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Figure 1: We first bootstrap gestalt property scores to all labels in the AudioSet ontology by running
a classifier on the HCU400 dataset (fop); we then estimate gestalt property scores for unseen audio
examples by first predicting AudioSet labels, and then combining the scores associated with these
labels, weighted by the prediction uncertainty (bottom)

1 Motivation

Over the last few decades, neuroscientists, cognitive scientists, and psychologists have made strides
in understanding the complex processes that define the interaction between our minds and the sounds
around us. Their research suggests that we interpret and contextualize sounds through a nuanced
dynamic between semantics and acoustics, responding pre-consciously to both the spectro-temporal
dynamics of a sound object and the inherent emotionality, memorability, and notions of causal
uncertainty we ascribe to it [1H8]. Building statistical models of sound understanding that are
aware of these latter, higher-level aspects of cognition could be used to power a suite of compelling,
futuristic, and creative experiences in sound - via automatic annotation, manipulation, and generation
of audio content. One could imagine using these models to more readily design automated tools for
creating audio to accompany film or podcast media that reflects the aesthetic of the content; create
immersive soundscapes in virtual reality designed to aid in the practice of mindfulness and wellbeing;
and construct intricate sound design work for art installations intended to guide collective perception
towards a certain emotional state.

A characterization of the cognitive impacts of sound objects is highly subjective [9] and ultimately de-
mands personalized modeling. Here, however, we suggest that even general purpose, non-personalized
estimators that capture crowd-scale information about intrinsic, semantic properties of sound — often
referred to in the auditory psychology literature as gestalt properties — can be a useful preliminary step
for creating experiences. This approach also proves challenging; the cost and difficulty of creating
sizeable datasets containing annotations of gestalt properties currently prohibits the use of end-to-end
learning to construct these estimators. Thus, in the face of small data, there is a need for effective
input representations that are built on top of years of auditory psychology research.

In this paper, we present a simple paradigm for estimating a set of gestalt properties — such as
valence and arousal, imageability, causal uncertainty, and memorability — from unseen, real-world
audio, using a probabilistic bootstrapping approach that employs an AudioSet [10, [11] classification
network as an intermediary. The overall idea behind our approach is that, given limited quantities of
annotations of these properties in sound cognition datasets, we can create a robust estimator by first
mapping these properties to semantic classes obtained via large, pre-trained networks. We believe
this approach is valuable in that it benefits from advancements in sound classification research — the
outcomes improve as neural networks for classification improve in performance and label ontologies
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become more nuanced — but also in that it mimics a well-observed cognitive process [l 2]: that sound
understanding begins with sound source identification, and the uncertainty surrounding it.

2 Approach

To illustrate our approach (summarized in Figure [I), we consider the HCU400 and memorability
datasets presented in [12}[13]], and aim to scale the hand-labeled annotations of six gestalt properties —
arousal, valence, imageability, familiarity, memorability, and confusability — to unseen audio. We
achieve this by building a probabilistic mapping between these scores and the 600+ labels in the
AudioSet ontology. To build this mapping, we employ a pre-trained AudioSet classification networ
to obtain the top k label predictions from each audio sample in the HCU400 dataset. Then, we
capture the correlation between each AudioSet class and gestalt property. To do this, for a given label
and gestalt property, we fit a Gaussian distribution to the property scores across all of the sounds
with that label, wherein each set of scores (representing the set of human annotations per sound) is
weighted according to the network’s label uncertainty. While the labels associated with the sounds
in the HCU400 dataset are too sparse to fully cover all of the AudioSet labels, we can exploit the
existing class relationships in the AudioSet ontology to meaningfully impute our estimates of the
new gestalt properties to the uncharacterized labels: parents adopt mean scores of children, children
inherit parent scores. Example results from the complete process can be seen in Table ([T}

To calculate gestalt property scores for unseen audio examples, this process can effectively be inverted:
the distributions associated with the top £ AudioSet labels are combined— weighted by prediction
uncertainty— to obtain mean and variance estimates for the unseen audio. Any number of similar
weighting heuristics can be applied, contingent on the application context.

Throughout this approach, we treat the uncertainty of the pre-trained AudioSet model as a proxy for
human uncertainty in sound source identification. As shown in [14] (reproduced in Figure[2) plotting
the audio classes from the HCU400 dataset against the human-rated and artificial causal uncertainty
measures demonstrates that it is a reasonable proxy. We use this notion implicitly in the bootstrapping
process as we weight the contribution from different instances in the HCU400 dataset by the network
prediction uncertainty, mimicking the role of causal uncertainty as the fulcrum between semantic and
acoustic processing [1}12]. We can also use this notion explicitly as a tool for constructing experiences
(see Section[3).

The intermediary structure in this approach can be constructed using a spectrum of methods, spanning
simple causal intuition derived from auditory psychology literature to rigorous bootstrapping from
more extensive datasets onto detailed ontologies. In contrast to traditional transfer or few-shot
learning approaches, the structure here has intuitive meaning, and we rely on explicit relationships in
label and language space to provide a scaffolding for relationships in cognitive understanding space.

3 Applications

We give several examples from our prior and on-going research about the value of this approach in
providing rudimentary tools for constructing human-meaningful experiences.

In one project, we invite participants to "lifelog" their surroundings with audio recorders for several
weeks, and review the audio via short presentations created by using the gestalt property estimators
to curate and summarize the audio. We find that the gestalt property analysis drives the creation of
audio digests that participants find far more emotional and intimate than those generated through
acoustic means alone [14]]. Examples of the system’s output can be auditioned here.

In another project, we design an optimization procedure to manipulate acoustic properties of a sound
example in order to modulate causal uncertainty, and demonstrate that we can do this reliably in a
series of perceptual tests [15]. Audio examples can be found herel

In additional on-going work, we create personalized soundscapes from generic, ambient audio
recordings to facilitate specific cognitive states (such as a state of focus or relaxation). We layer
a learning model on top of the gestalt property analysis to drive a generative engine toward an
individual’s preference. A demo of the system can be found here.

"https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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4 Ethical Implications

Pre-conscious sound perception and cognition, as mentioned in the text, is highly idiographic; it
may be a function of one’s experiences, culture, exposure to sonic environments, and physiology,
amongst other factors. Models built to capture shared, crowd-scale notions in sound cognition reflect
sampling biases: the datasets herein may be unrepresentative of wider U.S. or global populations
and/or fail to capture culturally relevant information, making them less applicable to those from
different backgrounds.
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A Appendix
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Figure 2: Plots showing the distribution of sounds in the HCU400 dataset labelled with their original
categories from [12], namely “Natural”, “Ambiguous", or “Synthetic". We compare the separation of
these “Natural" and “Synthetic" classes via the human annotated Hcu metric (left) with the proposed,

neural network-based approach (right).

Top Scores: '"Memorability' | Top Scores: " Confusability"

Guitar Rain on surface
Wail, moan Pink noise
Fire alarm Ocean
Baby cry, infant cry Vibration
Crying, sobbing Traffic noise, roadway noise
Cough Idling
Singing Stream
Whistling Fire
Chuckle, chortle Typewriter
Belly laughter Wind
Baby laughter Rustling Leaves
Ambulance (siren) Thump. Thud
Sneeze Electric shaver, electric razor
Top Scores: “Arousal” Top Scores: “Valence”
Skidding Acoustic Guitar
Machine gun Strum
Ambulance (siren) Wind Chime
Emergency vehicle Chuckle, chortle
Toot Giggle
Train horn Laughter
Fire alarm Flute
Vehicle horn, car horn, honking Cello
Growling Classical Music
Doorbell Waterfall
Ringtone Bird call, bird song
Boom Rain on surface
Roar Church bell

Table 1: Sound category labels from the AudioSet [11] ontology with top scores for Memorability,
Confusability, Arousal, and Valence, determined by bootstrapping from the small HCU400 dataset

(12, [13].
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