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ABSTRACT

Deeply immersive experiences are intrinsically rewarding; evoking
them for another is a cornerstone of success in artistic or design
practice. At the same time, modern interfaces have created a state of
’partial continuous attention’, and frequent self-interruption is more
common than ever. In this paper, we propose a smart-glasses based
interaction to quantify self-interruption dynamics in naturalistic
settings, in which a slowly changing peripheral LED is monitored as
a secondary task by the user. We demonstrate that this interaction
captures useful information about a user’s state of engagement in
real-world conditions. These data can provide designers and artists
novel, objective insight into the depth of immersive experience
evoked in real-world settings.
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1 INTRODUCTION

Deep attention is an integral part of meaningful experiences and
‘flow’ states; experiences are best when users are focused, immersed,
and absorbed. [13, 18, 22, 26] Evoking this quality of attention is
difficult in modern life, however. Modern technology incentives
frequent task switching and interruption; attention spans have
shortened enough that some scholars suggest that we live in a state
of "continuous partial attention’. [7] These frequent interruptions
have trained us to self-interrupt even absent exogenous cues [4];
over half of typical interruptions are self-generated. [11] These
shifts in our attention come with huge social and personal costs;
[15] they also raise the difficulty for designing experiences that
capture and hold user attention.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IMX ’22, June 22-24, 2022, Aveiro, JB, Portugal

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9212-9/22/06.

https://doi.org/10.1145/3505284.3532984

375

Joseph A. Paradiso
joep@media.mit.edu
Responsive Environments, MIT Media Lab
Cambridge, MA, USA

One major objective for HCI practitioners, designers, and artists
is to create deep states of attention that indicate psychological
immersion; however, our ability to measure the quality of a user’s
attention is poor. State-of-the-art techniques typically capture either
self-report or examine overt attention (i.e. eye-gaze) [8, 12, 20, 27].
In this paper, we present a novel interaction to measure attention
dynamics in naturalistic settings. Our contributions are as follows:

e We design and create a novel, wearable, and discrete interac-
tion to measure self-interruption dynamics in daily life. This
interaction is built on top of the Captivates Smartglasses
platform from [3]; the glasses present a slow color change
in the periphery of the user’s visual field, gradual enough
that users’ attention will not be drawn to it. When the user
notices a shift in color because they have scanned their en-
vironment, they indicate that with a companion application.

e We run two small pilot studies to test the efficacy of this in-
teraction and demonstrate success in creating an interaction
that is ’change-blind’ to study participants and captures data
related to their state of engagement. We discuss and analyze
these preliminary results.

e We discuss future applications and design considerations of
this interaction for studying naturalistic attention dynam-
ics and for quantifying the immersive success of designed
experiences.

2 BACKGROUND

We live in a world with constant notification and interruption that
fractures our attention. Workplace interruptions occur every 4-11
minutes; 70% of the roughly 90 emails we receive in a day are
opened within 6 seconds. [16] External interruptions make us more
likely to self-interrupt in the hour after they occur [4].

Fortunately, notifications can be designed to to be more or less
distracting from our primary task. [14] Researchers have proto-
typed notifications to allow deep focus to proceed uninterrupted
by designing them right at the threshold for capturing attention.
The user’s attentional state is the primary factor that determines
whether they notice an aural cue (by modifying background music)
[1] or a visual one. [9]

At the other end of the design spectrum, some cues are impossi-
ble to ignore. Motion and luminance changes powerfully capture
attention. [21] When motion cues are masked- including using
gradual fades— large visual changes are difficult to spot, regard-
less of the magnitude of change in contrast or color. [23] This
phenomena is known as ’change-blindness’. Moreover, research
on ’inattentional blindness’ supports the idea that we are blind to
large, obvious visual changes in the center of our visual field when
focused on a task. [10]

Some distractors are more perceptually salient than others. How-
ever, even given a task, we have no accepted standard for measure
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Figure 1: The Captivates Smartglasses platform presented in [3] is used to measure self-interruption behavior. Two symmet-
rical peripheral LEDs slowly change from green to blue over 53 seconds; when the user notices the change, they indicate it by
hitting the ’surprised’ emoji in the companion application (which is left open on the table near them). These transitions are
spaced 10-20 minutes apart to give the user sufficient time to achieve a state of deep focus on their primary task. The change
is slow and gradual to minimize the probability of drawing attention to itself.

our sensitivity to chromatic or luminous changes under varied am-
bient lighting conditions; the best models estimate cone absorption
in the retina. [2, 28] Ambient light levels mediate visual detection
through pupil dilation; a smaller aperture gives better spatial res-
olution while a larger one gives higher signal to noise and more
light. [5, 19] Large pupils may thus give an advantage to detection
of faint peripheral stimuli. [17] A simple relationship between low-
level perceptual changes in brightness or contrast and attentional
capture is impossible, though; for example, luminance changes char-
acteristic of a new object in a scene will capture attention more
readily than twice the difference at a less-surprising location. [24]

Many factors influence our perception of task-irrelevant, pe-
ripheral distractors. Motion and luminance differences— especially
unexpected ones close to our visual focus— are most likely to grab
our attention. While ambient conditions likely effect our ability to
discriminate peripheral stimuli, this is a second-order effect relative
to our psychological factors like expectation and attentional state.

2.1 Measurement Techniques

Mainstream measures of engagement rely on self-assessments [6]
that are biased by demand characteristics and peak-end memory
distortions and fail to capture uncertainty well. One more quantita-
tive approach to cognitive state inference is the peripheral detection
task (PDT), an ISO-standard test to measure cognitive load while
driving. [29] This test has been updated to use a head-mounted
peripheral light as a secondary stimuli while driving (hDRT, or
head-mounted detection response task) [25].
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In the hDRT, a red LED is turned on rapidly (every 3-5 sec), at
constant intensity, long duration (1 sec), and reliable noticeability
(>95% in practice— reaction times are the primary hDRT measure).
When the participant notices this light, they hit a button; response
latency is the primary measure of task load.

DRTs do not disambiguate between noticing and reacting (there
is evidence of physical response conflict); also, due to the consistent
nature of the task, participants treat it as a secondary goal for
which they strategically allocate attention [29]. While useful to
characterize multi-tasking load under intense driving conditions,
this rapid and consistent dual task paradigm is a poor fit for the
naturalistic study of deep focus.

3 CAPTIVATES

We design a new interaction using the Captivates smart glasses
platform presented in [3]. The form factor gives us access to two
symmetrical RGB LEDs mounted in the outside peripheral vision
of the user, controlled by LED driver ICs that enable ratiometric
and logarithmic PWM dimming. Figure 1 details the intervention
design— when the user notices a subtle, gradual change in color
of the LED (which occurs every 10-15 minutes) they hit a button
to indicate it. Their delay is an indicator of the frequency of their
self-interruption. The specific design decisions were based on an
iterative design process to isolate a subtle, gradual, but distinct
peripheral change. The glasses include 300 mAh battery capacity
that allows the intervention to run continuously for over 7 hours
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Participant # 1 2 3 4 5 | Overall
Low Warm Light (avg (std)) | 4.6 (1.4) 5.2(1.5) 2.5(1.1) 9.0(1.2) 5.9(1.5) | 5.4 (2.5)
Bright White Light (avg (std)) | 4.6 (1.5) 6.3 (2.4) 55(1.4) 8.1(0.6) 6.1(1.1) | 6.2(1.9)

Figure 2: To test the effect of variable lighting conditions on perceptual acuity of the LED color shift, we used a specially
designed lighting room set to two extremes; a bright white light (high blue light spectrum- Figure Left) and a low warm light
(Figure Right). Participants were asked to look at an ’X’ on the wall and pay attention to the LED color change in their periphery,
indicating when they noticed the transition in the application. Participants were exposed to ten transitions in each lighting
condition; the order of exposure to each condition was counterbalanced across participants. Results from these calibration

sessions are shown in the table.

per charge; it is also a socially acceptable form factor that enables
daily use in normal life without inducing self-conscious behavior.

3.1 Calibration Test

For our initial test, we measure (1) when during the transition from
green-to-blue an attentive user notices the change, and (2) how
much variability various lighting conditions introduce. Five users
sat in a closed rectangular room outfitted with a full Color Kinetics
lighting system (programmable with color temperatures between
2300K and 7000K). While looking at an "X’ on the wall in front of
them, they indicated when they noticed the light in their peripheral
vision shift colors. To maintain attention, the transition was sped
up 3x from the typical intervention to 17 seconds. They repeated
this task twenty times with random delay- ten under bright white
lighting conditions and ten under low warm lighting conditions
(counter-balanced). Low warm lighting is most favorable to the
task: dilated pupils give the best peripheral detection and the most
contrast with the background (warm light has very little of the
target blue wavelength). In contrast, the bright white light has
much less contrast in the blue spectrum and constricts the pupils.

Results are shown in Figure 3; there was not a significant dif-
ference in the participants ability to notice the color shift across
light conditions. Across all 100 trials, the best and worst cases for
perceiving the change were between 12% and 65% through the
transition.

3717

3.2 Primary Test

In our main test, seven users experienced the intervention in Figure
1 as they went about their daily lives, with an open iPad within
reach to indicate their awareness of the LED changing. We collected
over 19 hours of data, with transitions spaced 10-15 minutes after
any indication to allow the user to regain task focus. The data is
represented in Figure 2. The longest a participant went without
noticing the light change was 15 minutes; 35% of the transitions
were noticed after the transition had fully completed, with the vast
majority significantly delayed (74% of those were >30 seconds after
the light change had completed). Four of the seven users had delays
of 5 minutes or more in noticing at least once, indicating a deep
state of focus on their primary task.

4 DISCUSSION AND FUTURE WORK

Whether or not a participant notices a gradual, peripheral color
change is dependent on environmental lighting and attentional
state. We designed an intervention with the hope that users would
be change-blind to it. Our initial results imply minimal variability
in noticing for vigilant user across extreme ambient lighting con-
ditions; this variability is small compared with the the delays we
find as users engage in their day. Our results support our hypoth-
esis that this intervention quantitatively captures useful insight
into self-interruption and environmental awareness in real world
settings.

In our future work, we will collect more data, and build prob-
abilistic models to make strong inferences about an individual’s
attention based on it. Future experiments may introduce longer
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Figure 3: Initial results from seven participants wearing the interface in natural work/social settings for a minimum of 2 hours
each (19.3 hours captured total). Data points represent the delay from a transition starting to when the user noticed it. Included
in the plot are indicators of when the transition becomes observable based on the calibration data (purple), as well a worst
case indicator over the 100 calibration trials (dotted- this represents the worst case moment, across lighting conditions, that
we’d expect the transition to become obvious if the user was paying attention.) The slow transition completes at 53 seconds
(blue). We see several data points in which users didn’t notice the transition for many minutes after it was completed (top
left); a zoomed view of the first few minutes after transition onset are shown in the bottom right. As expected, noticing delay

follows a roughly log-normal distribution for each user.

delays between transitions to allow users more time to achieve a
deep state of focus; this trade-off between quantity and quality of
data is unstudied. Though it appears the effects of ambient lighting
are minor (and can be modeled as noise), we also haven’t tested for
interaction effects between attentional state and ambient lighting.
Future work may extend our understanding of ambient lighting con-
ditions using tightly controlling lighting or by measuring ambient
light levels with an additional wearable.

5 CONCLUSIONS

In this paper, we presented a novel interaction design to study
self-interruption and immersion across naturalistic contexts. Users
indicate when they have noticed a gradual, subtle, peripheral light
cue change- a transition that only happens every 10-15 minutes. In
two small pilot studies we have demonstrated that ambient lighting
levels minimally affect perception of this transition, and a signif-
icant portion of these changes are unnoticed for several minutes
by our users in naturalistic settings; attentional state is thus the
primary causal precursor of this data, with a large impact on the
measured delays.
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We believe this interaction can improve our understanding of the
dynamics of human attention, and provide quantitative insight into
design’s impact on the creation of immersive, engaging, meaningful
experience. This approach represents a quantitative move forward
toward personalized, adaptive, and empirically grounded immersive
design.
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