates ðĥi; /̂ iÞ and
ðĥ j; /̂jÞ, which can then be used to compute the distance metric dðjĥi % ĥjj; j/̂ i % /̂jjÞ. dð&Þ can take the form of any
appropriately chosen angular distance metric in the spherical domain.

To explicitly account for the influence of perceptual feedback from L, as mentioned earlier in this section, we
first trained M with H, followed by a fine-tuning training phase with the data from L, resulting in a model denoted ~M .
Details regarding the architecture, design, learning, and optimization strategies for M can be found in the supplement.
Training the models followed the standard learning criterion and cross-validation principles employed in the deep learning
literature.14,15

4. Experiments and results

4.1 Without perceptual feedback

In this first set of experiments, we examined the performance of M without the inclusion of perceptual data L. The model
achieves an absolute test set classification accuracy of 65.8%, with a mean distance error (absolute difference in predicted
angle) of 0.67' (r¼ 2.7') and 4.7' (r¼ 12.7') in azimuth and elevation, respectively. As a more meaningful representation
of performance, however, we also report the 1-bin tolerance (1BT) measure, which corresponds to the model’s accuracy in
predicting the true spatial location of HRTFs within one neighboring grid location (where one grid location has a resolu-
tion of 10'). In Fig. 1, we show both the 1BT and absolute accuracy as a function of space. For simplicity, we report this
measure along the elevation and azimuth axes independently, aggregating the opposite axis. We note slightly decreased
performance in elevation classification at the extremes, likely due to measurement noise. We also observe lower perfor-
mance in azimuth prediction overall as compared to elevation prediction likely due to smaller Cartesian spacing in azi-
muth at higher elevations.

We next attempted to understand how the distance metric derived using M behaves in comparison to SDE. We
did this using the following procedure: given an azimuth h0, we chose two possible grid locations along the elevation axis
(/i and /j), and selected two HRTFs, hL=R;P1h0;/i

and hL=R;P2h0;/j
belonging to two random individuals P1 and P2 from the database

H. Using these, we computed a simple distance measure in the output space of M, namely,

LM ¼ j/̂
P1
i % /̂

P2
j j; (1)

where /̂i and /̂j are predicted by M. We additionally computed an SDE measure from the magnitude frequency HRTFs.
For the right HRTF, this is defined as

LSDER ¼
1
N

XN

n

j20 log10ðh
R;P1
h0;/i

n½ "Þ % 20 log10ðh
R;P2
h0;/j

n½ "Þj; (2)

Fig. 1. Accuracy and 1BT for elevation (top) and azimuth (bottom), aggregated over azimuth and elevation, respectively.
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which we repeat separately for the left HRTF; N is the number of frequency bins, equal to the tap length of the measured
HRIRs (see Sec. 2). We averaged these measures (LM, LSDER ; LSDEL ) across all pairs of subjects in the test partition of H
(approximately 50 subjects) for a given location, and repeated the procedure for every possible location along the fixed
axis, choosing a few values in azimuth and elevation for the fixed axis. The results of this process are shown in Fig. 2,
with trends in elevation for a fixed azimuth shown in the left image and trends in azimuth for a fixed elevation shown in
the right image. We note that LM is linear and monotonic with increasing distance in elevation and azimuth. On the other
hand, while LSDE for the ipsilateral ear is monotonic with increasing distance, and it lacks linearity. We also show that LM
displays significantly less inter-person variability than LSDE. To ensure that these trends are robust and do not result from
sampling noise, we treat each curve in Fig. 2 as a 2D distribution in angular distance and subject pair, and compute a
two-sample multivariate t-test on LM and the mean of LSDER and LSDEL . A T2 statistic with a p-value <0.05 suggests that
the two distributions are unrelated. Taken together, these demonstrate the utility of our proposed metric—while SDE may
reflect variance in distance at a course spatial resolution, our proposed metric is more robust for fine-grained angular dis-
tance comparisons, and is more robust to inter-personal spectral differences.

In Fig. 3, we provide an example to illustrate the affordances of the proposed metric. On the left, we show two
magnitude HRTFs from the ipsilateral ear of two subjects which were measured 150' apart in elevation, at a fixed azimuth
location of 20'; on the right, we show another pair from the same two subjects and azimuth location representing a differ-
ence of only 10' in elevation. LM predicts a value of 150' and 10', respectively, while LSDE reports 25 dB for both pairs.

4.2 With Perceptual Feedback

In a second set of experiments, we explored the role of perceptual data in shaping predictions across spatial locations. To
do this, we applied M and ~M to the test partition of L, and compared the performance of the two models. As an exhaus-
tive approach, we performed an iterative hypothesis test comparing the two distributions of model predictions for each
possible grid location along either the elevation or azimuth axis. This results in a measure of confidence describing
whether the two distributions were drawn from the same underlying distribution. We suggest that combining this informa-
tion with the models’ performance as indicated by the 1BT measure provides insight into the value of perceptual data as a
function of space, and we provide an illustrative example for discussion.

In Fig. 4, we plot the 1BT measure for each possible location along the elevation axis, above the p-values (plotted
as 1% p-value) resulting from the iterative hypothesis test and the number of perceptual observations available for each
location from L. An analogous plot for this analysis in azimuth can be found in the supplement. In spatial regions where
the hypothesis test shows statistical significance, and ~M has outperformed M, such as where / ¼ 10', we draw the conclu-
sion that perceptual observations provide critical information; in regions where the improved performance of model ~M is
not supported by statistical significance, such as where / ¼ 0', we conclude that perceptual observations do not afford
additional information over that already captured by M. However, in spatial regions where the hypothesis test does not
show statistical significance and very few perceptual observations have been captured relative to other locations, such as
where / ¼ %40', there is not enough certainty to draw either conclusion; instead, we suggest that this is a useful spatial
heuristic to inform the collection of perceptual observations in future iterations of participant experiments.

5. Discussion

Published datasets that include localization measurements using different HRTFs are not of sufficient size to train machine
learning algorithms on their own. The proposed hybrid approach described here allows us to sidestep this problem by
including perceptual and non-perceptual data in a common framework, and gives us a means by which we may begin to

Fig. 2. We show a comparison between LM and LSDE for several pairs of HRTFs from randomly sampled subjects in H; the vertical bars give
the standard deviation across subject pairs. We show trends in elevation for a selected azimuth location (left), and trends in azimuth for a
selected elevation location (right).
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describe the perceptual distance between two HRTFs. The proposed metric already outperforms classical measures like
spectral distance. We attribute this to our choice of model—we intuit that a neural network is required to be able to
robustly map HRTF signal space to spherical domain locations given the complex variance in spectral cues that determine
localization across a broad population of individuals. In its current form, we posit that our proposed metric could be con-
structed and treated as a black-box loss function, and inserted at the tail-end of HRTF generation or selection systems to
compute and propagate error back to the system in the spatial domain instead of the spectral domain.

Second, we believe that the proposed framework is valuable for constructing perceptually relevant models using
sparse, weakly annotated, and noisy data—which are the typical attributes of audio perception datasets. Building a model
first on data that is conditioned on a causal assumption—that, in this case, a statistically derived non-linear weighting
function can map HRTF spectra to spatial locations—affords generalizability and robustness towards unseen subject vari-
ance. This model can then be adapted to a smaller set of data reflecting human annotations (from, for example, an indi-
vidual calibration experiment), quickly and online using any number of domain adaptation strategies including the simple
transfer learning approach proposed here. Last, computing measures of statistical difference between the generic and
adapted models allows for an estimate of the information value of incoming perceptual observations and a heuristic to
drive further querying for annotations; this is of importance given the cost of querying or human-in-the-loop approaches,
especially on the scale of an individual user. As a key contribution of this work, we encourage a broader application of
this approach to metric design for HRTF comparisons, with adaptations of the framework to different perceptual attribu-
tions (such as timbre/coloration perception) or different data formats (annotations captured at different spatial resolutions,
with different classes of labels, etc.).

Fig. 3. A comparison of two pairs of right-HRTFs measured from the same two subjects at the same azimuth location (20'); the first pair
(left) were measured 150' apart, and the second pair were 10' apart. However, both pairs result in the same LSDE value.

Fig. 4. We give a comparison of the performance of M and ~M on the elevation axis via the 1BT measure (top); we juxtapose this with the p-
values from the iterative hypothesis test comparing the two distributions (bottom).
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6. Supplementary Text235

6.1 An Overview of Machine Learning236

Machine Learning is a paradigm of statistics that comprises of mechanisms for building237

algorithmic models from datasets. Linear models are the simplest and most widely used238

machine learning algorithms. For example, a given set of inputs X are transformed to Y239

via a simple linear transformation W , i.e., Y = WX. In contrast, non-linear models such240

as Y = c(X) are defined by a function c(·), where c could be a logistic curve, a polynomial241

etc. Neural Networks are more recent, widely studied machine learning models which are a242

straight forward extension of such generalized linear models, where a sequential cascade of243

such simple functions c(·) are used. In this work, the proposed statistical model is a neural244

network.245

A system level flow-chart of the neural network used in this proposal is shown in246

Figure 5a. The input to the model is a pair of left and right HRTFs, and the sequence of247

nonlinear functions applied on these inputs are denoted by c1(·), . . . , c6(·), illustrated by the248

rectangular blocks. Each of these functions represents a set of widely-used and well-studied249

operations (convolutional kernels, decimation, normalization, etc) that are parametrized by250

unknowns. The goal of building a neural network is to estimate these parameters using251

a standard optimization process called backpropagation15. Given the inputs and learned252

parameters of the functions c(·), the network predicts as its output a category from a list of253

pre-specified categories each corresponding to a discrete location in azimuth and elevation254

space.255
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The training procedure for such a model involves the following steps:256

(1) Splitting the dataset into training, validation and testing sets.257

(2) Using the training set for estimating the unknown parameters of the functions258

c1(·), . . . , c6(·) using backpropagation.259

(3) Using the validation set to select the hyperparameters that control the backprop-260

agation procedure (refer to15 for more details).261

(4) Using the testing set to evaluate the generalized performance of the learned neural262

network.263

This learned network is the final model used to make categorical predictions.264

6.2 Details on Constructing and Training M and M̃265

In practice, model M , as shown in Figure 5b, is constructed with two stacks of convolutional266

blocks (shown in the inset) applied to each of the left and right magnitude HRTF inputs,267

and culminates in several densely connected layers. The values for the dimensional and268

optimization parameters in Figure 5b are given in Table 1. The categorical output of the269

network is first thermometer encoded following16, and the error is computed using a cate-270

gorical crossentropy loss against the ground truth. Datasets H and L are both partitioned271

into training, validation, and testing sets via a 70:20:10 ratio. M is first trained using only272

H for approximately 50 epochs, using early stopping criteria on the validation accuracy to273

end training. M is then further trained with the train and validation partitions of L in the274

same manner to obtain M̃ .275
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(a) System flow of the neural network that forms model M .

(b) Detailed architecture of model M ’s convolutional feed-forward network.
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Table 1: Structural attributes and optimization details for constructing M .

Parameter Value

n 5

W 201

F 24

D1 1024

D2 512

D3 128

D4 64

Kernel Size 5

Kernel Stride 1

Batch Size 256

Optimizer Adam
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6.3 Extended Commentary on Motivating Applications of the Work276

Here we expand on the general motivations of the work and provide guidance and procedures277

on how to use the proposed model for a set of 3 applications.278

6.3.1 Building HRTF Personalization Systems279

Over the last few years, several research groups have shown evidence that HRTF estimation280

entails building reasonably complex statistical models. Any such statistical model is driven281

by a distance function between two HRTF candidate signals. The proposal builds an opaque282

box that is such a metric. The model distance LM could be used directly as a loss function283

to train another model predicting HRTFs from appropriate inputs, such as images of ears;284

it could also be used as a loss function after re-training with new localization datasets while285

preserving the same architecture.286

6.3.2 Guiding Experimental Designs for Perceptual Tests287

The proposed model provides a mechanism to design perceptual experiments that reveal288

valuable information about underlying perceptual attributes, helping to answer questions289

such as: in which locations should a localization test be performed? What should the290

resolution of the experiment be as a function of space? How should these questions be291

answered di↵erently for di↵erent users? And given a set of experiments completed on a user,292

what locations should be tested in a second iteration to guarantee new information? To293

use the model LM proposed here, it can be precomputed for a set of HRTFs and a set of294

perceptual tests. The goal of a new experiment design would be then be improve confidence295

in the estimation of LM . Hence, the measured confidence intervals (such as those in Figure296
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2) can guide the experiments. Further, recall the analysis in Section 4.2 on using hypothesis297

testing to evaluate the performance of M vs. M̃ . These statistical values are reflective of298

significant sample size and prediction di↵erences. Hence, they can point to regions in space299

where “more information” is needed for better estimates of LM , leading to new perception300

experiment designs.301

6.3.3 HRTF Measurements302

Measuring HRTFs is an expensive endeavor; the process is noisy and there are several con-303

straints in terms of the equipment setup, the measurement locations, the sampling rates, the304

resolution of the sampling grid, etc. It would be beneficial to guide the measurement setup305

and process based on perception. Mathematically this guidance needs to come from the306

sensitivity of HRTFs given a perceptual attribute. The proposed model provides a plug-in307

plug-out way of constructing such sensitivity maps (and we present some such experiments308

via hypothesis testing in the manuscript). Firstly, the simplest such sensitivity map can309

be constructed from the testing set performance (1BT accuracy or a related performance310

measure) of M̃ . Secondly, one can look at di↵erent trajectories in azimuth-elevation space311

and identify regions where LM ’s performance di↵ers significantly from SDE. This is similar312

to the test conducted in Section 4.2. Lastly, using multiple subsets of measured data and313

training strategies results in multiple approximations of LM for the same location. The vari-314

ance of these estimates can led to guidance on where more and higher-fidelity measurements315

of HRTFs are warranted.316
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6.4 Additional HRTF Comparison Examples317

We show several other examples comparing LM and LSDE for pairs of HRTFs from H in318

addition to Figure 3.319

Fig. 6: Comparing LM and LSDE for a few di↵erent ground truth angular

distances in elevation; azimuth is fixed at 20�.
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Fig. 7: Comparing LM and LSDE for a few di↵erent ground truth angular

distances in azimuth; elevation is fixed at �30�.
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6.5 Comparing M and M̃ in Azimuth320

We provide the same analysis as in Figure 4, but instead plotted along the azimuth axis and321

aggregated over the elevation axis.322

Fig. 8: A comparison of the performance of M and M̃ on the azimuth axis via

the 1BT measure (top); we juxtapose this with the p-values from the iterative

hypothesis test comparing the two distributions (bottom).

323
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