
  

  

Abstract— We present an approach to develop seamless and 

scalable piezo-resistive matrix-based intelligent textile using 

digital flat-bed and circular knitting machines. By combining 

and customizing functional and common yarns, we can design 

the aesthetics and architecture and engineer both the electrical 

and mechanical properties of a sensing textile. By incorporating 

a melting fiber, we propose a method to shape and personalize 

three-dimensional piezo-resistive fabric structure that can 

conform to the human body through thermoforming principles. 

It results in a robust textile structure and intimate interfacing, 

suppressing sensor drifts and maximizing accuracy while 

ensuring comfortability. This paper describes our textile design, 

fabrication approach, wireless hardware system, deep-learning 

enabled recognition methods, experimental results, and 

application scenarios. The digital knitting approach enables the 

fabrication of 2D to 3D pressure-sensitive textile interiors and 

wearables, including a 45 x 45 cm intelligent mat with 256 

pressure-sensing pixels, and a circularly-knitted, form-fitted 

shoe with 96 sensing pixels across its 3D surface both with linear 

piezo-resistive sensitivity of 39.4 for up to 500 N load. Our 

personalized convolutional neural network models are able to 

classify 7 basic activities and exercises and 7 yoga poses in-real 

time with 99.6% and 98.7% accuracy respectively. Further, we 

demonstrate our technology for a variety of applications ranging 

from rehabilitation and sport science, to wearables and gaming 

interfaces. 

I. INTRODUCTION 

Most of the current efforts in functional and electronic 

textiles focus on the coating, screen-printing, embedding or 

attachment of electronic devices on fabrics. These manual and 

hand-made approaches, even though they have certain values 
in some aspects, they restrain researchers and designers from 

rapid prototyping, large-scale manufacturing, and translation 

of electronic textiles [1-3]. Recently, advances in 

mechatronics, digital fabrication, and computer-aided design 

have revolutionized the concept of three-dimensional (3D) 

knitting with computerized (CNC) knitting machines. These 

additive manufacturing machines enable users to design and 

fabricate their textile patterns and structures through a 

specialized visual programming environment and various 

types of fibers and yarns. In this work, we leverage digital 

knitting techniques using flat-bed and circular knitting 
machines with thermoforming techniques to realize a set of 2 
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to 3D piezoresistive matrix textile mats and wearables that are 

able to detect multipoint pressure across their surfaces in real-

time. This fabrication approach allows us to explore various 

parameters, including interconnect resistance, matrix 
resolution, pressure sensitivity, and the fabric’s visual, 

mechanical, and electrical  properties through functional and 

common fiber choices and knitting structures [4,5].   

We are motivated by the fact that most of our physical 

gestures and interactions involve contacts between different 

parts of our body and a surface. As we perform our daily 

activities such as walking, sitting, exercising or sleeping, a 

characteristic spatiotemporal contact and pressure pattern can 

be monitored and identified from sensing through the fabrics 
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Figure 1. (a) Illustration of 3D-knitted wireless intelligent textile for sport 

biomechanics, including a mat for yoga posture classification, a shoe for 

sport biomechanics and foot-ball interactions in soccer, and a sleeve for 

sensing muscle contractions in weight-lifting. (b) Multi-layer structure of 

pressure-sensitive textiles showing all the yarns used. (c) Flat-bed knitting 

structure with three yarn carriers (single and twisted composite). (d) 

Prototype of the pressure-sensitive textile with horizontal-vertical 

interconnects from knitted conductive yarns and PPy-coated knitted 

piezoresistive textile in the middle. 
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in our apparel or upholstery (Figure 1a). As illustrated in 

Figure 1b, we thus propose to a knitted piezo-resistive textile 

matrix for tracking and classifying activities. Monitoring 

biomechanical forces with high accuracy, repeatability, and 

comfortability through wearables or sensing surfaces is still a 
research and practical challenge. Our principle in 

personalization ensures textile wearables and structures that 

are robust, form-fitting and conformable and result in accurate 

and intimate sensing while ensuring comfortability. 

Moreover, it allows rapid, large-scale manufacturing of 

electronic textiles (Figure 1c-d) with customizable looks and 

functions. 

A. Pressure-sensing electronic textiles  

There are two common methods of pressure sensing in 

electronic textiles: capacitive and resistive-based. The 

capacitive approach consists of a spacer fabric in-between 

two conductive layers. Meyer et al. used a textile insulator in-

between a bottom common electrode fabric and an 

embroidered array of electrodes as a top fabric for activity 

detection, specifically to recognize sitting postures [6]. The 

spacer was chosen to be squishy to improve comfortability of 

the pressure sensor. This method suffers from stray 
electromagnetic noise, requires shielding layers, and complex 

read-out circuits. Resistive sensing, on the other hand, 

leverages a piezo-resistive element in the form of yarn or 

fabric as a middle layer in between two conductive elements 

[7]. The resistance of the piezo-resistive element changes as a 

force is exerted due to the bridging of conductive particles. A 

cross-configuration of piezo-resistive sensing textile, which is 

a conductive top and bottom matrix lines allows a distributed 

2D pressure sensing across the fabric. Several efforts also 

integrated piezoelectric materials in threads or textiles to 

detect vibration [8]. However, it does not measure pressure 

continuously and could only work as a dynamic pressure or 

impact detector.  

B. Biomechanics, activity, and gesture monitoring with    

piezo-resistive textiles.  

Piezo-resistivity in pressure sensing textiles have been 

explored in many projects, especially in the realm of human-

computer interaction (HCI), sports, and medical science. In 

HCI, they have been used as 2D tactile inputs for musical or 

multimedia interface [9], as well as deformation sensor in the 

form of a sleeve for fabric-based gestural interaction [10]. 

Several researchers have also explored the use of 2D pressure 

sensing textile integrated as a mat, glove, or clothing for 

object and human activity or posture recognitions. Most of 

these work analyzed the subtle pressure distribution change 
across the fabrics throughout the activity and applied machine 

learning principles for feature extraction and classification 

[11,12]. Piezo-resistive textiles have also been widely used in 

rehabilitation and medical applications, such as for gait 

analysis [13], respiration sensing [14], pressure ulcers 

monitoring and prevention [15], and compression therapy 

[16]. Specifically, due to its breathable, soft, and comfortable 

nature compared to flexible pressure sensing grids, these 

piezo-resistive sensing textiles can also be used to augment 

prosthetic covers, linings, or even robotic ski. Leong et al. 

presented a 2D piezo-resistive textile that covers a prosthetic 
foot for a closed-loop, sensory-haptic feedback [17], while 

Data Glove provides a textile-based conformal pressure array 

for prosthetic and robotic hand applications [18].  

II. KNITTED MULTI-LAYER TEXTILE SENSOR  

A. Design and Development 

The digital knitting programming interface consists of 
two grid sections (Figure 2). The left grid area is used to 

develop shape and patterns of the knit fabrics through a x-y 

color block programming, where each color and sign 

represent a specific knit instruction, as illustrated in Figure 2c. 

The right grid area defines machine parameters such as the 

yarn carrier number, knitting speed, and stitch tension. In 

addition, each color on the left grid represents different knit 

operations, such as knit, tuck, transfer, or skip. Since we used 

flat-bed knitting machine with two machine beds, most of the 

operations involve switching from the front to the back knit. 

Figure 2a shows an example of a textile pattern with 13 
knitted conductive transmission lines. We first started with a 

low-level color block-programming that enable abstraction 

and simplification from a more complex, knitting machine 

readable instruction format. With instruction library (Figure 

2b), we can then convert this low-level pattern (Figure 2a) 

into a line-by-line front and back knit machine instructions 

(Figure 2c) that can be read by the knitting machine program. 

The library maps each color to a specific yarn carrier or input. 

In this case, we used three yarn carrier: blue, magenta, and 

yellow for polyester, conductive, and other polyester yarns 

respectively. The conductive lines (dark green) are mapped 

into front-knit (blue with polyester yarn carrier) and back-knit 

Figure 2. (a) A knitting machine program with horizontal conductive 

interconnects design in green blocks and common, interlocked polyester 

yarns in maroon and pink blocks. (b) Abstraction library that converts 

simple knitting program in (a) into line-by-line, machine-readable format 

in (c). (d) Knitting machine in action showing all the yarn carriers being 

moved sideways by the slider, as illustrated in Figure 1c. 
 

(a)  

(b)  

(c)  

(d)  
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(magenta with conductive yarn carrier). The final instruction 

consists of back-and-forth knitting patterns with different 

yarn carriers as instructed. Every two lines here (front and 

back knit) represent one loop row or course of the fabric. The 

machine scans through each line of instructions until the end 
of the file. 

Three-dimensional Knitted Intelligent Textile Sensor 

(3DKnITS) comprises of multi-layer knit textiles fused 

together through intrinsically-knitted bonding or melting 

fibers (Figure 1b). A piezoresistive knit textile (LTT-

SLPA60k, Eeonyx Corporation) is sandwiched in between 

two conductive knit textiles (Figure 1d). The piezo-resistive 

material is developed by coating polyester knit fabric with 

polypyrrole (PPy), which is an organic conducting polymer 

formed by the polymerization of pyrrole [19]. This layer 

exhibits the piezo-resistive effect that induces a change to its 

electrical property as a mechanical pressure is applied. This 

resistance change is constantly read by the outer transmission 

layers that both form a 2D conductive matrix. These layers 

are machine-knitted with digital flat-bed knitting machine 

using combination of polyester (270 denier, 2-ply), 

conductive (300 denier, Weiwei Line Industry), and 
thermoplastic polyurethane (TPU) as melting yarns (150 

denier, 1-ply), as shown in Figure 1c. The outer layers are 

completely insulated on one side (all-polyester) and partly 

conductive on the other side (sequence of conductive lines in 

between polyester base). The knitting machine (Super-NJ 

212, Matsuya) has two-layer beds and we applied interlock 

mechanism to blend two layers together into one textile layer 

(Figure 2d). This is useful, since insulating the outer layers of 

our knitted textile sensor will suppress any possible parasitic 

impedance or any shorts from the environment.  By mixing 

polyester with melting yarns, we are also able to ensure strong 

adhesion between multiple layers and prevent sensor drifts 
from motion artifacts. As one of our final prototypes, we 

fabricated a piezo-resistive mat with 1 cm width of knitted 

conductive lines (6 loops) and 2.5 cm pitch for a total size of 

45 x 45 cm with 16 x 16 knitted conductive lines. 

B. Sensor Characterization 

We performed mechanical and electrical characterization 
with compression and tensile testing unit (Zwick BTC-
EXMACRO, Roell) and custom resistance sensing circuit 
(potential divider, buffer circuit, and 12-bit ADC) to study the 
relationship between force and resistance of the knitted textile 
sensors.  For the compression testing, we set the Zwick’s 
crosshead speed to 10 mm/min with 10 N preload on a piezo-
resistive textile swatch with 1 x 1 cm active area, while for 
tensile testing, we set the crosshead speed to 10 mm/s with a 5 
cm distance on 4 x 10 cm polyester-TPU textile swatches. As 
plotted in Figure 3a, we compared two textile sensors: with 
and without TPU yarns and thermoforming process. Without 
thermoforming, there is a non-linearity and significant 
hysteresis response when the sensor is compressed and relaxed 
as there are volume gaps and discontinuities between each 
layer which can cause textile and sensor drifts. We can see a 
large hysteresis gap of the untreated knitted sensor of around 
130 % compared to an improved, reduced gap of 27 % in the 
case of thermoformed knitted textile sensor at 100 N force with 
the compromise of force-resistance sensitivity reduction from 

58.7 – 2955 to 39.4 below 500 N load. The thermoformed 
textile also demonstrates superior mechanical integrity due to 
strain (Figure 3b). It is much less sensitive than the untreated 
textile by ~1/4, making it more robust from secondary effect 
due to axial load. It also shows reliable performance (Figure 
3c) during cyclic compression test (n = 100, crosshead speed 
= 30mm/min, and cyclic min/max load = 10/1000 N), showing 
steady response after the first 10th cycle. Surface electron 
microscopy (SEM) images in Figure 3e-f show the yarn 
structures and surface texture of the knitted sensors in details 
before and after thermoforming. 

III. HARDWARE DESIGN AND ARCHITECTURE 

Since we are working with a row-column resistive sensor 

matrix, we need to design a system that can scan through each 

line and read the entire 2D pressure points. Our system should 

also be robust to various sources of noise, including ghosting 

effects and neighboring crosstalk, which can influence the 

precision and accuracy of the readings. Figure 4a shows our 

system's final printed circuit board (PCB) design with a size 

of 3 x 5 cm. The circuit consists of a 16-pin multiplexer 

(CD74HCT4067, Texas Instrument), two 8-pin shift-registers 

(SN74LS595D, Texas Instrument), four 4-pin single-pole 

double-throw (SPDT) multiplexers (ADG734BRUZ, Analog 
Devices), and a potential divider with a buffer op-amp 

(TLV2371, Texas Instrument). The circuit enables scanning 

Figure 3. (a) Force vs resistance characterization of both the untreated and 

melting-yarn, thermoformed multi-layer piezoresistive knit textiles. (b) 

Stress-strain, tensile test showing the elasticity of both knitted textiles. (c) 

Cyclic repeatability test showing the robustness of thermoformed piezo-

resistive knit textile). (d) Cross-section image of the thermoformed piezo-

resistive textile. (e-f) SEM images of the knit structure and surface before 

and after thermoforming showing the strong adhesion from the melted TPU 

(1: silver-coated yarns, 2: polyester yarns, and 3: TPU melting fibers). 

(a)  (b)  

(c)  

(d) (e) (f) 
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of 16 x 16 matrix lines for a total of 256 pressure sensing 

points. The board was designed as an extension or a shield so 

that the users can choose the main microcontroller and 

wireless communication of their choice. Using nRF5282 

module with 64 MHz ARM Cortex M4F (Nordic 
Semiconductor), we observed scanning frequency of 15 Hz 

for 16 x 16 (and can reach up to 200 Hz using Teensy 3.6 with 

180 MHz ARM Cortex-M4), 27 Hz for 8 x 12 matrix with 

wired Serial-USB, and approximately 20 Hz with wireless 

Bluetooth low energy (BLE) transfer. 

The vertical multiplexer switches a voltage supply (3.3 V) 

periodically to each column, while putting the rest on high-

impedance. The horizontal SPDT multiplexers with shift-

registers provide a connection to the resistive sensing circuit 

and analog-digital converter (ADC) pin at the row of interest 

and grounds the rest of the row lines, switching from one line 

to the other in sequence (Figure 4b). This mechanism solves 
ghosting and crosstalk issues apparent in most resistive 

sensing array read-out circuits [20,21]. If we apply high-

impedance to the rest of the row-column pins, as illustrated in 

Figure 4c, we can see the appearance of ghosting effect at the 

sensor point R12 due to the bridging connection between R11, 

R21, and R22. Suppose we want to read sensor point R21. In the 

case of switching configuration in Figure 4d and 4e, crosstalk 

from sensor points R11 + R22 and R22 respectively will 

influence R21 read-out. In our circuit configuration solution 

(Figure 4f), no connection exists from R22 or R12 . R11 will also 

not interfere with the potential divider circuits and ADC 
readings as it is connected to the ground. 

IV. SYSTEM IMPLEMENTATION AND PATTERN RECOGNITION 

As a sub-set of machine learning, deep learning has 

flourished to solve complex image processing and speech 

recognition challenges, as it provides an efficient way to learn 

high-level features from raw signals without complex feature 

extractions by training an end-to-end neural network [22]. In 

this work, we treat our spatiotemporal 2D pressure sensor data 

or heat-map similar to image frames. As a user balance and 
redirects their center of mass through their feet, they exert 

force on the ground. By detecting this pressure distribution of 

the feet through our intelligent mat, we can extract rich 

contextual information about our posture and activities. 

A. Data Extraction and Processing 

We performed our experimental testing on a healthy adult 

male volunteer with signed consent and no prior medical 

history of chronic disease or physical disability, in 

compliance with the guidelines of Institutional Review Board 

of Massachusetts Institute of Technology Committee on the 

Use of Humans as Experimental Subject (COUHES Protocol 

2009000229). We gathered training data for two types of 

recognition: 7 common activities and exercise (Figure 5), 

such as standing, walking, jumping, planking, and push-ups, 

as well as 7 yoga poses (Figure 6), including default position, 

tree, eagle, tree drishti, eagle drishti, warrior three, and 

balancing pigeon.  

The spatiotemporal pressure data were recorded and 

transmitted to a central processing unit. Each type of activity 

was performed and recorded sequentially for around one to 

two minutes. We collected in total of 7160 pressure data 

frames for common activities and exercises and 13040 data 

frames for yoga postures. This 22 minutes in total of training 

datasets were then randomized, segmented, labelled, and 

finally processed (80% for training, 20% for testing) in our 

personalized convolutional neural network (CNN) algorithm.  

B. Two-Dimensional Convolutional Neural Network Model 

and Activity Recognition Results 

CNN has been demonstrated to achieve high accuracy for 

human activity recognition in comparison with other 

methodologies such as KNN, SVM, Extra Trees, or Random 

Forest [23,24]. The overall architecture of our 2D CNN model 

is depicted in Figure 7a. We utilized layer-by-layer Sequential 

API of the Keras package with sci-kit learn library.  

The proposed network comprises four convolutional layers 

Conv2D. We used nine weights on our 16 to 32 filters to 

evolve a pixel into a weighted average of itself and its eight 

neighbors for each convolutional layer. The network picks up 

valuable features as these weights are processed over the 

whole image. The Max-Pooling layers select the highest value 

from scanning the four neighboring pixels and reduce the 

image size by half. Combining convolutional and pooling 

layers helps our network learn more high-level features of the 

image input. In our final classification process, we used the 

features in two fully-connected Dense layers based on 

previous output from the previous layers. Batch 

Normalization allows us to optimize training time while 

randomly setting zero weights at each hidden layer in the 

training sample through Dropout drives the network to learn 

features in a distributed manner, reducing overfitting and 

generalization error.  

Figure 4. (a) PCB design of the robust piezoresistive matrix array circuit 

consisting of (b) a 16:1 multiplexer, 2 shift-registers, 4 single-pole double-

throw (SPDT) muxes, and a buffer and potential-divider circuit that 

connects to the main micro-controller for wired-wireless control and data 

transfer. (c-f) Studies of influence and intervention strategies for sensor 

ghosting and crosstalk from neighboring nodes and multi-pressure points 

(Rf  meaning reference resistor for potential divider). 
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In our final CNN model, we added 2 Conv2D layers with 

16 filters and ReLU activation, 2 Conv2D layers with 32 

filters and ReLU activation, 4 Batch Normalization layers, 2 

Max-Pooling layers, 4 Dropout layers (3 with Dropout of 

0.25, 1 with Dropout of 0.5), 2 Dense layers with ReLU 

activation, and a final Dense layer with soft-max activation. 

To improve accuracy, we used 50 epochs to train the CNN 

model, and evaluated the accuracy using the 20% testing set. 

Figure 7b and 7c show the confusion matrices for both 

activity and yoga posture classification. The CNN models 

were able to classify all activities and poses with high 

accuracy of around 99.6 % and 98.7 %, respectively, offering 

great prospects for high-accuracy detection or recognition 

based on a deep-learning approach. 

C. Real-time Demonstration of Deep-Learning Enabled 

Mat for Yoga Training and Exercise Gamification 

To demonstrate practical applications of our knitted 

intelligent textile mat, we built a sliding window algorithm on 

top of our classification results to infer transient activities 

such as walking, running, and jumping. For instance, if we 

can detect the position of a left foot and a right foot on the 

mat, we can detect if a user is standing, walking, or running 

by checking for alternating left and right foot in the window 

of time we are looking at, or sequences of standing, tiptoe, 

and no activity on both feet for jumping events. As shown in 

Figure 7c, we used and interfaced our recognition results to 

control a Minecraft video game in real-time in order to gamify 

exercise. By showing real-time yoga pose classification 

results, we could also demonstrate an application to inform 

the user if the right balance or pose has been achieved by first 

feeding training data reinforced by an expert.  

V. 3D KNITTED SENSING SHOE/SOCK 

A. Design and Development 

Figure 8a illustrates the 3DKnITS fabrication and 

thermoforming process. To develop a tubular knit textile, we 

employed a digital circular knitting machine and a 

combination of polyester, spandex, conductive, and TPU 

yarns in the knitting process (Figure 8b). The machine greatly 

increases productivity because the relatively slow 

reciprocating motion of flat knit machines is replaced by a 

continuous and faster circular motion. The circular knitting is 

mostly used to make various tubular garments such as socks, 

shoes, sleeves, underwear or t-shirts. The result is a seamless 

3DKnITS with customized orthogonal conductive stripes 
pattern in a tubular form-factor. In order to realize form-

fitting apparel or prosthetic lining customized to the wearer, 

3D-scanning of the human body could be performed to create 

3D-printed models of the arms, or in the case of footwear 

(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 5. Pressure heat-maps of basic activities and exercise: (a) standing, 

(b) walking, (c) tip-toe/jumping, (d) planking, (e) normal push-up, and (f) 

diamond push-up. 

(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 6. Pressure heat-maps of various yoga poses: (a) tree pose, (b) eagle 

pose, (c) eagle drishti, (d) tree drishti, (e) warrior three, and (f) balancing 

pigeon. 

Figure 7. (a) Convolutional neural network process and parameters 

schematic. (b) Confusion matrix for classifying basic activities and 

exercises. (c) Confusion matrix for classifying yoga poses. (d) Example 

application of classifying movements (i.e. running or jumping) to control 

a Minecraft game. 

(a)  

(b)  (c)  

(d)  
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design, we used a shoe-last that best fits the user based on the 

size, as demonstrated in Figure 8d-e. Figure 8f shows a full 

prototype of the 3DKnITS connected to the aforementioned 

system hardware (Figure 4a-b) for sensor read-out and 

wireless communication. We sewed in TPU-insulated silver-
conductive threads to connect each knitted conductive line on 

the skinner to its corresponding pin on the PCB. There is a 

total of 96 (8 x 12 matrix lines) pressure-points spread across 

the 3D surface of the skinner, with 1 cm width of knitted 

conductive lines and around 2.5 to 3 cm pitch (Figure 8c). 

B. Implementation and Applications 

 As one of the world’s most practice sports, a significant 

research effort has been conducted to study the science behind 

soccer [25]. We chose to explore the functionality of our 3D 

knitted sensing shoe or sock in this particular sport since it 

involves various biomechanical movements, including gait, 

balance, and coordination of muscles when running, sliding, 

and kicking a ball, as well as positioning of the ball on the 

shoe to ensure the right angle and trajectory.  

 In our preliminary test, as shown in Figure 9a, we can see 

the response of three pressure sensors: two plantar pressure 

points at the back and front part of the foot and one dorsal 
pressure point at the front part of the foot. At heel strike, we 

can see an increase of pressure at the corresponding sensor 

location. As the user is ready to kick the ball before toe-off, 

we can see a gradual transition of pressure going to the upper 

from the bottom region of the foot. After toe-off, and right 

when the user kicks the ball, we can observe a subtle pressure 

response on the surface of the shoe and at the location where 

this foot-ball interaction occurs. We have developed a real-

time 3D visualization tool to better understand the 

spatiotemporal pressure data as a heat-map (Figure 9b).  

VI. DISCUSSIONS AND CONCLUSIONS 

In summary, we have proposed a set of 2 to 3D knitted 
pressure-sensitive textiles for various applications, including 

activity recognition and biomechanical monitoring, using an 

industrial manufacturing approach of flat-bed and circular 

machine knitting. We have also designed a custom hardware 

circuit that allows accurate piezo-resistive matrix read-out 

while solving ghosting and crosstalk issues and eliminating 

the needs for sensor data post-processing. Our material 

choices and digital fabrication approach also enable tunable 

sensing resolution and customizable form-factors based on 

the user’s needs and requirements. It results in a robust, 

scalable, low-cost, and sustainable interactive sensing textile 
with knitting and thermoforming techniques. Compared to the 

existing thin-film force-sensing and pressure-imaging 

technologies, our textile-based method is more seamless, 

breathable, comfortable, and intimate to the wearer, which 

could improve interfacial contact and accuracy of the sensing 

and recognition [26]. We have fabricated a prototype of 

3DKnITS in the form of intelligent mat and shoe, as well as 

demonstrated several applications including high-accuracy, 

deep-learning assisted activity and posture recognition for 

real-time exercise and gaming interaction. Further, we 

proposed a smart soccer shoe that can track a player’s 

movements and localize foot-ball interactions. Unlike 

Figure 9. The smart skinner shoe for gait, biomechanics, and foot-ball 

interaction sensing. (a) Transient sensor data of three points (row, column:  

#5,7, #6,3, and #2,2) located in the shoe and (b) Plantar and dorsal pressure 

heat-maps of the entire 96 sensing points across the shoe before and during a 

kick event. 

Figure 8. (a) 3D shaping and thermoforming of tubular knitted e-textiles for 

intelligent shoe or prosthetic lining and socket. (b) Illustration of a circular 

knitting machine with tubular knitted conductive textiles. (c) Pressure sensor 

mapping across the 3D shoe. (d-e) Knitted prototypes before and after 

thermoforming with shoe-last. (f) Fully-functional prototype of custom 3D-

KnITS smart skinner/shoe-sock worn by the user and connected to its interface 

circuits with battery and wireless transmission. 

(a)  

(b)  (c)  

(d)  (e)  (f)  
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camera-based systems that potentially trigger privacy 

concerns regarding continuous, invasive sensing and 

recognition, pressure-imaging approach is less intrusive and 

is not sensitive to line-of-sight or lighting levels. 

The prototypes and applications of 3DKnITS presented 
here are, however, still in its infancy. In terms of textile and 

hardware developments, in order to accommodate a larger-

scale system, we need to modularize both the knitted textile 

sensor and hardware modules by applying distributed 

processing and networking principles [27,28]. This will 

enable a larger dataset that could be useful for applications 

such as room-scale sensing or crowd recognition. In terms of 

data processing and algorithms, more subjects and labels will 

be needed to further prove the practicality of the knitted 

intelligent mat on top of our user-specific models. With the 

current labels, several other applications such as counting and 

timing exercises can be incorporated into our real-time 
visualization and feedback. By increasing the resolution of 

our matrix and localizing interesting features, we could also 

improve accuracy and eliminate the needs to ask subjects to 

perform activities of interest across the entire surface of the 

mat when gathering training data. In our work, there are 

currently two separate models for common activities and yoga 

postures. We can also combine these two models to make the 

classification process and applications more universal. 

Involving physical therapists, orthopedics, and yoga experts 

for prototyping and study design, as well as data gathering 

will also benefit real testing, implementation, and 
identification of use-cases of this technology. Finally, 

temperature and humidity or sweat tests could also be 

conducted to study the effect of environmental factors the 

sensor properties. 
  The 3D knitted shoe or sock could be used to gather 
biomechanical and form-fitting data, which are useful not only 
for athletes and dancers, but also for prosthetic designers and 
shoemakers. The same fabrication principles can be executed 
to develop other types of intelligent apparel, including sleeves, 
gloves, or shirts. In the end, since textiles are ubiquitous in our 
environments, 3DKnITS process and technology can spark 
intelligent textile and ubiquitous computing applications 
spanning from activity tracking, biometrics and identification, 
sports and gait analysis, to robotics and HCI, creating new 
kinds of wearable technology and interactive environments. 
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