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Abstract—Wrist-worn sensors (microphones, time-of-flight
cameras, etc) have gained the attention of Human Computer
Interaction (HCI) and body sensor researchers for their potential
ability to aid interaction with wearable devices. In this paper, we
use wrist-worn sensor modalities to evaluate free-hand microges-
ture usability. Our goal was to determine which microgestures
should be included in a potential universal microgesture language
and identify any underlying microgestural usability principles.
Through a brief pilot user study recording microgesture task
time and user accuracy, we were able to explore trends in
common usability aspects. Results of the user study showed that
free-hand microgestures, even at small physical and temporal
scale, have significant effects on task time and user accuracy.
Further analysis through multiple comparisons identified which
microgestures produce relatively more accurate and efficient
interaction. Physical commonalities between such microgestures
prompted theories concerning why certain microgestures produce
more efficient results. Based on findings and proposed theories, we
give suggestions concerning a universal microgestural language
and microgestural application development.
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I. INTRODUCTION

Many current ubiquitous gesture applications track hands
in front of the user, requiring large fatiguing movement of the
shoulder and arm (commonly called ’gorilla arm’ [12]). The
space in front of the user is socially awkward and requires
considerable volume; we believe that hand-at-side finger/wrist
based gesturing will dominate for instant on-the-go use cases
- such as everyday wearable interfaces. To progress towards
such interfaces, wrist-worn microgesture (small finger/thumb
based movements) capturing devices have begun to emerge
[7], [14], [1]. Such devices greatly diminish the problem
of fatigue and have considerable power for application, yet
microgesture evaluation and microgesture interaction design
is still an underexplored territory. In this particular study, we
hoped to extract various trends that relate microgesture to task
time and user accuracy.

We built our own wrist-worn microgesture recognition sys-
tem to robustly detect free-hand microgesture performances.
Our system, which we deem EMGRIE (Ergonomical Mi-
croGesture Recognition and Interaction Evaluation), extracts
multiple concepts from past wrist-worn microgesture recogni-
tion systems to produce similar recognition results. We use
EMGRIE as a mode to examine microgesture application
usability through task time and user accuracy. Given user
data, we applied common HCI statistical methods (ANOVA,
multiple comparisons) to extract evidence that microgesture
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Fig. 1.

Time-of-flight camera used to build EMGRIE.

has significant effect on task time and user error rate, and
further investigate which microgestures produce such effects.

Post-hoc tests showed that microgesture is correlated to
input efficiency, which we theorize is due to physical and
attentional differences between hand poses. Based on such
physical differences, we believe certain microgestures may
hold a physiological and psychological contrast bias [9] over
other microgestures and attract more attention during initial
learning. We believe such biases should be acknowledged
in order to acheive good usability during application design.
Upon similar statistical examination of user accuracy rates
for each microgesture, it is clear that the fastest microgesture
is not the most accurate across users. The lift microgestures
(in particular the index lift) are significantly less user error-
prone. While there was no apparent tradeoff between speed
and accuracy, we believe microgestures that involve less
muscle groups are less error-prone but not necessarily more
efficient. Hence, microgestural application developers should
heed specific application requirements concerning usability
and universal microgestural language. Based on sources of
data variation, we also believe user preferences regarding
microgestures are mandatory. We encourage developers to
include some of the microgestures studied here in a universal
microgestural language, while keeping in mind our findings in
user accuracy and efficiency.

II. RELATED WORK

To construct a wrist-worn microgesture recognition system
within a minimal time frame, we draw upon many previously
built systems. In order to capture the potential robustness
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Fig. 2. The camera and microphone on the user’s wrist, user performing the
index pinch microgesture.

Fig. 3. The screen the user viewed during a user test session. We displayed the
current gesture classification (D), goal gesture (C), depth camera perspective
(B), computer vision pipeline (A), and bag-of-words data vector (E).
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of Microsoft Digits [7], we use a similar form factor and
feature extraction methodology. However, we simplify the
Digits system by building a customized feature vector rather
than estimating all joint angles found in the hand. By taking
advantage of this tradeoff between simplicity and full hand
pose extraction, we can quickly build a system that can
robustly detect only the microgestures we are interested in.

Similar systems to Digits and EMGRIE have been re-
searched as well, and we would like to recongize them here.
The WristCam [14], DataGlove [11], RFID rings [2] are good
examples of a microgesture recognition system. While these
studies produced good results in recognition, we continue
this research and present theories concerning microgesture
usability.

Stern [13] and Nielsen [10] produced applicable method-
ologies for usability study concering gestural interaction. Even
though these studies did not specifically target free-hand
microgesture, we would like to emphasize the importance of
following such methodologies (and attempted to follow them
ourselves over the course of the EMGRIE study). Our study
mainly concerns itself with user accuracy and task time and
how it relates to usability, but there are more aspects mentioned
in these works that should be considered.

III. SENSING MODALITIES

To detect microgestures, we utilize a time-of-flight (TOF)
camera PMD CamBoard Nano (www.pmdtec.com/products_-
services/reference_design.php) and a small MEMS micro-
phone. Both sensors are wrist-worn, where the camera and
microphone are situated on the inside of the wrist. Figure
1 shows the hardware system components. While the size
of the device is currently too large and power inefficient
for everyday use, we believe that such devices are currently
improving to warrant this research. To process data taken
from the sensors, we utilize open source software OpenCV
and Gesture Recognition Toolkit (GRT). Using OpenCV and
the TOF camera, we extract finger-level features produced by
various microgestures similarly to [7]. Such features allow
individual finger and thumb tracking. However, rather than
applying tracking and finger-level signals to estimate joint
angles and build a virtual hand model, we formulate a bag-of-
words support vector machine model (SVM) through GRT.
We use the microphone to detect vibrations made by the
thumb and finger during a pinch gesture, and utilize the
vibration for accurate recognition, similar to [1]. Constructing
EMGRIE in this manner did not require extensive engineering
resources and produced viable gesture recognition error rates
for usability study. While such algorithmic methods have
been researched extensively, we have novelly applied them
in a simplistic manner to recognize microgestures. Since the
benefits of this methodology are unclear, we used EMGRIE
to primarily study user interaction. EMGRIE system design is
available in more detail: [15].

IV.  MICROGESTURE CHOICE AND EXPERIMENT DESIGN

There are many potential microgestures that could deemed
useful in applicaton. However, we found that users had dif-
ficulty learning more than seven gestures in one test session.
Hence, we decided to only test seven microgestures from two
very different yet basic free-hand microgesture categories: the



finger lifts and the finger pinches. [15] gives an extensive
description of free-hand microgesture categories. We describe
how to perform example microgestures in each group: figure 2
shows EMGRIE on a user’s wrist while performing the index
pinch. To perform a finger lift, the user simply bends the
corresponding finger toward the palm at the first finger joint
(MP joint). Our motivation for choosing these microgesture
groups stems from the ability of the wrist-worn camera to
recognize finger lifts with high accuracy [14] and the hands
natural ability to perform finger to thumb opposition [8].
Through examining these basic free-hand gestures, we can
extract statistically significant differences between them (if
differences exist).

Specifically, we decided to use 3 finger lifts, the index lift
(IL), middle lift (ML), and ring lift (RL). We study 4 different
fingertip pinch gestures: index pinch (IP), middle pinch (MP),
ring pinch (RP), and pinky pinch (PP). 11 participants (8
male 3 female ages 19-30) were asked to train the EMGRIE
system to accommodate their specific interpretation of each
gesture. To train the EMGRIE SVM model, users held the
corresponding hand pose for 5-10 seconds while EMGRIE
collected data (about 500 data points). Once each gesture was
trained and users felt mastery of gesture performance, the user
completed 10 sequences of 7 random gestures. Gestures were
displayed one at a time via text description commands (i.e.
”lift index”) while time to classification and user accuracy
was recorded. Each sequence covered each gesture and was
displayed in random order to mitigate learning and fatigue
effects. The user rests both hands by their side or on their lap
while orchestrating a series of such specified microgestures
displayed on-screen about two feet in front of him/her. The
user was asked to not view their own hand during performances
and were encouraged to maintain eyesight on visual feedback
(wrist-worn camera image and gesture instruction) on-screen.
Errors were flagged as either classification errors or user errors
and were rescheduled in the sequence. To simulate an eyes-free
situation, participants were asked to maintain their eyesight
on the screen detailing the current microgesture to perform.
The user viewed the screen shown in figure 3. There was
a user-determined length break between each sequence and
3 seconds break between each gesture performance. Due to
frequent breaks, each user test took on average 50 minutes
to complete. Users did not express discomfort concerning the
length of the test nor wearing the device.

Our experiment design examines within-subject microges-
ture and iteration factors and their relation to the continuous
response factor task time. The experiment follows a random-
ized two-way repeated measures design: each user performs
each microgesture 10 times ordered randomly. The results
of this experiment upon two-way repeated measure ANOVA
should show any effect of short term training (a within-subject
iteration factor) or microgesture differences. Since task times
are skewed in the positive direction, we removed outliers over
a 95% confidence interval. In order to handle missing data, we
used a Mixed Factor model. After finding that the interaction
term between iteration and gesture was not significant, we
converted to a additive repeated measures model to only exam-
ine simple main effects and pairwise significance. Since task
time data was recorded as a response factor to microgesture,
task times corresponding to user and classification errors were
discarded.
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Fig. 4. Box plot showing the task time average estimtion for microgestures
over all users and all performance iterations. The pinky pinch gesture appears
to be the most efficient.

V. RESULTS

Two-way repeated measures ANOVA showed significant
effect in the gesture factor (p < .001). We did not find a
significant effect in the iteration factor. Through Tukeys pair-
wise mutliple comparison test, we found significant variations
between pinky pinch and index pinch, and between the ring
lift and pinky pinch microgestures (p < .02). Figure 4 shows
the mixed model plot (average task time estimation and corre-
sponding error thresholds for each microgesture). Estimation
error thresholds were about the same for each microgesture, as
well as were standard errors for each coefficient in the resulting
regression model. Risidual standard deviation (variation caused
by microgesture) was about .22 seconds and random effect
standard deviation (variation caused by the participant) was
about .24 seconds. We note that total variance is large over
each microgesture, but also see that most variation was caused
by participants and not by microgestures.

We used similar statistical tools to examine trends between
microgesture and user error (summing over all users and
iterations) assuming independent measures (task time and user
error). Figure 5 shows the user error rate of each microgesture.
Upon adding the microgesture factor to a repeated measures
logistic regression model, model improvement showed mi-
crogesture having a significant effect on user error rate (p
< .0001). Based on multiple comparisons (Tukey test) over
microgestures, we found the index lift to have significant
differences between the middle and ring pinches (p < .02).
EMGRIE yields low system error rates out of 809 total
gestures, 39 were classified as system errors (about 4.91%
misclassifications over all gestures and users, similar to mini-
QWERTY typos [4]). Since the focus of this research was
on user interaction, EMGRIE classification errors were not
examined further.

VI. DISCUSSION

Before experimentation, it was not clear that gesture at this
scale (simple free-hand pose) will show statistical differences
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Fig. 5. A table showing the user error rates (%) for each microgesture

summed over each user. Clearly, the lift gesture group has lower error rates
when compared with the pinch group.

in performance times. One would expect that iteration of
gesture performances should have an effect on task time, but it
seems that 10 iterations over a 20 minute test session is either
a too little or too large sample size to show trend. Hence, we
hypothesize that learning microgesture is similar to learning
to keyboard - the required detailed control over ones hand
requires large amounts of training to produce effects on task
time. We believe that the estimated average task time for each
microgesture shown in 4 is seemingly high - but attribute this
to novice user’s cognitive processing time caused by prompt
randomization. Since variation is high, we note that some users
performed gestures in under .5 seconds. This shows promise
in potential learnability effects: users may be able to perform
microgestures consistently at a much higher rate after training.

In terms of the effect microgesture has on task time, we
note that the pinky pinch and index pinch are physically differ-
ent, and the ring lift and pinky pinch are physically different.
It follows that we formulate a hypothesis as to why the pinky
pinch microgesture was the faster microgesture: we believe that
the pinky pinch holds a bias over the other microgestures dur-
ing learning. The other microgestures may hold a continuous
psychological representation or gradient of stimulus between
themselves, where the pinky pinch (being the arguably most
unnatural gesture concerning pinches [8]) may show a discon-
nect. For instance, users may view the pinky pinch to be more
unusual compared to the other microgestures and hence give
the pinky pinch special attention due to the contrast bias [9] (as
known in psychology). Further experimentation is needed to
explore this resulting hypothesis. If true, then we can infer an
interesting generalization: certain unnatural microgestures are
more efficient than natural (everyday) microgestures, due to
less distinct natural microgestures warranting more cognitive
processing to remember and perform.

We believe that resulting differences in efficiency between
microgestures are only substantial over longer periods of
application use. Based on figure 4, the greatest difference in
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task time between microgestures is about .15 seconds. While
we hypothesize that the index pinch did not gain as much
attention during learning, we believe that the resulting decrease
in efficiency (about 13%) will have a large effect on usability
during repeated gesture performances in applications (such as
text entry). Since performance errors were discarded, we can
modify and apply the Keystroke-Level Model (KLM) [3] to
further explore this effect. To continue with KLM analysis,
we believe a more in-depth user study involving expert users
and consecutive input sequences is required.

Based on error plot in Figure 5, we find smaller user
error rates in the lift microgesture group compared to the
pinch microgesture group. The lift microgesture group requires
less muscle groups to perform and are generally more simple
than the pinch group. While the lift microgestures are not
the most efficient microgesture group on average, we think
they are relatively simple for users to understand and are
easier to perform correctly. We also find an interesting trend
between fingers concerning user error: error rate increases
nearly linearly from index to ring in both groups. This may
be an effect of ring and middle fingers not having as much
natural use as the fore finger. The pinky pinch user error rate
follows our theory concerning attention and contrast bias: it
does not follow the trend of increasing error rate and we
see a marked improvement from the ring pinch. We do not
see a similar trend between the other fingers in task time
that we see in user accuracy. More exploration is needed to
examine the relationship between user error and task time in
the microgestural application space.

Based on these findings, we believe that since the middle
and ring pinches are not significant concerning user accuracy
and efficiency, they may not be the best choice to be included
in a universal microgestural language. However, we would like
to emphasize, from our own empirical observation (and large
data variation found between users), that users showed prefer-
ences for various microgestures. We suggest that microgestural
application designers take into account the simplicity of the
microgesture, the contrast bias, and the ability for the user to
customize microgestures when building an application.

VII. APPLICATIONS

There are many potential microgesture applications for
use with wearable interfaces. Since wearable interfaces are
limited in screen space, we believe microgesture will be a
powerful mode for text input. Text entry interaction design
should follow proper fit-to-function: less efficient and more
error prone microgestures should be used for less common
characters, such as 'z’ or ’x’. Through applying KLM and
user test results given in this study, interaction designers can
study various microgesture mappings to build a generalized
and efficient text entry application.

We also believe that short-lived interactions involving data
visualization, multiple choices, and shortcuts possess just as
much potential. Since such applications require shorter inter-
actions, user accuracy results of this study are more applicable
than the efficiency results. Hence, application designers should
be more concerned over choosing microgestures that are easy
and less error-prone for the general population. We conducted
exploratory experiments concering such applications [15] and
leave associated discussion for a future publication.



VIII. SUMMARY AND FUTURE WORK

Based on task time results, we would like to formulate a
theory concerning microgesture usability: due to the contrast
effect, groups of natural hand pose (defined as microgestures
commonly used in everyday activity) often require more cogni-
tive processing time to perform than less natural microgesture
groups require. More natural microgesture groups may have
psycho-physiologically closer representations and not require
much attention during learning, while less natural microgesture
groups require more attention. Hence, added attention yields
more efficient performance time. Based on user accuracy
results, we predict simplistic microgestures that involve less
muscle groups will yield better usability. However, if a user has
trouble performing a certain microgesture, then applications
should have the ability for the user to customize microgesture
mappings for ease of use.

To test these theories more extensively, task time exper-
imentation regarding microgestural applications are required.
Upon large scale experimentation exploring a universal mi-
crogesture language and action mappings we will know more
towards developing highly usable microgestural applications.
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