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Fig. 1. Captivates System

We present Captivates, an open-source smartglasses system designed for long-term, in-the-wild psychophysiological monitor-
ing at scale. Captivates integrate many underutilized physiological sensors in a streamlined package, including temple and 
nose temperature measurement, blink detection, head motion tracking, activity classification, 3D localization, and head pose 
estimation. Captivates were designed with an emphasis on: (1) manufacturing and scalability, so we can easily support large 
scale user studies for ourselves and offer the platform as a generalized tool for ambulatory psychophysiology research; (2)
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robustness and battery life, so long-term studies result in trustworthy data individual’s entire day in natural environments
without supervision or recharge; and (3) aesthetics and comfort, so people can wear them in their normal daily contexts
without self-consciousness or changes in behavior.

Captivates are intended to enable large scale data collection without altering user behavior. We validate that our sensors
capture useful data robustly for a small set of beta testers. We also show that our additional effort on aesthetics was imperative
to meet our goals; namely, earlier versions of our prototype make people uncomfortable to interact naturally in public, and
our additional design and miniaturization effort has made a significant impact in preserving natural behavior.

There is tremendous promise in translating psychophysiological laboratory techniques into real-world insight. Captivates
serve as an open-source bridge to this end. Paired with an accurate underlying model, Captivates will be able to quantify
the long-term psychological impact of our design decisions and provide real-time feedback for technologists interested in
actuating a cognitively adaptive, user-aligned future.

CCS Concepts: • Hardware → Sensor applications and deployments; Sensor devices and platforms; PCB design and
layout; Signal integrity and noise analysis.
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1 INTRODUCTION
If we can measure the experiential quality of our work, our entertainment, our education– the mental experi-
ences of deep engagement, stress, alertness, and emotion– we can dissect the influence of our technology and
infrastructure on our lives. This analysis would catalyze our ability to actuate our tools and our environments in
support of deep, effortless engagement in the tasks we wish to prioritize and otherwise react to our internal state.
Unfortunately, measuring the mental aspect of experience is difficult. Historically social psychologists have

studied this using questionnaires, and this remains the only true window into another’s inner world. However,
psychophysiological modeling has emerged as a new possibility for continuous and unobtrusive approximation of
a user’s mental experience. Physiological signals have shown strong correlations to mental experience in isolated
contexts, like concerts and classrooms, where group data can be easily cross-referenced against emotional stimuli.
We believe there is a powerful opportunity to take the insights that have been generated in specific settings and
generalize them across real-world contexts. We’ve identified several key challenges with that translation that we
seek to address and overcome with this project.

In this paper, we present Captivates, a smartglasses system designed for long-term, in-the-wild psychophysi-
ological monitoring at scale. Captivates integrates many underutilized physiological sensors in a streamlined
package aimed at estimating attention and cognitive state. It was designed with an emphasis on (1) manufacturing
and scalability, so we can support large scale user studies for ourselves and outside collaborators without much
administrative overhead, (2) robustness and battery life, so we can perform long-term measurement and capture
an individual’s entire day without interruption, and (3) aesthetics and comfort, so people can wear them across
their naturalistic daily contexts without notice, avoiding self-conscious changes in attitude and behavior. These
tenants make the Captivates design process closer to a full product design process than a standard research
prototype.

We believe this model for scalable, product-like design will become increasingly important in the near future
for the fields of human-computer interaction and applied psychology. In this instance– with our focus on
psychophysiological monitoring– we believe the Captivates project will serve as a powerful tool for researchers
to investigate the links between real-world physiology and phenomenological experience, for designers interested
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in grounding the decisions with a model of long-term psychological impact, and for technologists looking to
automate supportive systems that must react in real-time to the mental experience of their users.

2 MOTIVATION
There are several studies that suggest technology is powerfully affecting our attention, our focus, and our
relationships in ways that are largely negative but difficult to measure. Killingsworth and Gilbert showed the
quality of our engagement in the activities we do, rather than the activities themselves, is a better predictor of
happiness [44]. This engagement in our learning, our work, our entertainment, and our craft is central to human
experience. Designing technology that structurally improves our lives starts with our understanding of these
intangible aspects of our mental lives.

In the world of psychology, the standard toolbox for studying these phenomena includes surveys, diaries, and
questionnaires. For all but the most ardent behaviorist, these techniques are the only way to collect ’ground
truth’ information about another’s mental experience. Unfortunately, these approaches have a few problems: (1)
they require retrospective self-assessment, which we know is biased in complex ways (a simple heuristic is the
’peak-end’ rule, in which memory favors salient moments and recent events), and (2) they require interruption,
which undermines the experiential quality of engagement we are interested in measuring. Because of this,
psychophysiological modeling has become an important tool to approximate internal experience. With this
approach, we’re able to back out continuous estimates of mental experience from physiological indicators.
Psychophysiological modeling has been used in many domains quite successfully. Skin conductance mea-

surements have been used to measure emotional engagement during live performance [48, 74], alertness in
the classroom [29], and stress in call centers [38]. EEG and nose temperature can detect stress or alertness
in high-pressure situations like test-taking or air traffic control [11, 17]. There are many studies that show
correlations between stimuli of various types– fear, shock, sadness, happiness, cognitive load, attentional state,
alertness, stress, and anger– with physiological measurement.
These results are very encouraging, but many issues remain with psychophysiological modeling in current

practice if we want to generalize these findings usefully. Some of the main issues include:

• Laboratory settings don’t translate to the real world. Kurt Lewin, one of the founders of Social
Psychology, is known for promoting ’action research’, and most discussions of the limitations of modern
experimental practice start with his theories. Though these limitations are widely acknowledged, the vast
majority of social psychology research is still based on controlled laboratory experiments [60]. Laboratory
studies frequently use instrument-grade equipment with supervision; they typically have individuals sit still,
acclimate to the temperature, and rest for a fewmoments before a trial. Participants are typically not moving,
talking, eating, or breathing realistically. Once data is collected, in many cases it is pruned by hand with
knowledge of where responses to the stimuli in question should appear. Even with many of these practices
in place, it can still require averaging over many participants to have confidence in the physiological
measure. Because physiology is so heavily influenced by movement, diet, breathing, temperature, and
activity level, there are many additional noise sources to consider in real world applications. Instrument
grade equipment and standard data processing pipelines also don’t directly apply in naturalistic settings.

• Standard techniques are limited in capturing important dynamics of user experience. Laboratory
experiments often attempt to isolate the part of the physiological signal that is due to a specific stimulus.
We test one stimuli in one environment on many users, randomizing out all aspects of their experience that
are individual to them. While this is a valid approach, it doesn’t provide a sense of the relative importance
of the individual and their psychological inertia compared with external stimuli. If a person comes into
the lab after having a bad day, feeling stressed about performing well in the study, and then sees a happy

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 93. Publication date: September 2021.



93:4 • Chwalek and Ramsay, et al.

picture, their internal experience is likely dominated by their current mental state and their psychological
inertia as opposed to the isolated stimuli.
If we treat someone’s mental experiences and behaviors as a function of their state (S) and their environment
(E), standard experimental psychology isolates the impact of some attribute of E, which in many cases may
be marginal. To learn about S and the dynamics between S and E we need to study across environments.
Our ability to create evidence-based, powerful and engrossing tools/experiences (E) that minimize the
psychological inertia of the individual– as well as our ability to support self-disciplined mental states (S)
that are impervious to the outside context– depend on a systematic analysis of the dynamics of these two
things together in natural contexts.

• HCI research incentives don’t support large-scale psychophysiological datasets. There are incen-
tives in Academia that run against open, large-scale data collection. Creating a prototype is time-consuming,
and the result is frequently fragile and difficult to use. Collecting even a small amount of data can be a
significant undertaking. Sharing that data has limited utility– it is typically a small one-off dataset that
serves a specific hypothesis, there are few additional practical insights to be had, and the prototype is not
easily extended to new contexts. Furthermore, data cleaning is time consuming, provenance is frustrating,
and there is no incentive to invest extra work simply to have your data scrutinized.
In machine learning, Stanford professor Fei-Fei Li invested heavily on high quality data collection with
ImageNet [28], and opened it to the broader community. This resource enabled large scale DNN training,
leading to AlexNet and sparking the deep learning revolution [13]. Mental states are far more stochastic,
contextual, and difficult to model than images of objects. Reasonable estimate of mental experience across
context will require an even larger set of fundamentally trustworthy data, and a similarly large community
focused on modeling it. There must be a similar effort to separate out data collection and mental state
modeling to underpin HCI and Social Psychology research.

Captivates is a tool that addresses the major issues listed above. It is a platform to study and translate the
principles we see in laboratory studies into the real world, focusing on an individual across natural contexts. It
minimizes its presence to preserve the normal course of life as much as possible. It serves as an open platform for
psychophysiological research that can be used to collect large amounts of data, and is robust and scalable and
easy for others to deploy in their work.
There are many first-order and second-order challenges we hope to address with this project– the first is

simply tackling data size and quality in a fundamentally different way. We are collecting realistic data across a
user’s day, and incentivizing others to also help scale data collection. We’re also focusing on diverse, understudied
physiological markers like face temperature, head pose, head motion, and blinking. These signals have shown
promise in laboratory settings as cognitive indicators– they are partially consciously controlled, and thus provide
complementary insight into attention and behavior– but they are poorly understood, especially in naturalistic
contexts. Additionally, head-worn IMUs can work effectively as a ballistic heart and respiration rate sensor,
which should enable an approximation of these physiological signals with the Captivates platform as well [37].
Captivates is sufficient as a standalone system to study these signals, but can also be combined with a larger
fusion of wearable sensors, for instance skin conductance or heart rate measured at the wrist, chest, or finger. We
anticipate this will lead to more robust psychophysiological modeling.
If we succeed in building strong, generalized psychophysiological models, Captivates becomes more than a

research tool– it will provide feedback for designers interested in understanding how their choices effect the
mental experience of their clients; it will provide population-level psychological insight for sociologists; and it
will serve as an integral part of responsive systems that need to understand and react to the mental state of their
users. The democratization of this kind of psychophysiological modeling would mark a paradigm shift in both
psychology and design.
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3 RELATED WORK

3.1 Non-contact Physiological Measurements related to Cognitive State
We seek to explore the space of sensor systems that do not require direct contact to the skin, a physically
less-invasive technique that results in a more natural user experience and a more robust system for measurements
on-the-go. Contact-based sensor techniques are a popular method for measuring physiological signals, but these
techniques present challenges in dynamic environments. Contact-based methods include electrocardiogram (ECG)
for measuring the heart, electroencephalogram (EEG) for measuring the brain, electrooculography (EOG) for
measuring eye movement, and electrodermal activity (EDA) sensing for measuring changes in skin conductance.
All of these methods have been applied to cognitive state estimation [33, 45, 47, 68, 77] typically under controlled
conditions. Oftentimes, researchers struggle with noise artifacts from internal and external sources [25, 49, 73].
Contact sensing is not ideal for measurements throughout a person’s dynamic day because of the mechanical
skin-electrode coupling, which is highly susceptible to noise artifacts from user motion [21]. By focusing on
non-contact techniques, we have greater flexibility for fit and comfort, and our research can be generalized to
systems that are not wearable and do not require physical skin contact.

3.1.1 Face Temperature. As summarized in Table 1, several studies have found that our face temperatures
vary with internal state changes (e.g., fear, joy, anxiety, etc.). For example, in [11], it was observed that nose
temperatures decrease with the increase of cognitive load due to blood flow restriction when autonomic nerve
activity increases. Cognitive load was modulated using a series of reading comprehension and Stroop Tasks (i.e.,
matching color of a word with the word itself) at varying difficulty. Thermal camera measurements in that study
required a fixed distance and perspective of the user; for mobile use, similar resolution would require multiple
thermal cameras in each location, is prone to occlusion, and is cost prohibitive.

Table 1. Overview of the Direction of Temperature Variation in the Considered Regions of Interest Across Emotions from [40]

An alternative is to fix a face temperature sensing device onto the user. In [51], the researchers fixed a passive
infrared radiation sensor (i.e., thermopile) to a tethered, glasses-like wearable to measure nose and forehead
temperatures to control for movement. Forehead temperatures are used as a baseline since it is believed to remain
stable relative to internal temperature, and face temperature varies with other internal and external events (e.g.,
convection due to wind). However, forehead temperature was demonstrated to increase with increased cognitive
load in [11]. [55] suggests the temple region provides a better estimate of a person’s internal body temperature
given its proximity to the large superficial temporal artery. Thermometry based on this assumption is used in
hospitals, as it approximates the accuracy of more invasive rectal techniques– the most accurate method for
measuring internal temperature in a clinical setting [35].
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3.1.2 Blink Rate and Eye Gaze. As described in [66], there are four types of eye blinks: reflex blinks, voluntary
blinks, non-blink closures, and endogenous blinks. Endogenous blinks– blinks that are not consciously initiated
or due to any "identifiable eliciting stimulus"– are theorized to relate to information processing, cognitive load,
and task demand.
In [49], test subjects reduced their blink rate under higher cognitive load. Furthermore in [52], eye blink rate

correlated with task difficulty over arithmetic tasks (blink rate decreases as the difficulty of the task increases).
Others have studied blink rate as they relate to creativity or emotional shifts, and blink magnitude has been

linked to attentional control and alertness [53]. Moreover, spontaneous blink rate drops precipitously when using
screens [16] and blink patterns change in response to visual task demands [39]. There has also been significant
effort to relate blink rate with dopamine dis-regulation and the study of addiction, though evidence for this
specific theory appears weak [26].

The evidence suggests that blink rate and blink magnitude are both powerfully tied to mental experience and
poorly characterized. While it’s uncommon to find blink rate sensors in existing wearables, a few have been
reported in the literature. In [27], the authors detect blink rate and magnitude based on changes in near infrared
reflectance using a near infrared diode/phototransistor pair with 85% accuracy.

3.1.3 Head Motion Dynamics. Head motion is an indicator of cognitive effort and attentional control. Cognitively
strenuous tasks result in less head movement, and patterns in the data could be used to discriminate common
tasks and moments of task shift [50]. Subtle head motion dynamics can predict ADHD in infants [75]; it has been
used to measure attention in classrooms and in meetings [57, 72]. Head motion has also been used to predict
speech prosody and heart rate [18, 24]; mirroring of head motion between patient and psychotherapist can also
predict patient outcomes [58].

Gaze is also a powerful indicator in attention research. Apart from directly linking head dynamics to cognitive
state, Stiefelhagen et al. were able to estimate gaze direction from head pose with 89% accuracy [67]. Given some
a priori knowledge of the environment, it is possible to predict fixation points using head pose and 3D location;
traditionally, this is accomplished with computationally demanding systems like camera-based eye tracking,
which can also result in very awkward wearable systems.

3.2 Collecting Physiological Data for Cognitive Analysis in Non-Laboratory Settings
Contact-based measuring techniques for cognitive state estimation are popular, especially for the consumer
market. Several products exist that claim to help improve your attention or learning, and aid in relaxation in
natural settings. Muse [4] is an EEG device that is designed to help train in meditation, but also claims to "make
it easy to access and use brainwave data, inside and outside the laboratory and in real world environments."
Muse has made practical trade-offs for real-world use than usual EEG systems, with dry electrodes that do not
require additional conductive gel for better coupling [32], but motion artifacts remain. Regardless, Muse no longer
directly supports access to the raw data [63]. There are other open-source methods of collecting raw EEG signals,
but most of these designs aren’t productized for on-the-go applications [5].
There are several commercial smart eyewear devices that include access to sensors data. Google Glass is

one such design that has gained traction across the academic spectrum, from analyzing head motion and blink
frequency for activity recognition [42], augmented-reality based indoor navigation [59], and even surgical
applications [76]. Google Glass was successful as a research platform because it was the first scalable platform
that could survive a user’s regular day, and it provided a software development kit (SDK). Unfortunately, consumer
adoption remains elusive and its design is not socially acceptable. Recent consumer smartglasses attempt to fix
this shortcoming, taking their design in a glasses-first direction. Vue [9] is a pair of glasses for activity tracking
that offer wireless bone conduction audio for discrete listening. They are designed to look like your average
pair of glasses, with all the electronics densely embedded within the plastics. Focals by North [2] takes a similar

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 93. Publication date: September 2021.



Captivates: A Smart Eyeglass Platform for Across-Context Physiological Measurement • 93:7

approach by offering activity tracking and a projected display onto one of the lenses for notifications and short
information intake. Unlike Google Glass, the display in Focals is not visible from the outside world, allowing
the glasses to retain a traditional design aesthetic. Both the Focals and Vue are sensor-rich systems and follow a
more consumer-friendly design approach but, unfortunately, offer no ability for researchers to grab any of the
raw sensor signals or to interface their own sensors.
To the best of our knowledge, J!NS MEME [10] is the only commercial platform that takes a design-first

approach for smart eyewear while also benefiting researchers with an SDK (though their software applications
are not currently supported outside of Japan). The platform includes a 3-axis gyroscope and accelerometer (420
USD) and optional EOG sensor (1050 USD). The EOG-version of the device has been used by researchers for
monitoring fatigue and drowsiness levels, but has been criticized for poor sensor performance and a lack of noise
robustness (i.e. when talking or moving) [62, 69]. As explained in Section 3.1 and further supported by these
studies, contact-based sensing includes additional data challenges for ambulatory measurements. Furthermore,
available gyroscope and EOG sensor data are processed through proprietary algorithms before exposed to the
researcher. J!NS MEME is a clear step in the right direction, but its lack of support outside of Japan, proprietary
obfuscation of raw data, and high price make it difficult for researchers to adapt it to their custom applications.

More general open-source hardware acquisition platforms do exist in literature that allow researchers to inter-
face multiple physiological sensors. In [20], a device is presented that uses a non-contact radiation measurement
for temperature and electrode-based techniques for ECG and EDA. Their results are promising, however their
system was designed for lab use (non-wearable and tethered), similar to OpenBCI. This is often the case for
these platforms— if they aren’t commercialized, there is little incentive to complete a robust design for other
researchers to use.

4 DESIGN PRINCIPLES
Given our motivation to build novel physiological sensing into a platform that would enable large-scale, long-term
study of natural contexts, we distilled our objectives down into a set of design principles. These considerations
were weighed with the help of various traditional and smart eyeglass manufacturers and product designers in the
United States, Shenzhen, China, and Seoul, South Korea.

4.1 Scalability
Given the significant time investment this platform demanded, we knew it was important to create a system
that could serve as the foundation for a larger portfolio of responsive systems. To this end, we chose a radio
transceiver that supports multiple radio protocols for easy integration into different network architectures. Our
system is designed to support meshing with similar devices over Google’s Openthread stack, in which each node
has enough on-board resources to serve as an active mesh intermediary in addition to the resources required for
simple edge computing. Mesh protocols are advantageous to future Internet-of-Things (IoT) adoption because
they sidestep support and troubleshooting related to individual router infrastructure.

4.2 Extensibility
It was a major goal to enable other researchers to use Captivates for their own experiments without redesign
work. We made the glasses easily reprogrammable without disassembly or rework, and fully open source, so
anyone may utilize the device. We also included enough additional connectivity to simplify integration with
outside sensing platforms, including support for multiple popular network stacks like Bluetooth.
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Table 2. System Specifications and Comparison

Design Target Captivates Google Glass Enterprise Edition 2 Focals by North J!NS MEME ES
Weight 44g 46g 72.57g 36g
Battery Life 10 hours <8 hours (depends on usage) 18 hours (intermittent use) 12 hours
Battery Recharge Time 3 hours 1 hour (fast charge) 2 hours 2 hours
Ruggedization None Water and dust resistant Water and dust resistant None

Sensing Modalities

•Nose and Temple Temperature
•Touch
•Blink Rate
•9-axis IMU
•3D Location

•Microphone
•Touch
•Camera
•Gyroscope
•Accelerometer
•Magnetometer

•Microphone
•Ambient Light
•Gyroscope
•Accelerometer
•Magnetometer

•Accelerometer
•Gyroscope

Actuators •Eye-facing LEDs
•Externally-facing LEDs

•Display Module
•Mono Speaker, USB audio, BT audio

•Display Module
•Mono Speaker None

Price $200 $1000 $599 $420

4.3 Design for User Comfort and Signal Robustness
Since this system is intended to be worn throughout the day, across static and dynamic activities (e.g., sitting,
walking, etc.), our sensing modalities were optimized for comfort as well as consistency across activity and
environment. As a result, we avoided sensors that require significant contact force (uncomfortable for long term
use) or skin adhesion (contact changes over time). Furthermore, electrode-based techniques that require this type
of coupling often have reduced signal integrity in long-term, mobile applications due to the dynamic mechanical
stresses at the electrode-to-skin bond during movement, and natural variation of other confounding electrical
sources, i.e. cardiac activity, ocular movements, eye blinks and muscular activity [23, 25, 34, 61, 73].

4.4 Manufacturability
After considering the appearance and comfort of the glasses, we optimized the system for easy production and
assembly. The design balances the part count and overall assembly time with ease of modification and extensibility.
Our goal was to have a system that is geared toward mass production, allowing us to cheaply scale production of
plastic parts and assembled printed circuit boards at a cheap cost. In addition, we also wanted the design to be
3D-printable to allow users to easily produce small batches with custom modifications.

5 SYSTEM DESIGN
In this section, we discuss the technical system design. Our goal is two-fold: first, to highlight engineering
work beyond typical prototype design that went into making these more product-like, in service of of ro-
bust real-world operation and design. Secondly, we intend to highlight the structure of the technical system
for researchers who might want to modify it. The design is open-sourced and available on our website at
https://captivate.media.mit.edu/resources.html.
We divide the system into three logical parts: the electrical, mechanical, and firmware. A summary and

comparison of our final system with other popular smart eyeglass systems is shown in Table 2.

5.1 Sensor Selection
Based on the design considerations outlined in Section 4, we cross-referenced the recent literature for phys-
iological indicators of cognitive load and attention. Much of the recent research is focused on frontal lobe
electroencephalogram (EEG). There are several initiatives already exploring this technique, including BrainCo
[3], Muse [4], and AttentivU [46]. Additionally, as described in Section 4.3, electrode-based techniques aren’t well
suited for long-term use and during mobile activities. For these reasons, we decided to refrain from this modality.
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Furthermore, contact-based sensing of this type always requires a physical, head-mounted wearable. One of
our criteria for sensor selection was the ability to approximate our measurements with off-body techniques. Any
insights from this research can thus be generalized (in specific environments) without the use of smartglasses
per se– unfortunately, this kind of contact-less physiological sensing infrastructure is too cumbersome and
expensive to scale across the many real-world environments visited by even a single user. Wearables present the
best opportunity to rapidly scale data collection across users and contexts.

We converged on a non-contact temperature sensor (i.e., thermopile) on the nose, as nose temperature correlates
with cognitive load [11]. However, since nose temperature is also influenced by external stimuli (e.g., air flow), a
baseline temperature measurement is required. For this we added a second non-contact temperature sensor at the
temple, which should not see rapid fluctuations during internal state changes [55]. The second sensor we chose
was an eye blink sensor, as cognitive load influences blink rate [49, 52]. To accurately measure blinks, we are
using an IR emitter/receiver pair since it is relatively low-power compared to cameras and can detect blink rate
and intensity [27]. We also include an IMU, which allows us to capture a person’s activity level and head pose
[41]. Head pose is correlated with gaze direction, which is important to determine what a user is fixated under
controlled conditions [67]. Lastly, we included VIVE Tracking System compatibility, so that off-the-shelf hardware
can provide each pair of glasses a 3D location estimate, ideal for events with crowds and/or monitoring individual
movement in a room. This can also be used for tracking fixations based on head pose and 3D localization data.
Finally, the system also includes on-board user-facing LEDs that can subtly alert the wearer to any notifications
(e.g., take a break, alertness is dropping, etc.) and influence their attention, as well as externally-facing LEDs for
creative use in performance.

5.2 Electrical System
5.2.1 Circuit Layout. In order to maximize the amount of circuitry that can fit into a traditional eyeglass form
factor, we spread the electronics across all faces of the glasses. This requires a three PCB-assembly design, one on
either side and a flexible one running across the front that connects both side electronic assemblies. The side
PCBs are standard FR4-core, at 0.8mm thickness to minimize the overall temple arm thickness. The front flexible
circuit is the most novel piece of circuitry that we designed, as it conforms to the contours of the eyeglass’s front
plastic housing, folds down into the nose piece, and robustly handles dynamic bending within the hinge. We
started with a 3D rendering of the flex that had the correct curvatures (Figure 2), which we then virtually unbent
using sheet metal tools in our computer-aided design (CAD) software to achieve a flat footprint (Figure 3).

One of the most challenging issues to overcome with this system was how to incorporate the sensors around
the nose into the electrical and mechanical design. From a design perspective, the easiest approach is to solder
the near-nose sensors to the flex circuitry through a set of wires, but this method significantly lengthens and
complicates the assembly process. Instead, we matched the bends of the flex circuit to that of the mechanical
housing around the nose, creating two tails of flex circuitry that included the temperature and blink sensors.
During installation, these tails fold into the grooves of the plastic housing without any additional soldering. The
final manufactured flexible circuit is shown in Figure 3.

5.2.2 Processors. A block diagram of the entire system is shown in Figure 4. For the main processor, we use a
dual-core microcontroller (MCU) that has an ARM Cortex-M4 processor for the user application and an ARM
Cortex M0+ processor for the network stack. This processor allows us to treat the MCU as an application processor,
without concern for network stack overhead. It supports quick embedded firmware development and increased
versatility for applications that don’t require the network component. It also supports three major network
stacks (i.e., Bluetooth 5, Zigbee 3.0, and OpenThread). The chip is thus a versatile choice, minimizing the need for
hardware redesign in a clean and simple electrical design that integrates this functionality into a single discrete
package.
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Fig. 2. Curved Flex Circuit Rendering

Fig. 3. Design of Flexible Circuit Board (Top is Front-facing, Bottom is Rear)

The dual-core MCU exists on one of the two-sided PCBs, which are separated and connected by the flexible
circuitry. Given that sensors exist throughout the glasses, and that the long separation between the rigid PCBs
can lead to signal integrity issues, we added a secondary Cortex-M4 MCU on the opposite side of the glasses.
This secondary MCU manages the sensors nearby, applies our preprocessing algorithms to those sensor streams,
compresses the data, and sends it to the main processor when ready or requested. While this increased the
software complexity, it allowed us to reduce the number of conductors passing through the hinges and across the
length of the flexible circuit.

5.2.3 Power Architecture. Our system utilizes two batteries for better weight distribution, but this approach
increases the complexity of our power architecture and charging circuitry. As shown in Figure 5, the lithium-
polymer batteries and their charge controllers are electrically separated in our system until they are interfaced
with our power multiplexer (MUX). This MUX is required because it is unsafe to put these batteries in parallel
for charging through one charge controller. The batteries are physically far apart (i.e., one in each arm) and
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Fig. 4. System Diagram

experience different environmental conditions; additionally, batteries from different manufacturing batches may
age at different rates. These conditions lead to possible cross charging (i.e., one battery depletes into the other)
and rapid aging. This choice means we do not have to design impedance matched charge lines to each of the
spatially separated batteries, which otherwise would have been difficult to model given the complexity of the
multiple circuit designs. Furthermore, The MUX supports asymmetrical battery topologies, in case in the future
we need to re-balance weight or add additional battery power to one side.

Within the multiplexer, the battery with the highest charge is prioritized until it discharges to around 0.2V
under the idle battery. At that point, the comparator of the MUX toggles a switch and the idle battery is set to
active while the active is made idle. If both inputs to the MUX are under 2.8V, the MUX goes into high impedance
mode and shuts off the battery inputs and system output completely. This ensures that the batteries aren’t over
depleted, which can result in damage to the batteries and other hazards. The MUX output then powers two 3.3V,
low-quiescent, linear regulators, one on each side of the system, and also directly powers the two LED drivers
located on the flexible circuit.

Fig. 5. Power Architecture
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Fig. 6. Nose Thermopile Fig. 7. Temple Thermopile

5.2.4 Temperature. The thermopile circuit consists of two analog thermopiles, one faced towards one side of
the user’s nose (Figure 6) and the other faced towards the user’s temple (Figure 7). These thermopiles are then
connected into an analog front end, which amplifies and filters the signal before being converted by the secondary
processor’s 12-bit analog ADC. Once a set of readings is collected by the secondary processor, the main processor
is alerted over an interrupt line, and after acknowledgement, the data is transmitted over the I2C bus to the main
processor.

5.2.5 Blink. The blink sensor is an IR emitter/receiver package that showed promising results in [27] on detecting
blink events. We experimented with different blink detection locations and found that putting the sensor on the
bridge of the nose, facing towards the eye, yielded the best performance. The near-infrared diode that emits light
can be modulated through the main application processor to better dynamically adjust the reflected power seen
by the receiving diode and enable synchronous detection. This feature is important for environments that have
external near-infrared light sources (e.g., sunlight) that can saturate our blink sensor.

5.2.6 3D Localization and Pose Estimation. For the 3D localization, we are using two VIVE base stations [1] as
our signaling sources in the environment in order to triangulate the glasses in 3D space. Each base station emits a
vertical and horizontal near-infrared sweep, alternating between both sequences and between both base stations.
Prior to each sweep, a pair of near-infrared LED flashes occur that signals to the receiver (i.e., the glasses) which
base station is sweeping and if the sweep is horizontal or vertical. Ultimately, a set of four sequential sweeps (i.e.,
1 horizontal and 1 vertical from each base station) repeats at a rate of 30Hz and is received by a near-infrared
receiver. With the receiver being calibrated to know the global coordinates of each base station, it can determine
where it is in 3D space by identifying the sweep and comparing the timing between sweeps. VIVE states that
a less-than 2mm accuracy and a range of 16 feet can be achieved with their system, but based on preliminary
testing we believe our tuned custom system can detect the base station sweeps at a range of at least 30 feet.
The hardware architecture for our receiver consists of three near-IR sensitive diodes, one on each face of

the glasses. The search criteria for choosing which type of diode to use consisted of finding a surface mount
component that had a slim form factor but a large enough receptive area that also offered adequate responsivity
to capture the momentary sweep. In addition, the field-of-view (FOV) needed to be large enough as to limit
any blind spots. We evaluated six types of diodes and found that the VBPW34FASR by Vishay performed the
best and conformed to our design constraints. The three Vishay diodes in our circuit are then tied together (i.e.,
summed) and passed into a transimpedance amplifier to convert the diode-generated current into a voltage. The
reason for the summation is that we wanted to treat the system as a point mass that has a large FOV so that as a
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person turns their head, at least one diode will still be exposed, increasing the reliability of the system. This also
allows for a simpler analog front end with the trade-off of decreased accuracy, since the diodes are not spatially
co-located but are treated as such in software.

For head pose, we chose a digital 9-axis IMU that connects to our I2C bus and offers various internally computed
metrics, such as activity classification and a quaternion matrix for estimating head pose. Software calibration
was done to align the IMU’s reference coordinate system to the glasses coordinate system for accurate head pose
estimation.

5.2.7 Other Components and Interactivity. Our system offers a few other components for easy usability, interac-
tions, and actuation. In order to easily program our system, we wired the USB micro port to both the battery
charging circuitry and to the single-wire programming interface for the main application processor through
a modified USB cable and an ST-Link Programmer— this can be done by anyone with just a programmer and
a spliced USB cable. In addition, the system has two capacitive touch points on the left arm that are sensitive
enough to identify taps and both forward and backward swipe gestures. The sensitivity of the touch points can
be adjusted in software to tune for specific applications. Finally, as shown in Figure 8, there are six RGB LEDs,
one facing towards either eye, two on the top, and two facing forward. The LEDs toward the eye are intended to
be used as notification [22] while the other LEDs can be used for crowd applications (e.g., a concert where the
LEDs are actuated by the person’s physiological signals). Our electrical design features several GPIO breakout
pads scattered throughout so to make retrofitting for other applications easier.

Fig. 8. LED Locations

5.3 Mechanical Design and Assembly
The mechanical design of the glasses required several iterations as we converged to a final form factor. As outlined
in Section 3.1.3, we wanted to choose a design that looks less like a research prototype and more like a traditional
pair of glasses that is acceptable to wear in public contexts. Figure 1 shows the front view of our most recent
design. Openings above the bridge of the nose and on either side of the glasses expose the near-IR diodes to the
incident light emitting from the VIVE base stations. These openings may be covered with near-IR transparent
plastic, but we’ve left them open for easy debugging. These openings can be covered or completely omitted for
applications that do not require the 3D localization feature.
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Fig. 9. Pre-bent Flex Circuitry
Fig. 10. Inside of Front Hous-
ing

Fig. 11. Sealed Front Housing
with Flex Circuit Integrated Fig. 12. Adding a Side Leg

5.3.1 Hinged Design. We iterated on various hinge types, including initial attempts where the hinge was omitted
entirely and the glasses were rigid. The rigid option proved to be nonideal since it made it difficult to transport
the device between locations due to the fragility in the rigid arms acting as cantilevers on the joint. This early
prototype was also seen as being less socially comfortable to wear when we polled our peers and later validated it
in our comfort study (Section 6.2) so we know a redesign was warranted if we wanted long-term, daily use. As we
talked with more glasses designers, we learned the importance of designing spring action into the glasses. Usually
these spring points are at the hinge and above the bridge of the nose, and flexible plastics like Nylons are used.
After a rigid prototype, we attempted to use off-the-shelf spring hinges for glasses as a starting point. Eventually,
we settled on an approach that is commonly found in smart eyeglasses, designing a completely custom plastic
hinge with the flex circuitry running through the middle of it. Our flex circuitry is preformed (Figure 9) and
inserted into the front housing, resting on internal raised plastic features (Figure 10). The flex circuit is then
sealed by a piece of plastic acting as the back plane (Figure 11) and then the arm is able to be rotated around the
flex circuit (Figure 12) and inserted into the plastic via a fastener running through the rotating axis of the hinge.
The hinge preserves a wide bending radius in the flex PCB in open and closed positions, as well as plastic guards
to protect it from direct exposure to the external environment.

5.3.2 Light Pipes. One of the design features we were most excited about was to have the glasses include a
feature that allowed them to transition from normal day use to a more festive environment where we can visually
actuate individuals and groups based on internal and external stimuli. To do this, we included a few RGB LEDs,
including one on each brow that would light up the entire top ridge of the glasses. One way we attempted to do
this was by crafting a piece of polymethyl methacrylate (PMMA), also known as acrylic, to form a light pipe
for the light from the RGB diode to transmit through. For our design, we needed the light to diffuse through
the acrylic and evenly illuminate only the outward face of the light guide while internally reflecting on all the
others for maximum efficiency. We worked with a manufacturing facility in China to laser cut these PMMA
pieces and chrome-coat three of the four sides to maximize the light emmission on the top-face (Figure 13).
Although this method worked, we found it to be cost prohibitive given that a single piece cost us over $50 to
custom manufacture.
An alternative approach that we settled on was to use side-glow fiber optic cables. A traditional fiber optic

cable is not suitable, since it lacks additional cladding on the cable’s surface that allows for greater diffusion of
light across the length of the cable. Side-glow fiber optic cables, however, have a cladding, usually clear Teflon,
that decreases the critical angle of incident on the internal surface that is required for external emission of light.
Figure 14 shows the fitted 1.5mm diameter side-glow fiber optic cable illuminated in our design. Apart from the
brow lighting, we also have lighting at two points on the front face of the glasses where some traditional glasses
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Fig. 13. PMMA Light Pipe: Chrome-Plated (Top) and
Non-Plated (Bottom) Fig. 14. Illuminated Brow of Glasses

Fig. 15. One Sided Commercial Battery Design of
Smart Eye-Wear Fig. 16. Battery Placement in Captivate’s Arm

have rivets. To increase light visibility, we added commercial-off-the-shelf PMMA light pipes with fresnel lensing
on one end so that the emitted light is less directed, offering better angular visibility.

5.3.3 Battery Placement. A tip we received from the manufacturers in Shenzhen is that battery placement in the
glasses is important for weight balance and power capacity considerations. Batteries are usually the most dense
component in a pair of smart eyeglasses so their positioning matters due to weight distribution. If placed too far
forward, the glasses can slip off easily and if placed behind the ear, can lead to a less traditional aesthetic due
to the battery’s large form factor. There are batteries with curved designs that can potentially go around the
ear but those designs come at a trade-off of decreased power density and likely require custom manufacturing.
Oftentimes, designers put a single battery on only one of the glasses (Figure 15) to simplify the design, but any
imbalance can lead to concentrated stress regions on the nose pad due to the battery’s mechanical moment. The
ideal method is two identical batteries, one on either side, to better balance the weight at the cost of complexity
in power distribution architecture and charging circuitry.
For our design, we have two, 150mAh, batteries on either side of the glasses, running in series with the side

printed circuit board. The circuit boards are designed so that when assembled, the width is uniform across the
batteries and across the circuit board assemblies for a streamlined design (Figure 16).
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5.4 Firmware Architecture
For a system of this complexity, given all the sensor channels, potential future channels, and preprocessing steps,
it’s warranted to use a low-level operating system to help keep track of all the events, prioritize any events that
need more real-time action, and provide the utility for easy debugging. To do this, we decided on using a real-time
operating system that already has native support for the processors we are using and has a variety of tools that
aid in debugging and in modeling the system’s performance.

5.4.1 FreeRTOS. We decided to use an open-source real-time operating system for this project since it simplified
the software design and makes it easy for new researchers to disable current software subsystems or add-on
new functionalities. FreeRTOS is a lightweight real-time operating system that is capable of being run on
microcontrollers and small microprocessors which makes it suitable for this project [7]. This operating system
is also supported by ST Microelectronics, the manufacturer of our processors, and has several additional tools
written by ST Micro for easier system integration. FreeRTOS allows for the encapsulation of individual blocks of
code into threads that can be triggered by a variety of sources (e.g., hardware interrupts, timers, other threads,
etc.) and has various methods of passing messages across threads (e.g., queues, semaphores, mutexes, etc.). This
encapsulation allows you to think of the firmware system as embedded blocks of code that have a deterministic
operating behavior. In addition, FreeRTOS offers various debugging tools that allow you to assess the memory
and time utilization of the processor in real-time to model the system and determine if certain threads are causing
delays or deadlocks. This allows for more efficient debugging since the problem can be quickly pinpointed to
specific logical blocks.
As shown in Figure 17, there are a variety of threads in our system, all controlled by a master thread within

each processor. The master thread receives queues from either the radio communication thread or inter-processor
thread to enable certain sensor channels, actuators, or to send or receive messages. After enabling, each sensor
channel is triggered by the hardware resource it uses for the most efficient operation. For the blink sensing, the
direct memory access (DMA) controller is used so that when sampling the blink sensor at 1kHz, the thread only
awakens every second (i.e., 1000 samples) to preprocess and pass the data pointer to the master thread where the
data is packaged for transmission. For inertial sensing, the digital IMU interrupts the processor when data is
ready to be transmitted, triggering the Inertial Sensing Thread to start I2C transmission. The secondary processor
also interrupts the main processor once it buffers 10 samples from each thermopile sampled at 10Hz and waits
for an acknowledgment before sending the data over I2C.

Fig. 17. FreeRTOS Threads in System

5.4.2 3D Localization. The 3D localization code was adapted from prior work done in [65]. Every time one of the
near-IR diodes is saturated by incidence light (i.e. rising or falling edge), an interrupt is triggered which results in
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a callback recording the exact timestamp of the event in microseconds. These timestamps are then fed into a
thread that classifies if the event was part of a sequence (i.e., two flashes and a sweep) or if the event is noise. If
part of a sequence, the code catalogs all the sweeps and calculates an estimate for the 3D location of the device.
Since the code requires the global coordinates of the VIVE base stations, they can either be hardcoded into the
software or updated via the server.

5.4.3 Networking: OpenThread. For networking, there are a few protocols that we could have chosen to use with
our network processor. In the end, we wanted to use something that was scalable, supported across a variety
of platforms, and could integrate well with server infrastructure and ultimately, the internet. The most ideal
candidate was an open-source version of Thread [8] called OpenThread [6]. It "is an IPv6-based networking
protocol designed for low-power Internet of Things devices in an IEEE 802.15.4-2006 wireless mesh network,
commonly called a Wireless Personal Area Network (WPAN). Thread is independent of other 802.15.4 mesh
networking protocols, such a ZigBee, Z-Wave, and Bluetooth LE" [6]. OpenThread has a variety of features that
makes it suitable for our system. One primary advantage is that it’s a protocol that is seeing wide adoption across
a variety of platforms, and since its being supported by Google, it’s integrated into many of their home devices—
in theory, our system could use Google Home nodes as hops in our network. It’s also scalable to hundreds of
nodes, making it ideal for future integration of our glasses into an ecosystem of sensors and actuators. In addition,
it’s IPv6-based so integrating it with other IPv6-based systems is simple and doesn’t require a network translator,
making it appealing for a "future-proof" implementation. There also exists Contiki [30], another low-power
IPV6-based protocol with evidence that it has improvements in latency and packet loss rates over OpenThread
[31]. However, [31] was just an introductory comparison between both protocols, and more work needs to be
done on measuring the power efficiency and performance of both protocols. We chose to stick with OpenThread
due to the native support ST offers for our network processor and the active open source community around it.

5.5 Network Architecture
In this section, we describe our work on the network infrastructure that allows the system to easily scale for
multi-user applications. We also present a dashboard we designed to allow for researchers to monitor and interact
with all the connected active systems.

5.5.1 Server. OpenThread has a variety of node types that can exist in a given network [6]. One is a Full Thread
Device (FTD) that is classified as a node that is always on and can be used as one of the 32 main routing nodes in
the network. Another type is a Minimal Thread Device (MTD), which is a node that always needs a parent to
forward traffic through and can go into a sleep mode to conserve power. Within FTDs, there exists a role type
of Border Router that is a device that "can forward information between a Thread network and a non-Thread
network (for example, Wi-Fi). It also configures a Thread network for external connectivity" [6]. This type of
role is suitable for a server, since it has direct access to the thread network and can connect to the internet to
outsource the data. Therefore, for indoor applications with internet accessibility, we use a Raspberry Pi equipped
with a network node that is configured with the OpenThread Border Router (OTBR) build of the network stack
to interact with our system through any internet-connected computer using a dashboard that will be described in
Section 5.5.3.

5.5.2 Server Protocol. For the actual server component of the network, our OTBR uses a custom implementation
of the Constrained Application Protocol (CoAP) [64]. CoAP is a "specialized web transfer protocol for use with
constrained nodes and constrained (e.g., low-power, lossy) networks" [64]. CoAP is ideal because it is "designed
to easily interface with HTTP for integration with the Web while meeting specialized requirements such as
multicast support, very low overhead, and simplicity for constrained environments" [64]. There exist a few open
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source implementations, so we chose to modify a build of CoAPthon [70] since it was written in Python and was
relatively simple to add multicast functionality, a feature that isn’t often fully supported in other builds of CoAP.
Each eyeglass node in our network hosts a few server endpoints that other nodes can query to retrieve the

node information, such as unique indentifier (UID), node type, sensor status, and server time. Each node can also
have its real time clock synchronized by the OTBR and have other settings modified as well (i.e., enable/disable
sensor channels, actuate lights, and unicast to OTBR). The OTBR’s CoAP server is the main endpoint to where
all the eyeglass nodes send their data when logging for an experiment. However, it’s easily capable for one
eyeglass node to send another few metrics that can be used to synchronize actuations. One example that can be
implemented is synchronizing lighting across glasses based on collective physiology measurements to visually
identify how an audience is reacting to a performance.

5.5.3 Captivate’s Dashboard. The OTBR has also been configured to send and receive encrypted packets over the
internet to a graphical user interface (GUI) dashboard that we designed for our system (Figure 18). The dashboard
was built using PyQt and offers various control and visualization tools [56]. First, it allows you to connect to one
of our OTBR nodes and view a list of all the nodes in the network with their IP, node type, short description,
and unique identifier shown. The dashboard allows you to select which sensor channels to enable on the glasses
and to toggle streaming of those sensor channels. On the right, you can visualize the signals being transmitted
from the system in real-time. On the left, you can see the live quaternion values, a list of activities and how
confident the system’s classification is of each activity being performed (e.g., walking, running, sitting, etc.), and
their approximate 3D location in a room if the VIVE system is active. If the inertial sensor channel is activated,
there is a secondary window that appears that shows a block rotating in the same directions as the glasses. The
dashboard also allows you to manually toggle and set the color for each LED on a pair of glasses and offers the
ability to orient the inertial system in order to properly calibrate the IMU in the reference frame of the glasses.

Fig. 18. Graphical User Interface for our OpenThread Border Router
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5.6 Production and Extensibility
We opted to manufacture our plastics using Nylon PA12 through a selective laser sintering (SLS) 3D printing
process using an external vendor since Nylon is much more resilient and robust than other 3D printing materials
while SLS printing offers a more uniform surface finish. However, we were also able to print all of our mechanical
components with consumer-grade 3D printers (e.g., Formlabs Form 2, Prusa) so that is an avenue that is available
for quick experimentation.

Our two rigid circuit boardswere designedwith specifications that fitmost common circuit boardmanufacturers’
capabilities (i.e., 4/4mil traces, 4 layers, 0.8mm board thickness, 0.2mm minimum hold sizes, and 1oz copper).
The front flexible PCB is the only design feature that has a custom design feature, specifically having transition
regions between 2-layers and 4-layers. We worked closely with a manufacturer in Shenzhen on producing the
boards so it is possible other manufacturers may be able to support this feature. Otherwise, you can avoid the
transition altogether and just make a 4-layer flexible PCB which would trade-off robustness for added simplicity.
For circuit board assembly, we were able to assemble a few sets by hand in our lab but many of the components
are small and the front flexible PCB has 2 ball grid array (BGA) components so if lacking the soldering capabilities
and expertise, an outside assembly service is recommended.
For researchers wanting to add additional sensing modalities, we’ve added a few thru-hole connections on

the PCB located on the right side that provides 3.3V power, ground, and connections to 3 general-purpose
input/output pins on the secondary MCU, equipped with access to the I2C communication and analog-to-digital
conversion (ADC) peripherals. If some of the existing sensing subsystems are not needed for an application, those
sensors can be removed and the existing connections can be re-purposed. One example would be to remove the
blink sensor and use the existing power and the ADC lines to sample the signal of a different sensor. To make this
easier, we’ve added various thru-hole regions on the front flexible circuit that wires can be soldered to. Another
method that can be used is removing the PCB with the secondary processor and reusing our existing power
circuit to design a new board with other sensing modalities.

All the electrical and mechanical design files are linked on our website, as well as further information on our
progress with the system: https://captivate.media.mit.edu/.

6 VALIDATION AND DISCUSSION

6.1 System
We calibrated the antenna circuit using a vector network analyzer (VNA) while the PCBs were in the eyeglass
frames and on a users head. This approach is warranted since any mass near the antenna can attenuate the signal
and distort the balance of the circuit. We also calibrated our 3D Localization System by tuning our circuit to
barely saturate at 30-feet from the VIVE emitter, ensuring our signal-to-noise ratio is optimal for that range. In
the next subsection, we describe our detailed calibration of the temperature sensors.

6.1.1 Temperature. To estimate cognitive load, you only need to measure relative temperature differences from
the baseline [11] so thermopile calibration for absolute temperature approximation is less important. However,
for applications that require an accurate estimation of absolute temperature, a thorough calibration should be
performed on each individual thermopile since different resistive losses and noise artifacts exist based on the
location of the sensors.

As shown in Figure 19, a thermopile is a series of thermocouples with one set of junctions fixed to the sensor
housing (reference junction) while the other set (active junction) is coated with an infrared absorbent material
and exposed to ambient light, usually blocked by a far-infrared transmissive material to filter the incident light.
As a temperature differential forms between the two sets of junctions, a voltage differential is created through a
process known as the Seebeck Effect.
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Fig. 19. Thermopile Architecture [15]

As explained in [36], the total radiation emitted by an object that does not selectively emit or absorb specific
wavelengths is defined as

𝑃𝑜𝑏 𝑗 = 𝜎𝜀 (𝑇𝑜𝑏 𝑗𝑒𝑐𝑡 )4 (1)
where 𝑃𝑜𝑏 𝑗 is the total radiation power emitted by an object, 𝑇𝑜𝑏 𝑗𝑒𝑐𝑡 is the temperature of the object, 𝜎 is the

Stefan-Boltzmann constant, and 𝜀 is the emissivity of the object. For many objects, the emission factor is between
0.85 to 0.95, where 1 is for an ideal black body. Equation 1 is formally known as the Stefan-Boltzmann’s Law, and
combining it with the Seebeck effect, we get

𝑉𝑇𝑃 = 𝐴(𝑇 4
𝑜𝑏 𝑗𝑒𝑐𝑡

−𝑇 4
𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

) (2)

where 𝑉𝑇𝑃 is the thermopile voltage, 𝑇𝑜𝑏 𝑗𝑒𝑐𝑡 is the temperature at the active junction, and 𝑇𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 is the
temperature at the reference junction [43]. The constant,𝐴, is a product of the thermal resistance of the thermopile,
number of thermocouples within the device, the Seebeck coefficient, net emissivity between the object and
the device, Stefan-Botlzmann constant, and field of view (FOV) of the device. In most cases, this constant is
approximated for during calibration by varying the temperature of an object and of the thermopile housing, while
placing calibrated thermocouples throughout. Rearranging equation 2 to get 𝑇𝑜𝑏 𝑗𝑒𝑐𝑡 as a function of 𝑉𝑇𝑃 , we have

𝑇𝑜𝑏 𝑗𝑒𝑐𝑡 =
4
√
𝑇 4
𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

+𝑉𝑇𝑃/𝐴 (3)

However, in [71], it is recommended that we also account for heat flow other than radiation, such as convection
and conduction from nearby objects. We modify our equation as such,

𝑇𝑜𝑏 𝑗𝑒𝑐𝑡 =
4
√
𝑇 4
𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒

+ 𝑓 {𝑉𝑇𝑃 }/𝐴 (4)

where
𝑓 {𝑉𝑇𝑃 } = (𝑉𝑇𝑃 − 𝑎0) + 𝑎1 (𝑉𝑇𝑃 − 𝑎0))2 (5)

and 𝑎0 and 𝑎1 are terms to solve for during the calibration process.
For our system, to estimate each thermopile’s reference temperature,𝑇𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 , each thermopile has a thermistor

built-in with a manufacturer-provided characterization [14]. To calibrate, we took a Peltier module that converts
a voltage potential into a temperature differential and using a thermal compound, embedded a calibrated
thermocouple between the Peltier module and a thin piece of laminate material. We then placed a calibrated
digital thermopile right next to our analog thermopile as a reference. Finally, using thermal compound again, we
attached a thermocouple to the housing of the thermopile to estimate the accuracy of the built-in thermistor. A
diagram of the test is shown in Figure 20 with a snapshot of the experiment in Figure 21.
The test was performed over 10 different temperatures for both the nose and temple thermopiles, ranging

from 60-115 degrees Fahrenheit, the average temperature ranges expected across the surface of a person’s skin.
For each iteration, we waited a minimum of 5 minutes to ensure the temperature of the reference object has
stabilized. After the experiment, we used non-linear least squares to solve for the constant𝐴 given𝑉𝑇𝑃 ,𝑇𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ,
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Fig. 20. Thermopile Calibration Test Setup Diagram Fig. 21. Thermopile Nose Calibration Test Setup

Table 3. Thermopile Calibration Values

𝐴 𝑎0 𝑎1
Nose Thermopile 7.80e-10 -2.31e-01 3.61e-03
Temple Thermopile 4.21e-10 -3.62e-01 8.31e-02

and 𝑇𝑜𝑏 𝑗𝑒𝑐𝑡 . This allows for a suitable approximation for temperature within our ranges but assumes constant
emissivity. This assumption doesn’t hold true given the variety of skin types, so a more thorough calibration
is warranted where the emissivity of the object and 𝑇𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 are varied. Table 3 shows our results from the
least-squares approximation; these values compensate for differences in resistive loading for each thermopile
(e.g., variable trace length), in addition to calibrating the thermopiles for absolute temperature measurements.

Fig. 22. Thermal imaging (right), the OpenFace video analysis tool (center), and a comparison of orientation data between
the glasses and extracted from the video (a tighter blue cone is better).

6.1.2 Real World Evaluation. We validated the system in a pilot study in which 5 participants (2 female/3 male,
ages 26-34) wore the glasses while being videotaped using a GoPro set to 60 FPS/1080P. Participants were recorded
in naturalistic environments (their offices or homes) working as normal. Over 45 hours of data were collected in
this way (>9 hours per participant on average).
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This data has high ecological validity– participants have a range of face sizes and morphologies, studies were
done at various points in the day from 10 AM to midnight in various lighting conditions and environments, and
gaze and blink patterns varied dramatically over participants and over tasks. One participant made infrequent
but clear shifts in visual attention between their screen and a desk; another participant shifted gaze frequently
between a phone, a laptop, and a television screen; a third was making frequent large gaze shifts across a large
monitor. Recorded activities were screen-based because we needed long-term, consistent and clear video recording
of participants’ faces. Blink behavior across participants varied dramatically, from an average of 11.3 blinks/min
to 62.1 blinks/min over individual participants (31.0 blinks/min average across users).
We performed three basic comparisons to ensure our glasses data was of high quality. For two of these

comparisons, we used the OpenFace machine learning classifier tool on our videos as a reference point (center of
Figure 22) [19]. OpenFace uses trained machine learning models to calculate facial landmarks that are then used to
estimate facial muscle movements (e.g., blink, smile, eyebrow raise, etc.). OpenFace struggled with our naturalistic
videos– especially due to the framing and camera angles that we were forced to use when installing them in
participants’ real workspaces. We strived to install the camera in a way that the eyeglasses do not occlude the
eye area of each participant from the camera. Due to the nature of how OpenFace calculates landmark positions
based on existing models, it’s uncertain to use if occluding part of a subject’s face reduces the accuracy of the
initial landmark estimation. For two participants, OpenFace’s self-reported successful classification rate was
between 25 and 40%. With manual cropping and editing, we were able to improve these classification rates to
between 65 and 85% per participant. For all further comparisons, we utilized contiguous video sections longer than
200ms (the duration of a blink) where no more than 2 consecutive frames were dropped by the classifier. Time
alignment between the video and glasses data was performed by looking for common minima in an extracted
blink signal cross-correlation across several of these video sections. This time alignment was verified visually
with a data-video overlay.

1. Thermal Comparison We did a few simple comparisons between an Optris PI400 infrared camera (382x288
pixels, .08°C sensitivity, and ±2°C accuracy), pointed at the side of the face where we are collecting thermopile
data, to ensure proper functionality of our thermopiles in realistic settings (as seen in Figure 22L). This basic
comparison revealed agreement over several times between the Optris and the glasses data, within the error
of our Optis measurement. While our data is aligned, even these high-cost IR cameras do not have the pixel
resolution to precisely capture 5mm2 patch of skin underneath our thermopiles at a distance that still allows
for naturalistic participant behavior (the entire nose is blurred over 20 pixels at the demonstrated resolution
and distance, and this effect of this spatial averaging varies with subtle participant motion). We expect higher
resolution, and more spatially consistent data from our thermopiles than an IR camera can provide; however, this
did serve as a reasonable verification that the calibration process described above was functioning properly.

2. IMU Comparison IMU data was referenced against head orientation as extracted from OpenFace. OpenFace
uses a world coordinate system at the frame rate of 60Hz, while our IMU data is referenced to the head and
captured at 10Hz. To check for agreement, we interpolate the IMU data to our IMU timestamps and calculate the
orientation transformation required to map the OpenFace orientation to the IMU orientation at that moment.
Figure 22 (right) shows these transformations for each time-step over several minutes for Participant 5. Ideally,
the mapping between the IMU and OpenFace data would consistently fall at a single point on the unit sphere
(one reading maps exactly to another with the same coordinate frame transfer). If the IMU data and the OpenFace
data were uncorrelated, we’d expect the yellow unit sphere pictured. Naturally, we get a cone centered around
the coordinate transform, which shows the combined error in measurement between the IMU and the OpenFace
classifier. The error we see in this cone has a standard deviation (in Euler angle °) of [20.4, 9.8, 22.2]. This
demonstrates a rough agreement of motion from one measurement to another across time. Participants often
move around their environment in the study, and the quality of the OpenFace orientation extraction as a face
frequently translates forward and backward is un-characterized; however, this check combined with other basic
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checks for drift leads us to believe the IMUs are functioning within the manufacturer specifications of <5 degrees
of absolute error at all times, capturing transient behavior that is correlated with activity, physiological state, and
mental state.

3. Blink Comparison To ensure blink data from the glasses was reliable, we designed a basic, micro-controller-
friendly algorithm to extract blinks from the IR signal received by the glasses. This algorithm not only captures
blink timestamps; it captures useful metadata about each blink that has been shown to correlate with alertness
[12]. The algorithm works as follows, and was applied to each participant without personalization (See Figure 23
for representative data):

1. Low Pass Filter the raw 1kHz IR data (light orange) using a 50-point moving average filter (green).
2. Take the first derivative of this signal (red) and smooth it with a 25-point moving average filter (purple).
3. Using a fixed threshold of -0.05, wait for 100 peaks in the first derivative signal that dip below this. At this

point, we predict the user is wearing the glasses.
4. Record the next 100 minima below -0.05. We know from preliminary testing that >10% of these are almost

assuredly real blinks, and >10% are almost assuredly not, across all users and conditions.
5. Calculate the average value of the 10 shallowest peaks (a noise metric close to -0.05) and an average of

the 10 largest peaks (known true blinks) from these minima; calculate a threshold value a quarter of the
distance between them, just above the noise level.

6. Compare the running first derivative signal against the threshold; whenever it drops below this value,
we consider a blink to have begun. For the next 175ms, we monitor the first derivative and capture the
minimum eye close velocity (the negative peak), the maximum eye open velocity (the corresponding
positive peak), and the difference in timestamp between these two (a blink duration). This search window
and duration are shown when the blink detector triggers in a faint brown (search window) and dark brown
(extracted duration).

Initially, we planned to use OpenFace [19], a common standard reference for face tracking, as our baseline
for blinks. We quickly realized that OpenFace struggled to locate blinks properly within our data, even after
hand-cropping the videos to increase classification success. Moreover, OpenFace’s ’confidence’ metric did not
directly map to the blink signal– when participants gaze downward at a desk or a phone, they can appear almost
as though their eyes are closed. This is a situation where the head remains confidently ’tracked’ but blink detection
is very difficult for the classifier.

To overcome this, we hand-labeled over 2 hours of blink footage, capturing 2586 blinks (>500 per participant).
These labels are done by watching footage (in slow motion for fast blinkers) and tapping in time on a keyboard–
as you can see from the blue outlines of hand annotations in Figure 23, they are not always perfectly accurate. To
handle these timing errors, we use a wide margin for error of several hundred milliseconds when estimating the
quality of OpenFace and our glasses data.

We hand-labeled only footage that had been pre-selected for its high confidence from OpenFace but we were
still forced to skip about 15 min of footage that contained sections that were difficult for labeling (i.e., the head
was at an angle such that blinking was occluded). Our results for OpenFace blink detection thus overstate the
quality of OpenFace blink detection based on the provided confidence metric, since we’ve thrown away about 1/5
of footage that contained some of the most difficult and ambiguous ’confident’ OpenFace blink data.

For our glasses, while the IR emitter is normally on to ensure a strong received signal, we designed the circuit
to latch the emitter off in bright IR conditions to prevent diode saturation. We did not encounter this condition
in our testing (though many of our indoor environments had bright ambient light from nearby windows); the
received signal was consistently in a good envelope. We did, however, detect a couple of small instances of bursts
of environmental IR pollution from other electronics. These instances are easy to identify because they cause
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consistent and repeated blink detection at a constant rate over a short period. We removed an additional 2-3
minutes’ worth of data from the two hours of our recording because of this issue.

Our results are listed in 4. The glasses algorithm outperforms the OpenFace classifier by a wide margin, even
for a relatively constrained naturalistic test with a generic blink detection algorithm. Breakdowns in classification
accuracy are quite different for both algorithms. OpenFace struggles when people are looking down (i.e. at their
phone), which they do a lot in natural settings.
Ironically, participants with rich IR glasses data streams perform the worst with our blink detection (lower

participant as compared to upper participant in Figure 23). This data captures more secondary eye movements– it
is marked by good IR coverage of the eye, high contrast between pupil and cornea, and lots of attention shifts and
saccadic movement– and these details can significantly alter reflected light, which engages the blink detector.
In the raw IR data, we can see characteristic signals of a blink, but we also see the opportunity to extract

gaze/attention shifts (looking down at a phone or desk vs up at a screen) and even saccadic eye movement in some
cases. With a more complex future algorithm that incorporates metadata about the blink, signal shape, and/or
classifies other eye movements like gaze shifts, we should be able to do an even better job than this baseline
technique.

Fig. 23. Representative blink trace data from Participant 3 (bottom) and Participant 5 (top).

These early results have been further corroborated in a separate pilot user study with a further 6 participants, in
which each user performed half an hour of cognitive tasks (IRB protocol #2001000083) alongside video recording.
Initial results show comparable performance to off-body systems across subsystems and users in this test as well.

These results give high confidence along a few major dimensions: first, our sensor geometry is designed well
enough to accommodate a diversity of head sizes and eye/nose angles. Secondly, we see useful data capture
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Table 4. OpenFace and Glasses Algorithm Success for Detecting Blinks Across Participants.

OpenFace glasses algorithm
participant # sensitivity (%) false discovery (%) sensitivity (%) false discovery (%)

1 38.4 21.7 91.9 5.0
2 53.3 58.0 88.7 33.8
3 67.7 19.1 62.1 18.2
4 75.9 37.9 85.2 19.9
5 68.9 44.4 80.3 14.7

overall 61.2 38.8 81.6 18.2

with the glasses that outperforms high quality and well-controlled external references. We anticipate noise
due to motion, temperature acclimatization, and external IR sources to become more pronounced under social,
ambulatory conditions. These initial findings support the idea that large scale, naturalistic data collection are a
fundamentally different challenge than typical highly-controlled, heavily-repeated laboratory experiments, and
that Captivates is positioned well to extend our research into these challenging, novel scenarios.

6.2 Design
As we’ve outlined above, a major objective of the Captivates project is to create a pair of glasses that significantly
improves on aesthetics and comfort, while maintaining all day robust performance. As much as possible, we
wanted to build something that would not alter behavior or interpersonal interaction; a pair of glasses that had
the highest likelihood of fading into the background over the day.

To test this hypothesis, we purchased several other pairs of smartglasses for comparison and ran some initial
surveys. The glasses we used are shown in Figure 24; they include well known smartglasses: Google Glass,
which includes a suite of functionality, including an outward facing camera; Bose AR, which simply plays audio;
the Snapchat Spectacles, which can take a picture on demand; and the GoVision video recording glasses. We
chose these glasses as reference points because they bound interesting corners of our design space– all include
electronics, but the Bose AR hides it completely, designed for broad appeal by a large corporate team with
access to market research. Google glass embraces a tech-futuristic aesthetic; our prototype could be (generously)
construed this way as well. Spectacles are well-designed, but have outward facing sensors like Captivates.

To compare against these products, we included our initial prototype (same functionality, unoptimized for aes-
thetics) and our final design. Our survey population included 101 participants; 63% female, and of all participants,
50% wear glasses daily and overall, skewed slightly towards 26-35 year-olds (57%). In addition to evaluating each
pair of glasses, we rated participants on the SCS-R scale for Public Self Consciousness and Social Anxiety, to see
if there were trends mediated by these psychometrics. Distributions along these axes were unimodal and no clear
differences in ratings appear for high vs low groups in either category.

The results, shown in Figure 25, reveal some interesting trends. In the survey, a neutral option was also available
to participants. We opted to exclude neutral ratings in these charts to highlight trends in strong reaction to each
pair, but each rating sums to a count of 101 with neutrals included.

First, we notice that all of these glasses fare pretty poorly on style– even the most positively reviewed pair here
received only 20% favorable ratings (Captivates received 18%). This is not surprising after our conversations with
glasses manufacturers; glasses are a style accessory, and it’s quite difficult to make a single pair that is generally
well-liked. Our initial prototype performed notably worse than the rest, both as ranked for personal style and in
general appearance. The final Captivates design performs comparably to these other products.
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The Captivates glasses actually do quite well compared to the others along self-assessed behavioral dimensions;
they perform quite competitively with scores of comfort wearing them in public, private, and during conversation,
as well as in assessment of discomfort to others (only outperformed by the Bose AR glasses). This is a truly
significant shift from the rankings of the prototype (where an overwhelming 85% are uncomfortable with the
idea of wearing them in public or while conversing), and clearly justifies the increased effort if our goal requires
us to minimize changes in social behavior, self-consciousness, and stress or anxiety.
These behavioral ratings do not follow from the style ratings; they instead appear more closely linked to

notions of social norm violation (do they look normal, and is it clear that they encapsulated electronics). Along
these dimensions, the Captivates fares quite well, alongside the Bose AR and the GoVision frames.

A reasonable conclusion is that self-assessed comfort in social situations is dominated by the stigma surrounding
social norms (video recording and electronics) compared with personal fashion or style match, as long as the
style is somewhat conservative and doesn’t grab attention. That is a positive result; it validates the notion that a
generic pair of glasses doesn’t alter self-assessed behavior as long as its style is within the norm (there is minimal
advantage to trying to tailor the glasses to individual style for research). It also validates the notion that going
from an obvious prototype that is outside the norm and has obvious electronics to something that looks ’normal’
and integrated has a huge impact on self-assessed behavior.
There is still obvious room for improvement. The Bose AR are the best anchor point in this survey, as they

include minimal electronics that are not visible, they have no electronics or unusual features on the face of the
glasses, and they’ve had commercial success. A strong majority of people (58%) are happy to wear these glasses
in public and in conversation without perceived social stigma.
Our glasses still have room to grow to compete with Bose AR. That said, we have integrated significantly

more sensors throughout the glasses, including in difficult to ignore areas of the front face. If we take a look
at open-ended comments surrounding the Captivates frames, most of the critiques are centered around four
main themes: about 18% noted either bulkiness or the exposed IR diode in front as chief dislikes; the next most
common complaints (roughly 7%) noted the surface finish or the lack of lenses.

Fig. 24. Smartglasses Compared in Survey
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Fig. 25. Glasses Survey Comparison Results

7 FUTURE WORK
The main issues identified in our validation survey were bulkiness, exposed IR diode, surface finish, and the lack
of lenses. It’s worth noting that the most common critique– bulkiness– is a major issue we dedicated a significant
engineering effort to improve, and there is little left to optimize given the several sensors included in this design.
With regards to the other issues, we will be addressing all of them– we are working with both lens suppliers
and plastics suppliers, so we expect to resolve the lenses and improve surface finish issues; we have created an
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’on-the-go’ version of the glasses which does not have the exposed IR diodes or LED fiber optic accent when
these are not required for a given study. With these changes in place, we believe the Captivates will fare even
better than the confidence we can take away from our initial feedback, measuring across natural environments
without altering user experience; that is a an achievement impossible with bulky prototypes. In our case, less
than 5% of people were comfortable wearing our initial prototype in public, and it would drastically alter their
behavior and their experience should they be forced to.

Even without these changes, our study indicates Captivates are socially acceptable and capable of large-scale
naturalistic data collection. We are in the process of expanding our validation beta study efforts, and scaling
production of our system for large scale studies.We’re also working on secondary infrastructure– a supplementary,
small, data logging device and other mobile friendly tools. Our next major step is to collect physiological responses
across days, coupled with cognitive state self-assessment, from an at-home study. We’ll use this study to (1)
identify and improve any long-term usability issues, which we’ll address before offering other researchers support
in running studies with our platform, and (2) to collect the scale of data we need to inform our modelling work.

We will train probabilistic modelling algorithms to estimate user cognitive state from physiology once we’ve
collected this data. Because of the irreducible uncertainty in mental state estimation, and the injective relationships
that characterize psychophysiological monitoring, informed priors and probabilistic techniques will be necessary
to build useful predictions of user experience; we are collaborating with developers on probabilistic programming
languages to bring these techniques to bare on this data. These techniques have shown great promise compared
to standard machine learning practices in the fields of computational cognitive science and causal modelling.
With models in place, we plan to use Captivates as a tool to study and inform design choices (for instance,

how do phone notifications affect overall focus? How does a particular change in a user interface affect mental
engagement?) and as a part of a personalized, adaptive ecosystem. For example, prior work has demonstrated the
value of personalized learning policies [54]. With both real-time and long-term estimates of engagement, we can
identify and adapt effective learning policies that are personalized to the learner.

8 CONCLUSION
With the Captivates project, we set out to build a system for long-term, in-the-wild psychophysiological monitoring
at scale. We integrated many physiological sensors into a glasses form factor, particularly in challenging locations
around the bridge of the nose. Our area of interest– naturalistic psychological measurement– dictates that our
wearable be unobtrusive and socially acceptable. With that in mind, we focused heavily on an aesthetic that
would minimize social anxiety and stress, as well as optimizing our comfort, weight, sensor selection, and battery
life to let the user put them on without thought and forget about them all day long.

Our validation shows success in data quality and success in aesthetic design, in-so-much that people self-report
that they would feel comfortable across public and private interactions, including conversation, while wearing
them. It also validates that this was absolutely not true for our initial prototype, which 85% of people would not
feel comfortable wearing in public, and demonstrates the value in our additional engineering effort to enable
naturalistic study.
We believe to make meaningful progress on psychophysiological modeling, we not only need to move to

naturalistic settings, but collect vast amounts of data. Once again, Captivates was designed to hit this mark– it is
a scalable and robust solution, enabling large-scale, long-term studies with minimal administrative oversight. It is
also open-source and available for other researchers to use and adapt.
Given these intentions, Captivates unique contributions are as follows:

• An open-sourced, manufacturable and scalable platform that is available for other researchers to use, audit,
and modify. Captivates enable researchers to leverage a hardware platform for their specific use cases, and
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can enable large-scale, trustworthy data sharing on physiology and mental experience without proprietary
algorithms or APIs common to productized platforms.

• A product-like, comfortable, and aesthetically neutral design that can be used in real-world settings without
altering naturalistic behavior. This is crucial for studying this physiology under as-realistic conditions as
possible, and prototype-like designs alter self-reported behavior. These improvements require significant
additional engineering effort.

• A robust form factor that is easy to use and lasts all day on a single charge. This is crucial for scaling
trustworthy data collection without administrative overhead, and makes the glasses less intrusive into a
participant’s daily experience. Large scale data will be necessary to make any generalizations given the
high levels of noise and uncertainty associated with real world settings.

• A platform to study understudied physiological indicators of face temperature, subtle head motion, and
blinking in natural settings. These have been demonstrated in lab contexts, but naturalistic analysis of
these indicators is novel. Furthermore, our comparison against standard camera-based techniques shows
we significantly outperform them for blink tracking and spatially consistent temperature measurement,
even in a relatively uniform working environment. Heart and respiration rate estimation from our head
mounted IMU data should be possible as well. As a stand-alone device, or as part of a broader physiological
measurement suite, Captivates serves as a power research tool for in-the-wild physiological and psycho-
physiological data collection and modeling.

In order to accomplish these goals, we spent a summer in China working with manufacturers and glasses
designers, partnering with companies, and worked with sourcing agents. We pushed our design towards product
and manufacturing in a way that is uncommon within academic research, but which we believe will become more
prevalent in the near future. The ability to manufacture and quickly scale hardware design opens up opportunities
for new research techniques. Captivates leverages this unique opportunity to scale data collection.

Captivates opens the door for large-scale data collection of physiological indicators, in a way that will enable
better predictions of mental state in natural contexts. Our initial real-world pilot study yielded promising results
and further data collection is planned to fully validate the platform. The immediate future will be spent collecting
data and using that data to engineer and validate psychophysiological models that can estimate mental states
accurately.
Success with these models would bring us a long way towards translating psychophysiological laboratory

techniques into real-world insight. Captivates serve as an open-source bridge to that end. A strong model will
enable Captivates to quantify the long-term psychological impact of our design decisions and provide real-time
feedback for technologists interested in actuating a cognitively adaptive, user-aligned future.
The Captivates system is a key enabling piece of future responsive, adaptive environments. We envision an

ecosystem of such technology, including dense arrays of distributed sensing and better actuation of shared
spaces. With the Captivates project, we are one step closer in understanding the impact of our designs on human
experience, and thus one step creating truly supportive, responsive environments.
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