
A Flexible High-Density Sensor Network

by

Behram Farrokh Thomas Mistree

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Aug. 3, 2008

Certified by. .
Joseph A. Paradiso
Associate Professor

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

A Flexible High-Density Sensor Network

by

Behram Farrokh Thomas Mistree

Submitted to the Department of Electrical Engineering and Computer Science
on Aug. 3, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis explores building and deploying a scalable electronic sensate skin that was
designed as a dense sensor network. Our skin is built from small (1” x 1”) rigid circuit
boards attached to their neighbors with flexible interconnects. Each boardcontained
an embedded processor together with a suite of thirteen sensors, providing dense,
multimodal capture of proximate and contact phenomena. In addition to the design of
the physical system, this thesis develops protocols for internode communication (both
neighbor-neighbor and global), and power-efficient wake-on-phenomena operation.
The system was rigorously tested with an array of up to 4x3 nodes subject to a
variety of sensor stimuli. Although there were some robustness issues in the final
design (particularly in the wired interconnects, which were not the focus of this thesis
work), the skin that we developed showed good flexibility for a prototype, ran quickly
and efficiently, and could detect and respond to a variety of stimuli.

Thesis Supervisor: Joseph A. Paradiso
Title: Associate Professor

Acknowledgments

I owe a deep thank you to Prof. Paradiso for giving me a chance to work on this

project. I learned a lot and matured over the past year. It motivated me to continue

my study of electrical engineering, and introduced me to the importance of research.

I would also like to thank my brother, Dinsha Mistree, primarily for being a

great brother. He helped me write my thesis, but, most importantly, encouraged

me throughout the last year. Similarly, my parents, Janet K. Allen and Farrokh

Mistree were a constant source of support.

In addition, I would like to thank several current members of the Responsive

Environments Group:

• Mark Feldmeier: For explaining basic circuitry and helping me use oscillo-

scopes.

• Nan-wei Gong: For being incredibly enthusiastic and great to be around; and

also for teaching me as she learned.

• Mat Laibowitz: For explaining MSP430 function to me, being an inspiration

with a soldering iron, and discussing great and not so great movies every so

often.

• Jason LaPenta: For looking over much of my board layout and coaching me

on low-noise PCB techniques.

• Michael Lapinski: For teaching me basic life lessons.

• Lisa Lieberson: For putting up with multiple questions and helping me pro-

cure parts.

• Manas Mittal: For being around late at night, playing loud music, and walking

to 7-eleven together.

I would also like to thank a former member of the Responsive Environments

Group, Gerardo Perez, for providing an excellent starting point for my thesis.

Finally, I would like to thank the National Science Foundation along with the

Things That Think Consortium and other sponsors of the MIT Media Laboratory for

funding me while working on this project.

Contents

1 Flexible High-Density Sensor Networks: The Starting Point 17

1.1 Physical Objectives . 18

1.1.1 Package Size . 18

1.1.2 Bendable . 19

1.1.3 Electrical/Computational/Low Power 20

1.1.4 Sensing Modalities . 20

1.2 Related Work . 21

2 Hardware 25

2.1 Microcontroller . 26

2.2 Mux . 26

2.3 Light Sensor . 27

2.4 Pressure Sensors . 29

2.5 Microphone and Whisker . 30

2.5.1 Microphone . 30

2.5.2 Whisker Sensor . 34

2.6 Temperature Sensor . 35

2.7 Hall Effect Sensor . 36

2.8 Connectors . 37

2.9 Master Node . 40

2.10 Power Consumption Summary . 40

7

3 Software 43

3.1 Firmware . 44

3.1.1 Slave Node Firmware . 44

3.1.2 Master Node Firmware . 49

3.2 Visualization . 50

3.2.1 Overview and Motivation . 50

3.2.2 Visualization Goals . 51

3.2.3 Graphics Toolbox Choice . 52

3.2.4 Sensor-Visualization Mapping 52

4 Communication 59

4.1 Motivation . 59

4.2 I2C Bus . 61

4.2.1 Overview . 61

4.2.2 Advantages of I2C Bus . 62

4.2.3 Disadvantages of the I2C Bus 63

4.3 Asynchronous Peer-to-peer Communication 66

4.3.1 Motivation . 66

4.3.2 Implementation . 67

5 Results 75

5.1 Basic Results . 75

5.1.1 Size . 75

5.1.2 Flexibility . 76

5.1.3 Robustness . 77

5.2 Communication Results . 83

5.2.1 Peer-to-peer . 84

5.2.2 I2C . 89

5.3 Basic Sensor Results . 91

5.3.1 Light Results . 91

5.3.2 Microphone Results . 92

8

5.3.3 Whisker Results . 96

5.3.4 Pressure Results . 98

5.3.5 Temperature Sensor . 100

5.4 Extended Results . 108

5.4.1 Proximity Events . 108

5.4.2 Magnetic Bend Sensor . 111

5.4.3 Hand Press . 115

5.5 Power Exploration . 121

6 Discussion 129

6.1 Communication . 129

6.1.1 Peer-to-peer Protocol . 129

6.2 Light . 132

6.3 Temperature . 133

6.4 Whisker . 134

6.5 Microphone . 136

6.6 Pressure . 136

6.7 Magnetic Bend Sensors . 137

7 Conclusion and Future Work 141

7.1 Errata to be Fixed . 141

7.1.1 Temperature Sensor . 141

7.1.2 Connectors . 142

7.1.3 Hall Effect Sensors . 142

7.2 Potential Extensions . 143

7.2.1 Visualization . 143

7.2.2 Enlarging our Skin . 143

7.2.3 Distributed Control . 144

7.2.4 Power . 146

7.3 Summary . 147

9

A Simulation Code 149

A.1 Skin Simulation . 149

A.2 Magnet Simulation . 149

B Additional Data 153

B.1 Table Pound . 153

B.2 Stomp on floor . 153

B.3 Skin Yank . 153

B.4 Whisker Blow . 157

C PCB Layout 159

D Circuit Schematics 165

10

List of Figures

1-1 Perez’s S.N.A.K.E system . 24

2-1 Picture of mux on node board . 27

2-2 Picture of TPS851 light sensor mounted on our board. 28

2-3 QTC pressure versus resistance . 29

2-4 Picture of FSR sensor . 30

2-5 Diagram of pressure sensor and standoff 31

2-6 The OPA347’s transfer function . 32

2-7 Picture of SPM0102NE-3 microphone mounted on our node 33

2-8 Conditioning circuitry for microphone 34

2-9 Conditioning circuitry for whisker sensor 35

2-10 LM20CIM temperature sensor on node board 36

2-11 Picture of Hall effect sensors and magnets mounted on node board . . 38

2-12 Diagram showing internode connections 39

2-13 Picture of wired connectors selected for linking nodes 39

3-1 Light sensor visualization . 54

3-2 Temperature sensor visualization . 54

3-3 Pressure sensor visualization . 55

3-4 Microphone visualization . 56

3-5 Bend sensor visualization . 56

4-1 A simplified diagram of the I2C’s electrical connections. (Image from

[11]) . 62

11

4-2 Pin connections between nodes for peer-to-peer communication. . . . 68

4-3 Flow chart of peer-to-peer communication 71

5-1 Four nodes. 76

5-2 Four nodes bent around a camera case 77

5-3 Four nodes bent into a strange topology 78

5-4 Thirteen nodes bent into an unusual topology 79

5-5 Thirteen nodes hanging off edge of a table 80

5-6 Picture of two connectors side by side 82

5-7 Block diagram depicting the experimental procedure used to measure

the accuracy of peer-to-peer transmission 85

5-8 Block diagram depicting the experimental procedure used to measure

the baud rate of peer-to-peer transmission 86

5-9 Block diagram depicting the experimental procedure used to demon-

strate the effects of allowing a node to set different peer-to-peer com-

munication rates . 88

5-10 Response of twelve nodes to flashlight stimulus 93

5-11 Response of nine nodes to hand shadows 94

5-12 Windowed microphone response to five claps of varying intensity . . . 94

5-13 Un-windowed microphone response to five claps of varying intensity . 95

5-14 Windowed microphone responses to five claps of twelve nodes con-

nected in a grid. 96

5-15 Un-windowed microphone responses to five claps of twelve nodes con-

nected in a grid. 97

5-16 Whisker responses of a grid of nine nodes as a hand passes over the

tips of the whisker bristles three times 98

5-17 FSR responses of a grid of nine nodes as each node is sequentially

pressed upon . 99

5-18 Comparison of FSR sensor against QTC sensor 100

5-19 Temperature sensor response to heat gun 101

12

5-20 Temperature sensor response to thumb’s being applied to it 102

5-21 Filtered response of temperature sensor to heat gun 103

5-22 Filtered response of temperature sensor to thumb’s being applied to it 104

5-23 Filtered temperature response of twelve nodes after an incandescent

light bulb is turned on . 105

5-24 Filtered temperature response of twelve nodes after an incandescent

light bulb is turned off . 106

5-25 Spatial temperature gradient across a grid of twelve nodes 107

5-26 Eleven nodes’ light sensor response to shadow 109

5-27 Whisker sensor waveforms of grid . 110

5-28 Whisker data from four nodes as a hand passes over each sequentially 111

5-29 Responses of six Hall effect sensors 113

5-30 West North Hall effect sensor results as skin is bent to an angle of 60o

three times . 114

5-31 Light sensor data from a twelve node grid as a hand descends, presses

on, and leaves grid . 116

5-32 Whisker sensor data from a twelve node grid as a hand descends,

presses on, and leaves grid . 117

5-33 Filtered temperature sensor data from a twelve node grid as a hand

descends, presses on, and leaves grid 118

5-34 Microphone data from a twelve node grid as a hand descends, presses

on, and leaves grid . 119

5-35 Pressure sensor data from a twelve node grid as a hand descends,

presses on, and leaves grid . 120

5-36 Light sensor data from a twelve node grid as a hand rolls from the left

side of the skin onto the right side of the skin and back. 121

5-37 Whisker sensor data from a twelve node grid as a hand rolls from the

left side of the skin onto the right side of the skin and back 122

5-38 Temperature sensor data from a twelve node grid as a hand rolls from

the left side of the skin onto the right side of the skin and back 123

13

5-39 Microphone data from a twelve node grid as a hand rolls from the left

side of the skin onto the right side of the skin and back 124

5-40 Pressure sensor data from a twelve node grid as a hand rolls from the

left side of the skin onto the right side of the skin and back 125

5-41 Node configuration for low power mode exploration 126

6-1 North West Hall effect sensor readings 139

A-1 Visual output of skin simulation program 150

A-2 Visual output of magnet simulation 151

B-1 Whisker sensor’s response to a fist’s pounding the table on which our

skin is placed . 154

B-2 Microphone’s response to a fist’s pounding the table on which our skin

is placed . 155

B-3 Whisker sensor’s response to a foot’s stomping the floor near our skin

twice . 156

B-4 Responses of whisker sensors to a sudden tug on the base of our skin 157

B-5 Responses of whisker sensors to someone’s blowing across skin 158

C-1 PCB layout of entire node board . 160

C-2 PCB layout of top layer of node board 161

C-3 PCB layout of interior layer of node board: VCC plane 162

C-4 PCB layout of interior layer of node board: GND plane 163

C-5 PCB layout of bottom layer of node board 164

D-1 Power, LED, temperature sensor, and light sensor circuitry for node . 166

D-2 Mux control circuitry for node . 167

D-3 Microphone and whisker conditioning circuitry 168

D-4 Microcontroller and connector circuitry 169

14

List of Tables

2.1 Summary of current consumption for the components of each node . 41

5.1 Measurements of accuracy for peer-to-peer protocol 85

5.2 Measurements of baud rate for peer-to-peer protocol. 87

5.3 Ready-delay’s effects on number of 8-bit characters received from neigh-

bor via peer-to-peer protocol and processing time required to perform

10,000 square root operations. 90

5.4 Accuracy results of I2C bus . 90

5.5 Hand speeds calculated from whisker sensors 112

5.6 Current consumption from skin patch wakeup routine 127

15

16

Chapter 1

Flexible High-Density Sensor

Networks: The Starting Point

This thesis describes the function of a hardware and software platform built to repli-

cate some of the sensory and mechanical aspects of skin. Throughout the rest of

this document, for simplicity, we refer to this platform as “skin”. Although such a

designation is convenient, it is imperfect.

Biological skin is a complex organ capable of much more functionality than our

project imitates. In addition to its sensory and mechanical characteristics, biological

skin can regulate heat, protect the body from pathogens, and signal emotional state

(for instance, a blush) [33]. While building a system capable of biological skin’s

extended functionality would be exciting and profound, as will be demonstrated in

later chapters, our system provides a real and powerful starting point for a variety of

explorations.

This thesis is divided into several chapters.

• Chapter 2 details our network’s physical hardware, explaining both our choices

of sensors as well as all additional circuitry necessary for our work’s operation.

• Chapter 3 explains the firmware written for our skin as well as the software that

we developed for real-time representation of our network’s state.

• Chapter 4 describes our network’s communication system.

17

• Chapter 5 presents results from our work including basic communication bench-

marks and data collected from the network in response to a variety of stimuli.

• Chapter 6 discusses and analyzes the relevance of our results as well as high-

lighting some of their more interesting features.

• Chapter 7 concludes our work and posits additional avenues for future explo-

ration.

The remainder of this chapter describes our project’s goals and provides context

for our system by presenting a review of relevant literature.

1.1 Physical Objectives

The previous section introduced our work, explaining our basic skin metaphor. While

such an overview is useful at a high level, it leaves many design questions unspecified.

Therefore, this section motivates and catalogs a specific list of our work’s design and

functional goals.

1.1.1 Package Size

Our skin is composed of a number of discrete nodes. Such a design provides researchers

the flexibility to use our system not only to analyze stimuli, but also to perform more

rigorous studies, such as examining the dynamic between local and global processing

of stimuli. However, a poor implementation may be susceptible to information loss.

Consider, for instance, two types of circular nodes each with a single, centrally located

temperature sensor. Type 1 nodes are each the size of a CD while Type 2 nodes are

each the size of a quarter. If one were to tile a sheet of paper with each type of node,

one would be lucky to fit four or five Type 1 nodes; on the other hand, one could fit

dozens and dozens of Type 2 nodes on the same sheet of paper. Such a discrepancy

implies that Type 2 nodes would offer more temperature sensors per area than Type

1 nodes, making spatial interpolation of temperature values more reliable.

18

For modalities that tend to vary gradually, such as temperature in the example

described above, one might argue that the increased data provided by Type 2 sensors

adds little information to the overall system. However, for stimuli, such as pressure,

that can have very distinct edges, increased spatial sampling could have a profound

effect.

From this example, we see the importance of either shrinking nodes or increasing

the number of sensors on each node. We choose the first option for two reasons. The

first reason is mechanical: each node is connected to its neighbors through flexible

interconnects. Therefore, decreasing the size of each node makes the overall network

more generally flexible.

The second reason is slightly more complicated and touches upon robustness.

With the Type 2 nodes from the example above, if a microprocessor fails, depending

on the network architecture, the overall skin develops a small, but unsightly, quarter-

sized blind spot. In contrast, a failure in a system composed of Type 1 nodes would

create such a large sensor-less region that the system’s overall functionality would be

dramatically reduced.

In addition, smaller nodes imply an increase in node density, meaning that for a

given area of skin there are more potential paths for information to be routed from

one node to another. A network of smaller nodes might be able to route around a

single communication failure more easily than a network of larger nodes. Therefore,

smaller nodes might enhance the overall integrity of the skin’s communication system.

1.1.2 Bendable

Practically, requiring our network to be bendable dramatically increases its applica-

tion space. A bendable system could be deployed for situations in which topology is

dynamic or unknown. In addition, bendable systems would be more interesting to

interact with. Philosophically, one could read this requirement as a statement that

our society is past the point where people and their spaces are forced to adapt to

technology; instead, technology should mold itself to people and their environments.

19

1.1.3 Electrical/Computational/Low Power

Future applications for our skin might be in a mobile system, where it would be

powered by a battery (for example, on a mobile robot). In such a context, the overall

usefulness of our skin would greatly depend on how much power it consumed - a

system that consumed less power would operate longer. As explained later in this

work, for simplicity, the current version of our skin is wired directly to a static power

source. This decision was made consciously - requiring the system to be battery

powered would demand resources that were better spent in the development of a

prototype. However, it is recognized that there might be great interest in eventually

weaning our network away from a wall socket, and as such, our initial prototype is

designed to be economical with its power usage.

There are, of course, other benefits to a low power system. In particular, if

one created a large version of our skin, power inefficiencies might prove to be an

unacceptably expensive energy waste.

1.1.4 Sensing Modalities

Our network is loosely modeled after skin - a remarkable multi-sensory organ capa-

ble of detecting temperature, pressure, proximity (hair), and light changes (in some

species). As such, the modalities that our network is designed to sense are informed

heavily, but not exclusively, by those modalities that biological skin is capable of

sensing. Below is a list of stimuli that we designed each node to detect:

• Pressure: Our skin was designed for gentle human interaction. Therefore, the

range of detection for pressure is between a light poke and a moderately heavy

hand press.

• Sound: Typical skin does not evince the ability to distinguish sound. However,

as explained later in our work audio amplitude measurements augmented tac-

tile sensing (certain pressure stimuli are strong enough to also create an audio

signature). In addition, sound allows us to attempt localization of stimuli not

in direct contact with the network.

20

• Bend/Strain: The relative bend between nodes is an important value to measure

- it gives information about the general topology of the network.

• Proximity/Airflow: Biological skin has the ability to distinguish simple prox-

imity and airflow events in its environment using hair. It would be interesting

if our system were able to track these events as well.

• Light: Light detectors marginally promote our skin metaphor: the skins of

certain animals, such as cuttlefish, are capable of distinguishing small changes

in light. More importantly however, light sensors give us a smorgasbord of

information: sudden changes in a light sensor’s state may indicate the shadow

of an approaching object, while the signature of the light sensor’s waveform may

indicate a location (indoor lights have a characteristic 60 Hz hum), etc.

• Temperature: A sensitive temperature measurement could indicate the proxim-

ity or touch of a human or animal or signify the presence of a nearby (potentially

dangerous) heat source.

A thorough description of our skin nodes’ performance in detecting each of these

modalities is presented in Chapter 5.

1.2 Related Work

Work on dense sensor systems is hardly unique. There are an overwhelming number

of projects in the literature, some of which bear relevance to skins. A brief sampling:

• Rossignac, et al. outline work being done to embed pressure sensors within

morphable materials in their paper, “Finger sculpting with Digital Clay.” Al-

though the project is still incomplete, the intention is to create a material whose

3d structure can be tracked by a computer as users shape and form it [35].

• Rekimoto describes a “SmartSkin” capacitative surface. The sensors of the

surface feed information back to a single controlling PC which calculates hand

position and shape from the aggregated data [34].

21

• Hakozaki uses inductive coupling to implement skin for a robot. Although their

system is clearly impressive, it is solely restricted to pressure sensing and glosses

over algorithmic questions of sensor data processing [16].

• Maximilian outlines a capacitive pressure array that is flexible enough to be

used as a skin in his paper “A textile based capacitive pressure sensor” [30].

• Stiehl built a companion robot named “Huggable” for deployment in nursing

homes and hospital settings [39]. In the form of a teddy bear, Huggable is

designed to promote and detect human contact and interaction. To these ends,

the developers of Huggable custom-built a synthetic skin for their platform

capable of pressure and temperature sensing. Using a neural-network model

to process sensor data, Huggable was capable of accurately classifying stimuli

that ranged from petting to rubbing to squeezing [40]. Although, in deploying a

flexible sensor system Stiehl’s Huggable work shares several similarities with our

system, there are important distinctions as well. Most notably, the Huggable

system does not incorporate any distributed processing. Whereas each node

in our array is capable of processing all of its sensory inputs, each Huggable

platform only has one, central processor which samples and manages the entirety

of the system’s skin. As such, Huggable is unable to analyze the networking,

communications, scalability, and control questions that our system is specifically

built to explore. In addition, Huggable’s sensor suite differs from ours. While

both Huggable and our system have pressure and temperature sensors, Huggable

has a capacitive sensor which we chose not to include for space considerations;

and our system has light, whisker, sound, and magnetic sensors which are all

absent on Huggable.

Such a list demonstrates the rich academic interest in the broad topic of creating

dense tactile systems. However, these papers neither propose nor describe systems

with the distributed processing capabilities we demonstrate in our work. Our skin is

built not only with a high density of sensors, but also with a high density of processing

power: as will be described later, approximately each square inch of our skin contains

22

a processor capable of running millions of instructions per second. In this way, we can

understand our skin as a step towards Speckled Computing, a concept discussed in [4],

[44], [5]. Speckled Computing explores the potential effects and functions that future,

ultra-small electronics will permit, focusing on electrical and algorithmic questions of

power, communication, and manufacturing.

As a hybrid between Speckled Computing and dense sensor networks, our skin

traces its ancestry to a series of work initiated by Lumelsky et al.’s call for the

development of such a system [27] and continued on through research at the MIT

Media Laboratory’s Responsive Environments Group. In particular, our skin extends

Responsive Environments’ research trajectory defined by Tribble, Pushpin Computing

and S.N.A.K.E. Each of these systems is described separately below.

• Tribble: Developed by Lifton [31], the Tactile Reactive Interface Built By

Linked Elements is a multi-modal and peer-to-peer sensor network. Similar

to our skin’s design, Tribble is made up of separate processing patches. How-

ever, Tribble differs in a few key respects from the system instantiated in this

thesis. Specifically, Tribble’s nodes are large, reducing its overall sensor resolu-

tion. In addition, Tribble’s nodes are configured to form a rigid and inflexible

sphere, and each node contains a speaker for producing distributed audio. De-

spite these differences, Tribble provides an excellent point of approach for this

paper’s work.

• Pushpin Computing: Pushpin Computing, also developed by Lifton, was a test-

bed that allowed researchers to place arbitrary numbers of distinct sensor nodes

on a rigid substrate, and then investigate how to get those nodes to coordinate,

aggregate, and manage the data that each collected [8], [7]. The nodes in the

Pushpin network were not directly physically linked to each other. As such, our

skin evinces distinct mechanical and electrical issues apart from those Lifton

had to deal with. However, the algorithmic framework and general network

principles that Lifton studied proved very useful in working with our skin.

• S.N.A.K.E.: In S.N.A.K.E., Perez proposed a system very similar to our skin

23

Figure 1-1: Photo of Perez’s S.N.A.K.E system [33].

network, including flexible nodes with processing power and multi-modal sen-

sor input. Pictured in Figure 1-1, Perez’s overall system only achieved mixed

results, largely due to mechanical issues that compromised robustness and

flexibility[33]. Our project expands from Perez’s basic objectives, and addresses

several of the difficulties he faced with a fundamental re-design of the system

- instead of each node’s being fully flexible (which did not work well with the

large IC packages needed on each node) and instead of using Perez’s distinct

springy multi-layer flex circuit board, our skin employs rigid nodes with flexible

interconnects, taking some inspiration from midieval chainmail. In addition,

compared to Perez’s network, our improved skin reduces the area of each node,

increasing sensor density and deploys several different, more effective sensors.

In summary, combining a high-density sensor network with embedded processing,

our work is an amalgam of two relatively distinct fields: high-density sensor networks

and speckled computing. This positions our work along a unique tract, only sparsely

populated by projects such as Pushpin Computing, Tribble, and S.N.A.K.E. We dif-

ferentiate our skin from Pushpin Computing and Tribble by instantiating our work

on a flexible substrate and adding sensing modalities contained in neither of these

projects, and we differentiate our work from S.N.A.K.E. by extending S.N.A.K.E.’s

functionality and mechanical robustness.

24

Chapter 2

Hardware

The previous chapter explained our design decisions, including functional objectives,

and basic motivation. In contrast, this chapter focuses on several of our most impor-

tant implementation decisions. Specifically, we explain component selection and the

basic circuitry onboard each of our nodes. For thoroughness, we provide our PCB

layout and complete circuit schematics in Appendices C and D, respectively.

At this point in our work, it is necessary to distinguish between two types of nodes

on our skin: the master node and the slave node. Our skin is composed of a single

master node connected to multiple slave nodes. Slave nodes are primarily designed for

sensing and inter-node communication. In contrast, a master node performs relatively

few sensing tasks and instead primarily serves as a bridge between our skin and a

PC, which, as described in Section 3.2, records and presents our nodes’ states. We

used almost the same hardware for both master and slave nodes: a master node uses

the same PCB as a slave node and a master node’s components are a superset of a

slave node’s components. All but Section 2.9 describe components common to both

master and slave nodes; Section 2.9 explains the minor hardware differences between

master and slave nodes. Chapter 5 shows the relative effectiveness of each of our

sensor choices, while Chapters 6 and 7 thoroughly analyze these results and evaluates

the decisions presented in this chapter respectively. For convenience, we conclude this

chapter with a table summarizing the current consumption of each major component

of our skin.

25

2.1 Microcontroller

We took great care in selecting our microcontroller. We required a small, low-power

device capable of running at high clock speeds and with enough memory to support

complex programs. We selected an MSP430 microcontroller for this purpose. Known

for its low power consumption and agile wake up [28], Texas Instruments’ MSP430

family of microcontrollers is used in a wide variety of sensor network research (net-

works for health monitoring [25], environmental monitoring [43], etc.). Our specific

microcontroller, an MSP430F1611, had several additional enticing features. Most

notably, it:

• Supported multiple clocks and had multiple power modes. As described in

Section 5.5, this feature allowed us to experiment with various power algorithms

and schemes.

• Provided an adequate number of input and output pins. As described in Section

4.3, we require 20 input and output pins just for our peer-to-peer connections.

All told, our design uses 49 of our MSP430F1611’s 64 pins.

• Had numerous built-in peripherals including and analog-to-digital converter and

communication modules.

2.2 Mux

While performing some basic accounting during our project’s design phase, we en-

countered a problem: our sensor count (13) exceeds the number of channels that our

ADC supports (8). Therefore, we add a mux to each node which effectively expands

our ADC. Because space is at such a premium on our nodes, our primary criteria for

mux selection is size. We settled on the ISL84781IRZ (pictured in Figure 2-1) which

comes in an ultra-small 16 QFN package. Aside from its small size, the ISL84781IRZ

is also attractive for its low power consumption (less than 2 µW) and short switching

time of 13 nano-seconds (a figure that ensures our MSP430F1611 running at its fastest

26

Figure 2-1: Picture of mux on node board.

possible clock rate will be able to read data immediately after setting the mux’s con-

trol pins) [20]. The output from our mux is passed through a voltage divider, which

reduces the mux’s output signal by half before it reaches our MSP430F1611’s ADC.

As will be explained later, the purpose of this divider is to ensure that signals from

our Hall effect sensors do not exceed the voltage threshold of our ADC.

2.3 Light Sensor

We used a Toshiba TPS851 photosensor as our skin’s light detector. The TPS851, pic-

tured in Figure 2-2, couples a photodiode in a single package with a current multiplier

and has several features that specifically recommend it for this project:

• The TPS851 is available in an ultra-small package: Figure 2-2 depicts the sensor

on the corner of one of our nodes. Notice how relatively small this sensor is

compared to the bulky programming connector above it.

• The sensor comes packaged with both a photodiode and a current multiplier.

Therefore, we only require one additional resistor for signal conditioning, thereby

27

Figure 2-2: Picture of TPS851 light sensor mounted on our board.

reducing component count and, in turn, required board area. In addition, cou-

pling both an amplifier and a photodiode reduces noise that might be introduced

from lengthy the potentially lengthy traces that would otherwise connect these

two parts.

• The TPS851 comes specifically attuned to detect light that excites the human

eye [41]. Therefore, it will perform best in the environments our skin will be

presented with.

The output current of our TPS851 light sensor passes through a resistor, creating

a voltage which we sample directly from a pin on our microcontroller’s analog-to-

digital converter. For a thorough treatment of the TPS851’s performance on our

node, please see Section 5.3.1 which displays our light sensor’s responses to different

stimuli and Section 6.2 which analyzes those results and discusses the TPS851’s overall

effectiveness for our project.

28

Figure 2-3: QTC pressure versus resistance. Figure from [26]

2.4 Pressure Sensors

Perez used a quantum tunnelling composite (QTC) material for his pressure sensors

[33]. Following his lead, we also attempted to use QTC material in the form of a

3.6 mm x 3.6 mm “pill” for pressure sensing. Provided by Peratech, the material’s

manufacturer, Figure 2-3 (from [26]) plots a QTC pill’s resistance against the amount

of force applied to it. As can be seen in the figure, QTC material changes its resistance

non-linearly as force is applied to it.

We used our QTC sensor in a voltage divider. Connecting the midpoint of our

voltage divider to a pin of our MSP430F1611’s ADC, we hoped to determine voltage

across each pill, and in turn each pill’s resistance and therefore the pressure applied.

However, we experienced mixed results using QTC pills. Although as shown in Section

5.3.4, we were able to detect some direct pressure events on our skin, in general, the

pills were not adequately sensitive to the stimuli of interest. In addition, because they

would not bond to solder [26], we resorted to individually gluing pills to each board by

hand - a sloppy practice complicated by the glue’s interfering with each pill’s electrical

contact with our node boards. The imprecision of this method made it impossible to

29

Figure 2-4: Picture of FSR sensor. Figure from [12].

reliably calibrate these QTC sensors, and motivated us to use a pre-packaged force

sensitive resistor (FSR) instead.

Similar to QTC material, an FSR changes its resistance as force is applied to

it. Therefore, we used the same voltage divider technique described above to track

its resistance changes. The primary advantage of using FSRs instead of QTC pills is

FSRs’ packaging. Pictured in Figure 2-4 (from [12]), our FSR comes with two exposed

tin leads. Compared to the ugly operation of gluing QTC pills to our boards, these

solderable sensors were easier to mount and therefore more reliable.

To optimally direct pressure stimuli to the most sensitive head of the FSR sensor,

we built a standoff system. This system is diagrammed in Figure 2-5, and greatly

improved the node’s pressure sensing, which is demonstrated in Section 5.3.4 and

analyzed in Section 6.6.

2.5 Microphone and Whisker

2.5.1 Microphone

Sound sensitivity is rarely associated with skin, however, we chose to include a mi-

crophone on our skin because of:

30

Figure 2-5: Diagram of pressure sensor and standoff mounting system.

1. The application power it gives us: as demonstrated by Lifton, audio data can

be used to perform network initialization and locate stimuli [32]. In addition,

other authors, such as [22], have demonstrated the usefulness of audio data in

categorizing stimuli.

2. The fact that it allows us to push the performance requirements of our system:

only the most exotic applications require us to sample our non-sound sensors at

the rate necessary for our microphone to record low-quality audio. Therefore,

applictions requiring sound sensing and/or processing forces us to push our

real-time performance to its limits.

We settled on an SPM0102NE-3 piezo microphone manufactured by Knowles

Acoustic. Used in portable devices and cell phones [1], the SPM0102NE-3 is de-

signed to be small and to require little power - both highly appealing characteristics

for our project. Despite the care we took in selecting one of the smallest microphones

we could find, incorporating sound sensing into our skin was still relatively expen-

sive from a board area perspective: as can be seen in Figure 2-7, the SPM0102NE-3

is by far the largest sensor on our boards, and requires the most sophisticated and

largest signal conditioning circuitry of any of our other sensors. Figure 2-8 presents

the circuitry used to condition the SPM0102NE-3’s output.

The first stage in our audio conditioning, highlighted by the red box in Figure

2-8, is an inverting amplifier modified with an additional capacitor in the feedback

path to increase phase margin. We chose an OPA347 operational amplifier manufac-

31

Figure 2-6: The OPA347’s transfer function.

tured by Texas Instruments for our circuit because of its small package size, power

efficiency, and high degree of linearity. As can be seen from our operational ampli-

fier’s transfer function presented in Figure 2-6, the OPA347 does have a noticeable

disadvantage though: because its phase decreases even for low frequencies with a

slope of approximately 20 dB/decade, there is a limit to the amount of gain we can

apply while still expecting stable performance. Our initial circuitry, taken from [33]

had a much lower gain. However, this lower gain was not adequately sensitive for our

purposes. Therefore, we naively increased the gain of our circuit. Unfortunately, our

new configuration had a relatively low 3 dB cutoff frequency of 100 Hz.

The next section of our microphone conditioning circuitry, designated by the mid-

dle dashed box in Figure 2-8, is a simple low-pass filter with a cutoff frequency of 4

KHz. Originally incorporated to deal with potential high-frequency noise picked up

by the microphone, oscilloscope tests of our microphone’s response later showed that

there was no noise on the line and such a filter was unnecessary. As the direction-of-

arrival sensing benefits from high-frequency information, we disabled this filter. As

can be seen from the schematic in Figure 2-8, the output of this filter is fed into the

cathode of a diode. This diode functions as a negative peak detector for our sensor -

because diodes do not conduct until appropriately biased, only signals greater than

32

Figure 2-7: Picture of SPM0102NE-3 microphone mounted on our node.

our diode’s .37 V forward voltage will be passed to our conditioning circuitry’s final

stage. The final stage of our conditioning path, designated by the green box in Figure

2-8, is a simple RC envelope follower which extends the length of the audio signal,

thereby permitting us to sample below the Nyquist rate and still detect audio events.

Realizing that future uses of our skin may require our MSP430F1611 to record

signals both before and after our peak detector, we routed lines for both signals to

our ADC. The pre-peak detector signal gets passed through a mux and a voltage

divider (for reasons explained in Section 2.7) on its way to our ADC, while the post-

peak detector goes directly to our MSP430F1611’s ADC. Unfortunately, due to an

oversight, we neglected to consider the impedance of our analog-to-digital converter

in the design of our circuitry. Therefore, it is difficult to say with exact certainty

what the time scale of decay is. For a thorough treatment of the SPM0102NE-3’s

performance on our node, please see Section 5.3.2 which displays our microphone’s

response to different stimuli and Section 6.5 which analyzes those results and discusses

the SPM0102NE-3’s overall effectiveness for our project.

33

Figure 2-8: Conditioning circuitry for microphone. The left-most dashed box is a
basic inverting amplifier with an additional feedback capacitor for stability. The
center dashed box is a low-pass filter with a 4 KHz cutoff frequency. The right-most
dashed box is an RC envelope follower that extends audio signals.

2.5.2 Whisker Sensor

Identifying the importance of whiskers to some rodents and other species, we made a

concerted effort to develop and deploy a whisker sensor on each of our nodes. To this

end, we tested and evaluated several different implementations of hair sensors before

settling on our current configuration. Most notably, we considered deploying a piezo-

film based sensor similar to that described by Lifton [31], but dismissed it because of

the amount of board area such a system would necessitate. We additionally examined

another piezo based solution, this time using a PKGS shock sensor manufactured by

Murata. Gluing bristles to this part and amplifying its output, we were able to detect

heavy and direct stimuli. However, this shock sensor-based approach could not detect

softer stimuli, and we were once again forced to reconsider. Our final whisker sensor

consists of paint brush bristles glued to the surface of an SPM0102NE-3 microphone

(the same type of microphone as described in the previous audio sensing section).

We experimented with several different glues and epoxies for affixing bristles to the

sensor, but settled on hot glue for its ease of application and because it completely

blocked audio signals from exciting the SPM0102NE-3’s element.

The whisker’s signal conditioning circuitry, shown in Figure 2-9, is very similar to

the microphone conditioning circuitry described in Section 2-8, with identical peak

34

Figure 2-9: Conditioning circuitry for whisker. The dashed red box is a basic inverting
amplifier with an additional feedback capacitor for stability. The dashed green box
is an RC envelope follower that extends time of whisker signals.

detector and envelope follower stages. There are only three minor differences between

the circuits: we perform no low-pass filtering on our whisker sensor’s output; our

whisker sensor’s pre-peak detector signal is routed to a digital, interrupt enableable

pin on our MSP430F1611 instead of through a mux to the MSP430F1611’s ADC; and

our whisker sensor has a much higher gain. A simple Nyquist plot indicated that this

higher gain was not enough to push our sensor into instability - a finding confirmed in

Section 5.3.3, which presents the response of our whisker sensor to multiple stimuli.

2.6 Temperature Sensor

We used an LMC20CIM for temperature sensing. We were attracted to the LM20CIM

for its low power consumption of 7 µA when active and its economic footprint - as

seen in Figure 2-10, our temperature sensor takes up very little board space.

Equally attractive, however, was the sensor’s simplicity. The LM20CIM requires

no additional signal conditioning circuitry, and feeds a voltage value directly into

our analog-to-digital converter. According to the part’s datasheet, this voltage maps

non-linearly to an absolute temperature with +/- 5 oC accuracy [36]. As will be

explained later in Section 6.3, the LM20CIM sensor unfortunately left much to be

desired, and we never were able to record temperature with the accuracy that the

35

Figure 2-10: LM20CIM temperature sensor on node board.

sensor advertised.

2.7 Hall Effect Sensor

In an effort to deduce the angular positions of nodes relative to each other, we included

six linear Hall effect sensors on each node as well as two magnets. As can be seen from

Figure 2-11, the West and North sides of each board are populated with the Hall effect

sensors while strong, Neodymium magnets are mounted on the South and East sides

of each board. The Hall effect sensors on each side of the boards are non-collinear,

which theoretically allows differential measurements between the sensors to infer the

relative angles between nodes, similar to the work presented in [14]. (Throughout the

rest of this work, we designate the Hall effect sensor in the bottom left corner of our

node as the West South sensor, the Hall effect sensor in the middle of the left side

of our board as the West sensor, the Hall effect sensor on the top left corner of our

node facing left as the West North sensor, the Hall effect sensor on the top left corner

of our node facing upwards as the North West sensor, the Hall effect sensor in the

middle of the top side of our node as the North sensor, and the Hall effect sensor on

36

the top right corner of our board as the North East sensor.)

The specific theoretical relationship between magnet strength, m; the magnetic

latitude, λ; the distance a magnet is placed from a detector, r; and the strength of

the magnetic field recorded by a detector, B is given by:

B =
µ0

4π

m

r3

√

1 + 3sin2(λ) (2.1)

where µ0 is the permeability of free space [42]. This equation has no closed-

form solution. As such, we wrote a simulation program, detailed in Appendix A,

which tested different methods of converting data from our Hall effect sensors into

an estimate of a node’s neighbor’s position. We found that for small angles, θ, the

approximation:

θ =
Hall1 − Hall2

Hall1 + Hall2
(2.2)

As explained in Section 5.4.2, our Hall effect sensors did not perform very well

in localization. Some of this may have been due to our sensor selection. We settled

on the A1323LUA-T sensor manufactured by Allegro. Unfortunately, this sensor, as

well as all other available vertically mounted Hall effect sensors, required a minimum

supply voltage of 4.5 V. This level was substantially past the operating points of our

microcontroller and all our other sensors. Therefore, we created a separate supply

voltage line for these sensors that ran at a higher voltage from the rest of the com-

ponents on our boards. The outputs of all six of our Hall effect sensors were routed

through our mux. To ensure that our Hall effect sensors’ outputs did not exceed the

input voltage requirements of our ADC, we put a simple voltage divider on the output

of our mux.

2.8 Connectors

Our skin is formed from an array of rigid nodes. In order to achieve our goal of

imitating the mechanical flexibility of biological skin, we therefore require bendable

37

Figure 2-11: Picture of Hall effect sensors and magnets mounted on node board.

connections between our nodes. This poses an interesting challenge. Our connections

must satisfy both mechanical and electrical considerations: not only must the inter-

connects physically hold nodes in place while allowing flexibility, but they must also

be conductive and insulated (to prevent catastrophic short circuits). In addition, we

must allow for a relatively large number of connections (9), pictured in Figure 2-12.

(Later portions of our report, particularly Chapter 4, explain the function of each of

these lines.)

We considered numerous solutions to this problem, researching a variety of spe-

cialized flectures from the mechanical engineering literature, various conductive poly-

mers, and conductive fabric based approaches similar to [9], while specifically exper-

imenting with springs, flat flex cable, wired interconnects, and conductive thread.

However, each of these approaches had specific disadvantages: fabric-based and con-

ductive thread-based interconnects were difficult to fix to our nodes and required a

skill set that we did not have; flat flex cable connectors proved much too delicate

for any real bending or strain; the steel springs that were available for our project

were not insulated and conventional core solder would not bond to the metal, making

38

Figure 2-12: Diagram showing internode connections. Chapter 4 explains the function
of each of these lines.

Figure 2-13: Picture of wired connectors selected for linking nodes.

attaching the springs difficult; and wire connectors often snapped and broke when

subjected to tension. A thorough exploration of connection types may have provided

us with a more flexible prototype, however, it would have significantly distracted from

the principle focus of our work. Therefore, we settled upon the solution that most

acceptably balanced functionality with ease of prototypability, and settled upon the

wired connectors pictured in Figure 2-13. As described in Section 5.1.2, these connec-

tors exhibited mixed results - they permitted reasonable flexibility, but often broke.

Section 7.1.2 thoroughly treats alternate solutions future iterations of our skin might

exhibit; our nodes are amenable to any kind of interconnect if the connectors are not

soldered in, and the new connection scheme (for example flex circuitry, fabric, etc.)

is bonded directly to the connectors’ PCB holes.

39

2.9 Master Node

Our skin contains at least one master node, which looks very similar to our slave

nodes. In order to support flexibility during experimentation with our skin, master

nodes come equipped with all the sensors of a slave node (described in this chapter’s

previous sections). However, they primarily function as a communication bridge

connecting our skin to a PC. To perform this task, our basic slave node requires some

minor hardware modification. Chapter 4 presents a thorough and detailed analysis

of our skin’s communication system. Most important to our current description of

hardware is our choice of an I2C backbone. As noted in Chapter 4, the I2C protocol

relies on two pull-up resistors, one for a data line and one for a clock line. These

resistors are soldered to our master node’s PCB.

Additionally, as explained in Section 3.1.2, our master node connects to a PC

via an RS-232 line. RS-232 relies on relatively precise timing to synchronize data

transmission and reception. Because there is quite a lot of variation in the onboard

oscillator of our MSP430F1611 [19], we soldered a precise 8 MHz oscillator to our mas-

ter node’s microcontroller to provide for this precision. Finally, we routed two wires

from our microcontroller to a separate bread-boarded circuit containing a MAX 233

chip. This circuit performed voltage level conversion, translating our MSP430F1611’s

0 V to 3.3 V signals to our RS-232’s +/- 5 V thresholds.

2.10 Power Consumption Summary

Recalling Section 1.1, one of the principle goals in building our skin was to be thrifty

with our power usage. Although we tested an algorithmic approach to power con-

sumption (mentioned in Section 5.5), our greatest power savings occur from the selec-

tion of efficient components. Table 2.1 summarizes the current consumption of each

component we selected. Our LED overwhelmingly requires the most power (although

it can be duty-cycled and used sparingly), but as can be seen from the table, most

other components are extremely low power.

40

Name Part Number Number Maximum Minimum
on Node Current or Quiescent

Current
Hall Effect A1322LUA-T 6 8 mA 5 mA

Temperature LM20CIM7/NOPB 1 7 µA 7 µA
Pressure (QTC) QTC Up to 3 3.23 mA < 1 µA
Pressure (FSR) FSR Up to 3 99.4 µA < 3.3 µA

Light TPS851 1 620 µA 620 µA
Microcontroller MSP430F1611 1 2.4 mA .5 µA

Microphone SPM0102NE-3 1 250 µA 100 µA
Whisker SPM0102NE-3 1 250 µA 100 µA

Mux ISL84781IRZ-ND 1 70 nA 70 nA
RGB LED 598-8710-307F 1 60 mA 0 mA

Table 2.1: Summary of current consumption for the components of each node.

41

42

Chapter 3

Software

We designed the electrical system of our nodes to support a wide range of functionality.

Our circuitry powers and conditions sensors and connects neighbor nodes and sensor

outputs to our microcontroller. This infrastructure, however, brings us only half-way

to our goal of building a functioning skin: not only do we need a suitable electrical

foundation for our work, but we also require well-written code to control and validate

our skin’s functionality. The software written for our project can be divided into

three primary categories:

1. Software written for design and simulation purposes.

2. Code written to visualize and record our skin’s state and data values.

3. Firmware written for control and communication of our skin.

We move our discussion of code written for design and simulation purposes to

Appendix A, and focus on our visualization and firmware programs in this chapter

(excepting firmware written for communication, which we save save for Chapter 4

because of how strongly informed such work is by electrical considerations). In gen-

eral, the principles we followed in writing software aligned with our general goals in

producing our skin (which are listed in Section 1.1). Specifically, our software was

designed for efficiency, speed, flexibility, and robustness. As will be mentioned in

later sections, occasionally these goals conflicted and we were forced to sacrifice one

desired trait for another.

43

3.1 Firmware

Firmware is code run by our microcontroller, and therefore governs the most basic

functionality of our nodes and skin. In general, our skin was composed of two types

of nodes that performed very different tasks: a single master node and numerous

slave nodes. We treat each of these types of nodes separately in the following two

subsections.

3.1.1 Slave Node Firmware

The program flow for slave nodes was simple and straightforward. Slave nodes perform

an initialization, which consists of:

• Setting a clock rate.

• Choosing a power mode.

• Setting and enabling interrupts - both for communication and analog-to-digital

conversion of sensor outputs.

• Determining quiescent values for sensors.

We performed several experiments detailed in Section 5.5, in which we modulated

clock rates and power modes to analyze how such choices impacted our skin’s power

consumption. However, for data acquisition, we generally ran our microcontrollers at

their fastest clock rates (between 6 MHz and 8 MHz [19]) and in their highest power

modes. Although more expensive from a power standpoint, the increased clock and

sampling rates afforded by these choices provided much greater sensor resolution.

After initialization, node actions are event-driven: our microcontroller sustains

an infinite loop until an event generates an interrupt, which breaks normal program

flow. Interrupts on slave nodes took five primary forms:

1. An interrupt triggered by an expired watchdog timer. A watchdog timer

is built into the architecture of our MSP430F1611 microcontroller. Watchdog

44

timers increment a register with each clock tick. A built-in system call allows a

programmer to reset the watchdog’s register to zero. If the watchdog’s register

ever overflows, the entire node is reset, and program execution is set to restart

at the first instruction located in memory. Watchdog timers add to system

robustness by reducing unanticipated infinite loops and unusual microcontroller

states. We performed several experiments with watchdog timers, incorporating

them into our skin during their normal operations. Later iterations of our work

excluded watchdogs, as node performance was found to be stable without them,

and enabling watchdogs occasionally resulted in correctly functioning nodes’

being incorrectly reset.

2. An interrupt triggered by a communication query from a neighbor.

As will be described in Chapter 4, we designed and implemented a peer-to-peer

messaging protocol. Messages passed between nodes may be used to control a

wide variety of behavior ranging from trivial (blinking an LED to acknowledge

receipt of a message), to more complicated (changing a neighbor’s clock and

power mode upon receipt of a message, as discussed in Section 5.5). Realizing

our firmware needed to be able to support such a wide range, we wrote our code

modularly. Rather than modifying our program’s entire structure, all that is

needed to remove the way a node responds to a message is to delete a single line

of code. Similarly, all a programmer must do to radically change the manner

in which a node responds to its peer-to-peer messages is to write a modular

function specifying new behavior and change a single line of code to direct

program flow towards the new function.

3. An interrupt triggered by a communication query from the master

node. As will be explained in Chapter 4, in addition to the peer-to-peer message

protocol briefly described above, we also implemented an I2C bus communica-

tion link, which connected every single node on our skin. We relied heavily on

our bus, using it as the primary communication line during data acquisition.

Interrupts on our I2C bus were generated from the skin’s master node request-

45

ing sensor information from an individual node. Individual slave nodes would

then respond to the master’s query with a sensor’s latest state.

4. An interrupt triggered by our ADC. Our MSP430F1611 microcontroller

comes equipped with a separate analog-to-digital conversion module. Analog-

to-digital conversion is not instantaneous: after an ADC begins conversion,

it can take several hundred clock cycles before a digital representation of the

analog signal is available. Our ADC triggers an interrupt when conversion of

an analog signal has terminated. Therefore, instead of repeatedly querying our

ADC to determine whether conversion has terminated - an approach that would

be computationally wasteful - program flow is automatically redirected when a

converted value is ready. During development, we experimented with various

different methods of processing an ADC interrupt: depending on the converted

value and which sensor’s output it represented, we changed our LED’s color,

delayed program flow, sent messages to neighbor nodes, etc. After performing

minor compression on the converted value (which will be described later in

this chapter), the converted sensor values were written into an array. Each

position in this array represented the latest reading of a particular sensor in

our skin. For instance, the third position in the array represented the output

of one of our pressure sensors, the sixth position in the array represented the

output of our temperature sensor, etc. The entire array is sequentially written

back to the master node when the slave node is queried (as described in the

previous paragraph). We then specify which next sensor’s analog output should

be converted to a digital value by our ADC (including correctly setting mux

state if necessary). If the temperature sensor’s output has just been converted,

then we specify that the light sensor’s output should be converted next. If our

Northeast Hall effect sensor’s output has just been converted, then we specify

the Southwest Hall effect sensor’s output should be converted next, changing

our mux to route our Southwest Hall effect sensor’s output to our ADC. We end

an ADC interrupt by setting a timer whose function is described in the next

46

paragraph.

5. An interrupt triggered by an expired timer. As described in the previ-

ous paragraph, timers are set at the end of ADC interrupts. A timer starts

an external clock which counts up from zero to some specified value. When

the clock reaches that value, program flow breaks and an interrupt is triggered.

This interrupt simply requests our ADC to begin converting an analog value to

a digital value. Briefly, we experimented with making this call directly at the

end of our ADC interrupt, however, this approach constricted the function of

our nodes: while servicing an interrupt, an MSP430 cannot service any other

interrupts. Therefore, directly requesting our ADC to begin conversion of an-

other sensor’s output immediately after termination of a conversion trapped our

program flow: nodes spent the overwhelming majority of their time servicing

ADC interrupts, which blocked them from dealing with other critical interrupts

that were happening on the nodes. Putting in a timer increased the number of

non-ADC interrupts on our skin. We carefully selected the length of our timer

to allow our sensors at a minimum to completely refresh their values between

queries from a master node.

Generally, interrupts were programmed in at compile time, although, our skin

does support dynamically changing interrupts at run time (for instance, a node could

turn on or off its ability to receive messages from its neighbors or stop sampling its

ADC to go into a low power mode). We did review literature describing different

methods for network self-assembly, which described different techniques that would

have allowed our nodes to determine their neighbors and therefore how many of their

peer-to-peer communication interrupts to set. We wrote code that mimicked some of

this self-assembly. However, this work did not allign with the primary thrusts of our

project, and due to time considerations, we were not able to thoroughly debug it and

test it.

After setting and enabling its interrupts, our nodes go through a sensor initial-

ization phase, which determines the quiescent values of all of our sensors. To find

47

the quiescent values, we average 64 samples of each sensor while no stimuli occur.

In general, division is not a fast operation on microcontrollers. As demonstrated in

Section 5.2.1, floating point operations require a substantial amount of time. How-

ever, we use a trick to speed our averaging. Noting that in a binary number system,

a right bit-shift operation is equivalent to division by two, we simply bit-shift a sum

of 64 values right 7 times. Bit-shift operations are very fast and greatly reduce the

run time of our initialization phase.

One might wonder why we choose to compute sensors’ unstimulated states. Our

reasons are two-fold:

1. As exemplified in Section 5.5, occasionally, we want our skin to respond to

extraordinary events. Such a goal begs the question of what an “extraordinary

event” is. Measuring our sensors’ values while our environment is at rest gives us

a baseline for defining and distinguishing extraordinary events from only minor

perturbances1. In addition, as mentioned in Section 5.3.3, we used this baseline

to suppress noise on our whisker sensor. Specifically, our node only reported

whisker events that significantly exceeded the whisker sensor’s quiescent value.

2. Quiescent sensor values also allow us to perform minor data compression. Our

analog-to-digital converter provides 12-bit resolution for voltages between 0 V

and 2.5 V or voltages between 0 V and 3.3 V. Several of our sensors, however,

physically cannot have higher or lower values than those in these ranges. For

instance, our whisker and microphone sensors cannot output more than 1.5

V because of their inverted amplifier conditioning circuitry and because they

are biased at 1.5 V. Therefore, for several of our sensors, we can save bits

while transmitting sensor values by logging a sensor’s output relative to its

undisturbed state rather than sending its absolute value.

Computing quiescent values of our sensors’ outputs concludes our slave node ini-

tialization. After initialization occurs, our node enters an infinite loop, relying on the

1Indeed, not determining the quiescent values of our sensors, may have contributed to poor results
when we attempted to localize stimuli based on acute audio events.

48

interrupts described above to drive our skin’s communicative and sensitive function-

ality. To summarize, slave nodes on our skin: set clock rates and power modes; set

and enable interrupts that perform our primary tasks of recording and transmitting

sensor data; sample all of their sensors in the sensors’ undisturbed states; and, finally,

wait for interrupts that drive our sensing and communication systems.

3.1.2 Master Node Firmware

Our skin only had one master node. Master nodes performed no sensing, but instead

were responsible for querying the skin’s slave nodes for their sensor values and for

transmitting these values via an RS-232 connection to a listening PC. As explained

in Section 2.9, because RS-232 requires specific timing conventions, we soldered an

8 MHz oscillator directly to our MSP430F1611. With this oscillator in place, our

master node’s firmware begins by dividing our clock to allow for a 115,200 baud rate

over our RS-232 line. After initializing our clock, we set our master node as a master

on our I2C bus (for a thorough treatment of what this means and details on our

overall communication systems, please see Chapter 4).

Our master node then queries a single node, A, for its first sensor value. Our

master node immediately pipes A’s response to our listening PC through the RS-232

circuitry described in Section 2.9. Our master node continues querying A until A

sends a pre-defined communication termination character, indicating that our master

node has read a full set of sensor values from A. Our master node then proceeds

to sample another node on our skin, B, until our master node receives the same

pre-defined character that indicates B has completed sending its sensor values. This

process continues forever sampling the specified number of nodes, with the master

node periodically wrapping its queries around from the final node in the skin back to

A.

Instead of using a pre-defined character to indicate the end of a data stream,

we could have implemented a design in which our master node sampled each node a

specific number of times. Our current design is much more flexible than this alternate

version: Individual slave nodes can control the length of their transmissions to our

49

PC. For instance, if Node A only wanted to transmit pressure sensor information to

our listening PC, it could selectively send only its pressure sensors’ values and then

issue a pre-defined termination character which causes the master node to proceed to

Node B, etc.

Because our skin typically contains only one master node, our design unfortunately

evinces a single point of failure. To reduce the potential negative side-effects of such

a design, we performed some preliminary experiments, finding that communication

occasionally slowed or altogether broke down when our master node would query

an unresponsive slave or a slave that was busy servicing an alternate interrupt. To

prevent such failures from bringing down our entire skin system, we implemented a

safety timer function. If a particular slave node, A, does not respond to a master’s

query after a set period of time, the master node automatically resets, and queries

Node B.

3.2 Visualization

3.2.1 Overview and Motivation

The previous section described microcontroller code written to enable a master node

to transmit sensor values from our skin’s slave nodes to a listening PC. This section

explains PC code written to receive, process, save, and display these data (a program

to which we refer throughout the rest of our work as the “visualization”), focusing

most specifically on our visual mappings of sensor values. The importance of such a

system is clear, it:

• Provides a form of validation. Thus far in our thesis, we have described

at length a method for building a system capable of mimicking biological skin’s

sensing and mechanical properties. However, we have yet to propose a method

for evaluating and validating our work. Our visualization provides precisely

such a tool. By recording and displaying each node’s sensor data across time,

our visualization and its logs allow us to assess our skin’s functionality and

50

accuracy.

• Eases debugging. During initial phases of development, we could only de-

bug by using an oscilloscope or running a debugger from our IDE on a single

node. Providing an additional level of feedback, our visualization system greatly

assisted in our debugging efforts.

• Increases usability. Although our work currently does not have a well-defined

application space, as described in Section 1.1 our skin has been built to be

extended. As our project moves away from its initial phases and adapts, it will

be useful to provide a layer of abstraction for testing additional functionalities.

We anticipate that our visualization will increase our system’s overall usability.

3.2.2 Visualization Goals

As described in the previous section, our visualization program forms an important

part of our overall project. As such, we treat the design and implementation of our

visualization seriously, and specifically lay out a series of goals that should enhance

usability. Our visualization should:

1. Be clean and clear.

2. Follow user intuition.

3. Be able to record data.

4. Be fast enough for real-time visualization.

5. Scale elegantly as additional nodes are attached to the skin.

While meeting the strict performance goals of recording data and writing fast,

efficient code was non-trivial, we were challenged most by the more aesthetic require-

ments that our visualization be clear and intuitive. Therefore, in later sections, we

focus most of our discussion on these topics, only briefly describing more technical

decisions - specifically our choice of graphics toolbox - in Section 3.2.3.

51

3.2.3 Graphics Toolbox Choice

We experimented with several graphics toolboxes, including OpenCV, Java’s Swing

API, OpenGL, and Matlab’s built-in plotting function. In the end, we chose OpenGL.

OpenGL provides a highly flexible, fast, and mature structure for writing our visu-

alization software. OpenGL supports rendering well beyond the bounds of basic

drawing and sketching; permits coloring of different hues and intensities; and even

supports multiple light sources and shadows. Additionally, OpenGL is compatible

with C++, an attractive feature given our comfort with writing code in C++ and

the language’s speed.

3.2.4 Sensor-Visualization Mapping

In many ways, our visualization assumed the role of transducer - for example, by

definition, a temperature sensor senses a modality that has no visual representation:

one does not see temperature, one feels it. Perhaps there exists some set of Jungian

archetypes that map each of our sensed modalities to a unique visual representation.

However, a cursory review of the literature however suggests that such a prospect is

naive. As such, we wrote an extensible central core of code, building it in such a way

that we could easily add, remove, and change sensor representations. This approach

permitted rapid prototyping, and, in turn, a type of iterated design, allowing us to

receive and respond quickly to feedback from helpful colleagues. As such, our initial

visualization differed greatly from our initial efforts. Whereas our first visualization

attempts relied heavily upon a strange and non-intuitive series of polygons rotating at

different rates in different directions with different numbers of vertices, our later at-

tempts, described in the remainder of this section, were more sophisticated and were

interpretted more naturally. This work was informed by a simpler set of animated sen-

sor mappings used in the Responsive Environment Group’s Tricorder project, which

developed a mobile, visual augmented reality browser for sensor networks [23].

To review, each of our nodes contains up to 13 sensors, which we aggregate to

give us data on:

52

1. The intensity of light hitting the node.

2. The temperature of the node’s surrounding environment.

3. The amount of pressure placed on our node.

4. The sound produced from stimuli.

5. The position of a node’s northern neighbor.

6. The position of a node’s western neighbor.

7. The amount a stimulus disturbs our whisker/hair sensor.

We treat each in order, beginning with the intensity of light detected by our

TPS851 sensor. We map the intensity of light to a series of yellow lines painted

radially outwards from the center of each visualized node. The length of these lines

indicate the relative amount of light each node is receiving: in the dark, lines are

very short; in direct sunlight, lines are very long. Figure 3-1 shows an example of a

single node in low light conditions and high light conditions. Notice that in high light

conditions, the yellow lines are much longer than in low light conditions.

We visualize temperature using a horizontal bar (highlighted with an arrow in

Figure 3-2). High temperatures increase the size of the bar, and turn the bar an

intense red. Low temperatures shorten the length of the bar, and turn it blue. Figure

3-2 shows an example of a single node in a low temperature environment and in a

high temperature environment. Notice that in the high temperature environment, the

horizontal bar is much wider and redder than in the low temperature environment.

Pressure data from our FSR are visualized by a single pentagon near the center

of each node (indicated with an arrow in Figure 3-3). With no pressure applied,

the pentagon is static and dark blue. As pressure increases, the pentagon goes from

blue to red and begins rotating at a rate proportional to the intensity of the pressure

applied to our FSR. We suppressed pressure data from our two QTC pressure sensors:

as will be noted in Section 3-3, our QTC sensors did not perform as reliably as we

would have liked. Therefore, we suppressed information on each node’s QTC sensors,

53

Figure 3-1: Light sensor visualization. Left grid shows visualization for nodes in a
dark environment. Right grid shows nodes exposed to a major light stimulus. Notice
the change in length of the lines emanating from each node on the grid.

Figure 3-2: Temperature sensor visualization. Left grid shows visualization for nodes
in a cold environment. Right grid shows nodes in a very warm environment. Notice
the change in length of the horizontal bar for each node.

54

Figure 3-3: Pressure sensor visualization. Left grid shows visualization for nodes mi-
nor pressure stimulus. Right grid shows nodes with major pressure stimulus. Pressure
is visualized by small pentagons in the figure. Small pentagons change color from blue
to red as pressure increases. In addition, pentagons rotate faster as pressure increases.

deciding that the minor additional information provided by our QTC sensors did not

justify the clutter they created in our visualization.

We change both the color and number of concentric circles surrounding our nodes

to display sound data. As can be seen in Figure 3-4, intense sounds increase the

redness of and the number of concentric circles surrounding our node; soft sounds

decrease the number of concentric circles surrounding our node and make them less

visible.

We assume that our skin is connected in a grid pattern. As neighbor nodes move,

we bend our visualization’s grid to follow them. Figure 3-5 provides an example of

such bending.

Responses recorded on our whisker sensor proved difficult to represent. After

several false starts, we settled upon “trembling” each node when our whisker sensor

is excited. Trembling consists of rapidly perturbing a node from its normal position.

The amplitude of the perturbation is governed by the intensity of the whisker event.

An intense whisker event causes a node to move far away from its grid position; a

light whisker event barely moves our node from its grid position. To avoid confusing

55

Figure 3-4: Microphone visualization. Left grid shows visualization for nodes with
minor audio stimulus. Right grid shows skin undergoing major audio stimulus. Notice
the change in the number of concentric circles emanating from each node.

Figure 3-5: Bend sensor visualization. Grid on left shows no bend in skin. Grid on
left shows skin as it is uniformly deformed.

56

our whisker sensor’s tremble with the bending from neighboring node positions, we

set our maximum trembling to a relatively small value.

57

58

Chapter 4

Communication

4.1 Motivation

Our experiments showed the MSP430F1611 microcontroller that we chose is able to

perform 12-bit analog-to-digital conversion at a rate of roughly 32 KHz. To put these

numbers into context, consider Leo Tolstoy’s War and Peace. Famous as some of the

finest literature ever written, War and Peace is also infamous as one of the longest

novels ever written: the primary listing of the English translation of the work on

Amazon.com contains over 1200 pages and a little over 3.1 million characters. At

the sampling rate described above, every ten seconds, each node in our skin has the

potential to generate more information than is contained in the entirety of Tolstoy’s

work. In short, we are not dealing with a stream of information - we are dealing with

a flood.

While earlier Chapter 2 of our thesis described infrastructure developed to enable

such blazingly-fast data collection, thus far we have not dealt directly with what to

do with all the information.

In general, we have three options:

1. Store the data.

2. Quickly process and delete data.

3. Transmit the data to a unit that capable of storing, presenting, or using it.

59

Examining the first option of storing the data, we immediately find a problem:

each node’s microcontroller only has 48 KB of flash memory available and physical

space on each PCB is at too much of a premium to mount additional storage. There-

fore, unless we sample a slow enough stimulus to allow us to significantly throttle the

sensor sampling rate, this strategy proves impractical.

Depending on the application, the second option of performing local, real-time

computations and discarding excess data can be quite powerful and quite complicated.

As an illustrative example of such a strategy, consider configuring a node as a burglar

alarm. As an alarm, a node is solely interested in sudden changes in its sensors’

states: instead of storing all generated data, a node compares every new sensor reading

against the sensor’s undisturbed state, and discards all other information as irrelevant.

There are enormous benefits to local, online extraction of relevance from stimuli in a

distributed network - such a strategy greatly reduces the need for on-board storage

and communication. Although the time scale of this project did not allow us to

examine this problem in any substantial way, the overall system has been designed

to support further inquiries in this direction, as will be discussed later in Section 7.

The third option of quickly transmitting collected sensor readings is the focus of

this current chapter. As noted throughout the literature, communication schemes

form a considerable part of the sensor network cannon [2]. As noted by various

authors, our choice of communication protocols, greatly impacts important network

features such as architecture, physical topology, and general operation[18]. To demon-

strate functionality, extend usability, and enable exploration, we designed our skin to

support two separate modes of communication: an I2C bus and a custom-built peer-

to-peer communication scheme. The remainder of this chapter provides an overview of

each of these protocols’ basic function and implementation as well as their advantages

and disadvantages.

60

4.2 I2C Bus

4.2.1 Overview

Initially devised by Philips Electronics in 1992, the I2C bus protocol has undergone

two major revisions since its initial release date. The current standard, set in January

of 2000, thoroughly outlines a robust, multi-master, multi-slave communication pro-

tocol. As opposed to other protocols, such as SPI and RS-232, I2C requires only two

connecting wires between communicants - a clock line (SCL) and a data line (SDA)1.

Communicants each have a unique address and and can be set in either a master

mode or a slave mode. As implied by the existence of the clock line, the protocol

is synchronous. Masters are responsible for setting the clock on the SCL line and

initiate all read and write operations between communicants by querying slaves. Sent

along the SDA line, a query has three parts: an initial start bit, the seven-bit or

ten-bit address of the slave a master is querying, and a final bit representing whether

the master is writing (’0’) or reading (’1’) from the slave [37]2.

Slaves respond to the master query by sending an acknowledge bit across the

SDA line. If the master has sent a read query, the slave follows its acknowledge bit

by sending a byte of data to the master which responds with a single acknowledge

bit after receipt of the entire byte. In contrast, if the master has sent a write query,

the master transmits a byte of information to the slave, and the slave sends back a

single-bit acknowledge response after receiving the entire byte [37].

As seen in Figure 4-1, both the SDA and SCL lines are set by pullup resistors. A

master or a slave, sets a logical ’0’ on the SDA line by sinking current and a logical

’1’ on the SDA line by setting its input to have an effectively infinite impedance.

1In addition, because the protocol needs pullup resistors, as will be described later, a common
ground and perhaps a common source voltage are also recommended.

2In addition to specifically querying one slave, a master can also send out a “general call”, which
transmits simultaneously to every slave. When a master performs a general call, the query described
here takes a different form, containing a “general call address” instead of a specific slave’s address
[37].

61

Figure 4-1: A simplified diagram of the I2C’s electrical connections. (Image from
[11])

4.2.2 Advantages of I2C Bus

Two-wire Setup

As mentioned in Section 4.2.1, I2C’s two connecting wires between communicants are

fewer than other communication schemes such as SPI (3 minimum) and RS-232 (3

minimum). This small number of connections makes the I2C bus an attractive option

for our skin: recalling that each node has four neighbors, each additional wire nec-

essary for communication between boards adds four additional points of connection

per board. The increased complexity in routing additional connections, coupled with

the added physical space these connections require, has a detrimental impact on our

project goal of reducing each node’s package size. Less intuitive, but equally imme-

diate is the value the I2C protocol’s minimalistic connection count has on another of

our design goals: flexibility. While additional connections have no impact on shear

movements between nodes, they greatly curtail torsional freedom between the nodes.

Dynamic Multi-master Multi-slave

Real-world applications of sensors and sensor networks such as health monitoring [6]

or meshes created by portable devices [17] often do not have the benefit of assuming

a static network. Nodes physically enter and leave the network, fail, re-orient, and

change modes in such a way that an adaptable (rather than fixed) communication

infrastructure can often greatly increase efficiency and function [13].

The I2C communication protocol allows easy transition from a node’s being in

a slave state to a node’s being in a master state, thereby enabling exploration of

62

self-configuring networks and ad hoc algorithms. In addition, such a feature greatly

adds to the robustness of the overall skin. While our network will not face many of

the conditions that require adaptable communication schemes, it is certainly possible

for a connector to break or a single node to go offline. If the network detects that

a master has left the network (through a timeout, a master’s transmitting an exit

message, etc.) any slave node in the network can easily and quickly replace it.

Built-in on Chip

The MSP430F1611 microcontroller that we selected has a dedicated, on-board I2C

module. Relying on this module reduces component count and, in turn, area. Ad-

ditionally, choosing a communication protocol specifically embedded into our micro-

controller greatly simplifies network configuration and maintenance: setup, reads,

and writes are all well-defined and well-documented register operations. Further, the

MSP430F1611 dedicates a specific interrupt vector to I2C communications. This in-

terrupt vector allows us to still listen for and awaken to I2C events, even while the

microcontroller is in its lowest power modes.

Other: Transfer Rate and Precision

The MSP430F1611 microcontroller that we chose supports “fast” I2C mode [19],

allowing transfer rates of up to 400 KBits per second [37]. Our skin nodes have the

ability to collect much more information than 400 KBits of data per second; however,

given the lengthy time scale of sensor stimuli of interest, this rate should still allow a

skin composed of over a dozen nodes to capture important events.

4.2.3 Disadvantages of the I2C Bus

While the I2C backbone provides a powerful transmission line, it does have at least

two severe limitations that stem from the bus’ being shared by every node in the

network:

• The I2C bus is not elegantly scalable.

63

• The I2C bus exhibits a single point of failure.

Robustness - Single Point of Failure

I2C technology, in some ways, should be thought of as non-robust: it exhibits a single

point of failure. As described in Section 4.2.1, all bits in the network are transmitted

across a single data line. As such, a single malfunctioning node can corrupt or disable

all I2C communications. Simple tests with the bus while debugging identified this

problem. When two nodes were accidentally set to the same address, instead of

receiving a character ’a’, each received an incorrect character.

Scalability

Electrical

Scalability concerns are both electrical and algorithmic. As described, the I2C pro-

tocol’s electrical limitations may not be readily apparent, however a more careful

examination of the protocol shows where problems may arise. Recall from Figure 4-1

that low-to-high transitions on both the clock and data lines’ values are set by pullup

resistors. In a platonic realization of this circuit, this transition is instantaneous;

in real-life, parasitic capacitances will delay and distort this transition, obeying a

first-order linear differential equation with time constant, τ , equal to total resistance,

Rtotal × Cparasitic.

Therefore, the degree to which parasitic capacitance will affect communication

varies depending on:

1. The thresholding values used by the protocol to define logical ’0’-s and ’1’-s.

2. The rate at which the bus is run. If τ is very small compared to the period of

the clock, parasitic capacitance should have negligible effects on communication.

However, if τ is large, long settling times may corrupt information transfer.

3. The amount of parasitic capacitance in the circuit. The time constant defined

above is directly proportional to Cparasitic. Increasing the parasitic capacitance

64

of the circuit should therefore lengthen our time constant, potentially impacting

communication accuracy.

Defined strictly by our MSP430F1611’s hardware, we have no control over the

values our I2C protocol uses to designate logical ’0’-s and ’1’-s.

Capacitances add in parallel. Therefore, each additional node we add to our skin

increases Cparasitic and, in turn, τ . This delay penalty leaves us with the unpleasant

necessity of having to throttle our I2C protocol as we add nodes to our skin3.

Scalability

Electrical concerns are not the only scalability problem we encounter in deploying an

I2C backbone. Consider four, distinct nodes, A, B, C, and D. A has a message to

transmit to B and C has a message to transmit to D. If all four nodes are on the

same bus, C will have to wait for A to transmit its message to B before being able

to transmit to D. At first blush, such a delay seems trivial, however, a simple toy

example indicates how substantially the singleness of the I2C communication channel

can effect overall network performance for certain skin configurations.

Assume every other node on a grid is instructed to send an 8-bit character message

to its right-hand neighbor. If we use the I2C bus exclusively, even running at 400

Kbits per second fast mode, we soon encounter a problem. Because nodes cannot

simultaneously transmit, we get the constraining equation:

Numnodes

2
×

Num chars each transmitting node sends

second
×

8-bits

char
= 400 Kbits

(4.1)

3One might wonder why we solely focus on stray capacitances while ignoring Rtotal. The answer
is that the MSP430F1611’s microcontroller is only able to source and sink a prescribed amount of
current [19]. Reducing Rtotal significantly would therefore overwhelm our microcontroller.

65

Equation 4.2.3 illustrates a fundamental tradeoff between the size of the network

and its performance and motivates the need for an additional communication scheme.

4.3 Asynchronous Peer-to-peer Communication

4.3.1 Motivation

Peer-to-peer communication addresses the two primary problems with the I2C bus

mentioned in Section 4.2.3. A single node’s failure cannot disable communication

across the entire network. And, peer-to-peer communication helps to preserve scala-

bility: for the example described in Section 4.2.3, a peer-to-peer protocol allows us to

scale our network with no degradation in performance4. Further, peer-to-peer com-

munication permits us to focus on local stimuli, allowing small patches of our skin to

locally process data without loading the I2C backbone.

In addition to the above selling points, peer-to-peer communication permits greater

experimental flexibility. A master-slave protocol, such as the I2C bus implemented

in our skin promotes only specific and hierarchical architectures and control mecha-

nisms. Including a peer-to-peer protocol allows us the flexibility to research topics

such as information diffusion, agent-based control, and networking algorithms that

would be unapproachable using the I2C bus format.

Finally, our peer-to-peer protocol increases our skin’s overall robustness. It serves

as a redundant channel for communication in case the I2C line is broken or overly

loaded. In addition, it allows us to message nodes with bad I2C connections, or shut

them down/circumvent them if they are degrading our I2C line.

4In general, this is a simple example. More sophisticated questions that relax assumptions about
which nodes need to communicate and the fixed topology of the network, pose very complicated
routing problems.

66

4.3.2 Implementation

Design Goals

Electrical peer-to-peer communication is a well-worn problem in electrical engineering.

Existing at least since the days of the telegraph in the early 1800s [21], numerous

protocols have been devised and implemented throughout the years to suit various

purposes. To select among these schemes, we followed several design principles:

1. Fast. Because we do not have a dedicated peer-to-peer communication module

into our microcontroller, it may be naive to hope for a data transmission rate

approaching the 400 KBits per second achieved by our I2C line. However, we

would like our peer-to-peer protocol to run as quickly as possible.

2. Asynchronous. Subjectively, an asynchronous protocol is both more algo-

rithmically challenging and aesthetically pleasing than a synchronous line: it

reduces our required assumptions and puts fewer restrictions on the network’s

future applications.

3. Efficient. The MSP430F1611 that we chose is powerful for what it is - a cost-

effective microcontroller. However, it is by no means a super-computer. Each

instruction is precious and takes time5. We must take care that our protocol

does not overwhelm other operations on the processor.

4. Adaptable. Our skin is intended to support a wide variety of functionality and

experimentation. Therefore, it is essential that our communication protocol be

flexible enough to be effective in a wide-range of tests and situations.

5. Flexible. As noted in Section 4.2.2, each additional wire connecting nodes

reduces mechanical flexibility. Therefore, we attempt to keep connection count

to a minimum.

5Cursory tests showed that it took our microcontroller running at its fastest rate over 14.4 seconds
to perform 10,000 square root operations - orders of magnitude longer than a modern laptop.

67

Figure 4-2: Pin connections between nodes for peer-to-peer communication.

Realization

For our peer-to-peer protocol, we employed a five-wire ready-enable scheme. Each

node has a “ready-out”, “enable-out”, “ready-in”, “enable-in”, and “data” line for

each neighbor. Consider two nodes, A and B. As their names imply, the ready-out

and enable-out lines are outputs for a single node, A, and are connected as inputs

to the ready-in and enable-in lines of its neighbor, B. Similarly, the ready-out and

enable-out lines of B are connected to the ready-in and enable-in lines of A. A’s

and B ’s data lines are connected directly to each other and serve as either inputs or

outputs depending on the direction of communication. These connections are detailed

in Figure 4-2.

After initialization, each node’s ready-out line is high, its enable-out line is low,

and its data line is set as an input. In addition, A and B place an interrupt condition

on each of their ready-in and enable-in lines.

If A wants to communicate to B, A first checks if B is ready to receive information

by checking its ready-in line (B ’s ready-out line). If A’s ready-in line is low, B is not

ready to receive information, and the message to be transmitted is put in a queue of

messages to be transmitted when B is ready to receive. If A’s ready-in line is high,

B is ready to receive information from A, and A begins transmission. Transmission

begins by A’s:

1. Changing its ready-out line from high to low.

68

2. Setting its data line as an output, putting on the data line either a logical ’1’

(data line goes high) or a logical ’0’ (data line goes low).

3. Changing its enable-out line from low to high.

4. Sets an interrupt on its ready-in line to detect changes from low-to-high.

B detects as an interrupt a transition on its enable-in line, indicating that A has

begun a transmission. B then:

1. Changes its ready-in state from high to low.

2. Sets a global variable on its microcontroller that blocks B from initiating a

transfer with A. (All messages B attempts to send while A is transmitting are

put on a queue to be dealt with after A’s transmission has terminated.)

3. Reads and stores the information on the data line. (The enable-in line of each

node should be construed as a validity check: if enable-in is high, information

on the data line is ready for reading; if enable-in is low, information on the data

line should not be read.)

4. Increments a count of the number of bits received by A.

• If the count is equal to the pre-designated message length, B knows that

it has received the full message from A, and B :

– Unblocks the variable preventing communication from it to A.

– Resets its counter of bits received from A to zero.

– Resets the interrupt generated by its enable-in line’s transition in order

to be ready to read further interrupts on the line.

– Checks whether the queue of messages B had attempted to send while

receiving from A has any messages. If the queue does contain messages,

B begins to transmit them to A. If the queue is empty, B sets its ready-

in line to high, indicating that it is ready to receive any new messages.

– Calls a specified service-routine to react to the message A transmits.

69

• If the count is less than the pre-designated message length, B knows that

it still has more bits to receive from A and:

– Resets the interrupt generated by its enable-in line’s transition in order

to be ready to read further interrupts on the line.

– Sets its ready-in line to high, indicating that it is ready to receive the

next bit of the message from A.

The low-to-high transition on B ’s ready-in-line engenders an interrupt on A. If A

has transmitted the entirety of its message, A:

1. Sets its enable-out line low.

2. Changes the data line from an output line to an input line.

3. Sets its ready-out line high.

4. Checks to see if A has any additional messages to send. If A does have additional

messages to send, it begins sending them.

If A has not transmitted the entirety of its message, then A:

1. Sets its enable-out line low.

2. Loads the next bit of data onto the data line.

3. Sets the enable-out line high.

Disadvantages of Design

Our peer-to-peer system supports most, but not all, of the design goals laid out in

Section 4.3.2. While Section 5.2 demonstrates our protocol’s speed and efficiency,

requiring a full five wires does degrade mechanical flexibility. We did attempt to

reduce the number of connecting wires between nodes by making the system half-

duplex, meaning that two connected nodes can communicate to each other, but not

simultaneously.

70

Figure 4-3: Flow chart of peer-to-peer communication.

71

Advantages of Design

Efficient

Our design avoids approaches based on continuously polling individual microproces-

sor pins in favor of a design that exploits event-based interrupts. These interrupts,

fundamentally built into the MSP430F1611 architecture, do not affect processing rate

or command flow until triggered thereby allowing normal operation.

Adaptable

Variable Message Length

Bits are precious. All communication between nodes need not be of a prescribed

length: for a variety of reasons, nodes may need to send messages much smaller or

larger than the 8-bit unit used by most systems. For example, two nodes, A and

B, may only need to exchange a limited, discrete set of information. In such a case,

A selects from a library of 16 messages to send to B. Similarly, B selects from a

library of 4 messages to send to A. Instead of each node’s transmitting a full 8-bits

to its neighbor, A need only transmit 4 bits to B and B need only transmit two

bits to A, making transmission from A to B twice as efficient as the 8-bit standard,

and transmission from B to A four-times as efficient as the 8-bit standard. The

design of the system allows message lengths to be changed either at compile time or

dynamically.

Different Clock Rates

According to the MSP430F1611’s datasheet, each additional Mega-Hertz our micro-

controller is run at increases its current consumption by roughly 500 µA [19]. This

difference in power consumption provides a real and substantial interest in running

nodes below their peak points of operation. However, we must balance the power con-

sumption benefit of this under-clocking strategy with our desire not to miss relevant

information on the skin. One potential way of achieving both objectives is to realize

the skin need not be in a heterogeneous clocking state. Some nodes can run with

72

clock settings faster than other nodes’. While synchronous communication schemes

might fail in such a scenario, our asynchronous implementation completely supports

it.

Symmetric Rate Control

At a high-level, each node performs three tasks:

1. Sampling sensors.

2. Processing data.

3. Communicating with other nodes.

Depending on the skin’s desired function, there may be instances where one node

needs to prioritize one of these tasks over the others. For instance, during a partic-

ularly noisy period, it may be more important for a node to sample its microphone

than it is for the node to communicate its status to its neighbors.

Scaling down sensor sampling or processing rates to allow the node to weigh other

tasks more heavily presents no real difficulty - one need only adjust timer ratios either

dynamically or at compile time for each node. However, because communication rates

are a function of not only how many communication requests a node makes (which a

node can easily control) but also how many communication requests a node receives

(which a node cannot easily control), scaling communication rates presents more of

a problem. One might suggest a superficial solution in which a node sends control

messages to its neighbors, requesting the neighbors reduce the number of messages

they transmit.

However, this approach proves cumbersome: it assumes that neighbors will cor-

rectly interpret and respect rate selection messages. In addition, if rates need to be

updated quickly, for instance, 50 times a second, such a scheme would require an

extensive numbers of transmissions between nodes.

Our peer-to-peer protocol permits an alternate approach to using control mes-

sages. A side-effect of building a protocol capable of supporting mixed clock rates is

73

that we can use timers on either node to artificially throttle the rate of communication.

A receiver can reduce the rate of communication by delaying switching its ready-out

line from low to high after receiving a bit of information from the transmitter. Re-

ciprocally, a transmitter can delay switching its enable-out bit from low-to-high, also

throttling the the communication rate. These delays, if implemented by the timer

interrupts built into the MSP430F1611 architecture, permit both the transmitter and

the receiver to perform their regular processing tasks while waiting for the delayed

communication to continue regardless of which node throttles the stream. In such a

scheme, both the transmitter and receiver have symmetric control over the communi-

cation channel. Further, communication rates can be changed either at compile time

or dynamically in response to particular stimuli.

74

Chapter 5

Results

This chapter presents raw data gathered from our skin. We begin by analyzing the

skin’s overall size, flexibility, and robustness in Section 5.1, and proceed to describe

fully the speed and accuracy of the skin’s communication lines in Section 5.2. We then

change focus to the skin’s sensors, demonstrating individual sensors’ functionality in

Section 5.3 and presenting aggregate sensor data for particular stimuli in Section 5.4.

Finally, we conclude the chapter with an exploration of the skin’s power consumption

and a simple example program which shows the energy savings of the MSP430F1611’s

low power modes in Section 5.5. Each of this chapter’s sections has a sister section in

Chapter 6 which supplements the presented data with an analysis of their significance

and implications. In general, we collected more data than practical to present in a

single chapter. As such, we show additional data in Appendix B.

5.1 Basic Results

5.1.1 Size

Aside from a slight notch cut into the bottom right corner for orientation, each node

is approximately square with dimensions of 1.04 in. x 1.02 in. To make these numbers

more immediate, a United States quarter would roughly inscribe each of our boards;

Figure 5-1 presents a visual comparison of our node’s board size to United States

75

Figure 5-1: Notice that each node is small enough for a quarter to approximately
inscribe it.

quarter.

The dimensions of our board compare favorably with our predecessor, Perez’s (pic-

tured in Figure 1-1). Perez’s nodes were each 1.865 in x 1.865 in [33]. Therefore, our

reworked design occupies only 30% the area of the previously developed S.N.A.K.E.

system1.

5.1.2 Flexibility

As mentioned in Section 2.8, interconnects between nodes could have been built from

materials far more exotic than our current connectors, such as flex circuitry or cloth.

While these systems may have had their advantages, to enable rapid prototyping,

we chose connectors made from wire. As demonstrated in Figure 5-2, even with our

1In fairness, Perez’s system did not require additional area for connectors: his nodes connected
directly to each other. Our nodes, however, use wired connectors to link to each other. To assure
reasonable flexibility, the length of these wired connectors is generally not shorter than .5 cm.

76

Figure 5-2: Four nodes bent around a camera case. Notice how the skin tolerates
bends of 90o.

wire connectors, our skin can easily bend at angles of over 90o if the bend is required

perpendicular to node connectors.

In general, flexibility along alternate axes was affected by the length and number

of connectors linking nodes. A node linked by a single 1 cm long connector to its

neighbor could not rotate more than 20o in either direction. A node linked by a single

connector approximately 2 in long could rotate a full 360o in either direction.

Figures 5-3, 5-4, and 5-5 highlight the skin’s overall flexibility and show the wide

variety of topologies the network supports.

5.1.3 Robustness

Electrical, mechanical, and algorithmic robustness were early identified as some of the

most important design goals of our work. Although robustness is difficult to quantify,

we can present several observations made in the course of collecting data and working

77

Figure 5-3: Four nodes bent into a strange topology. The figure highlights the flexi-
bility of the overall skin.

78

Figure 5-4: Thirteen nodes bent into a strange topology. The figure demonstrates
the flexibility of the overall skin.

79

Figure 5-5: Thirteen nodes hanging off edge of a table. Demonstrates the flexibility
of the overall skin.

80

with the skin.

Overall Skin and Visualization

We set a 13 node skin in data collection mode with:

• One master node running at 8 MHz querying the other 12 nodes on an I2C

line, piping received information through an RS-232 line to a laptop computer

running our visualization.

• The other 12 nodes running at the fastest rate their onboard clocks provide,

sampling all their sensors and responding to I2C queries with their sensors’

values.

Configured in this manner, the skin maintained functionality for over an hour

with no immediate signs of degradation in transfer rate or sensor accuracy. The

output of the visualization showed reasonable sensor values and responsiveness on

each node. Further, the visualization produced no segmentation faults in the hour-

long time it was running, and ran quickly - indicating a lack of memory leaks. The

only constraint in running the skin and visualization for such a long period of time

appeared to be the amount of data generated. Recalling Section 3.2, our visualization

is built to automatically save data it receives and processes from the skin. Running

our 13 node skin in the data acquisition mode described above for an hour generated

a saved data file that was over 52 MB, a figure that corresponds to over 10.4 million

sensor recordings. Although this sized file is easily manageable on today’s computers,

it should be noted that, eventually, our recorded data file would grow beyond our

means to store it: in a little under 40 days, our skin and visualization program would

overwhelm the 40 GB of free space on our recording laptop’s hard drive. Such a

use of course differs from the skin’s intended functionality. It is more likely that a

deployed system will only sparsely sample its sensors or quickly process and destroy

collected data rather than storing it indefinitely. These numbers are only presented

for thoroughness and to provide a full account of all of our work’s limitations.

81

Figure 5-6: Picture of two connectors side by side. The connector on the left is fully
functional while the connector on the right is broken. A quarter is placed in the
picture to indicate scale.

Connectors

Connectors took a good deal of abuse, and often broke. During flexibility tests, they

are exposed to a wide variety of stresses and unplugging nodes creates high levels of

tension in the connector’s wires. As seen in Figure 5-6, wires on connectors only break

at the point of contact with the connector - a weak joint held by a combination of

pressure and solder, and, generally, instead of multiple wires per connector breaking,

only a single wire would come loose.

In general, the bending and flexing of connectors both casually and aggressively

during flexibility tests was never observed to sever a connector. Connectors only broke

when being unplugged from nodes. As such, we estimate connector lifetime based on

the number of times a node is unplugged from the connector. For connectors built

82

with solid wire, on average, we could unplug a node between five and ten times from

its connector before one of the connector’s wires would fail. For connectors built

from stranded wires, we could unplug nodes on average between twelve and twenty

times before one of the connector’s wires would fail. As discussed in Section 2.8, our

connectors were primarily chosen for their ease in rapidly developing a prototype. In

practice, a different substrate such as cloth [9], [10], [24] or flex circuitry [33] probably

would have suffered less failure.

Whisker Sensor

Intense stimulation, for instance a hand’s pressing down hard upon the skin, causes

our whisker sensors to shed. Such stimulation repeated around a dozen times may

necessitate replacing bristles on the whisker sensor. This procedure is painless, simply

requiring one to re-heat the glue on the whisker sensor with the tip of a hot glue gun

and insert a fresh batch of bristles. It is certainly conceivable that a better procedure

or adhesive could be employed that would address this problem. However, because

the whisker sensor’s shedding is more of a minor inconvenience than a fundamental

flaw, we focused our attention on other, more critical issues.

5.2 Communication Results

Quite a number of non-intuitive factors impact microcontroller function [19]. While

these effects are unlikely to be relevant for many applications, because this section

focuses on precise performance measurements, for thoroughness, we detail the condi-

tions of our experiments before describing their results:

• All microcontroller code was written in C and compiled using Texas Instru-

ment’s Code Composer 3.0.

• Each microcontroller was run at 3.3 V.

• Experiments were run at room temperature.

83

• Direct comparisons between baud rates were done on the same microcontroller.

5.2.1 Peer-to-peer

Section 4.3 motivates and explains our design of a peer-to-peer communication proto-

col. Our primary goals for this system were to create an adaptive, fast, and efficient

method for transmitting messages between nodes and their immediate neighbors. This

section demonstrates the functionality of this system as well as providing benchmarks

for its accuracy, speed, and adaptability.

Accuracy

To measure the accuracy of our peer-to-peer protocol, we connected two nodes, A

and B. A was set to run at the fastest clock rate its onboard oscillator could support.

Although Texas Instruments, the maker of our microcontroller, does not define a

specific frequency for our setup, it does guarantee a clock rate between 6 MHz and

8 MHz for the voltage and temperature at which we ran our experiment [19]. A was

programmed to perform no other task than to repeatedly send the character ’a’ to

its neighbor, B. Node B ran from an external 8 MHz oscillator and connected via

a 115,200 baud RS-232 line to a Dell Latitude D630 laptop. B was instructed to

listen for any messages from A and push any character received from A directly to

the laptop. The laptop listened on its serial port for 30 seconds and counted:

1. The number of characters it received from B that were ’a’-s.

2. The number of characters it received from B that were not ’a’-s.

For convenience, Figure 5-7 depicts this experimental setup.

The results of this experiment are presented in Table 5.1.

Baud Rate

Figure 5-8, depicts a flow chart of our experimental setup. Please refer to it to

supplement the experimental description that follows. The previous section presented

84

Figure 5-7: Block diagram depicting the experimental procedure used to measure the
accuracy of peer-to-peer transmission.

Experiment Time Period Correct Incorrect Baud Rate Accuracy
(seconds) Characters Characters (bits/second) rate

Received Received
A 30.0 21,721 0 5,792.3 100%
B 30.0 21,823 0 5,189.5 100%
C 30.0 21,617 0 5,764.5 100%
D 30.0 21,287 0 5,676.5 100%

AVG 30.0 21612 0 5763.2 100%

Table 5.1: Measurements of accuracy for peer-to-peer protocol

the results of piping information from one node through its neighbor to a computer.

Such a setup throttles the rate at which peer-to-peer communication can actually

occur: the node that passes information to the laptop cannot receive new messages

while transmitting to the laptop. To determine the maximum rate at which peer-to-

peer communications can proceed, we designed an alternate experiment consisting of

two nodes, A and B. A runs as fast as the MSP430F1611’s onboard clock permits -

between 6 MHz and 8 MHz [19]. Similar to the setup of the intermediate node in the

previous section, B ’s clock is sourced from an external 8MHz oscillator and connects

via an RS-232 line to a Dell Laptop.

A is set to listen for a strong stimulus on its whisker sensor. When it receives

that stimulus, it begins sending messages on the peer-to-peer connection to B. When

B receives its first message, B turns on its red LED and begins counting the number

of messages it receives. Once B performs 10,000 square root operations 2, B :

2We could have instead measured the time required to receive some number of messages. Our

85

Figure 5-8: Block diagram depicting the experimental procedure used to measure the
baud rate of peer-to-peer transmission.

86

1. Turns its red LED off.

2. Stops listening to and counting messages from A.

3. Begins transmitting via its RS-232 line to a listening PC the number of char-

acters received from A while performing the 10,000 square root operations.

Dividing the number of bits received from A by the time B ’s red LED is on

(as measured with a stop-watch) gives the baud rate. While messages are being

transmitted from A to B, no extraneous interrupts are active on either node, ensuring

that the rate found is the peak peer-to-peer rate.

The results of this experiment are presented in Table 5.2.

Time Characters Baud Rate
(seconds) Transmitted (bits/second)

A 45.81 61,358 10,715.2
B 46.12 61,570 10,697.3
C 46.62 62,278 10,686.9
D 46.75 62,309 10,662.5
E 46.75 62,319 10,664.2

AVG 46.41 61,966.8 10,685.2

Table 5.2: Measurements of baud rate for peer-to-peer protocol.

Adaptability

As explained in Chapter 4, either a receiver or transmitter can unilaterally throttle the

rate of peer-to-peer transmission. This throttling can be done at either compile time

or dynamically, and may be beneficial in scenarios where a node needs to unilaterally

reduce its rate of communication in order to perform a more pressing computational

task.

To highlight the computational flexibility this feature allows us, we performed

an experiment very similar to that described in the previous section. Please see the

flow chart presented in Figure 5-9 or read the next paragraph for a description of

choice of using 10,000 square root operations was largely arbitrary. From earlier experiments, we
knew that 10,000 square root operations would consistently run for an easily measurable, fixed
amount of time, and therefore we selected it.

87

Figure 5-9: Block diagram depicting the experimental procedure used to demonstrate
the effects of allowing a node to set different peer-to-peer communication rates.

our experimental procedure, consisting of two nodes, A and B. A runs as fast as the

MSP430F1611’s onboard clock permits - between 6 MHz and 8 MHz [19]. Similar to

the setup of the intermediate node in the previous section, B ’s clock is sourced from

an external 8 MHz oscillator and connects via an RS-232 line to a Dell Laptop.

A is set to listen for a strong stimulus on its whisker sensor. When it receives

that stimulus, it begins sending messages on the peer-to-peer connection to B. B is

programmed to delay setting its ready flag using one of the MSP430F1611’s onboard

timers. (Recall from Section 4.3 that A will only continue sending its message once

B has toggled its ready flag to true.) The timer returns B to its normal operations

until a specified number of clock cycles have elapsed, at which time, B indicates it is

88

ready to receive an additional bit of information from A3. The first time B receives a

full 8-bit message from A, B :

1. Turns on its red LED.

2. Begins counting the number of messages it receives (each of these messages are

also throttled with the same timer strategy described above).

Once B performs 10,000 square root operations, B :

1. Turns its red LED off.

2. Stops listening listening to and counting messages from A.

3. Begins transmitting via the RS-232 line to a listening PC the number of char-

acters received from A while performing the 10,000 square root operations.

The length of B ’s ready-delay impacts the balance between how much time B

spends 1) performing its 10,000 square root operations and 2) receiving messages

from A: if the delay is very, very long, B almost exclusively performs its square root

operations and turns off its LED quickly; if the delay is very, very short, B almost

exclusively receives messages from A, and B ’s LED is on for a longer time.

The effects of differing delays on the number of 8-bit characters B receives and

the time it takes for B to perform its 10,000 square root computation are presented

in Table 5.3. Each table entry contains the averaged values of five separate mea-

surements. For reference, the bottom row of the table gives the time B requires to

perform the 10,000 square root operations when receiving no messages.

5.2.2 I2C

As explained in Section 4.2.1, our I2C bus provides an effective route for hierarchical

communication. Although capable of supporting additional functionality, we primar-

ily used the I2C bus with a single master querying a network of uniquely addressed

3It is important to remember that because the routine nodes use to send peer-to-peer messages
are tied to pin interrupts, a transmitter does not hang waiting for the receiver to indicate readiness.
Rather, like the receiver, the transmitter continues its normal processing until the receiver is ready
for an additional bit.

89

Length of Avg. Number of Avg. Time to Avg. Baud Rate
ready-delay Characters Received Complete 10,000 (bits/second)

(in clock tics) Square-root Operations
0 61,986.8 46.4100 seconds 10,685.1

500 16,003.8 24.1440 seconds 5,302.7
1000 7648.8 18.8920 seconds 3,239.0

Baseline: 14.1260 seconds to perform 10,000 square-root
operations while receiving no messages

Table 5.3: Ready-delay’s effects on number of 8-bit characters received from neighbor
via peer-to-peer protocol and processing time required to perform 10,000 square root
operations.

slave nodes. For the most part, our I2C bus operated precisely to its specifications,

[37]. Repeated oscilloscope measurements showed that the I2C bus’ clock line ran

at a frequency between 382.4 KHz and 393.7 KHz - just slightly slower than the 400

KHz rate promised by the MSP430F1611 datasheet [19].

To derive baud rate and accuracy figures, we connected twelve slave nodes in a

grid to a single master node. The master node was additionally connected to a PC via

an RS-232 line. The master node queried each slave node individually at its fastest

possible rate and forwarded all the slave nodes’ responses on to the PC.

To test accuracy, we programmed each slave to respond to all master node queries

with the character ’a’. Comparing the number of ’a’-s to the number of non ’a’

characters received by the PC gave us a sense of how accurate our data transmission

scheme was. Repeated runs of this experiment are summarized in Table 5.4. As the

reader can see from the results provided, our I2C bus was perfectly accurate.

Experiment Time Period Correct Incorrect Baud Rate Accuracy
(seconds) Characters Characters (bits/second)

Received Received
A 30.0 321,000 0 85,600 100%
B 30.0 320,853 0 85,560.8 100%
C 30.0 325,851 0 86,893.6 100%

AVG 30.0 322,568 0 86,018.1 100%

Table 5.4: Accuracy results of I2C bus.

The baud rates presented in Table 5.4 may be a little misleading. They assume

that each slave node solely listens to and immediately responds to any master query.

90

In practice however, this is a flawed assumption: slave nodes are unlikely to dedicate

themselves exclusively to listening for I2C interrupts. More likely, slave nodes will

be processing data, sampling their sensors, and communicating with their neighbors

via their peer-to-peer connections. All these operations effectively reduce the I2C

bus’ baud rate. For instance, with twelve slave nodes’ sampling their sensors at

approximately 16,000 Hz, the I2C line ran only at a baud rate of 49,600 bits per

second, a little over half the rates we found when each slave node was configured

solely to listening for and responding to master node queries.

5.3 Basic Sensor Results

The following sections show data collected from our skin in response to assorted

stimuli. These data were collected with the skin configured in either a three-by-three

grid with a listening master node or a three-by-four grid with a listening master node.

We exclusively used the I2C line to pipe data from our slave nodes to our master

node and on to a listening PC. Our I2C line achieved data rates of approximately

6,000 bytes per second. Because each slave node transmitted a full load of sensor

information in 14 bytes, this rate assured us of a theoretical update rate (how many

times each individual node transmits all of its sensor information per second) of

approximately 35 Hz. In practice, we noted that this update rate varied slightly, and

ranged between 30 Hz and 40 Hz depending on what code we were running.

5.3.1 Light Results

Our light sensor proved to be the most reliable device on each node. As we typically

observed a 60 Hz modulation from artificial light sources on our light sensor’s output,

our nodes computed a windowed average of our light sensor’s values. This averaging

greatly smoothed the AC oscillations that our nodes recorded.

Figure 5-10 presents data collected from an array of twelve nodes as a flashlight

zooms in and out on one of the center nodes, H. Slightly after the ten second mark,

the flashlight is at its closest point to Node H. As expected, H has its peak values at

91

this time. Also as expected, all other nodes (except for E) show miniscule values on

their light sensor outputs near the ten second mark. (Node E shows a precipitous dip

in its light sensor output at the ten second mark. The reason its value does not go

to zero when our flashlight zoomed in on H is that our flashlight was bigger than a

single node. Therefore our flashlight partially illuminated Node E even while zoomed

in primarily on Node H.)

Further showing the light sensor’s basic functionality, Figure 5-11 presents light

sensor readings as a hand passes over the skin three times casting shadows, showing

that shadows are a reliable indication of dynamic stimuli in illuminated environments.

5.3.2 Microphone Results

As noted in the signal conditioning description presented in Section 2.5, the micro-

phone’s output is pushed through through a negative peak detector and an envelope

follower that extends the length of received audio stimuli. This setup enables each

node to throttle its rate of sampling audio data while still detecting important envi-

ronmental events that produce bursts of audio.

For particular applications, the peak values of the audio signal over a small pe-

riod of time may prove more relevant than the actual audio waveform. Therefore, we

perform a windowing procedure on each node’s microcontroller that reports the max-

imum audio signal received in approximately one-third second intervals. A display of

the results of this operation is shown in Figure 5-12 along with a figure presenting

the corresponding un-windowed audio signal in Figure 5-13.

We additionally demonstrate our microphone’s functionality in Figures 5-14 and

5-15. The first figure presents the windowed microphone values of twelve nodes con-

nected in a grid in response to five claps of varying intensity. The second figure

presents the corresponding raw, un-windowed audio values of these same nodes. Un-

fortunately, Node J ’s microphone was not properly functioning while data were being

collected.

92

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node A

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node B

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node C

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node D

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node E

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node F

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node G

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node H

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node I

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node J

5 10 15
0

100

200

Time (s)
Li

gh
t M

ag
.

Node K

5 10 15
0

100

200

Time (s)

Li
gh

t M
ag

.

Node L

Figure 5-10: Light responses of twelve nodes arranged in a grid as a flashlight zooms
in and out on Node H. Slightly after the ten second mark corresponds to the point at
which the flashlight was zoomed closest to H. Notice that as expected, all other nodes
except E show miniscule values on their light sensors at the ten second mark. Node
E only shows a relatively minor dip in its light sensor values because our flashlight
was larger than each node, and therefore it partially illuminated Node E even when
zoomed in on H very closely. Node F shows a brief sensor failure before the eight
second mark.

93

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node A

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node B

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node C

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node D

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node E

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node F

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node G

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node H

2 4 6 8 10 12 14
0

50

100

150

200

250

Time (s)

Li
gh

t M
ag

.

Node I

Figure 5-11: Light responses of nine nodes arranged in a grid as a hand passes over
the skin casting shadows.

Figure 5-12: Windowed microphone response to five claps of varying intensity.

94

Figure 5-13: Un-windowed microphone response to five claps of varying intensity.

95

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node A

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node B

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node C

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node D

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node E

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node F

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node G

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node H

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node I

2 4 6 8 10
0

50

100

Time (s)
W

in
do

w
ed

 A
ud

io
 M

ag
. Node J

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node K

2 4 6 8 10
0

50

100

Time (s)

W
in

do
w

ed
 A

ud
io

 M
ag

. Node L

Figure 5-14: Windowed microphone responses to five claps of twelve nodes connected
in a grid. Node J was not properly functioning during data collection.

5.3.3 Whisker Results

Taking inspiration from animal whiskers, we glued fine paint-brush bristles directly

to a microphone to create a whisker sensor. The microphone responds to vibrations

generated from the sensor’s bristles’ being touched. The glue affixing the bristles

to the microphone prevented any audio signal from exciting the microphone. Our

whisker sensor was built primarily for proximity detection, but as demonstrated in

Appendix B is sensitive enough to pick up other environmental stimuli as well. This

section presents basic data collected from our whisker sensors. Our whisker sensor

suffered from some of the noise found on our temperature sensor (described in Section

5.3.5) while running our I2C bus. Therefore, we filtered our whisker sensor’s output,

reporting back only values that exceeded a pre-defined threshold.

Figure 5-16 is a mosaic of data from the whisker sensors of nine separate nodes

connected in a grid. A hand, held parallel to the base of the skin, passes across the top

of each of the whisker sensors three times. The brief sensor peaks displayed between

96

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node A

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node B

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node C

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node D

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node E

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node F

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node G

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node H

2 4 6 8 10
0

50

100

Time (s)
A

ud
io

 M
ag

.

Node I

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node J

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node K

2 4 6 8 10
0

50

100

Time (s)

A
ud

io
 M

ag
.

Node L

Figure 5-15: Un-windowed microphone responses to five claps of twelve nodes con-
nected in a grid. Node J was not properly functioning during data collection.

97

Figure 5-16: Whisker responses of a grid of nine nodes as a hand passes over the tips
of the whisker bristles three times.

the five and ten second marks, between the ten and fifteen second marks, and between

the fifteen and twenty second marks correspond to the hand’s contacting each node’s

whisker sensor. The data before the five second mark and after the twenty second

mark correspond to the sensor’s unstimulated, quiescent state.

Nodes E and H in Figure 5-16 show that our whisker sensors can be used for

more than just binary motion detection - their relatively slight responses occurring

just after the ten second mark indicate that each sensor can perceive the difference

between light and heavy stimuli.

5.3.4 Pressure Results

FSR Sensor

Section 2.4 details FSRs and their functions. In brief review: an FSR is a device

that exhibits a resistance change with the amount of force applied. Although this

resistance change is somewhat non-linear, its monotonicity allows us to use the raw

values from the sensor directly as a proxy for force or pressure for several applications.

98

Figure 5-17: FSR responses of a grid of nine nodes as each node is sequentially pressed
upon.

Our FSR is mounted on the bottom right corner of each node. Figure 5-17 shows

the results of a thumb’s sequentially pressing down hard upon nine distinct nodes

connected in a grid pattern. As can be seen from the graphs, the FSRs saturate

quickly. This effect is due to the directness of the stimuli (each press was targeted

on the node immediately above where each FSR was mounted) and the strength of

the stimuli. Later sections, such as 5.4.3, show that the sensors are well within their

operating ranges for other stimuli.

QTC Sensor

As explained in Section 2.4, we built a pressure sensor from quantum tunneling com-

posite. This sensor performed much worse than our FSR sensor: it was not as sensitive

as an FSR nor as easy to mount on our board. However, despite these problems our

QTC-based sensors were able to detect pressure stimuli. Figure 5-18, for instance

shows a comparison of our FSR sensor against our QTC sensor for the same pressure

stimulus. Note that our QTC sensor detects the pressure event, but does not respond

99

Figure 5-18: Comparison of FSR sensor (top) against QTC sensor (bottom) for same
stimulus.

to it as cleanly as our FSR sensor.

5.3.5 Temperature Sensor

Our LM20CIM temperature sensor is highly non-linear and sensitive to a wide range

of temperatures (-40o C to 150o C). For reasons expanded upon in Section 6.3 of this

thesis, our temperature sensor produced noisy data encountered across temperatures

65o F to 100o F. Despite this fact, we are still able to determine general temperature

trends from the data. Figure 5-19, for instance, shows the response of a node’s

temperature sensor to a heat gun’s being applied to it at the ten second mark. Notice

that, although there is quite a lot of disturbance in the response, the suddenness of

the stimulus as well as the time at which it began and ended are still quite visible.

Of course, a heat gun is an exaggerated stimulus: nothing in our skin’s environment

will be producing the same intense temperatures. Therefore, we also present the

temperature sensor’s response to a thumb’s being placed directly on it and removed

in Figure 5-20. Again, although noisy, the time at which the thumb was applied and

removed appear quite apparent. In addition, if we compare the two Figures, we see

100

0 5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

85

90

95

100

Time (s)

R
el

at
iv

e
T

em
pe

ra
tu

re
 In

te
ns

ity

LM20CIM’s Response to a Heat Gun

Figure 5-19: Temperature sensor response to heat gun. At the ten second mark, a
heat gun was turned on over the temperature sensor. Near the fifteen second mark,
the heat gun was removed. After the experiment, the board still felt hot to the touch,
explaining why the output of the sensor did not quickly return to its pre-stimulated
state.

that our temperature does provide at least some information on relative intensity: the

LM20CIM’s response to the heat gun dwarfs its response to a thumb’s being applied.

To clean our data, we used a fifth order low-pass Butterworth filter on our temper-

ature sensor readings. Figure 5-20 indicates that the data could be further improved

by applying a simple outlier rejection algorithm to remove spikes from digital pickup

prior to filtering. Thermal dynamics tend to be slow, and therefore this filter in-

troduces inconsequential time lag. Both this low-pass filtering and the non-linear

transform of the data were performed offline - experiments indicated that executing

the floating-point operations associated with these functions onboard our microcon-

troller significantly impacted the speed and therefore sampling rate of each node.

Figures 5-21 and 5-22 show the impacts of this filter on the data presented in

Figures 5-19 and 5-20 respectively. As can be seen, although the sensor’s output

still appears slightly jittery, our Butterworth filter went a good ways in smoothing

101

0 10 20 30 40 50 60
53

54

55

56

57

58

59

60

61

62

Time (s)

R
el

at
iv

e
T

em
pe

ra
tu

re
 In

te
ns

ity

LM20CIM’s Response to a Thumb’s Being Placed on It

Figure 5-20: Temperature sensor response to thumb’s being applied to it. The thumb
is applied near the ten second mark and removed near the thirty second mark.

our results while still allowing us to distinguish key events such as direct animate

touch from non-animate touch. Of course, as will be discussed in Section 6.3 a more

sensitive sensor or a passive infrared (PIR) sensor may have been a better choice for

our apparatus.

Governed by the kinetics of heat diffusion, temperature changes may operate on a

longer time scale than several other of our stimuli. Interestingly, our skin is capable

of detecting not only these temporal dynamics, but also the temperature gradient of

a heat source. Figures 5-23, 5-24, and 5-25 specifically highlight this. Figure 5-23

shows the temperature readings of twelve nodes arranged in a grid in response to

an incandescent bulb’s being placed at the top left of the skin. Figure 5-24 shows

the temperature readings of the same twelve nodes when the incandescent bulb was

turned off. Notice in both figures that temperature changes are not instantaneous

and instead proceed over a relatively long time scale, creating a gradient. Figure

5-25 is an interpolated snapshot of temperature readings at the 83.8 second mark

of Figure 5-23. The red in the top left corner indicates areas of higher temperature

102

0 5 10 15 20 25 30 35 40 45 50
55

60

65

70

75

80

85

90

95

100

Time (s)

R
el

at
iv

e
T

em
pe

ra
tu

re
 In

te
ns

ity

LM20CIM’s Filtered Response to a Heat Gun

Figure 5-21: Filtered response of temperature sensor to heat gun. We use a fifth-order
Butterworth filter with a low cutoff frequency of 1 Hz on the data presented in Figure
5-19. At the ten second mark, a heat gun was turned on over the temperature sensor.
Near the fifteen second mark, the heat gun was removed. After the experiment, the
board still felt hot to the touch, explaining why the output of the sensor did not
quickly return to its pre-stimulated state.

103

0 10 20 30 40 50 60
55

56

57

58

59

60

61

Time (s)

R
el

at
iv

e
T

em
pe

ra
tu

re
 In

te
ns

ity

LM20CIM’s Filtered Response to a Thumb’s Application

Figure 5-22: Filtered response of temperature sensor to thumb’s being applied to
it. This is the filtered version of the data presented in 5-20. We use a fifth-order
Butterworth filter with a low cutoff frequency of 1 Hz. At the ten second mark,
a thumb was placed on the temperature sensor. Near the thirty second mark, the
thumb was removed.

104

Figure 5-23: Filtered temperature response of twelve nodes arranged in a grid after
an incandescent bulb is turned on very near to the top left corner of the grid.

while the blue in the lower right corner indicates lower temperatures. The fiugre itself

emphasizes the spatial gradient our temperature sensors are able to detect.

105

Figure 5-24: Filtered temperature response of twelve nodes arranged in a grid after
an incandescent bulb that has been on for some time near the upper left corner of
the grid is turned off.

106

Figure 5-25: The spatial temperature gradient established by an incandescent bulb
placed near the upper left corner of a grid of nodes. We performed a cubic inter-
polation on the grid of nodes to smoothe our discrete data. Red indicates higher
temperatures while blue indicates lower temperatures. The figure itself is a snapshot
of Figure 5-23’s grid’s temperature readings at the 83.8 second mark.

107

5.4 Extended Results

5.4.1 Proximity Events

Overview

S.N.A.K.E. and Tribble, the prior skin-related projects in our research group, pro-

moted the importance of being able to detect proximity events - nearby stimuli that

never triggered the pressure sensors. In line with this goal, in Section 5.3.2, we

demonstrated our skin’s ability to capture audio events. Our light sensor and whisker

sensor also have the ability to detect stimuli that make little or no contact with

our skin. This section presents data captured from proximity events, and focuses on

information that can be deduced from these stimuli.

Edge Detection

Although acoustic waves from abrupt sonic transmitters have something of this char-

acter when they pass over our array [22], it does not make sense to think of certain

stimuli, such as a loud sound, as having an “edge”. However, other stimuli have very

well-defined edges. In addition, as noted by Perez [33], detecting an event’s edge may

be very useful. This section shows how we can use our whisker sensor and light sensor

to find the edges of proximity events.

Light

Changes in a shadow’s size or darkness may indicate an object’s approach or depar-

ture. Clearly, a single node cannot determine a shadow’s edges, and, therefore, its

dimensions. However, when we link several nodes together into a grid and sample the

light sensor of each, we can find the rough boundaries of a shadow. Shadow edges

on the network can be detected either through message passing between nodes on

the skin or offline. In dark environments, this approach can be inverted - the light

sensors can detect increasing reflection from the onboard LEDs off of approaching

nearby objects.

108

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node A

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node B

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node D

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node E

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node F

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.
Node G

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node H

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node I

2 4 6 8 10 12 14
0

100

200

Time (s)
Li

gh
t M

ag
.

Node J

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node K

2 4 6 8 10 12 14
0

100

200

Time (s)

Li
gh

t M
ag

.

Node L

Figure 5-26: Eleven nodes’ light sensor response to shadow. The eleven nodes are
configured in an array as a hand casts a shadow over Nodes A, B, D, E, F, H, I and
is then removed. Due to lighting angles, G is partially shaded.

Figure 5-26 presents the plotted data of 11 nodes arranged in a grid while a hand’s

shadow covers Nodes A, B, D, E, F, H, and I (the lower right-hand corner) and is

then removed. Notice how distinctly different the shaded nodes’ light sensor values

are from the other nodes on the skin. These clear differences should allow us to find

and present a shadow’s area and bounds using a simple thresholding algorithm in our

visualization program.

Whisker

Although limited to a closer range than our light sensor, our whisker sensor can also

be used to detect the edges of proximity events. Figure 5-27 shows readings from

eleven nodes’ whisker sensors. While recording data, the bristles attached to Nodes

B, E, F, H, and I (the right corner of the grid) were heavily tousled. Notice how

distinctly different waveforms of the excited nodes appear compared to waveforms of

the un-excited nodes. Again, because of the drastic differences in the waveforms, it

109

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node A

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node B

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node D

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node E

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node F

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node G

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node H

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node I

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node J

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node K

2 4 6 8 10 12 14
0

100

200

Time (s)

W
hi

sk
er

 M
ag

.

Node L

Figure 5-27: Whisker sensor waveforms of grid. Eleven nodes configured in a grid
while a hand roughly tousles nodes B, E, F, H, and I.

should be easy to automatate detection of the shape and edges of the stimulus.

Hand Speed: Whisker

Intuitively, one might think that aggregating n nodes’ worth of data would give us n

times more information than a single node would provide. In practice, we find that we

actually gain much more information than we expect. As a simple example, compare

a set of nodes equidistantly spaced to a single node. When a hand runs across the

whisker bristles of the single node, we know how intensely the hand interacted with

the node’s whiskers and for how long. In contrast, when a hand passes over a set

of nodes, we can infer not only how intensely and quickly the hand interacted with

each node, but also how fast the hand was traveling and in which direction it moved.

Using the whisker sensor of each node, this section shows a proof of concept of this

example.

To demonstrate how hand speed could be detected using our skin, we connected

four nodes, A, B, C, and D, in a straight line. We then passed our hand through the

whiskers of each node three times. The first and third time, we began our hand at

Node A and then sequentially proceeded to Nodes B, C, and finally D. The second

110

Figure 5-28: Whisker data from four nodes as a hand passes over each sequentially.
Top panel: three hand sweeps in a row. Bottom panel: zoomed view of first hand
sweep where one can see individual fingers passing over the whiskers.

time, we began our hand at node D and then sequentially proceeded to Nodes C,

B, and A. We attempted to time each pass so that our hand moved steadily while

taking as close to 3.5 seconds as possible to pass over the entire set of nodes. Because

each node is 2.6 cm and each connector and cable was approximately 0.76 cm, this

translated to a hand speed of roughly 3.5 cm/s. Figure 5-28 shows the whisker

waveforms recorded by each node during the three hand passes in its upper panel.

In its lower panel, Figure 5-28 expands the waveforms from the first handpass (we

selected the first handpass because it most clearly matched our attempt to move our

hand over the entire set of nodes in 3.5 seconds).

We can infer the speed of the hand from Figure 5-28 by comparing the times at

which each node first detected a presence on its whisker sensor. These results are

summarized in Table 5.5.

5.4.2 Magnetic Bend Sensor

We mounted six Hall effect sensors on each of our nodes. As described in Section 2.7,

three sensors were mounted non-colinearly on the West side of our board and three

111

Node Time at Which Speed When Speed When Speed When Speed When
First Significant Compared Compared Compared Compared
Stimulus Noted to A to B to C to D

A 5.3 s – 4.1 cm/s 4.7 cm/s 5.2 cm/s
B 6.1 s 4.1 cm/s – 5.5 cm/s 5.5 cm/s
C 6.7 s 4.7 cm/s 5.5 cm/s – 6.6 cm/s
D 7.2 s 5.2 cm/s 5.5 cm/s 6.6 cm/s –

Avg. Handspeed: 5.3 cm/s

Table 5.5: Hand speeds calculated from whisker sensors.

sensors were mounted non-colinearly on the North side of our board; in addition, two

neodymium magnet were placed on our nodes, one on the East side and one on the

South side. The purpose of this arrangement was to allow our nodes to triangulate

the positions of their neighbors based on the magnetic field.

Figure 5-29 presents the responses of all six of a node’s Hall effect sensors as a

magnet is passed at a distance of approximately half a centimeter parallel to the West

and North edges of each node (so that the magnet’s field is perpendicular to the of

the board’s edges). As can be seen from the plots, all Hall effect sensors detect the

disturbance of the magnet, demonstrating both the functionality of our Hall effect

sensors and the mux control circuitry used to direct our Hall effect sensors’ outputs

to our ADC (see Section 2.7).

Recalling Section 2.7, we used the approximation reproduced below to estimate θ

from two of our Hall effect sensor’s outputs (Hall1 and Hall2).

θ =
Hall1 − Hall2

Hall1 + Hall2
(5.1)

During preliminary physical testing, we found this approximation worked well to

estimate θ when one moved a single magnet in the plane of our board, facing the

board’s edge. Running our Hall effect sensors at 3.3 V and reading values from our

debugger, we could estimate θ to within 5o or 10o of its actual value for θ between

-30o and 30o. (We could not find the radius with any real degree of accuracy, and

therefore do not present these results.)

Encouraged by these results, we recorded data from twelve nodes’ magnetic sensors

112

Figure 5-29: Responses of six Hall effect sensors as a magnet passes along the western
and northern edges of our node, so that the magnet’s field is perpendicular to our
board’s edges. The order in which the magnet passes our sensors is: West North
sensor (bottom left corner of board), West sensor (middle left side of board), West
North sensor (top left corner of board, sensor facing West), North West sensor (top
left corner of board, sensor facing North), North sensor (middle of top edge of board),
North East sensor (top right corner of board).

113

Figure 5-30: West North Hall effect sensor results as skin is bent to an angle of 60o

three times.

in response to various stimuli. We display the most relevant results in Figure 5-30.

Figure 5-30 shows the output of our North West Hall effect sensor as our skin is picked

up, bent to an angle of approximately 60o, returned to form, again bent to an angle of

60o, again returned to form, again bent to an angle of 60o, and finally again returned

to form. Notice that Nodes E, H, and K clearly record magnetic disturbances as a

result of this stimulus. (Node B does not record these same disturbance. Due to our

connector configuration, B was not physically linked to E, and therefore stayed fixed

relative to its western neighbor, A, during this experiment.) Although a noticeable

signal is seen, it is unclear whether any level of precision can be gleaned from this

implementation of the magnetic sensor.

114

5.4.3 Hand Press

One of our principle benchmarks in performing this work was to get a clean set of

data that captured a hand’s approaching, pressing on, and releasing from a grid of

our nodes. The following sections present data recorded by our skin for different hand

gestures.

Basic Hand Press

We recorded sensor data as a hand approached, descended, pressed on, and pulled

away from a four-by-three node grid. The light, whisker, temperature, microphone,

and pressure data from this experiment are presented in Figures 5-31, 5-32, 5-33,

5-34, and 5-35 respectively. Because a hand is neither completely flat, nor uniform,

the figures (particularly the pressure data presented in Figure 5-35) indicate that the

response of the sensors is quite heterogeneous.

Progressive Hand Press

We need not limit ourselves to the basic hand gesture described in the previous section.

While the hand gestures from the previous section deal with a hand’s carefully and

uniformly pressing on the entire skin or a section of the skin, we also have the ability

to explore gestures that are more heterogeneous. Figures 5-36, 5-37, 5-38, 5-39, and

5-40 present light, whisker, temperature, microphone, and pressure data respectively

from a hand’s pressing on the left-most column of the skin, progressively rolling onto

the left side of the skin, and finally rolling back. The non-uniformity of the hand

stimulus can most easily be seen from the whisker responses in Figure 5-37. Notice

how Node A’s whiskers recorded excitation before Node C ’s. Initially, we thought

that the pressure sensors on Nodes H and B may have broken. However, repeated

tests confirmed that they were completely functional. Therefore, we concluded that

the lack of response exhibited by these nodes’ pressure sensors is attributable to the

non-uniformity of the stimulus. Such an interpretation is confirmed by the audio

plots of our nodes: if we consider audio events and pressure events correlated, we see

115

Figure 5-31: Light sensor data from a twelve node grid as a hand descends, presses
on, and leaves grid.

116

Figure 5-32: Whisker sensor data from a twelve node grid as a hand descends, presses
on, and leaves grid.

117

Figure 5-33: Filtered temperature sensor data from a twelve node grid as a hand
descends, presses on, and leaves grid.

118

Figure 5-34: Microphone data from a twelve node grid as a hand descends, presses
on, and leaves grid. Some nodes hear the hand brushing against them.

119

Figure 5-35: Pressure sensor data from a twelve node grid as a hand descends, presses
on, and leaves grid.

120

Figure 5-36: Light sensor data from a twelve node grid as a hand rolls from the left
side of the skin onto the right side of the skin and back.

that Nodes B and H recorded little or no sounds or pressure at all.

5.5 Power Exploration

As presented in Section 2.10, in full operation, our nodes can consume up to 250 mW

of power. For some applications, this figure may be excessive or even wholly unrea-

sonable. Electrically, we can achieve substantial power savings by removing several

sensors or LEDs from each node. However, this solution is hardly desirable - it reduces

our skin’s overall functionality and requires substantial effort to implement or reverse.

Fortunately, there is another, more flexible option - we can dynamically throttle the

rate of our microcontroller’s clock and transition into one of the MSP430F1611’s a

low power modes. As explained in the MSP430F1611’s datasheet, such steps can

121

Figure 5-37: Whisker sensor data from a twelve node grid as a hand rolls from the
left side of the skin onto the right side of the skin and back.

122

Figure 5-38: Temperature sensor data from a twelve node grid as a hand rolls from
the left side of the skin onto the right side of the skin and back.

123

Figure 5-39: Microphone data from a twelve node grid as a hand rolls from the left
side of the skin onto the right side of the skin and back.

124

Figure 5-40: Pressure sensor data from a twelve node grid as a hand rolls from the
left side of the skin onto the right side of the skin and back.

125

Figure 5-41: Node configuration for low power mode exploration.

reduce our microcontroller’s power consumption by 50,000% [19].

We demonstrate the effectiveness of this strategy by connecting five nodes together

in the shape of a ’+’ as seen in Figure 5-41 4. Nodes A, B, C, and D are located

on the outer edges of this ’+’ and Node E is at the center. All nodes are initialized

into their lowest power states. Additionally, we set an interrupt on Node E ’s whisker

sensor. When E detects that its whisker sensor has been depressed three times, it

sends a message via our custom-designed peer-to-peer protocol to A. Upon receiving

this message, A switches into its highest power mode at its fastest clock rate. After

receiving five, seven, and nine interrupts on its whisker sensor, E sends similar wake

up messages to Nodes B, C, and D respectively. Additionally, after detecting nine

whisker events, E switches from its low power mode to run at its most power hungry

state. Table 5.6 presents the current consumption of the network composed of Nodes

A, B, C, D, and E when undergoing this experiment. Notice how dramatically the

power consumption of the overall network changes as nodes change their states.

4It is important to note that in order to highlight our results, none of the nodes’ six Hall effect
sensors were populated - if we had included these six sensors, they theoretically would have consumed
an additional 48 mA.

126

While such a result provides insight into potential power regulation schemes on

our skin, it also hints at possible future control mechanisms for our skin. Such control

mechanisms could play a part in rejecting spurious stimuli, scoping processing, and

regulating information flow.

Number Node A Node B Node C Node D Node E Skin Patch’s
Interrupts on mode mode mode mode mode Avg. Total

Node E Current Con-
sumption

0 Lowest Lowest Lowest Lowest Lowest 5.144 mA
Power Power Power Power Power
Mode Mode Mode Mode Mode

3 Highest Lowest Lowest Lowest Lowest 7.558 mA
Power Power Power Power Power
Mode Mode Mode Mode Mode

5 Highest Highest Lowest Lowest Lowest 9.873 mA
Power Power Power Power Power
Mode Mode Mode Mode Mode

7 Highest Highest Highest Lowest Lowest 12.198 mA
Power Power Power Power Power
Mode Mode Mode Mode Mode

9 Highest Highest Highest Highest Highest 17.288 mA
Power Power Power Power Power
Mode Mode Mode Mode Mode

Table 5.6: Current consumption from skin patch wakeup routine

127

128

Chapter 6

Discussion

6.1 Communication

6.1.1 Peer-to-peer Protocol

We did not make as much use of our peer-to-peer protocol as our I2C bus. However,

the limited speed and accuracy results shown in Section 5.2.1, demonstrated our peer-

to-peer protocol’s viability as a stand-alone system. As presented in Table 5.2, our

peer-to-peer protocol is blazingly fast, evincing baud rates of over 10,000 bits per

second. To put this figure into perspective, at such a rate, we could transmit the

readings of almost 1,000 sensors every second - more than adequate to capture basic

stimuli. In addition to its speed, our peer-to-peer protocol is also highly accurate:

referring to Table 5.1, we see that our peer-to-peer protocol exhibits no errors even

when run at its fastest rate.

Additionally encouraging were our results in Section 5.2.1, which highlighted our

peer-to-peer protocol’s provision for symmetric control over throttling communication

channels. In certain applications, it may be important for a node to prioritize fore-

ground processing over communicating with its neighbors. As described in Section

4.3.2, we designed our protocol for this eventuality, allowing either a transmitting

node or a receiving node to unilaterally reduce the baud rate of communication.

Table 5.3 demonstrates the effectiveness of our implementation, showing a node suc-

129

cessfully emphasizing processing over communication. As can be seen from the table,

as the receiver decreases the communication channel’s baud rate, the time required

to perform a pre-defined set of foreground operations goes down.

In the interests of full-disclosure, it should be mentioned that this experiment

exhibits two potential sources of error, listed and addressed below:

1. Non-uniform oscillators. Due to manufacturing variations, the MSP430F1611’s

datasheet specifies only a range of frequencies over which we can expect our mi-

crocontroller to run [19]. Therefore, if we perform the same experiment on

different nodes, we would likely encounter minor variations in our numbers.

To reduce the effect of this variation on our results, we used the same micro-

controllers for our transmitter and receiver across all runs of our experiment.

Further, because our design does not explicitly rely on our microcontroller’s

clock rates, we anticipate that any two nodes selected to perform the same

experiment would show similar trends, if not precisely the same numbers.

2. Human response rate. As described in Section 5.2.1, a human with a stop-

watch timed each run of our experiment. As opposed to a mechanical or electri-

cal timing system, this setup couples delays from human response rates into our

results. To address potential variation in such delays, we took repeated mea-

surements and averaged them, likely reducing the effects of delays significantly

longer or shorter than the average. In addition, because the timing differences

recorded in Table 5.3 are on the order of multiple seconds, it is unlikely that

human response rates obscure the general trends presented in the table.

The most serious downside to our peer-to-peer protocol appears to be the num-

ber of connections it requires. As will be discussed in Section 7.1.2, requiring five

connecting wires for our peer-to-peer protocol greatly reduced our skin’s flexibility.

I2C Bus

As can be seen from the results presented in Section 5.2.2, our I2C bus ran quickly

and efficiently. Specifically, data transmission from our skin’s nodes to a listening

130

PC occurred with a baud rate of over 85,000 bits per second across our I2C bus,

adequately fast to capture the numerous stimuli of interest presented in Chapter 5

and Appendix B. Even at its fastest rate, however the bus was reliable. As can

be seen from Table 5.4, our I2C bus exhibited no errors in transmission - a stellar

accomplishment considering the rate at which it runs and also taking into account

the number of nodes on the bus. Most importantly, this result indicates that we do

not need to build in any form error correction into our I2C bus. (Initially, we had

prepared error correction code for our skin, which went substantially untested after

these accuracy results. This code, as well as any thoroughly tested and debugged error

correction code, reduced the speed at which we could transfer sensor information,

making it unattractive if unnecessary for accuracy.)

The paragraph above highlights all our positive results with the I2C bus. Unfortu-

nately in our work, we also encountered a curious problem when running our I2C bus.

When I2C interrupts were enabled on our nodes, we observed a 10 KHz disturbance

on our power and ground lines. (This disturbance may explain the noise seen on our

temperature sensor’s output in Figures 5-19 and 5-20 to our I2C line.) We have some

difficulty fully explaining the origin of this noise, but posit that it arises from our

I2C bus’ SDA and SCL lines’ being routed briefly through the edge of our analog

ground plane. Signals on these lines may therefore have capacitively coupled to our

analog ground plane, creating the noise that we see on our voltage supply. We are

slightly puzzled by the frequency of this noise - our I2C bus runs at approximately

400 Kbits/s, much faster than the 10 KHz noise we observed.

In our early stages of prototyping, we did not notice this problem (we used an

oscilloscope and debugger to check sensor states only when our I2C bus was not

enabled, and only tested our I2C bus by conveying very basic messages), and therefore

could not fundamentally address it in our skin’s more final revisions. However, placing

additional .1 µF bypass capacitors across sensors’ power and ground rails did diminish

this noise.

131

6.2 Light

Our light sensor generally performed well, providing much more information than

we anticipated. For instance, Figure 5-10 from Section 5.3.1 shows basic responses

of light sensors on our skin as a flashlight zooms in and out on Node H. As can be

seen in the figure, several of the nodes’ outputs vary substantially, exhibiting minor

peaks and valleys. Originally, we considered these as evidence of either an unsteady

hand holding the flashlight or incorrectly functioning sensors. However, after repeated

and carefully studied experiments, we concluded that our light sensor was actually

correctly detecting a phenomenon we had never noticed or considered. Specifically,

due to the physical properties of a flashlight’s reflector, light from a flashlight is highly

non-uniform: at close ranges, a flashlight’s beam exhibits a pattern of rings. It was

these rings that our light sensors were detecting as they varied.

Of course, our light sensor provided insight into far more than just flashlight

operation. If we examine Figure 5-36 which records our skins’ light sensor responses

to a hand’s pressing down on the left side of the skin, rolling onto the right side of the

skin, and then rolling back, we find that even such a basic stimulus is filled with detail.

In particular, observe Node K ’s light sensor response to the stimulus. As opposed

to the values of light sensors below and to either side of K, K ’s waveform contains

several peaks and valleys. Repeating this experiment, we realized these peaks and

valleys were caused by our middle finger’s shifting across the node’s surface several

times as we rolled our hand, thereby obscuring and revealing our light sensor multiple

times. While such a small event may have gone wholly unnoticed by even a very intent

observer, our skin easily captures it in rich detail.

In addition, as noted in Section 5.3.1 we were able to distinguish the 60 Hz mod-

ulation from lights plugged into a wall socket. Although we did not write specific

code that exploited this ability, it is conceivable that we would be able to distinguish

roughly whether our skin was indoors (if our light sensor detected a signal with 60

Hz noise) or outdoors (if our light sensor detected a signal lacking such noise). Such

an ability might prove useful if we found an application for our skin in the world of

132

context-aware computing.

6.3 Temperature

Our LM20CIM temperature sensor was advertised as having +/- 5o C of accuracy.

However, our temperature sensors’ outputs never were in a range that could be con-

strued as reasonable, indicating that a normal room was at almost 80o C. In addition,

as can be seen in Figure 5-19, our LM20CIM’s output was very noisy, and required us

to perform low-pass filtering that took up computational time and may have glossed

over important events. Adding bypass capacitors immediately before our LM20CIM’s

power pin reduced noise in our sensor’s output. However, we still were required to

perform low-pass filtering.

In addition, the non-linearity of our sensor also introduced problems. The LM20CIM’s

data sheet specifies the following equation to convert between the sensor’s output

voltage, Vo, and temperature, T :

T = −1481.96 +

√

2.1962 × 106
1.8639 − Vo

3.88 × 10−6

(6.1)

Due to the numerous floating point operations required by this equation, it was

impractical to compute the temperature at our sampling rate onboard our microcon-

troller. Therefore, we experimented with two strategies: reducing the rate at which

we sampled our temperature sensor and off-loading this computation to a listening

PC. Each strategy had its downsides. Reducing our temperature sensor’s sample rate

destroys the sensor resolution which we value so much; off-loading the computation to

a listening PC constrains our skin, preventing its being used as a stand-alone device.

In theory, we could have also linearized Equation 6.1 around a room-temperature

operating point. However, this approach would have impacted accuracy; and because

133

our sensor was outputting values well outside its expected range, may have proven

unreliable. Therefore, we did not attempt any linearization.

Finally, although our choice of sensor performs admirably in detecting a heat gun

(see Figure 5-19) or a thumb’s being directly applied to it (see Figure 5-20), as seen

in Figure 5-33, our sensor sees almost no change in response to a hand’s pressing

down on our skin. Some of our LM20CIM’s lack of sensitivity is likely due to its

placement on our boards: a nearby Hall effect sensor shields our temperature sensor

from immediate physical contact. However, we attribute most of its insensitivity to

poor sensor selection. The LM20CIM is rated for detecting temperatures between -

55o C and 130o C. Across such a broad range of operation, it is hardly surprising that

our sensor exhibits inadequate resolution when used across the much more restrictive

range of room temperature. As will be described in Section 7.1.1, it would have been

much wiser to choose an alternate sensor than the LM20CIM, such as a PIR.

6.4 Whisker

Recalling Section 2.5.2, we exerted quite a lot of effort in building our whisker sen-

sor: we custom-designed and tested two novel implementations (gluing bristles to

a PKGS piezo shock sensor and gluing bristles to an SPM0102NE-3 microphone),

and evaluated the performance of a third type of sensor which relied on a piezo-film

vibra-tab.

Designed to detect only proximity events, such as the presence of a hand or a

strong air current, our whisker sensor performed admirably in these tasks. Consider

for example Figure 5-32 which displays the outputs of our skin’s whisker sensors as

a hand approaches our skin. Notice that all our whisker sensors detect the hand’s

approach before actual physical contact is made (indicated by the times at which

our pressure sensors start detecting an interaction), mimicking the role of hair on

biological skin.

Our whisker sensor provided much more information than we anticipated. In the

Huggable work cited earlier, Stiehl and his colleagues emphasize the importance of

134

distinguishing different types of stimuli [39], [40]. As demonstrated in Section 5.4.1 we

were able to aggregate the information from a grid of whisker sensors to analyze the

direction of travel of a stimulus as well as its intensity. Although we never explicitly

used this information to characterize stimuli, it is completely conceivable that our

work could be extended along this path.

In addition, due to the inertia of the paint brush bristles used in building our

sensor, we were able to detect sudden movements of our skin. As demonstrated in

Figure B-4, all of our whisker sensors react violently to a sudden tug on our skin’s

base, behaving almost like a large accelerometer. While it is unlikely that our skin,

as currently constituted, will be deployed mobilely, future iterations of our work may

be. In such a case, our new skin would be aware of the context in which it was

operating, perhaps regulating its function depending on whether and how fast it was

being moved.

While the above paragraphs provide a list of all the positive features of our custom-

designed whisker sensor, we also encountered several failings. In particular, as can

be seen from Node E in Figure 5-32, the high gain of our whisker sensor occasionally

caused our sensor to saturate for heavy stimuli. This presents an interesting problem.

For certain applications, such as detection of light or glancing stimuli, we appreciate

the high sensitivity of our whisker, and therefore recoil at the idea of simply reducing

our overall gain to prevent sensor saturation.

One potential solution to this issue might be to incorporate dynamically control-

lable gain. If we replace the standard 4.3 MΩ resistor shown in our whisker’s condi-

tioning circuitry in Figure 2-9 with a FET circuit that acts as a voltage controlled

resistor, our microcontroller would be able to decrease gain if it detected our sensor’s

saturating. The only downside to this proposal is that it would likely complexify

routing, add to component count, and potentially increase board area.

Another problem with our whisker sensor arose from its manufacture. Because

we built our whisker sensors by hand, they were not exactly identical: some sensors

had slightly more paint brush bristles than others, sensors’ bristles were positioned

at slightly different angles to others, etc. Recalling the controlling metaphor of our

135

work - biological skin - this issue may be less of a problem and more of an accurate

imitation: biological skin’s hairs are non-uniform as well. Some hairs on biological

skin are larger than others, some hairs point in radically different directions, and

some portions of the body have a lower hair density than others.

6.5 Microphone

After repeated tests with our microphone, we removed the 4 KHz low-pass filter

described in Section 2-8: our microphone’s output did not show any high-frequency

noise and therefore all our low-pass filter did was obfuscate the sharp edges of audio

stimuli. Other than this minor change to our conditioning circuitry, we were very

pleased with our microphone. Despite its small size, it was able to detect stimuli at

distances of several feet. In addition, as can be seen from Figure 5-34, our microphone

was sensitive enough to detect sound from a hand’s pressing down on our skin. As

with our light sensor discussed above, our microphone provided unanticipated detail

of this simple stimulus. Notice from Figure 5-34 how different the responses of each

microphone are to a hand press: Node B, E, and H record large spikes in volume,

while other microphones on our skin such as those of Nodes A, D, K, L, and I are

barely excited. These plots therefore indicate a heterogeneity to the basic hand press

stimulus that we wholly did not expect.

6.6 Pressure

While our project should be thought of as a rude approximation of biological skin,

nowhere is the imperfection of our metaphor more apparent than in our pressure

sensors. Skin on human fingers has up to 1,500 separate pressure sensors per square

centimeter [38]. In contrast, our node has only three pressure sensors per square inch.

As explained in Section 2.4, we were generally disappointed by our QTC sensors. Our

QTC sensors were relatively insensitive to pressure stimuli: a strong stimulus that

excited our FSR sensor across its full dynamic range, which is shown in top panel of

136

Figure 5-18, excited our QTC sensor to less than an eighth of our QTC sensor’s full

range, which is shown in the bottom pannel of the same figure (note the y-axis of the

bottom panel only extends to 16 instead of up to 255 as the y-axis of the top panel

does).

Because of this insensitivity concern, as well as the difficulty we experienced in

mounting our QTC pills, which we discussed in Section 2.4, we focused instead on

our FSR sensor. In contrast to our QTC pills, we were very satisfied with our FSR

pressure sensors: as demonstrated in Figure 5-17, our FSR sensors tracked simple

stimuli very well. Like our light sensor and microphone, our FSR pressure sensor also

highlighted the heterogeneity of stimuli.

Figure 5-40, which captures the pressure responses of a skin’s FSR sensors as a

hand is placed on the left side of the skin, rolled to the right side, and then rolled back.

Nodes H and B evince almost no response. Initially, we thought that this was a sign

that the nodes’ pressure sensors were broken. However, repeated tests confirmed that

they were completely functional. Therefore, we concluded that the lack of response

exhibited by these nodes’ pressure sensors is attributable to the non-uniformity of

the stimulus. Such an interpretation is confirmed by the audio plots of our nodes: if

we consider audio events and pressure events correlated, we see that Nodes B and H

recorded little or no sounds at all.

6.7 Magnetic Bend Sensors

Our magnetic bend sensor did not perform as well as we hoped: we were never able

to accurately use our system of Hall effect sensors for fully accurate localization of

neighbor nodes. This poor performance was not due to sensor failure: Figure 5-

29 clearly shows each Hall effect sensor responding to magnets passed near them.

Instead, we attribute our failure to our own limited physical understanding, as well

as simplifying assumptions made we in the design, simulation, and prototyping phases

of this project.

In particular, during simulation, we treated our magnet as a point-source. How-

137

ever, in actuality, our magnet is highly directional. Tests using our magnets showed

that our Hall effect sensors only detected magnetic disturbances if a magnet was

almost directly pointed at the sensor. In addition, during simulation, we assumed

our sensors would have 32-bit resolution, and therefore would be able to detect even

slight movements of our magnet. In reality, our ADC provided us with only 12-bit

resolution, preventing us from detecting the minor changes in our magnetic requisite

for accurate localization.

Further, we overlooked the effects of multiple magnets on our skin. Figure 5-30

shows readings from our West North Hall effect sensor as we repeatedly bent our skin

along the axis along the intersection of Nodes D, G, and J and Nodes E, H, and K.

Figure 6-1, below, shows the values recorded by our North West sensor in response to

these actions. Although the magnets on the southern edges of our nodes did not move

relative to their counterpart North West Hall effect sensor during this experiment,

notice that the North West Hall effect sensor of E, H, and K all detected magnetic

events. We attribute this response to the fact that our Hall effect sensors along the

northern edge of our nodes were not truly orthogonal to the field produced by the

magnets placed on the eastern edges of our boards. Therefore, changes in an eastern

magnet’s position will be detected by some of our northern Hall effect sensors as well.

Our final shortcoming in this phase of our work was that we satisfied ourselves

with tests of our Hall effect sensors using a magnet only in the plane of the board,

and carefully moved by hand. In reality, our skin never exhibited such close and

careful motion: even simple interaction with our skin caused nodes to quickly bend

at strange angles and form into strange topologies (as seen in Figure 5-4). Rather

than assuming our results would easily translate from such gentle tests, we should

have specifically tested our angular localization infrastructure under more strenuous

conditions.

Despite all these shortcomings, as can be seen from Figure 5-30, our Hall effect

sensors were able to coarsely detect some strong stimuli and exceptional events. Such

functionality may be useful to waken nodes from low power modes in a manner similar

to the work presented in Section 5.5 or to change node behavior.

138

Figure 6-1: North West Hall effect sensor readings in response to skin’s being bent
between Nodes D, G, and J and Nodes E, H, and K. Figure demonstrates coupling be-
tween magnet placed on east side of boards and Hall effect sensors placed on northern
edge of board.

139

140

Chapter 7

Conclusion and Future Work

This chapter is laid out in three separate sections. The first details solutions to

problems encountered during the development of our skin and discussed in Chapter

6. The second section of this chapter suggests interesting and novel extensions of

our work. And the last provides a brief summary of our skin, accomplishments, and

failures.

7.1 Errata to be Fixed

7.1.1 Temperature Sensor

As noted in Section 6.3, our temperature sensor did not behave as we expected. Much

of our difficulty we encountered was likely due to our sensor sensor selection. The

LM20CIM is rated for detecting temperatures between -55o C and 130o C. Across

such a broad range of operation, it is hardly surprising that our sensor exhibited

inadequate resolution. Further, because of the non-linearity of our sensor, we had to

offload computation of temperature values to a listening PC to prevent the required

floating point operations from swamping our processor. For these reasons, in retro-

spect, it would have been a better decision to choose an alternate sensor for detecting

temperature. In particular, a linear PIR or more sensitive temperature sensor would

have performed better.

141

7.1.2 Connectors

Our connectors frequently broke. In our lab environment, this proved to be lit-

tle more than an inconvenience. However, the frequent failures of our connectors

would certainly limit our skin’s functionality in any extended deployment. A highly

attractive solution to this problem would be to transition our device away from our

rigid-nodes-with-flexible-interconnects design to a fabric-based layout in which circuit

components were mounted on a flexible fabric such as a cotton shirt and connected

by conductive thread. Depending on our implementation of such a design, a fabric

substrate might reduce the strain on interconnects between circuit elements while in-

creasing the overall mechanical flexibility of our skin. Many researchers are working

on fabric circuiting and interconnections that might prove useful if future iterations

of this project are directed towards fabrics [9], [10], [24].

7.1.3 Hall Effect Sensors

In retrospect, our basic approach to bend detection was naive and cumbersome. Over-

all, the magnetic system we designed to track a node’s neighbors performed poorly.

In addition, the infrastructure for such a system is expensive. As explained in Section

2.7, we had to create a second power line, and deploy a mux to handle our six Hall

effect sensors’ outputs. This approach therefore took up a significant amount of board

area on our nodes. We estimate that without our Hall effect sensors we would be able

to shrink our board size by almost 30%. In addition, our six Hall effect sensors re-

quired a large amount of power. As detailed in Table 2.1, each sensor requires at least

6 mA of current. Operating at 5 Volts, our Hall effect sensors therefore consumed at

least 180 mW - almost ten times the power consumed by an entire node without its

Hall effect sensors mounted (and LED off).

For these reasons, we would encourage future iterations of this work to steer away

from attempting bend sensing in a similar manner. A more fruitful approach might

be to build such sensors into nodes’ interconnections, perhaps using a flex circuit

connector with a strain gauge similar to that described by Perez in [33]. Other

142

options could include using FSR bendy sensors or stretchy FSRs, similar to [29]. We

initially rejected these approaches, deeming them too cumbersome and difficult to

obtain. However, their documented reliability suggests that we should reconsider our

initial assessment, and try to incorporate such a sensor into any future work.

7.2 Potential Extensions

7.2.1 Visualization

We do not need to constrain our understanding of our skin and visualization to

be a one-way device. Just as easily as information can be pumped from our skin

to an individual using our visualization, so too can information be pumped from

an individual using the visualization to our skin. With this in mind, we built our

visualization with an easy back-door that supported a user’s sending messages to the

master node of our skin. We never tested this functionality beyond getting nodes to

echo back characters, but one might easily extend our visualization and node firmware

to support more complex behavior. For instance, a user could direct segments of our

skin to enter low power modes, or direct our skin’s master node to focus its attention

on a particular node.

7.2.2 Enlarging our Skin

The largest grid that we worked with had 13 nodes. However, due to our modular

design, our skin can support additional nodes. The primary issues that we anticipate

in scaling up our skin are:

Reduced effectiveness of our I2C bus. As mentioned in Chapter 4, adding nodes

increases the parasitic capacitance on our bus. Eventually, the delay imposed by

parasitic capacitance may require us to run our I2C bus at a lower rate, or abandon

it altogether for our peer-to-peer protocol. Further, additional nodes imply additional

information. Currently, the bandwidth of our I2C bus supports a nearly 30 Hz update

rate for each node’s sensor values. Adding nodes would reduce our effective update

143

rate.

Power. Our connectors were rated for a maximum current flow of 0.75 A. Depending

on how many nodes we would add and how we connected our skin (in a grid, in a

straight line, etc.), we might exceed our connector’s maximum current rating. For

instance, if we connected all our nodes in a straight line and ran them at full power,

our skin would support a maximum of 15 nodes.

A larger skin would allow us to perform additional sensing and collect data on

more extensive stimuli.

7.2.3 Distributed Control

We extensively researched different control structures for our skin, and took specific

inspiration from game theoretic literature, particularly mechanism design. Mecha-

nism design focuses on creating sets of rules so that individual agents in a multi-agent

system autonomously choose to perform actions that maximize the entire system’s

utility. Needless to say, such work could be an enormously powerful tool in devel-

oping our skin. Our one master, multiple slave architecture is an artifact of using

our I2C bus. Because we also designed a peer-to-peer protocol for communication,

we can run our skin so that all nodes behave autonomously, choosing which sensors

to sample, what power mode to be in, and which neighbors to communicate with.

In such a setting, insights from mechanism design might permit our skin to evince

positive aggregate behavior while each node maintained its autonomy.

We formulated our inquiry as a question of sensor selection: based on which sensors

a node, A, was sampling, which sensors should its neighbor, B, sample to provide the

maximum amount of non-overlapping information?

We hoped to prove the existence of either a pure or mixed strategy set of Nash

Equilibria that could be arrived at simply (either through iterated strict dominance

or through an efficient bargaining scenario).

A Nash Equilibrium is a state in which no agent in a game can benefit from

unilaterally swithing its choice of strategies [15]. As opposed to a pure strategy

144

equilibrium in which an agent’s best decision is to always play a particular strategy, a

mixed strategy equilibrium is a probability distribution mapping across all available

actions. This mapping indicates the optimal frequency an agent should play particular

strategies [15]. We treated each node on our skin as a separate agent. Each node’s

action space (the strategies which each could play) was composed of 16 separate

strategies:

1. Sample temperature sensor.

2. Sample pressure sensor one.

3. Sample pressure sensor two.

4. Sample pressure sensor three.

5. Sample light sensor.

6. Sample West South Hall effect sensor.

7. Sample West Hall effect sensor.

8. Sample West North Hall effect sensor.

9. Sample North West Hall effect sensor.

10. Sample North Hall effect sensor.

11. Sample North East Hall effect sensor.

12. Sample microphone.

13. Sample whisker sensor.

14. Send message to northern neighbor.

15. Send message to southern neighbor.

16. Send message to western neighbor.

145

17. Send message to eastern neighbor.

18. Sleep/no action.

We regarded the probabilities put on pure strategies in a mixed strategy equilib-

rium as a “sensor schedule”, in which a node would cycle through the weighted sensors

at a frequency proportional to the probabilities with which they were weighted. Such

a sensor schedule would dynamically adjust and react to changes in the skin’s state.

As a simple proof-of-concept, we were able to construct a limited two-player game

with naively chosen utility functions and complete information such that we obtained

a mixed strategy equilibrium. However, we had difficulty extending our results as we

went from a two-player game to an n-player game and relaxed assumptions about

how much information A knew about B ’s sensor selection and vice versa.

Arslan, et. al suggested an approach for solving a similar assignment problem in

[3]. We re-formulated Arslan et. al’s basic problem statement from a hypothetical

scenario in which multiple vehicles bargain to determine an optimal set of assignments

to destroy enemy targets to a less bellicose scenario in which each of our nodes was

selecting the order and frequency with which to sample its sensors. However, early

on we ran into mathematical resistance. Further complicating matters, due to the

amorphous application space of our skin, we had difficulty clearly specifying our skin’s

global utilities. Unfortunately, due to time considerations, we were unable to progress

past these obstacles. However, we hold great hope that future iterations of our skin

will address and overcome them.

7.2.4 Power

We primarily addressed power concerns in Chapter 2 with our component selection.

However, in Section 5.5, we briefly explained and showed an alternate method for

reducing our skin’s power consumption. Specifically, we demonstrated our nodes’

ability to “sleep” in low-power states and quickly wake when receiving peer-to-peer

messages. This simple example only touched on a rich vein of future research. Al-

gorithmically, there may be ways to intelligently put to sleep certain sections of our

146

skin. For instance, a period of relative tranquility in the environment might require

only 42% of the nodes to be actively sensing and processing information. The re-

maining 58% of nodes would either put themselves to sleep or be directed to sleep

by their neighboring nodes - greatly reducing the overall system’s power consump-

tion for that period of tranquility. Of course, given a suitable stimulus detected by

those 42% of awake nodes, the awake nodes might wake some or all of the sleeping

nodes. Selecting which nodes to wake and sleep to ensure the sensing, processing,

and communication of a suitable amount of information would be a non-trivial task

that could show results that generalized to a host of other sensor networks.

7.3 Summary

Our work was concerned with building and deploying a sensate skin with embedded

processing. This thesis demonstrated an adolescent system. Overall, we met most of,

but not all, the goals of our project, which we laid out in our preliminary chapter.

The skin that we developed showed good flexibility for a prototype, ran quickly and

efficiently, and could detect and respond to a variety of stimuli. However, as noted

throughout our work, our skin does evince troubling issues that should be addressed

before this project can be considered a success. Particularly concerning were noise on

our power and ground lines engendered from running our I2C bus, the unreliability

of our temperature sensor, the frequent breaking of our connectors, and the poor

performance of our magnetic bend sensor. The early sections of this chapter suggested

potential solutions to these problems and further inquiries that our system might

support.

147

148

Appendix A

Simulation Code

A.1 Skin Simulation

Before we began construction of our skin, we wrote a large body of code to test

our project’s basic algorithmic framework. This code supported peer-to-peer message

passing, as well as a bus communication protocol. Figure A-1 demonstrates the visual

output of our simulation as several nodes nodes on a grid are put under shadow.

We used this code only in a limited fashion because it was written with the as-

sumption that all nodes on our skin would be synchronized. Nevertheless, it provided

a good starting point for considering design approaches for our skin’s aggregate be-

havior.

A.2 Magnet Simulation

As mentioned in Section 5.4.2, we wrote a simulation program to determine the

feasability of angular localization using our Hall effect sensors. This simulation treated

our magnets as point sources of magnetic field, and assumed our Hall effect sensors

had 32-bit resolution. Even with these shortcomings, we still could perform minor

algorithmic tests to determine how quickly and accurately different algorithms for

computing magnet positions. Figure A-2 shows the visual output of our magnet

simulation.

149

Figure A-1: Visual output of skin simulation program. Individual nodes look for and
report being under shadow.

150

Figure A-2: Visual output of magnet simulation. Large box indicates actual mag-
net position, small box north west of it indicates calculated magnet position; three
horizontally colinear boxes are two Hall effect sensors and their midpoint.

151

152

Appendix B

Additional Data

We applied several atypical stimuli to our skin. For some of these stimuli, the re-

sponses of our whisker sensor and microphone were particularly interesting. This

appendix presents those results.

B.1 Table Pound

If we place our skin on a table, our whisker sensors can detect a closed fist’s pounding

down on the table surface, as can be seen in Figures B-1 and B-2.

B.2 Stomp on floor

Our skin, when placed on a table, can detect sudden events in its environment. For

instance, Figure B-3 presents our whisker sensor’s response to a foot’s stomping on

the nearby floor twice. In this way, we see that our whisker sensors can be used

almost like mini-seismometers.

B.3 Skin Yank

When our skin is subjected to a sudden force or tug, our whisker sensors easily detect

it, as demonstrated in Figure B-4.

153

Figure B-1: Whisker sensor’s response to a fist’s pounding the table on which our
skin is placed.

154

Figure B-2: Microphone’s response to a fist’s pounding the table on which our skin
is placed

155

Figure B-3: Whisker sensor’s response to a foot’s stomping the floor near our skin
twice

156

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node A

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node B

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node D

2 4 6 8 10 12
0

100

200

Time (s)
W

hi
sk

er
 M

ag
. Node E

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node F

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node G

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node H

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node I

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node J

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node K

2 4 6 8 10 12
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node L

Figure B-4: Responses of whisker sensors to a sudden tug on the base of our skin.

B.4 Whisker Blow

Our whisker sensors are not only useful for detecting hand movements (Section 5.3.3)

and sudden shock events (above).

157

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node A

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node B

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node D

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node E

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node F

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node G

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node H

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node I

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node J

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node K

5 10 15
0

100

200

Time (s)

W
hi

sk
er

 M
ag

. Node L

Figure B-5: Responses of whisker sensors to someone’s blowing across skin.

158

Appendix C

PCB Layout

159

Figure C-1: PCB layout of entire node board.

160

Figure C-2: PCB layout of top layer of node board.

161

Figure C-3: PCB layout of interior layer of node board: VCC plane.

162

Figure C-4: PCB layout of node board: GND plane.

163

Figure C-5: PCB layout of bottom layer of node board.

164

Appendix D

Circuit Schematics

165

Figure D-1: Power, LED, temperature sensor, and light sensor circuitry for node.
Note that the 1 K resistor for our LM20CIM temperature sensor is not populated.

166

Figure D-2: Mux control circuitry for node.

167

Figure D-3: Microphone and whisker conditioning circuitry.

168

Figure D-4: Microcontroller and connector circuitry. Note that the 1 K resistors on
the SCL and SDA lines are only populated on the master nodes.

169

170

Bibliography

[1] Knowles Acoustic. Mini sisonictm microphone specification. Online.

[2] I. F. Akyildiz, Weilan Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on
sensor networks. IEEE Communications Magazine, 2002.

[3] G. Arslan, J. R. Marden, and J. S. Shamma. Autonomous vehicle-target as-
signment: A game theoretical formulation. ASME Journal of Dynamic Systems,

Measurements, and Contorl, 2007.

[4] D. Arvind, K. Elgaid, T. Krauss, A. Paterson, R. Stewart, and I. Thayne. To-
wards an integrated design approach to specknets. In IEEE International Con-

ference on Communications, 2007.

[5] D. Arvind and K. Wong. Speckled computing: Disruptive technology for net-
worked information appliances. In IEEE International Symposium on Consumer

Electronics, 2004.

[6] Stacy J. Morris Bamberg, Ari Y. Benbasat, Donna Moxley Scarborough,
David E. Krebs, and Joseph A. Paradiso. Gait analysis using a shoe-integrated
wireless sensor system. IEEE Transactions on Information Technology in

Biomedicine, 2008.

[7] Michael Broxton, Joshua Lifton, and Joseph A. Paradiso. Localizing a sensor
network via collaborative processing of global stimuli. In Second European Work-

shop on Wireless Sensor Networks, 2005.

[8] Michael Broxton, Joshua Lifton, and Joseph A. Paradiso. Wireless sensor node
localization using spectral graph drawing and mesh relaxation. ACM Mobile

Computing and Communications Review, 2006.

[9] Leah Buechley and Michael Eisenberg. Fabric pcbs, electronic sequins, and socket
buttons: Techniques for e-textile craft. Journal of Personal and Ubiquitous Com-

puting, 2007.

[10] Leah Buechley, N. Elumeze, and M. Eisenberg. Electronic/computational textiles
and children’s crafts. In Proceedings of Interaction Design and Children, 2006.

[11] Colin Burnett. I2c. Published on Wikipedia, December 2007.

171

[12] Interlink Electronics. Fsr force sensing resistor integration guide and evaluation
parts catalog. Online.

[13] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:
Scalable coordination in sensor networks. Mobile Computing and Networking,
1999.

[14] Inc. EXOS. Dexterous hand master user’s manual. Published on Wikipedia,
1989.

[15] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.

[16] Mitsuhiro Hakozaki, Atsushi Hatori, and Hiroyuki Shinoda. A sensitive skin
using wireless tactile sensing elements. In Technical Digest of the 18th Sensor

Symposium, 2001.

[17] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher, Liqian
Luo, Radu Stoleru, Ting Yan, Lin Gu, Jonathan Hui, and Bruce Krogh. Energy-
efficient surveillance system using wireless sensor networks. In Proceedings of the

2nd International Conference on Mobile Systems, Applications, and Services,
2004.

[18] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan. An application-
specific protocol architecture for wireless microsensor networks. IEEE Transac-

tions on Wireless Communications, 2002.

[19] Texas Instruments. Msp430x15x, msp430x16x, msp430x161x mixed signal mi-
crocontroller. Published as microcontroller datasheet on Texas Instruments’ web-
site., August 2006.

[20] Intersil. Ultra low on-resistance, low-voltage, single supply, 8 to 1 analog multi-
plexer. Online.

[21] Matthew Josephson. Edison: A Biography. John Wiley & Sons, Inc., 1992.

[22] Daniel Sang Kim. Sensor network localization based on natural phenomena.
Master’s thesis, The Massachusetts Institute of Technology, 2006.

[23] J. Lifton, M. Mittal, M. Lapinski, and J. A. Paradiso. Tricorder: A mobile
sensor network browser. In Proceedings of the ACM CHI 2007 Conference, Mobile

Spatial Interaction Workshop, 2007.

[24] T. Linz, C. Kallmayer, R. Aschenbrenner, and H. Reichl. Fully integrated ekg
shirt based on embroidered electrical interconnections with conductive yarn and
miniaturized flexible electronics. 2006.

[25] B. Lo, S. Thiemjarus, R. King, and G. Yang. Body sensor network - a wireless
sensor platform for pervasive healthcare monitoring. In The 3rd International

Conference on Pervasive Computing, 2005.

172

[26] Peratech Ltd. Peratech evaluation kit integration guide. Online.

[27] Vladimir J. Lumelsky, M. S. Shur, and S. Wagner. Sensitive skin. IEEE Sensors

Journal, 2004.

[28] Mateusz Malinowski, Matthew Moskwa, Mark Feldmeier, Mathew Laibowitz,
and Joseph A. Paradiso. Cargonet: A low-cost micropower sensor node exploit-
ing quasi-passive wakeup fo adaptive asynchronous monitoring of exceptional
events. In Proceedings of the 5th ACM Conference on Embedded Networked Sen-

sor Systems, 2007.

[29] C. Mattmann, O. Amft, H. Harms, G. Troster, and F. Clemens. Recognizing
upper body postures using textile strain sensors. In 11th IEEE International

Symposium on Wearable Computers, 2007.

[30] Sergio Maximilian. A textile based capacitive pressure sensor. Sensor Letters,
2004.

[31] Joseph A. Paradiso, Joshua Lifton, and Michael Broxton. Sensate media: Multi-
modal electronic skins as dense sensor networks. BT Technology Journal, 2004.

[32] Joseph A. Paradiso, Joshua Lifton, and Michael Broxton. Sensate media: Multi-
modal electronic skins as dense sensor networks. BT Technology Journal, 2004.

[33] Ǵerardo Baroeta Perez. S.n.a.k.e.: A dynamically reconfigurable artificial sensate
skin. Master’s thesis, The Massachusetts Institute of Technology, 2006.

[34] Jun Rekimoto. Smartskin: An infrastructure for freehand manipulation on in-
teractive surfaces. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems: Changing Our World, Changing Ourselves, 2002.

[35] J. Rossignac, M. Allen, W. J. Book, A. Glezer, I. Ebert-Uphoff, C. Shaw,
D. Rosen, S. Askins, Jing Bai, P. Bosscher, J. Gargus, Byung Moon Kim, and
I. Llamas. Finger sculpting with digital clay: 3d shape input and output through
a computer-controlled real surface. Shape Modeling International, 2003.

[36] National Semiconductor. Lm20 2.4v, 10 ua, sc70 micro smd temperature sensor.
Online.

[37] Philips Semiconductors. The i2c-bus specification version 2.1. Published as a
standard online by Philips Semiconductor company., January 2000.

[38] Eric Smalley. Flexible sensors make robot skin. Technology Research News, 2004.

[39] Walter Dan Stiehl, Jeff Lieberman, Cynthia Brazeal, Louis Basel, Roshni Cooper,
Heather Knight, Levi Lalla, Allan Maymin, and Scott Purchase. The huggable:
A therapeutic robotic companion for relational, affective touch. In IEEE CCNC

2006 Proceedings, 2006.

173

[40] Walter Dan Stiehl, Jeff Lieberman, Cynthia Brazeal, Louis Basel, Levi Lalla, and
Michael Wolf. The design of the huggable: A therapeutic robotic companion for
relational, affective touch. In Proceedings of AAAI Fall Symposium on Caring

Machines: AI in Eldercare, 2006.

[41] Toshiba. Tps851. Online.

[42] Unknown. Dipole. Published on Wikipedia, August 2008.

[43] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and
M. Welsh. Deploying a wireless sensor network on an active volcano. IEEE

Internet Computing, 2006.

[44] K. Wong, D. Arvind, N. Sharwood-Smit, and A. Smith. Specknet-based re-
sponsive environments. In Proceedings of the Ninth International Symposium on

Consumer Electronics, 2005.

174

