
The LearnAir Network
Leveraging Sensor Heterogeneity to Improve Air Quality
Estimation for the Semantic Web

David B. Ramsay and Joseph A. Paradiso
MIT Media Laboratory

Abstract—LearnAir is a semantic web infrastructure that improves the reliability of

air quality data. It unifies sensors—from citizen science to government reference—to

automatically characterize device error under various meteorological conditions and

device states. LearnAir thus leverages known reference sensors to extract the useful

measurements from otherwise untrustworthy devices.

& ONE IN EIGHT deaths worldwide is attributed

to air pollution exposure, making it the world’s

largest environmental health risk. Moreover,

this estimate has more than doubled in recent

years, hinting at a complex and poorly under-

stood epidemiology.1 The issue requires careful

analysis, and standard reference-grade methodol-

ogy is not portable or affordable enough to scale.

Fortunately, as the research community grapples

with a balkanized history, shifting federal priori-

ties, and volatility in funding, consumer sensors

offer an open and reliable civil sensing alternative

as they become more ubiquitous. For individuals

in polluted cities, trustworthy data could lengthen

their lives and empower their activism. For aca-

demics, higher spatial resolution and personal

exposure data represent a promising frontier for

modeling and research.

The growing need for affordable air quality

monitoring has resulted in a steady stream of

consumer-grade devices on the market over the

last several years. Unfortunately, these devices

rarely perform well under real-world condi-

tions.2 As such, the academic and research com-

munities have become increasingly skeptical of

affordable sensors and have fallen admittedly

“behind the curve” in engaging with and educat-

ing the consumer technology and citizen science

communities.3 There is a need for (1) trustwor-

thy and well-characterized data that can afford-

ably scale, (2) rigorous and painless consumer

device evaluation, and (3) simple infrastructure

to connect the academic environmental science

community with consumer device manufacturers

and technologists.

We believe these problems can be addressed

with a new approach—instead of attempting to

redesign affordable devices to provide reference

quality data, our goal is to design techniques and
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systems that rigorously characterize the reliabil-

ity of devices that are already in use. We expect

that—because the core sensing physics are

sound—consumer devices will provide reliable

data under a limited set of operating conditions.

Based on this assumption, we evaluate sensor

trustworthiness over a range of conditions and

measurement tolerances to quantify both the

noise floor of a device (constant, condition-

independent error due to physical sensor limita-

tions) as well as the range of conditions that

result in systematic mismeasurement (condition-

dependent error based on environmental factors

like humidity and high wind). For every sensor

reading, the model estimates the confidence that

the value falls within a user-specified tolerance

based on current local environmental conditions.

Users can thus trade the volume of data they

keep from affordable devices for stronger guaran-

tees about its quality. Furthermore, combining

this analysis with a semantic web infrastructure

can address many of the problems facing today’s

air quality ecosystem.

BACKGROUND AND RELATED WORK
Standard practice for measuring air quality is

a sparse network of expensive (>$100k) monitor-

ing stations that require regular calibration, and

which lack strong correlation with or chronically

under-report the pollution exposure of citizens

living nearby.4 These stations use Federal Refer-

ence Method (FRM) devices, or equivalent (Fed-

eral Equivalence Method, FEM) devices, which

are certified by the U.S. Environmental Protection

Agency (EPA).

Affordable, portable sensing techniques are

based on sound sensor physics, though error-

correction strategies typically employed in higher

quality devices are sacrificed for cost, size, or

power. Combining these core techniques with a

basic insight into systematic sources of error pro-

vides a unique opportunity for algorithmic analy-

sis of sensor accuracy.

Pollutants and Sensors

Particulate Matter (PM) that is less than

2.5 microns (PM2.5) is small enough to diffuse

directly into the bloodstream and has especially

serious health implications. Black Carbon (BC) is

a complementary measurement—it is a major

constituent of PM2.5 and a result of incomplete

combustion. It is the most strongly light absorb-

ing component of ultrafine particulate, andmakes

up an average 5%–10% of the mass concentration

of PM2.5 in the U.S. BC has been shown to account

for 21%–45% of PM2.5 elsewhere in the world.5

Optical sensing is the dominant methodology

for low-cost particulate sensing. This modality is

susceptible to airflow variation, fog, humidity,

accumulated grime, and relative changes in light

absorptive constituents like BC. Pollen and dust

(which have negatively skewed log-normal distri-

butions centered in the 10–100 micron range)

also confound sensors that attempt to extrapo-

late concentrations of particulate below a few

hundred nanometers in diameter, where most of

the mass concentration for PM2.5 lies. In out-

door, realistic conditions, the EPA reported the

Dylos DC1100-PRO (!$300) had an R2 score of

0.27–0.86, while the AlphaSense OPC (!$550)

showed scores from 0.11–0.68 (and both showed

sensitivity to high humidity) compared to FEM

references.2 These values are typical for well-

designed sensors at this price point. Cheaper sen-

sors include more significant tradeoffs, but have

been shown to track PM2.5 reasonably well in

highly controlled, static indoor environments.6

While colocation tests reveal clear flaws with

these sensors in situ, the core modality has a

proven record inmore expensive devices.

We also analyze three EPA criteria pollu-

tants—O3, NO2, and CO. Gas sensor technologies

include spectroscopy, chemiluminescence, and

chromatography. The AlphaSense (AS) sensors

(!$100/each) we chose are based on an elec-

trochemical oxidation/reduction technique and

have a good reputation within the air quality

community. Despite this, AS sensors are subject

to drift, pollutant cross-sensitivity, temperature

and humidity dependence, reaction time con-

straints, and a limited lifespan. Preliminary tests

show theymight have a slight dependence on air-

flow.7 Although they are provided with a piece-

wise linear calibration based on temperature,

these calibrations continue to settle after ship-

ment, and best practice is to calibrate them with

FRM colocation data before and after use.8

Cheaper versions of chemical sensors exist,

two of which we include in this experiment.
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Sensors at this price point typically are not cali-

brated and are not sensitive to small perturba-

tions. They may be useful as a gross indicator for

extremely hazardous conditions, but their capa-

bility for accurate, continuous measurement in-

situ has not been demonstrated.

State of Industry
The air quality research community faces

challenges in defining and sharing FRM/FEM data

internally, with groups like the Environmental

Defense Fund’s (EDF) Air Sensor Workgroup

actively working to solve this problem. There is

also a recognized need to create an open ecosys-

tem that engages with and leverages consumer

manufacturers and citizen scientists, but the aca-

demic community is lagging behind the entrepre-

neurial one in engagement and outreach.3

Of the many consumer devices released in the

past few years, few have been tested rigorously in

situ, and none have fairedwell in co-location stud-

ies conducted by organizations like the EPA and

the SouthCoast Air QualityManagement District.2

Despite their importance, the data is not widely

cited. Furthermore, colocation studies require

significant human intervention, suffer from a lack

of standardization, and result in a single R2 char-

acterization. Environmental groups typically test

1–3 samples of a product for anywhere between

two and nine months, carry out analysis by hand

and publish results without comparison to similar

tests from other geographies.2

These studies are an important first step of

engagement with citizen scientists and technolo-

gists, but they fail to provide a collaborative solu-

tion that allows researchers to actually leverage

consumer data unless it is of FRM quality (a high

bar for a $100 sensor). Collaboration requires a

more nuanced, holistic evaluation of consumer

sensors and a complete characterization of their

sources of error.

RELATED APPROACHES
Air quality sensor networks are a common topic

in the research literature. Some of the best work in

sensor network algorithm design comes from the

ETH Zurich OpenSense project, which has pio-

neered useful multihop calibration algorithms in

heterogeneous networks.9,10 Matrix factorization

strategies have also demonstrated success in han-

dling network sparsity and redundancy, assigning

source-specific reliability measurement to each

device at the system level without a priori informa-

tion. This works well to characterize time/condi-

tion-invariant sources of error (one clearly better

sensor than another, or one user that is chronically

misusing their device).

Machine learning has been applied to predict

and improve networked sensor data in various

fields.11 Some of the most advanced air quality

implementations can be found in Cheng et al.’s

work, where they implement a state-of-the-art

model for PM2.5 measurement and achieve 64%

accuracy.While this is the one of themost refined

air quality systems to-date, sensor error is again

modeled as time- and condition-invariant.

COLOCATION STUDY
We expect affordable sensors to have predict-

able, systematic errors (like sensitivity to airflow

variation) and to have predictable relationships

with other sensors (like O3 from NO2 and sun-

light). We test our ability to leverage these rela-

tionships to improve sensor reliability using a

two-month colocation study at a Massachusetts

Department of Environmental Protection (Mass-

DEP) monitoring site in the Roxbury neighbor-

hood of Boston, MA.

Hardware
The test device (see Figure 1A) includes O3,

NO2, and CO AlphaSense (AS) gas sensors, a Sharp

GP2Y10-10AUoF Optical Dust Sensor, and an off-

the-shelf ‘SmartCitizen’ kit (SCK) featuring a $10

MiCS-4514 MEMS Reduction/Oxidation CO and

NO2 Sensor. These six sensors are logged alongside

readings for temperature, humidity, light level, and

audible noise. The face of the device is protected

but slotted to promote air exposure. A differential

pressure sensor is attached with one side exposed

to the open face of the device to serve as an inex-

pensivemeasure of airflow inside the cover.

The test device was placed 3 feet from a flow-

controlled, size-selective MassDEP inlet. This

inlet feeds four FEM quality Teledyne machines

that measure BC, O3, NO/NO2, and CO. A high

quality Met One vane-style anemometer was

used to capture wind speed and direction.
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The colocation study captured a wide range

of meteorological conditions as the seasons

changed (see Figure 2). Our final dataset included

1.4k samples of hourly BC data, 75k samples of

minute-resolved SmartCitizen CO and NO2 data,

and 86k samples of minute-resolved Alphasense

data (CO, NO2, and O3). Sharp BC estimates—

compared to an hourly reference metric that

measures accumulated BC through a filter—was

calculated as the average ofminute-resolved read-

ings over the hour prior to the reference reading.

Raw Data
For our test sensors, we took a simple Least

Mean Squared Error (LMSE) calibration approach

against the EPA reference to find a proper offset

and scale factor for the SCK and Sharp data after

applying any suggested mapping from the data-

sheet. Our technique included slightmodifications

to ignore certain regions of divergence we expect

under nonideal conditions. AS sensors include a

piecewise linear temperature-dependent calibra-

tion from the factory based on their electrode qui-

escent currents and sensitivities (which continue

to settle after shipment)—we similarly tune the

parameters driving thismodel using an LMSE tech-

nique against the EPA reference. The AS O3 sensor

has the calibrated/scaled NO2 values to which it is

cross sensitive incorporated into its calibration.

After calibration, our data capture the types of

complications we expect in consumer-level devi-

ces—passive airflow and long sensing time con-

stants result in missed transients; sun exposure

severely increases the operating temperature and

humidity inside the device; even quantization

artifacts for pollutants whose concentrations typ-

ically fall at the bottom of the sensor’s usable

range. The cheapest sensors have poor correla-

tion with their FRM counterparts. Fortunately, we

also see evidence of condition-variant error in the

raw data—the Sharp sensor in Figure 3 clearly

diverges during the high humidity, rainy week of

Figure 1. (A) Hardware sensor used for colocation study, with sensor types denoted. (B) The LearnAir test

device installed next to MassDEP FEM Reference in Boston, MA.

Figure 2. Summary of weather throughout the two month colocation study (24-hr average humidity in green,

24-hr average temperature in blue, and hourly weather type in the background).
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our test. This is a realistic dataset to use for test-

ing our efficacy in extracting useful information

from off-the-shelf consumer devices and supports

the idea that condition-dependent error can be

identified.

Modeling

Logistic regression—a frequent choice for

failure analysis—provides a desirable probabilis-

tic result. In order to train this binary classifica-

tion technique using our data, we first assign

each reading from the affordable sensor a classi-

fication as “accurate” (1) or “inaccurate” (0)

based on given tolerance around the ground-

truth FRM data. We repeat this over ten toleran-

ces (i.e., accurate within 10, 35, 60, . . . ppb), and

observe how the model performs as we tighten

and relax the constraint.

Extreme tolerances introduce significant

class imbalance, which we correct for in training

with a combination of the Synthetic Minority

Oversampling Technique and Random Oversam-

pling. We test feature reduction strategies, par-

ticularly favoring those that eliminate features

biased towards a False Positive Rate in the uni-

variate case and apply a grid search over model

parameters using a nested 5-outer/3-inner fold

cross-validation technique. These folds are cho-

sen in two ways—randomly/uniformly sampled

from the entire data pool or sequentially dividing

them into chunks. Shuffled sampling provides

the upper bound model performance (by artifi-

cially removing the effect of seasonal trends),

while sequential/chunked sampling mimics our

real-world task (predicting future performance

based on previous, contiguous co-location data).

We also test Scalable Variational Gaussian Pro-

cesses (SVGPs)13 as an alternative method to

Logistic Regression.

The 135 features used to predict the accuracy

of each sensor reading include:

" The sensor reading itself, which could indi-

cate its usable range,
" The temperature, humidity, pressure, light

level, cloud cover, dew point, fog, precipita-

tion level, etc. measured both inside the box

and outside from the ForecastIO API,
" Several synthesized features based on the

above set, including derivatives of these val-

ues to capture rapid changes and long-term

averages to capture general trends,
" Features indicating commute times, day of

the week, and noise level at the microphone

Figure 3. Raw data from various sensors (green) compared against the MassDEP reference (orange) over

3–5 representative days. The gas sensors are shown as raw minute-resolved readings, while the Sharp BC

data (bottom right) is recorded every hour and averaged over 48 hours. Note the optical Sharp sensor’s large

divergence corresponds to the week of heavy rain. Our model will evaluate this data against the reference

over a range of tolerances, providing insight into the best tradeoff between tight tolerances, data quality

(% within spec), and data volume (% removed). Data is selectively eliminated based on patterns in external

conditions that lead to error.
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to serve as a simple proxy for traffic or

construction,
" Measurements from other affordable gas sen-

sors for which the current sensor may be

cross-sensitive (only < ¼ in cost sensors),
" Wind direction, wind speed, airflow at the

sensor surface, temperature differential out-

side to inside the box, and other factors

affecting airflow.

RESULTS
In Figure 4, the area under the curve of

the receiver operating characteristic (AUC-ROC)

scores are complimented with a modified

Hosmer–Lemeshow goodness of fit test, broken

out into a scatter plot as described in Hosmer

et al. (bottom of the figure). These plots compare

the actual percentage of correct classifications

to their labeled confidence across folds (i.e. are

!60% of the values correctly classified when the

model reports 55%–65% certainty). Confusion

matrices are included as a basic check; a high

number of false negatives are acceptable, while

high false positives are not. As we move through

different tolerances, we shift from nearly all test

values having a true label of “inaccurate” to the

opposite—the confusion matrix gives us insight

Figure 4. Example ROC Curve and Best-Fit plots; the left side represents a logistic regression model of the

AS O3 Sensor at 60 ppb tolerance, while the right is an SVGP model of the Sharp BC Sensor at 0.85 mg/m3

tolerance. Results from all five folds are shown, with shuffled results in green and sequential results in purple

(dark color represents the average). Corresponding best-fit plots are on the bottom; average best-fit values

closer to one are better. We see good predictive power from the chunked model with exception of a couple of

folds that have very poor quality (due to predicting one winter week using data trained from other seasons or

vice versa), though model fit leaves room for improvement. When we eliminate seasonal effects by training

using randomized training/test splits, we see very strong predictions and much tighter fits.
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into this imbalance and confidence that the AUC

score is meaningful. AUC scores from graphs like

Figure 4 are aggregated and summarized over

several tolerances for a subset of sensors in the

left of each pair of graphs in Figure 5; the corre-

sponding Hosmer–Lemeshow summary (from

the bottom of Figure 4) appears on the right of

each Figure 5 pair.

We observe different regimes in the predictive

quality of the model as tolerance increases—an

inflection occurs in the AUC scores as the model

moves from a regime dominated by the device

noise floor to one characterized by predictable,

systemic errors that themodel can address. After

inflection, we observe that model performance at

larger tolerances continues to improve in some

cases (as the tolerance is further relaxed, further

reducing the effect of unpredictable noise)

and degrade in others (as the prediction task

becomes more imbalanced and dominated by

rare transient events). We select the tolerance at

the knee in the AUC summary plots as the tightest

accuracy for which we can still meaningfully

separate accurate readings from those resulting

from systemic device errors. We use these

summary graphs to choose a best model (based

on the tradeoff between tolerance, the goodness

of fit, and ROC-AUC score) for each sensor and

present results in Table 1.

We see no increase in performance over stan-

dard Logistic Regression models using feature

reduction techniques or SVGPs. As we can see in

Figure 5, Sequential models do not have strong

predictive fits at inflection, and include a large

spread in the quality of model performance over

different folds, due to a relatively short test

during high seasonal variation. In this case, we

observe that splits where the test fold shares sim-

ilar meteorology to the training split perform

well, while splits, where the test week is the mete-

orologically distinct, perform poorly. Despite

this, our sequential model still shows improve-

ments of 4%–49% in PPV and ROC-AUC scores of

0.7–0.9. Seasonally agnostic, shuffled models give

strong predictive models with tight fits excepting

the cheapest SCK sensors.

Discussion

Our test was not long enough to capture

seasonal variation sequentially, as demonstrated

Figure 5. For select models, the change in performance as the tolerance around the reference measurement

of what is classified as “accurate” is increased. On the left of each pair is the model accuracy (AUC score,

each point represents a single value from the top graphs in Figure 4); on the right is the goodness of fit (closer

to 1 is better, each point represents a value from the bottom graphs in Figure 4). Inflection points (indicated

with an vertical orange line) in the AUC score suggest a shift from a regime dominated by a device’s

unpredictable noise behavior to a regime dominated by systemic, predictable errors that can be modeled.
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from the high variability in the sequential results.

Focusing on the shuffled data—a reasonable

proxy under the assumption that a model will be

used in conjunction with colocation data that has

previously sampled that season—we evaluate

their utility in two specific use cases: (1) to

improve data accuracy and (2) to drive future

probabilistic models.

In the first case, our goal is to maximize our

Positive Predictive Value (PPV)–the proportion

of readings that we label “accurate” that are in

fact so. We thus measure our increase in PPV

against the fraction of incoming data we must

remove to achieve it, as shown in Table 2. As we

apply more stringent criteria, we throw away a

larger percentage of the data but achieve a cor-

responding increase in accuracy. For example,

we see that our original AS CO readings are accu-

rate 59% of the time at a tolerance of 110 ppb.

Our data accuracy increases to 84% and 93%, at

the cost of eliminating 45% or 86% of the data,

respectively. This is a powerful tool for mining

the trustworthy information from generally

untrustworthy devices, and useful for status quo

analyses that do not tolerate inaccuracy.

While this is a useful technique for data

cleaning, we expect a new paradigm for model-

ing and research replaces it—instead throwing

out data because it lacks credibility, probabilis-

tic models can take advantage of all of the data

as long as its uncertainty is correctly modeled—

i.e., when conditions arise for which our sensor

is accurate 60% of the time, our model reports

60% confidence and classifies 60% of the read-

ings correctly. Our goodness of fit plots show

that it is possible to model this uncertainty well;

we believe that models that include this uncer-

tainty will become a dominant paradigm in the

near future.

Reading-specific models allow researchers,

scientists, and individuals to engage with sys-

tems that were previously unreliable and unus-

able. This approach can also be used to drive

condition- and time-invariant network models

like the GP model of Cheng et al. with more pre-

cise inference.

Seasonal Variability and Design Insight

Besides our main findings, useful insights that

emerged from our analysis include (1) a method

for measuring seasonal variability, and (2) analy-

sis and design tools for consumer devices.

State-of-the-art colocation studies remain a

fragmented and ill-defined characterization pro-

cess; one outstanding issue is a standardized

duration across climates. In our work, we see

the strong model performance with shuffled

data; sequentially trained models, however,

sometimes perform poorly, as they predict

device behavior in warm summer months with

training data from winter (or vice versa). The

predictive power of shuffled and sequential mod-

els should converge when external conditions

have been sampled sufficiently—i.e., quickly in

geographies with a stable climate and longer in

areas with large seasonal variability. Moreover,

this method factors in the device robustness

across seasons—devices whose accuracy does

not vary with external conditions would not

need to be tested as long.

This objective metric ensures models will

perform to the standard of the shuffled models

Table 1. Summary of best results for logistic regression with shuffled folds.

Tolrence ROC-AUC (mean $ std) fit (mean $ std) DPPV

AlphaSense CO Logistic 85ppb 0.86 $ 0.00 0.997 $ 0.003 0.26

AlphaSense O3 Logistic 60ppb 0.95 $ 0.00 0.961 $ 0.004 0.01

AlphaSense NO2 Logistic 10ppb 0.89 $ 0.00 0.995 $ 0.008 0.21

SmartCitizen NO2 Logistic 10ppb 0.81 $ 0.00 1.022 $ 0.003 0.17

SmartCitizen CO Logistic 60ppb 0.75 $ 0.00 1.016 $ 0.002 0.18

Sharp Logistic 0.85mg/m3 0.94 $ 0.02 1.040 $ 0.020 0.13

Sharp 48 hr Avg Logistic 0.35 mg/m3 0.98 $ 0.00 1.012 $ 0.060 0.32
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we present for errors that are systemic and con-

dition-dependent, which we expect to be the

majority. Errors arising from sensor degradation

over time (from wear, grime, or chemical deple-

tion) can be captured with a linear mapping

using this type of modeling—even in sequential

tasks—by including sensor age as a feature. To

model more complex and dynamic age-related

behavior, it would be necessary to capture data

across the device’s lifespan—effectively recreat-

ing the shuffled model using one sensor across

season and age as training data for others.

Additionally, these models provide useful

information about the sensors and devices them-

selves. We find some devices and tolerances for

which a model fails to identify useful information

in a device’s output—a clear indication of its

quality. To identify these models we compare

them to a model trained to identify transients

from the mean in the reference. For example, SCK

sensors provide no useful information in our

study; AS O3 and CO sensors converge to predict-

ability around 60–85 ppb—much larger than the

stated tolerances of the sensors themselves

(likely due to enclosure airflow). This value gives

us a lower bound on useful data from the device.

We also find that predictive models where

ground-truth MassDEP reference data for other

pollutants are included as predictive features

are useful for (1) capturing codependence or

cross-sensitivity of an affordable sensor to other

pollutants, and (2) evaluating design possibili-

ties that exploit pairings between high quality

and affordable sensors. We found, for instance,

that a high-quality BC measurement is strongly

predictive of errors correlated with transients.

Finally, we rank predictive features to gain

insight into the causes of a device error. For

example, feature analysis of the Sharp sensor

model shows a distrust of readings when both

Table 2. Summary of PPV results for representative models at various tolerances/thresholds with shuffled folds
compared to the base PPV with no filtering.

Thresh¼ 0.5 Thresh ¼ 0.9

Base PPV PPV % Removed PPV % Removed

CO AS Logistic

10 ppb 0.05 0.12 67 0.17 99

35 ppb 0.17 0.38 62 0.56 97

60 ppb 0.30 0.57 57 0.79 93

85 ppb 0.45 0.73 51 0.88 90

110 ppb 0.59 0.84 45 0.93 86

135 ppb 0.74 0.91 39 0.98 81

CO SCK Logistic

10 ppb 0.10 0.15 56 nan 100

35 ppb 0.32 0.47 52 0.73 100

60 ppb 0.51 0.69 48 0.86 99

85 ppb 0.66 0.82 44 0.93 97

110 ppb 0.78 0.90 41 0.96 96

135 ppb 0.87 0.94 37 0.98 93

SHARP Logistic

0.1 mg/m3 0.14 0.21 55 0.15 98

0.35 mg/m3 0.47 0.67 49 0.88 88

0.6 mg/m3 0.70 0.86 32 0.97 79

0.85 mg/m3 0.83 0.96 22 1.00 56

1.1 mg/m3 0.87 0.97 18 1.00 48

1.35 mg/m3 0.90 0.98 17 0.99 51
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the reading itself and the ambient humidity are

unusually high. These insights can drive a tar-

geted, iterative design process based on weak-

nesses identified in situ.

As a two-month study, future in situ testing

would strengthen our conclusions around season-

ality. With the data we have collected, we find this

modeling strategy works well for identifying

and characterizing complex condition-dependent,

time-invariant sensor errors. It can be applied to

data after calibrations for sensor-drift or cross-

sensitivity, accurately capturing inherent errors

in the calibration process. In the future, it may

also be possible to seed new models of novel sen-

sors with existing models of sensors that follow

the samepatterns of systematic error.

BUILDING IT INTO A NETWORK
After validating our approach, we built and

released a set of tools to automatically apply

and scale these techniques in a semantic web

network. We hope to improve upon and scale

the model of current successful crowd-sensing

platforms—like Safecast’s radiation network—

extended with relaxed hardware/software con-

straints to enable scaling in an already fractured

market.15 The following sections give a brief

overview of this new platform and its associated

tooling, which is available at https://github.com/

mitmedialab/learnair.

The Semantic Web

Semanticweb technologies aim to decentralize

data storage and administration and generalize

the rules for creating data ontologies, allowing

schemas to develop and compete organically

(much like the World Wide Web). Data is con-

nected through hypermedia—an approach that is

scalable and robust and leverages existing web

technologies for access control and security.

Semantic web technology is being adopted for

social linked data with projects like Solid (from

Tim Berners Lee), as well as the rise of linked

semantic data in web structures like DBpedia or

Wikidata. However, centralized approaches con-

tinue to dominate the Internet of Things (IoT)

landscape. With the consolidation of IoTivity and

AllJoyn—the two largest competing IoT communi-

cation protocols—there is evidence that semantic

principles and distributed, linked, RESTful JSON

APIsmay be the bedrock of the future.

We have built a LearnAir network typology

using ChainAPI, a JSON standard based on Hype-

rmedia Application Language.16 ChainAPI is a

true semantic web infrastructure that has been

adopted for large-scale ecological sensor installa-

tions. LearnAir extends the ChainAPI framework

with an air quality specific data ontology and

several new tools for interacting with ChainAPI

data structures, designed with industry needs in

mind. Our ontology—published at https://github.

com/mitmedialab/learnair—is a novel semantic

web specification designed specifically for air

quality network deployments, including (1) a sim-

ple schema for managing location metadata, cali-

bration records, and fixed or mobile sensors; (2)

tooling to allow reference material and calibra-

tion procedures to be centrally updated, shared,

or automatically applied—providing manufac-

turers a window into how their devices are

performing across geographies; and (3) “virtual

sensor streams” allow for multiple raw, cali-

brated, and processed data to coexist seamlessly

for a sensor or device. It incorporates the best

practices from Semantic Web standards with the

practical needs of air quality community.

A New Toolkit
Web crawlers that traverse hypermedia rela-

tions and understand relational graphs are impor-

tant for discovery and interaction in hypermedia

frameworks. As part of LearnAir, we have also

extended ChainAPI with an open source suite

of crawlers for traversal, discovery, and data

manipulation.

Alongside practical tools for Excel/CSV upload

and similar interactions, the most notable addi-

tion is called ChainProcessor, which provides

developers simple hooks to (1) apply arbitrary

functions to data in the network and upload it

(i.e., apply a calibration to raw sensor data based

on local temperature and humidity), and (2) run

supervised machine learning tasks based on colo-

cation events. In the second case, a local database

(indexed by location and timestamp) is created

by the crawler for each denoted resource type.

Developers only need to specify the data they are

interested in, a spatiotemporal colocation toler-

ance, and train/apply functions for their algorithm
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to automatically discover, retrain, and apply itself

to all current and future data in the ecosystem.

This platform and toolkit were implemented

and used as part of our LearnAir study—we

uploaded our GPS tagged data to an active Learn-

Air system from CSV files and deployed our cali-

bration algorithms and our data quality models

as crawlers in the network. The crawlers find

sensors, calibrate data, and model systematic

errors for every sensor by type (using colocated

events with reference devices that are mined

from the web.) Our implementation shows new

data triggers retraining of each crawling sensor

model automatically. The crawlers then con-

tinue to reprocess and replace exposed old data

with the latest, most accurate estimates.

Example Hardware
The final part of the LearnAir semantic

network infrastructure is a reference hardware

design that mates with the AS front-end board,

timestamps, and multiplexes sensor data, and

pushes it over Bluetooth Low Energy to a phone

for GPS tagging/upload. It has a 5V SPI header for

additional sensing, andmates to a daughter board

that we designed to track contextual information

(including light level, UV level, 3-axis pressure/air-

flow, temperature, humidity, and vibration/orien-

tation). We hope these circuits alleviate the

barrier to entry for designers looking to include

contextual on-device measurement as a supple-

ment to their core sensing modalities, completing

the toolkit for intelligent and scalable air quality

semantic web infrastructure.

CONCLUSION
A survey of the consumer air quality land-

scape reveals that affordable sensors are sus-

ceptible to many types of condition-dependent

errors that render their data untrustworthy. It is

costly to build systems that can mitigate these

errors physically, and the increasingly important

consumer marketplace is already saturated with

error-prone devices. Prior work has focused on

improving the quality of data from these devices

using new calibration techniques, modeling cor-

rections, and sensor designs; the best of these,

however, still cannot produce reference quality

data from an affordable device. (High fog in a

cheap optical system, for instance, may intro-

duce enough noise to make a correct reading

impossible, even with a state-of-the-art model).

In contrast to models that attempt to correct

unreliable data, we design and validate models

that predict reliability for each reading based on

localmeteorology and device state. Thesemodels

can drive probabilistic frameworks and improve

device accuracy by filtering out the subset of data

that does not meet probabilistic quality stand-

ards. This methodology is useful for quantitative

insight into problems other than data quality as

well, including (1) the proper duration of colo-

cation field characterizations across climates,

and (2) diagnostics of core sensor quality, device

design, and failuremodes.

We build all these tools into a scalable, open

infrastructure that applies these principles auto-

matically, along with a hardware platform that

incorporates the most important contextual

measurements. This network addresses the prob-

lems facing the air quality community—it allows

sensors of various quality to coexist in an open

and scalable ecosystem, simplifies and improves

existing field validation techniques and cross-

organization data sharing, and appends reliabil-

ity estimates to every reading in the database so

that useful information can be extracted from

otherwise unreliable devices.

In the future, these techniques naturally

extend to condition-dependent spatial relation-

ships as we move away from intentional colo-

cation testing toward ad-hoc network-level

approaches. While this study assesses the viabil-

ity of these approaches in a limited context—six

sensors closely mounted to an FEM inlet—these

techniques naturally extend to spatial error as

well. The radius for which sensors are close

enough to meaningfully compare will vary across

sensor types, pollutants, geographies, climate,

and other changing ambient conditions. This vari-

ability can and should be modeled in a similarly

probabilistic manner within a framework like

LearnAir.

LearnAir creates the backbone for an extensi-

ble ecosystem that is scalable and automatic,

trustworthy and well characterized—a necessary

step for researchers to leverage affordable sen-

sor data and for consumers to have transparency

and trust in their devices. Furthermore, these
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methods are useful as a design and analysis tool

for device manufacturers. LearnAir serves as an

open platform that can easily be extended and

adapted by developers. Its implications extend

beyond the air quality space into the future of

connected devicesmore generally.
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