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Abstract—NASA intends to be back on the Moon within the
next two years, and to have long-duration, manned missions to
Mars in the late 2030s. These future exploration goals demand
a paradigm shift. Mission operational complexity is increasing
and – with the development of heavy lift launch capabilities
and increased funding of lunar orbital and surface missions –
cadence of lunar missions will increase. A sustained human
presence on the Moon, and eventually Mars, demands new
enabling technologies and capabilities to support in situ resource
utilization (ISRU).

The development of ISRU technologies requires precursory sci-
entific and prospecting missions to identify and characterize
available resources. These missions will employ robotic and hu-
man explorers to perform traverses over the lunar surface and
collect data to fulfill scientific objectives. The time and monetary
resources required to support a mission make maximizing the
scientific return of each mission critical. Given the wide range
of scientific objectives often found within a mission, the vast
scope of diverse expertise within the Earth-located science team
will prove invaluable to strategic decision making. Essential to
maximizing scientific return on these missions is the ability of
the Earth-located science team to be central to rapid science
decision making, between and during traverses.

Human-computer interaction needs to lead mission planning
priorities to enable rapid decision processes. Treating machines
as collaboration tools allows for improved cross-team communi-
cation, improved decision-making processes, reduced task loads,
and flexibility in temporal and spatial planning. Multi-user
naturalistic visualization techniques can be used to analyze,
discuss, and interpret near-real-time data with the potential to
dramatically improve science support room situation awareness,
maximizing scientific return on robotic and human exploration
missions.

The virtual reality Mission Simulation System (vMSS), is a
virtual reality platform designed at MIT by the Resource Explo-
ration and Science of our Cosmic Environment (RESOURCE)
team, which will provide teams with a collaboration interface
for planetary exploration missions. As an early step in de-
velopment of vMSS, we examine various methods to acquire
depth data necessary for development of a high-resolution three-
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dimensional map of the lunar surface, which will serve as a
basis of the platform. In this paper we argue the importance
of high-resolution depth data for scientific return, and the
limitations of current planetary surface mapping tools using
methods such as orbital data and Structure-from-Motion (SfM)
Photogrammetry. We present a comparative analysis of four dif-
ferent methods to achieve depth-mapping using stereo cameras,
short-range time-of-flight, LiDAR, and 360° 3D VR imagery.
For this analysis, we performed a field experiment with the
Boston Dynamics Spot robot, taking advantage of its ability to
maneuver in geologically relevant terrain. Finally, we present
planned future integration of science analysis tools based on
depth imagery into vMSS, with the goal of handling the expected
proliferation of real-time science data throughout science and
resource prospecting missions.
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1. INTRODUCTION
NASA’s comprehensive Artemis Plan describes goals to not
only return astronauts to the lunar surface, but to establish
a sustained human presence on the Moon. In situ resource
utilization (ISRU) has been identified as a key technology to
enable such sustained lunar missions [1]. ISRU technologies
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can diminish astronaut reliance on Earth materials through
local lunar production of such resources as fuel, water, and
oxygen. The first step to enabling future ISRU technology
dependent on lunar volatiles is the identification and charac-
terization of lunar volatiles.

As stated in NASA’s Plan for Sustained Lunar Exploration
and Development, “Our return to the Moon begins with
robots” [2]. Prior to human return to the lunar surface, robotic
pioneers will conduct scientific investigation to inform lo-
cation selection for human habitation and ISRU technology
design. The first of NASA’s lunar robotic missions, the
Volatiles Investigating Polar Exploration Rover (VIPER), is
slated to launch in November of 2023. The VIPER mission
will explore the promising region of the Moon’s South Pole,
where volatile deposits may be cold trapped and maintained
on the surface and subsurface [3]. The investigative nature
of the prospecting mission and the unpredictability of the
lunar environment create a need for rapid identification and
response to discoveries during traverse, and a flexible science
operations plan that enables and enhances science return from
the mission. The VIPER Science Team (VST) will need
to perform geological and thermal environmental statistical
analyses as informed by a suite of rover instruments that will
be downlinking data near real-time. This will require high
levels of science team member situation awareness of the lu-
nar surface, and rapid team convergence on a group decision.
Operations software to support efficient monitoring, access,
and analysis of science data and fast decision making have
been identified as essential for robotic science missions [4].
While Virtual Reality (VR) will not be used for VIPER, VR
has been suggested as a capability that would support similar
operational conditions on forthcoming missions, including
human missions [1], [5].

The Resource Exploration and Science of our Cosmic En-
vironment (RESOURCE) team, funded by NASA’s SSERVI
(Solar System Exploration Research Virtual Institute), in-
forms future ISRU through the scientific investigation of
potential resources on SSERVI Target Bodies, and the de-
velopment of operations and hardware associated with ISRU
prospecting. The MIT branch of the RESOURCE team
focuses on operations and associated technologies for opti-
mizing human interaction with robotic explorers. The MIT
RESOURCE team has demonstrated the capability of a vir-
tual Mission Simulation System (vMSS) to provide high-
throughput data integration and digital co-location in a three-
dimensional virtual environment[6].

Essential to the creation of a three-dimensional surface map
for integration into VR or a desktop platform is three-
dimensional surface data. Current lunar surface maps avail-
able from orbital data, such as those produced by the Lunar
Orbiter Laser Altimeter (LOLA) with a maximum resolution
of of 10 m/pixel, or the Lunar Reconnaissance Orbiter Cam-
era (LROC) with a resolution of 0.5 m/pixel, do not provide
high enough depth data resolution for cm-scale geological
data analysis. Surface maps of the Martian surface have been
created using Structure-from-Motion (SfM) Photogrammetry
[7]. However, hardware and processing requirements make
SfM Photogrammetry an infeasible method to provide depth
imagery for rapid science decision making, as demanded by
future lunar missions.

In this work the MIT RESOURCE team identifies the need
for a comparative analysis between different depth data ac-
quisition methods in their ability to provide data sufficient
for cm-scale geological analysis. Throughout the paper we

will refer to geological analysis, where it can be assumed
we are always referring to cm-scale geological analysis. We
begin by discussing the application of VR environments to
future lunar mission operations, and introduce different depth
data acquisition methods. We next describe the cameras we
selected for assessment, and the initial evaluation criteria we
are considering. We then detail a field experiment conducted
to collect camera data in a simulated lunar environment using
the Boston Dynamics Spot robot. Finally, we discuss initial
findings and our planned next steps.

Related Work

SfM Photogrammetry has been used to produce a sub-cm-
scale three-dimensional outcrop model of the Martian sur-
face using images downlinked from NASA’s Curiosity Rover
[7]. Integration of the model into VR has allowed scien-
tists to traverse the Mars terrain and examine it from all
angles, performing field work similar to how they might on
Earth. However, the SfM Photogrammetry process is limited
by strict hardware requirements, a reliance on large data
sets, and an arduous alignment process to reconstruct three-
dimensional point clouds. The photogrammetric process used
to model the Martian surface relies most heavily on three sets
of Curiosity Rover cameras: the Navcam, a pair of wide angle
stereo cameras; the Mastcam, a pair of high-resolution RGB
cameras; and the Mars Hand Lens Imager (MAHLI), a color,
high-resolution, microscopic camera [7]. Significant cam-
era overlap and similar optical parameters are required for
straightforward terrain reconstruction. The Navcam images
contain significant overlap, however only show a low level of
fine-scale details. Varying focal lengths of the Mastcams re-
sult in poorly overlapping images, preventing any automation
of initial image alignment. An arduous, iterative alignment
process demands enormous sets of data to be integrated
into point cloud generation. The first alignment step in the
reconstruction of the Kimberly outcrop required 638 images
from the Navcam, with the entire process requiring over 2000
total images [7]. These hardware and processing demands
make SfM Photogrammetry infeasible for application to lunar
robotic missions requiring rapid mapping of the lunar surface.

2. VR APPLICATION TO MISSION
OPERATIONS

Returning to the Moon

Returning to the Moon requires reflection on lessons learned
from the Apollo era, one of the most salient being the
unpredictable nature of the Lunar environment. Surprises
encountered during Apollo missions include the discovery
of orange soil at Shorty Crater, Tauraus Littrow, during
Apollo-17 [8], and the collection of the Big Muley, the
largest Lunar sample returned during the Apollo missions,
collected during Apollo-16 on the Rim of Plum Crater in the
Descartes Highlands [9]. Invaluable to both discoveries was
the geologic field training of the astronauts, allowing for in
situ geological analysis. Such analysis allowed for the real-
time identification of unexpected regions of geologic interest,
and communication of observations to provide the Science
Support Room (SSR) with enough information to allow them
to assist in science decision making. Future lunar robotic
missions are tasked with the challenge of handling similar
unforeseen circumstances, but with robotic explorers lacking
the perception capabilities and prior knowledge of human
explorers.

2
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The mission operations structure of the VIPER mission and
subsequent lunar robotic missions demonstrates a paradigm
shift in planetary rover operations away from the structure
of the more recent Mars Exploration Rover (MER) missions.
The key factor driving this shift is the proximity of the
Moon to Earth, presenting round-trip communication delays
of only 6 to 10 seconds, a significant reduction of the 6 to 44
minute round-trip delays experienced when communicating
with rovers on Mars.

The Mars Opportunity Rover operations aligned with the
Martian sol so that the latest information from the rover,
including images, instrument data, and state information,
were downlinked at the end of the Martian day. Throughout
Martian night, the mission operations team on Earth followed
a tactical timeline under strict duration limits to analyze
downlinked data, negotiate next steps for the robot, confirm
the safety of planned next steps, and translate science plans
into robot commands [10]. These plans were uplinked at the
beginning of the following Martian day, during which the
robot would carry out commands.

In contrast, minimal lunar communication delays allow for
near-real time rover command and instrument data downlink.
As opposed to the long chain of commands uplinked to the
Mars Opportunity Rover at once, VIPER will be commanded
step-by-step between waypoints approximately 15 feet apart.
VIPER activities will include a pre-planned component, as
well as a component informed based on scientific analysis
during pre-planned activities [3]. For example, at a given
lunar station, the locations of two out of three drill sites
may be pre-selected. Scientific analysis of data downlinked
during the two pre-planned drill activities will then inform
the selection of the third drill site at that station. An analogue
lunar volatile polar rover field campaign identified “real-time
decision making based on incoming science data” as the
“crux of operations” for the mission [11]. The science team
thus plays an essential and enhancing role during mission
operations to rapidly analyze downlinked data and make well-
informed decisions about immediate next activities.

Maximizing the scientific return of imminent lunar rover
exploration missions relies on maximizing the ability of
the science team to accurately and efficiently make rapid
decisions between and during planned traverses. Throughout
this paper we refer to rapid science decision making, where
“rapid” refers to a scale of 2-3 hours. The scale equates to the
expected turnaround time for VIPER science decision making
and similar following lunar robotic missions. The impor-
tance of maximizing scientific return in a timely manner is
further pressured by potentially short lunar surface mission
timelines, for example VIPER’s timeline of 100 Earth-days.
Even shorter timelines are set for NASA’s Commercial Lunar
Payload Services (CLPS) missions through the Payload and
Research Investigations on the Surface of the Moon (PRISM)
program, which are currently limited to one lunar day (7-10
Earth days). Therefore, time is of the essence for collecting
the highest priority science data. The demand for optimal
rapid science decision making poses two key challenges:
(1)achieving a high level of science team situation awareness
of the lunar surface, and (2)team convergence on a deci-
sion dependent on many types of data products and science
stakeholders. VR tools have the capability to address both
challenges.

VR Application

High levels of science team member situation awareness are
heavily dependent on scientists achieving situation awareness

on each of Endsley’s three levels: perception, comprehension,
and projection [12]. Necessary for the perception required for
geological analysis are the color and depth cues available to
what a geologist may have on an Earth field site. Bottom-
up processing and raw feature analysis is incredibly impor-
tant in the perception of the unexpected [13]. Unexplored
terrain prevents the ability of top-down processing to fill in
perceptual gaps with prior knowledge. This makes high-
resolution color and depth imagery extremely important for
the identification of unforeseen geologic points of interest.
Comprehension of perceived observations requires contex-
tual information about where observations have been made.
Contextual information about the location of data collected,
and the ability to visually pinpoint collection locations, has
been identified as critical to remote science team situation
awareness [14]. Projection describes the ability to pre-
dict future states of the current system. ISRU prospecting
missions will introduce a proliferation of instrument data
to be rapidly digested by science team members to inform
predictions about areas of scientific relevance. Currently
existing decision support tools, MoonTrek and QuickMap,
use orbital data to construct a three-dimensional lunar surface
map, where users can draw surface traverse paths, calculate
distances, and visualize multiple data layers at once, such as
elevation maps and permanently shadowed regions. However,
the lunar orbital data input to these maps lacks the resolution
needed to fulfill the perception requirements of geological
analysis.

Converging on a science team decision does not only require
individual team member situation awareness, but also a team
negotiation after individuals have analyzed data products
relevant to their scientific objectives. Teams possessing
sufficient shared information, allowing them to build mental
models of each other’s tasks and goals, have been demon-
strated to perform better than teams without shared access to
information [15]. A bottleneck to rapid science team decision
making can be a lack of consideration of all relevant data
products required to make a decision at the same time. For
example, while geothermal team members and geochemical
science team members may be interested in analyzing sepa-
rate data sets to draw conclusions about their respective areas
of interest, they must make decisions together based on the
consideration of both data sets.

VR tools have the potential to improve science team situa-
tion awareness and rapid team decision making. A three-
dimensional VR environment can provide the visualization
of multiple layers of data products overlaid on a three-
dimensional map, providing the color, depth, and contextual
cues required for science team situation awareness as pre-
viously discussed. The participation of team members in
the same VR environment will also allow for a shared data
experience, including relevant data from all team member
viewpoints. The ability for multiple team members to view
the same overlaid data sets simultaneously can provide the
shared information and background knowledge required for
team decision making.

The MIT RESOURCE team has developed an initial set of
VR mission support tools in the virtual Mission Simulation
System (vMSS). Depicted in Fig.1, vMSS provides for the
digital co-location of team members in a simulated mission
control setting, with a table-top view of three-dimensional
maps. Users have the ability to manipulate maps using hand-
held controls, annotate maps, and plot 3D traverses [6]. The
next step of vMSS development is to include an immersive
point of view, in which users are co-located at a certain

3
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Figure 1. 3D Tabletop view of the Himalayan Mountains displayed in vMSS.

location within the map environment. A high-resolution
immersive point of view can enable in-simulation geological
and environmental analysis to promote rapid science decision
making. A future development goal is to display instru-
ment data layered over the simulated map environment, and
provide supporting scientific analysis tools, such as length
and volume measurement capabilities. Building an immer-
sive virtual environment requires high-resolution imagery
and depth data to supplement the low-resolution table-top
view data, motivating our analysis of available depth data
acquisition methods.

3. DEPTH DATA ACQUISITION METHODS
While SfM Photogrammetry is a proven technology, there
are other available methods for depth data acquisition which
could provide dramatic improvements for resolution, process-
ing requirements, bandwidth requirements, and hardware-
associated risk. SfM Photogrammetry, or stereophotogram-
metry, is accomplished by overlapping images of a single
scene taken from two distinct cameras. Knowing the distance
between the cameras, triangulation is used to determine the
depth to objects within the image. This requires two overlap-
ping images of the complete 360◦ to render a complete depth-
defined environment. Another class of depth data acquisition
uses light reflection. This can be done using either structured
light or time-of-flight (ToF) methods. Structured light, as the
name implies, uses the distortion on an object of a known pat-
tern of projected light to determine depth to that object. ToF
interprets the time for a known pulse of laser light reflected
off an object to return to a detector to determine distance
to that object. In contrast to stereophotogrammetry, only a
single 360◦ data set is required for the full depth-defined
environment. Additionally, because there is only a single
light source, the hardware placement calibration requirements
needed by the dual-camera system for stereophotogrammetry
are eliminated. The resolution of both reflection-based depth
data acquisition techniques are dependent on the intensity
of the projected light as well as the lighting within the
environment. While stereophotogrammetry functions best in
a brightly lit environment, the detectors of the reflection-
based techniques function best with minimal interference,
thus either in low light, no light, or in lighting conditions that
have different wavelengths than those of the light. This would
be beneficial for exploration of low-lit regions such as craters

or lava tubes. Stereo cameras, structured light, and ToF depth
acquisition methods are summarized in Table 1.

While ToF cameras have long been used for large depth-
of-view (>100 m) depth data collection, such as for digital
elevation models (DEMs), recently, commercial-off-the-shelf
(COTS) shallow depth-of-view (<10 m), high-resolution
depth-cameras have been developed for use in the gaming and
personal-use industry, such as face-recognition technology
and VR games. A preliminary assessment of the technology
used in these COTS parts would suggest that minimal mod-
ifications would be necessary to make them flight ready for
lunar operations. The high-resolution, shallow depth of view
would be particularly useful for close range geological anal-
ysis and would minimize development costs. Additionally,
COTS ToF cameras may provide reductions in bandwidth
requirements, improved resolution, and reduced hardware
risk, in comparison to stereo cameras. Combining single
layer RGB imagery with high-resolution depth data could
provide a complete 3D environment with benefits over the
traditional stereo camera method. We explore this technology
here and assess these potential benefits.

ToF cameras have been used to map planetary surface
from orbit, such as from the Lunar Orbiter Laser Altimeter
(LOLA). Because of the altitude of the satellite, the data is
generally lower resolution (> 100 m/pixel), with some higher
resolution mapping in locations of interest (10 m/pixel). The
higher resolution maps are sparse, however, and require
specific missions to lower the orbit of the satellite to capture.
Even these higher resolution maps would not provide suffi-
cient resolution to see cm-scale surface texture, thus making
geological analysis unavailable for smaller scale features.

High-resolution (on the cm scale) DEMs for large area cov-
erage would be data-restrictive and unnecessary, given that it
is unnecessary to have cm-scale resolution at large distances
from the location of analysis. Here it becomes critical to as-
sess the resolution required, and how far out this resolution is
needed. This will minimize the strength of the laser required
as well as reducing bandwidth. Additionally, it is important
to assess combinations of data. For instance, it would be
beneficial to be able to overlay RGB data onto depth data
to provide a complete image of the environment [16], [17].
Resolution of RGB imagery must also be assessed. If the
data products and hardware benefits provided by ToF cameras
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Table 1. Various types of depth-cameras and their limitations and use-cases.

Camera Depth range Use Cases Space-based Limitations
Stereo cameras Camera-placement

dependent
Autonomous vehicles, Mars
rover, 3D film industry.

Calibration of dual camera sys-
tem, need for overlapping im-
agery. Suffers from occlusion.

Structured light <10 m 3D scanners, computer vision,
health care (3D reconstruction).

Limited by light emitter power,
subject to occlusion.

Time-of-flight <10 m to >100 m Measure distance, DEMs, re-
mote sensing, object scanning,
navigation, obstacle avoidance,
gesture recognition, reactive al-
timeters.

Limited by light emitter power
and wavelength, surface albedo
can cause errors.

prove to be more valuable than stereo camera methods, then
the near readiness of the COTS ToF cameras can be taken
advantage of for near-future lunar exploration missions.

4. OBJECTIVES
Agile lunar prospecting mission operations demand the need
for high levels of science team member situation awareness
and rapid team decision making. VR mission operations sup-
port tools can address these challenges, however, high-fidelity
VR environments hinge on high resolution depth data input.
Prior depth data collection techniques via orbital data capture
and Structure-from-Motion Photogrammetry are insufficient
to support the demands of upcoming lunar missions for cm-
scale geological data analysis.

The goal of the field experiment described is to evaluate
a range of depth data types and collection techniques as
input to science decision making within a VR environment.
Camera data was collected in a simulated lunar landscape,
and limitations of the lunar operating environment informed
the selection of metrics by which to evaluate the cameras.
This initial evaluation serves to identify the type of depth data
and acquisition techniques most optimal for scientific analy-
sis. The scope of this paper covers the selected cameras for
assessment and evaluation criteria, and a detailed description
of the field experiment. We touch on initial findings from the
field experiment, and future analysis we plan to perform.

The long term objectives of the RESOURCE team are to
(1) determine the optimal camera or camera combinations
for VR environment data input, and (2) assess the ability to
perform cm-scale geological analysis using depth imagery as
compared to RGB and two-dimensional data alone.

We will use the collected experiment data to assess the depth
of field, field of view, and image quality of cameras as
compared to the bandwidth required to optimize their visu-
alization capabilities. We will also assess the five cameras
in the maximum and minimum lighting conditions and their
ability to capture geologically relevant features. We plan to
use 360 VR video collected for outreach purposes to provide
a complete view of the environment with overlaid depth data.

5. CAMERA SELECTION AND EVALUATION
CRITERIA

Camera Selection

Five COTS cameras were initially selected for evaluation,
in addition to the stereo cameras on board the experiment

robot. Two of each of the following types of cameras were
selected: 1) stereo camera, 2) time-of-flight, and 3) VR 360
Video. Selection of each COTS camera was based on camera
performance, market availability, and camera price. The Vuze
3D VR camera, one of the selected VR 360 Video cameras,
was ultimately not evaluated in the field experiment, given
limitations further discussed in Section 6. Detailed camera
specifications on the five camera types evaluated in the field
experiment can be found in Table 2. Light Detection and
Ranging (LiDAR) cameras are a specific type of time-of-
flight camera which were used. LiDAR uses pulsed lasers
to build point clouds from which 3D images are constructed.

Integrated Spot Cameras—The Spot robot comes equipped
with five standard cameras with global shutter. The grayscale
image sensors can each provide a fisheye image, a depth
image, and a depth image adjusted in the frame of reference
of the fisheye image. Ideal operating range for depth images
is 4m. The embedded Spot cameras were located two in
the front, one on each side, and one in the back. Camera
placement provided a 360° horizontal Field of View (FoV).

Intel RealSense D435i— The Intel RealSense D435i is a
stereoscopic depth camera with an 87° horizontal FoV, a
58° vertical FoV, and up to 1280x720 depth stream output
resolution at up to 90 fps. The camera module also contains
an RGB camera with a 69° horizontal FoV and a 42° vertical
FoV at 2 MP resolution. Ideal operating range is between 0.3
m to 3 m. An integrated IMU collects time-stamped data on
camera movement and orientation to provide for more robust
depth data reconstruction.

Intel RealSense L515— The Intel RealSense LiDAR Cam-
era L515 is a solid state LiDAR depth camera with 70±3°
horizontal FoV, a 55±3° vertical FoV, and up to 1024x768
depth stream output resolution at 30 fps. The LiDAR can
achieve depth accuracy between 5 mm and 14 mm in the ideal
range of .25 m to 9 m. The integrated RGB camera has a
70±3° horizontal FoV, a 43±3° vertical FoV, and 2 MP RGB
resolution at 30 fps.

Velodyne VLP-16—The Velodyne LiDAR Puck is a LiDAR
depth camera with 360° horizontal FoV and 30° vertical FoV.
Angular horizontal resolution is 0.1°-0.4°and vertical angular
resolution is 2°. The camera can achieve depth accuracy of
±3 cm for a measurement range of up to 100 m.

Insta 360 ONE X—The Insta 360 ONE X is a VR camera
that can take RGB photos at 6080x3040 resolution, and RGB
video with a resolution of 5.7K at 30 fps. The camera
provides an immersive view with a 360° horizontal FoV
and 180° vertical FoV. Additionally, the device is equipped

5
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Table 2. Specifications of the Boston Dynamics Spot Robot cameras and the 4 camera options mounted on the robot
for the field experiment.

Camera Type Field of View Range
Integrated Spot cameras (x5) stereo, B&W, video 360◦ 4m

Intel RealSense D435i stereo, RGB, video 70◦ 9m
Intel RealSense L515 time-of-flight (laser), RGB, video 70◦ up to 9m

Velodyne VLP-16 LiDAR (Class-1 laser) 360◦ (30◦ vertical) 100m
Insta360 One VR camera RGB video 360◦ (180◦ vertical) N/A

with an onboard stabilization capability, which smooths video
footage and prevents the need for a gimbal.

Vuze 3D VR—The Vuze 3D VR camera provides an immer-
sive view with a 360° horizontal FoV and a 180° vertical FoV
through the use of eight fisheye lenses. The camera can take
RGB stereoscopic photos and videos with 4k resolution per
fisheye lens at 30 fps.

Evaluation Criteria

The six evaluation criteria chosen were: depth of field,
field of view, resolution, bandwidth requirements, processing
requirements, and lighting conditions. Camera evaluation
criteria were determined through consideration of the unique
limitations imposed by the lunar operating environment and
associated mission operations concepts. Limitations consid-
ered included low light and directed light conditions; lim-
ited bandwidth constraints of lunar robotic missions; time
delay for data transmission; and limited on-board processing
capabilities. The six evaluation criteria are introduced in
more detail below. These criteria by no means cover the
full tradespace that should be considered when selecting a
camera for lunar operations. Additional limiting factors, such
as weight and power requirements, will also play a large
role in selection. These criteria were selected to gain initial
insight into what data types and acquisition methods would be
most beneficial to conducting geological analysis, and inform
future investigation into optimal camera selection. Key in
evaluating these different criteria is consideration for the
mission objective. For instance, when planning a long-range
traverse path, one would expect a high level map with visible
obstacles to be of greatest use, but when selecting sample
sites based on geological points of interest, high resolution
immersive maps would provide the greatest benefit. Here
we focus on mission operations related to geological analysis
required for scientific and prospecting missions.

Depth of Field—Depth of field (DOF) describes the distance
between the closest and farthest objects that are of acceptably
sharp focus in an image. This metric is often described as
the camera’s optimal operating range. The DOF required
for scientific analysis will likely differ from mission to mis-
sion, depending on scientific objectives, terrain type, and the
robot’s ability to position itself in relation to areas of interest.

Field of View—Field of view (FoV) describes the maximum
area that a camera can image. It is dependent on both the focal
length of the lens and the size of the sensor. Horizontal FoV
and vertical FoV are measured in degrees, describing the hor-
izontal and vertical envelopes of view from the camera lens.
FoV will dictate how much environmental area a scientist will
be able to view at once. It will be important to analyze the
required size for appropriate scientist situation awareness and
contextual information when performing scientific analysis.

Resolution—Camera resolution describes the size of the pro-
duced image in terms of the number of pixels the image
contains. It is typically reported as image width in pixels by
image height in pixels (WxH). Higher resolution means more
pixel information, resulting in a high quality, crisp image.
Resolution will determine the level of detail scientists are
able to discern from one image. It is important to deter-
mine the minimum level of resolution required to perform
scientific analysis, given the resolution of an image directly
corresponds to the size of the image file. A balance must be
struck between image resolution and image file size, which
will be inherently restricted by bandwidth requirements.

Bandwidth Requirements—Bandwidth describes the amount
of data that can be sent over a connection in a given period
of time. Bandwidth is typically measured by a factor of bits
per second. The size of the data produced by each camera
type determines the bandwidth demand of the camera for data
downlink.

Processing Requirements—We introduce the criteria of pro-
cessing to describe the speed and ease of the integration of
data into a format that would support scientific analysis. We
include this metric as a way to contrast arduous integration
processes, such as those encountered by SfM Photogramme-
try, and seamless VR integration processes, such as the inser-
tion of 360 VR camera footage into a VR environment. This
evaluation metric will need further development to assess,
given techniques are not yet formalized for the integration
of data from each camera into the VR environment. This
assessment will be an area of future work.

Lighting Conditions—The cameras were assessed under day-
time and nighttime lighting conditions. Under nighttime
conditions, a single source overhead spotlight was directed
toward the traverse path in order to simulate lunar daytime
lighting. Under daytime conditions, data was collected
to contrast the baseline performance of the cameras under
terrestrial daytime lighting with camera performance under
simulated lunar daytime lighting. The complete darkness
necessary to replicate lunar night lighting was not achiev-
able in the field experiment environment. Simulating lunar
lighting conditions can help to expose the limitations of RGB
cameras, and the necessity for depth cameras to supplement
colored images when regions of interest are not illuminated.

6. FIELD EXPERIMENT
A two-day field experiment was carried out on a granitic
beach with exposed bedrock in Marblehead, MA, in order to
assess the chosen cameras over the selected evaluation crite-
ria. Six traverses were carried out over the two days; four un-
der nighttime conditions and two under daytime conditions.
Camera payloads were mounted on top of a Boston Dynamics
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Spot robot and data was remotely accessed throughout the
traverse.

Hardware

Cameras—Five out of the six cameras selected were evaluated
in the field experiment. The Vuze 3D VR camera was
ultimately not studied in the field experiment, given inherent
camera limitations. The camera lacks a built in stabilization
system, which results in shaky footage when mounted to a
robot without a gimbal. Additionally, the Software Devel-
opment Kit (SDK) for live streaming the Vuze 3D camera
can only work when connected to a Windows 10 PC through
proprietary software that requires serial key activation. In
contrast, the Insta360 line of 360° cameras are able to stream
through mobile devices or any other operating system. The
Insta360 ONE X uses both Bluetooth Low Energy (BLE)
and WiFi to connect to a mobile device, making it ideal for
real-time monitoring. Therefore, the Insta360 ONE X was
selected to be used as the sole VR camera.

Spot Robot—The Boston Dynamics Spot robot was chosen
as the roving vehicle, upon which payloads were mounted.
Spot’s ability to traverse unstable and uneven terrain enabled
us to traverse a site that resembled challenging lunar terrain
with geologically relevant points of interest. Spot can be
teleoperated via a tablet provided by Boston Dynamics, or
via laptop commands using the WASD keyboard keys. Spot
can act as its own WiFi access point, allowing for easy remote
connection and control from a laptop.

The SpotCORE computer, an additional computer provided
by Boston Dynamics for developer payload integration,
mounts to the top of Spot. Primary interface with the Spot-
CORE computer was provided via wifi networking through
the Spot access point and USB connectivity. Power was
provided by onboard batteries external to Spot, and passed
through to the SpotCORE computer. SpotCORE provided
a simple power interface for our payloads and a location
to implement required payload software. WiFi access to
Spot allowed us to remotely access SpotCORE to monitor
and record payload data. Remote operations were critical to
collecting realistic data along a traverse path with multiple
data-collection waypoints.

Site Selection

A site was selected to fulfill the following criteria of exposed
bedrock; unstable terrain; identifiable geological features;
accessibility, describing access to power and wifi, and within
walking distance to the street for heavy equipment transport;
and availability during both daytime and nighttime. The site
selected was in Marblehead, MA on a private beach with
low tides allowing for up to 4 hours of accessibility at one
time. The beach contained exposed bedrock of granitic rock
with quartz veining. Marblehead is within the Avalon Belt
geologic province. The Avalonian terrane is a dense granite
exposed 14,000 years ago with the retreat of the Laurentide
Ice Cap. The quartz veins within the granite are indicative
of the high heat, high pressure accretionary emplacement of
the Avalonian terrane onto proto-North America during the
closing of the Iapetus Ocean in the Devonian period.

Traverse Plan

The traverse plan shown in Fig.3 was selected with waypoints
an average of 3 m apart given the lowest DOF was 4 m for the
integrated Spot stereo cameras. Some waypoints were placed
closer together to capture points of interest and a single
waypoint (W06, Fig.3) was placed in a challenging region to

demonstrate the robot’s capabilities to navigate uneven, rocky
terrain, as well as demonstrate the benefits of capturing 360°
FoV for a distinct location off of the traverse path.

Two geologic points of interest were selected at W04 and
W06 to assess each camera’s ability to capture color-specific
and geometry-specific geologic information. At W04 distinct
90-degree fracture angles in the granitic rock were identified
(Fig. 4), hypothesized to be identifiable by depth data. At
W06, continuous, visible quartz veining throughout the rock
was identified (Fig. 5), demonstrating a geologic point of
interest requiring color differentiation.

Data Collection Methodology

Spot traverse control—Spot was controlled from either the
handheld tablet provided by Boston Dynamics, or from a
laptop computer using WASD controls. Control type de-
pended on the type of data being collected. In order to
collect data from the Spot stereo cameras, a laptop needed
to be connected and commanding Spot. If data was not being
collected from the Spot stereo cameras for a given traverse,
the handheld tablet was used. To control spot using WASD
keyboard controls the Boston Dynamics wasd.py script was
used from the Spot SDK.

Spot stereo cameras— Two python scripts were developed
to collect images from the five spot stereo cameras. The
Spot SDK provided a sample script titled get image.py
which took arguments of camera names and image types,
and collected data of that type for that specific camera when
called. This script was adapted in order to prevent having to
pass in each camera type and each data type as arguments at
every collection point. The adapted script took in arguments
of “front” or “back”, to either collect all data types from either
the two front and two side cameras, or to collect all data types
from the back camera. Two argument options were required
because the Spot image service was unable to handle all data
types being requested from all five cameras at once.

A second python script was written to efficiently gather data
at each set of waypoints along a traverse. The goals of
the script were to ensure only one script call was necessary
for each traverse; to allow users to uniquely label each
waypoint; and to inform the user when image collection was
complete at a waypoint. The script first prompted users to
input where they would like to save the traverse data. Next,
the script prompted users to input the name of a waypoint.
Once users entered a name, the script would run the adapted
get image.py script twice, capturing stereo camera data
for all cameras on Spot. Once this process was done the script
would report that data capture at the waypoint was complete,
and would wait for the input of the next waypoint name. A
separate folder for each waypoint was created. Each folder
contained the fifteen images captured at that waypoint, three
for each of five cameras.

Velodyne LiDAR—The VeloView software was installed on
SpotCORE to operate and record data for the Veoldyne
camera. The software was set-up to forward the LiDAR data
to a secondary computer through the VeloView GUI. This
preliminary setup was only required upon initial setup of the
software, after which the VeloView data was accessible on the
secondary computer. Two data set types were taken for the
Velodyne LiDAR: a continuous recording of a full traverse
and a recording of each waypoint for a complete traverse.
The waypoint recordings were captured for 5±2 seconds at
each waypoint and were trimmed to a single frame of data for
final analysis.
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Figure 2. Boston Dynamics Spot robot photographed in nighttime conditions with single spotlight lighting. Payload I
consists of the Spot Core Computer and Velodyne LiDAR. Payload II carried either both Intel RealSense Cameras or

the Insta 360 VR camera on the custom payload tower.

Figure 3. Overhead image of selected traverse and location of thirteen waypoints.

Intel RealSense L515 and D435i— The RealSense Viewer
software was installed on SpotCORE and accessed via ssh

to control and capture data for the two Intel RealSense
cameras. At each waypoint the camera was activated on the
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Figure 4. Waypoint 4 (W04): Granatic rock with
fracturing. Quarter placed for size.

Figure 5. Waypoint 6 (W06): Quartz veining in granite.
Quarter placed for size.

RealSense Viewer software GUI, a recording was started for
the waypoint using a prespecified naming convention, and the
camera (either L515 or D435i) was manually rotated 360°.
The first camera was then deactivated and the second camera
(whichever was not activated previously) was activated. The
recording was started and the second camera was rotated
360°. This was repeated for each waypoint.

Insta360 ONE X—Data was accessible remotely on a phone
application. Data was collected as a single continuous record-
ing of a full traverse.

Experimental Procedure

Payload Registration— The SpotCORE Ubuntu computer
provided by Boston Dynamics for payload integration was
mounted on the rear of the Spot robot and registered on Spot
as SpotCORE with no LiDAR through the Spot GUI. The
SpotCORE can be set up with an integrated Velodyne LiDAR,
which allows the Spot software access to the LiDAR data for
use of the automation features. When used for this feature,
the LiDAR is captured with a lower point-cloud density and is
not accessible by other software interfaces, such as VeloView,
the software provided by Velodyne to capture LiDAR data. In
order to bypass this use case, SpotCORE must be registered
without LiDAR.

The Velodyne puck was mounted in a protective casing on the
rear of the Spot robot just behind the SpotCORE (Payload I

in Fig.2). This was registered separately from SpotCORE as
a LiDAR imaging device, and therefore did not speak to Spot.
Registration of the puck was done through the Spot GUI only
to provide mass balance data to Spot. Power was provided by
Spot. Both RealSense cameras were mounted together on a
custom payload in the mid-section of the Spot robot (Payload
II in Fig.2). These were registered as a single mounted
payload using their combined weight within the Spot GUI.
Power was provided by Spot. The Insta360 camera was
mounted on the custom payload tower when the RealSense
cameras were not in use (Payload II in Fig.2).

Traverse Schedule— The field experiment took place over
the span of two days. The first day, three traverses were
completed under nighttime conditions. The first traverse
was designed with multiple spotlights for VR demonstration
purposes, and was not representative of lunar day lighting.
Insta 360 and continuous Velodyne LiDAR data types were
captured. The second traverse was designed with a single
source spotlight, representative of lunar day lighting. Again
Insta 360 and continuous Velodyne LiDAR data types were
captured for VR demonstration. The third traverse also
used a single source spotlight to simulate lunar day lighting.
Velodyne LiDAR and Spot stereo camera data were captured
at each waypoint for depth data analysis.

The second day, two traverses were completed under daytime
conditions, and one traverse was completed under nighttime
conditions. The first daytime traverse collected data for VR
demonstration purposes, capturing Insta360 and continuous
Velodyne LiDAR data. The second daytime traverse collected
data for depth data analysis, capturing Velodyne LiDAR, Intel
RealSense D435i and L515, and Spot stereo camera data at
each waypoint. The nighttime traverse was executed with a
single source spotlight, representative of lunar day lighting.
Intel RealSense D435i and L515 data was captured at each
waypoint.

7. INITIAL FINDINGS
Field of View and Depth of Field

The Intel RealSense cameras and the integrated spot cameras
all had limited fields of view. For the integrated spot camera
this was mitigated by having 5 separate cameras, which com-
bined, provided a full 360◦ FoV. The Intel RealSense cameras
were instead rotated 360◦ to capture the complete 360◦ FoV.
This will result in larger processing requirements and will
necessitate some overlap for stitching in these cameras. The
Velodyne and Insta 360 cameras intrinsically captured the
360◦ FoV. The DOF for the stereo cameras and RGB imagery
was dependent on the lighting conditions, while the ToF cam-
eras rely on their internal laser power. The Intel RealSense
cameras both had limited DOF (<9 m), while the Velodyne
had up to 100 m DOF. For the application of geological
analysis, the Velodyne’s large DOF was not necessary and
the loss of resolution due to this large DOF, in fact, was a
hindrance.

Resolution

Selecting a camera specifically for geological analysis im-
plies a need for higher resolution data in the near-FoV. Table
3 lists the resolution for all of the cameras (RGB and depth
data), however, here we focus specifically on the resolution
of the depth data. The resolution of the Velodyne, Table 3,
is defined as an angle. It is based on the LiDAR’s capture
of 300,000 points/s, and is dependent on the distance to an
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object, decreasing in density by the distance squared to the
object. Despite the large number of points captured in the
Velodyne point-cloud, the viewing distance available reduces
the resolution dramatically compared to the L515. This is
evident in Fig. 6 showing the left-side view (with respect
to Spot) of waypoint 6. The uppermost image shows the
Velodyne point-cloud, with Spot highlighted by the red box.
The lower images show the stereo-depth data (D435i on the
lower left) and the near-view ToF data (L515 on the lower
right), both of which have much higher resolution depth data.
Comparing the D435i and the L515 we can see that for similar
resolution, we can achieve a more detailed surface texture
with the ToF data.

Table 3. Comparison of camera resolutions.

Camera Data type Resolution

Integrated Spot
cameras (x5)

B&W image 424 x 240

Integrated Spot
cameras (x5)

stereo-depth 424 x 240

Intel RealSense D435i RGB 1920 x 1080

Intel RealSense D435i stereo-depth 1280 x 720

Intel RealSense L515 RGB 1920 x 1080

Intel RealSense L515 ToF 1024 x 768

Velodyne VLP-16 ToF Horizontal - 2◦

Bandwidth requirements

Because each of the different cameras uses a different file
type and recording technique, the data required some initial
processing to provide an accurate comparison of the file sizes.
Table 4 shows the file type, file size and reduced file size for
each of the different depth data cameras for a single waypoint;
this does not include the Insta 360 ONE X as it is a continuous
video stream of RGB video only.

For the integrated spot cameras, the only data reduction
necessary was to select the depth data image from a single
waypoint folder, eliminating the fisheye and visual frame
images. For the two Intel RealSense cameras, the data was
captured at each waypoint as a continuous 360◦ video. Since
the camera captures 70◦ in a single frame, with 5◦ of overlap
for image stitching, snapshots were saved every 60◦ as ply
files containing both the RGB and depth data. These were
saved as human-readable binary files (ply) without meshing
using the RealSense Viewer software. The reduced size
for each waypoint was the sum of the six snapshots. The
Velodyne data used here was the single waypoint capture.
The total size indicates the full 5 seconds of video taken
allowing the point-cloud to stabilize, while the reduced size
is a single snapshot of the data at the end of the video.

All but the Velodyne camera are a combination of either RGB
or B&W with depth data (either stereo-depth or ToF). Here
we see that while we are using different file types and so
cannot infer any absolute conclusions, the combination RGB
with ToF data (L515) would pose the largest bandwidth re-
quirements. While the Velodyne has much smaller file sizes,
we must consider that this does not include any RGB data,
and the point-cloud density is not sufficient for geological
feature identification.

Varying in lighting conditions

Fig. 6 is a nighttime capture of waypoint 6. RGB imagery
was lower resolution in the nighttime lighting condition than
in the daytime lighting condition. Although we would expect
the ToF cameras to outperform the stereo cameras at night,
we found that both cameras provide similar depth data in
both daytime and nighttime lighting conditions. Given the
stereo cameras use the RGB imagery to determine the depth
data, this is a surprising result and requires more testing
to determine why the depth data from the stereo cameras
function in low-light despite low RGB image resolution.

8. FUTURE WORK
Depth Camera Analysis

Following this experiment, we will incorporate our findings
for optimal depth data collection for geological analysis into a
Science Analogue experiment, along with scale visualization
and measurement tools. This future round of testing will
assess a data pipeline development, camera selection, and
tool development. These will be assessed for a geologically
relevant task, such as identifying stratigraphic sequences or
characteristics (cross-bedding, ripples, mud-cracks, inclu-
sions, etc.). Users with geological field work experience will
be asked to assess the optimal characteristics of each camera
to compare the different approaches. Moving forward, we
will be replacing the Intel RealSense L515 with the Microsoft
Azure Kinect, as the RealSense line is being discontinued.

Depth Camera Flight Readiness

We will do a preliminary assessment of the Azure Kinect
for flight readiness as a COTS payload. This will include
environmental testing: vibration, vacuum and temperature, as
well as minor hardware modifications to the electronics and
power components for integration into a Commercial Lunar
Payload System (CLPS) rover. The high-level flight readiness
testing and assessment plan is outlined in Table 5. One of
the key developments for use of a depth-camera on a lunar
mission will be the data pipeline. We will need to further
assess bandwidth requirements, data processing sequences
and locations (processing on the rover vs. transmitting raw
data), and where in the pipeline the data will be most use-
fully accessed for different applications. A conceptual data
pipeline is shown in Fig. 7.

The bandwidth requirement for the Azure Kinect is shown in
Table 6. Consideration for reducing the bandwidth will be
made during further field experiments and human in the loop
testing. We will use this data to design our data pipeline and
assess where in this pipeline the data should be transmitted
(minimizing transmission bandwidth) and where it should be
integrated into a desktop application or a VR application.

As part of the consideration for the data pipeline and band-
width requirements we will also assess if any of the pro-
cessing would need to be done on board the rover. The full
rendering of a depth-map from the Microsoft Azure Kinect
camera requires a minimal host compute of a Jetson Nano
server. This will provide the baseline for the maximum
processing power requirement for full rendering on board the
rover.

VR Environment and Tool Development

We will continue to develop the fundamental vMSS platform
with further hardware testing, VR platform development,
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Figure 6. Comparison of depth data from the Velodyne VLP16 (top), Intel RealSense D435i (lower left) and Intel
RealSense L515 (lower right) at waypoint 6.

Table 4. File type, file size (total and reduced) for each camera.

Camera File Type Total Size Reduced Size
Integrated Spot cameras (x5) png 1.2 MB 1.09 MB

Intel RealSense D435i ply 4.33 GB 7.975 MB
Intel RealSense L515 ply 2.57 GB 21.35 MB

Velodyne VLP-16 pcap 2.84 MB 0.78 MB

Table 5. COTS Microsoft Azure Depth-Camera flight readiness testing and assessment plan - details on vacuum
pressure and temperature requirements to be provided by Tony Colaprete, NASA Ames.

Test Type Plan Requirements and Location
Vibration table Open COTS part, stake down parts and add

supports where failure occurs
NASA Ames - one day on shake 3-axis
shake table

Vacuum testing 1-week in vacuum, then remove and power
on (prelim testing). Then 1-week in high-
vacuum, assess any parts that may impact
vacuum

Prelim - MIT, High-vacuum - NASA Ames

Thermal testing Prepare for need to provide heating on
rover - thermal heat tape tests

NASA Ames and MIT- test power require-
ments of heat tape

Laser function Assess the visibility of having the field
of view in the rover’s shadow to avoid
increasing laser power

MIT field testing - varying ground reflec-
tivity and light source angles

Power supply Modify to 28 V power regulated by rover -
meet 5V at 6 W to meet camera peak power
draw

MIT in collaboration with Microsoft -
hardware modification

Data rates Rover maximum data transmission rates
are 54 Mbps, lossless compression from
camera is 42.2 Mpbs - need to minimize
data transmission

MIT - part of pipeline design

multi-modal environmental overlays, and performance test-
ing. Going beyond initial assessments of data acquisition,
we also intend to quantitatively assess data quality for visual
representations in VR and for scientific analysis.

Once the depth data collection technique has been se-
lected, scientific tool development will begin on the three-
dimensional model within vMSS. The primary tool set cur-
rently under development is based around distance mea-
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Figure 7. Conceptual data pipeline of a depth-camera onboard a lunar rover for use with multiple applications.

Table 6. Microsoft Azure Depth-Camera bandwidths
provided by Microsoft team.

Resolution Compression Type Bandwidth
Native None 1 Mpixel peak

Lossless 42.2 Mbps
Binned None 10 Mbps

Compression 5 Mpbs or less

surements from a user-placed set of points, such as in Fig.
8. Here, a user places an arbitrary set of points, defining
an object in 2D or 3D. This analytical tool can then use
those annotated points to determine distance, angle, and area
through a closed polyline. Fig. 9 shows a conceptual image
of the user-interface for the 3D use case. This methodology
would be most useful in situations where accurate cm-scale
volume and area measurements are required for scientific
analysis.

Figure 8. High level overview of user mesh generated
object used for performing measurements of distance,

angle, area, and volume.

Figure 9. Conceptual overview of user-placed point grid
over collected data, with an automated mesh.

9. CONCLUSIONS
Future lunar robotic missions will rely heavily on rapid
science team decision making to fulfill mission objectives
and maximize science return. VR mission operations support
tools can enable rapid science geological analysis and team
decision making by improving science team member situa-
tion awareness of the lunar environment and team conver-
gence on a decision. The MIT RESOURCE team has demon-
strated the capabilities of a VR environment to visualize three
dimensional terrain through the development of vMSS. The
basis for lunar VR mission operations support tools will be
a high-fidelity three-dimensional map of the lunar surface
region of interest. We examine the performance of five
cameras, including three different camera types (stereo, ToF,
and 360 VR) to be integrated onboard future lunar robotic
missions as data providers for such VR mission operation
support tools. Initial evaluation suggests short-range ToF
depth imagery accompanied with RGB imagery can provide
both detailed surface texture imaging and color imaging,
which may be sufficient for cm-scale geological analysis.
However, bandwidth requirements may still be a limiting
factor, and further VR environment integration and analogue
testing will be required to ultimately select the optimal cam-
era for supporting mission scientific objectives. Future work
will focus on final camera selection and VR environment
development, including visualization and analysis tools.
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