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Abstract 
 
Acoustic musical instruments have traditionally featured static mappings from input 
gesture to output sound, their input affordances being tied to the physics of their sound-
production mechanism. More recently, the advent of digital sound synthesizers and 
electronic music controllers has abolished the tight coupling between input gesture and 
resultant sound, making an exponentially large range of input-to-output mappings 
possible, as well as an infinite set of possible timbres. This revolutionary change in the 
way sound can be produced and controlled brings with it the burden of design: 
Compelling and natural mappings from gesture to sound now must be created in order to 
create a playable electronic music instrument. The goal of this thesis is to present a 
device that allows flexible assignment of input gesture to output sound, so acting as a 
laboratory to help further understanding about the connection from gesture to sound. 

An embodied multi-degree-of-freedom gestural input device was constructed. The 
device was built to support six-degree-of-freedom inertial sensing, five isometric buttons, 
two digital buttons, two-axis bend sensing, isometric rotation sensing, and isotonic 
electric field sensing of position. Software was written to handle the incoming serial data, 
and to implement a trainable interface by which a user can explore the sounds possible 
with the device, associate a custom inertial gesture with a sound for later playback, make 
custom input degree-of-freedom (DOF) to effect modulation mappings, and play with the 
resulting configuration. 

A user study with 25 subjects was run to evaluate the system in terms of its 
engaging-ness, enjoyability, ability to inspire interest in future play and performance, 
ease of gesturing and novelty. In addition to these subjective measures, implicit data was 
collected about the types of gesture-to-sound and input-DOF-to-effect mappings that the 
subjects created. Favorable and interesting results were found in the data from the study, 
indicating that a flexible trainable musical instrument is not only a compelling 
performance tool, but is a useful laboratory for understanding the connection between 
human gesture and sound. 
 
Thesis Supervisor: Joseph A. Paradiso 
Title: Associate Professor of Media Arts and Sciences 
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Chapter 1  
 
 
 
Introduction: On old and new musical instruments 
 
 
 
The history of musical instruments has long been about the sounds they make, the 

materials they are made from, and the affordances that they provide the performer. From 

Chinese bone flutes dated at 9000 years old [Zhang, et al. 1999], to Italian violins from 

the 16th century [NMM website], the art of making an expressive instrument has 

consistently taken advantage of the current state-of-the-art in materials and technique. Up 

until the past 100 years, the materials available for building musical instruments have 

been passives like wood and bone, stone and metal. Instrument makers were craftspeople 

that had mastered the art of sculpting and joining these materials, and their instruments 

featured affordances like strings to bow, reeds to blow, and keys to strike.  

 

The emergence of electronics and computers, the recent shrinking in size of 

microcontrollers and electronic components, and the development of the fields of 

artificial intelligence and pattern recognition are allowing the materials and technique of 

instrument building to diverge from tradition in a profound and discontinuous manner. 

Handheld instruments can now be active, having many different types of built-in sensing, 

processing and communication abilities. In addition, the generation of sound is no longer 

tied to the physics of a musical instrument. Whereas a 20th century horn produced sound 

by exciting a resonant mode of oscillation in an air chamber made of brass, an electronic 

musical instrument today can synthesize sound algorithmically, generating waveforms 

with rules that are not governed by any physical constraint.  
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The opportunity created by these new instrument-making capabilities brings with it a 

corresponding degree of complexity. The opportunity comes from the fact that the sound 

produced by the device is no longer coupled to its physical design. Small, cheap sensors 

can be densely packed into an interface, creating a multi-degree-of-freedom device with 

input affordances that have no inherent mapping to sound. This decoupling makes the 

designer’s imagination the only limit to how a performer can play a device and what 

sounds can be produced. The new complexity is that with the exploded range of choices 

faced by an instrument-builder, it is not obvious how to decide the ways that the 

instrument will sense the performer’s gesture and how that manipulation will be turned 

into sound. 

 

This thesis proposes to solve this problem by introducing a new sensor-rich electronic 

music controller device, and a novel gesture-to-sound mapping scheme that allows the 

device to adapt to the gestures of the user. I hope that this system will serve as a model 

for current and future input device designers – musical and otherwise – in building a 

personalizable and expressive physical input device. 
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1.1 Acoustic Instruments 
 

An acoustic musical instrument is a device that is played through physical manipulation 

by a person, and that creates sound through this manipulation solely by virtue of its 

physical construction. Various taxonomies have been proposed by scholars over the years 

for acoustic musical instruments, and these categorizations are typically based on the 

mechanism by which the sound is produced. Mahillion grouped acoustic instruments into 

autophones (bells, xylophones, music boxes), aerophones (wind), chordophones 

(stringed), and membranophones (drums) [Mahillion 1893]. Sachs refined upon this 

categorization later, changing the name “autophone” to “idiophone” to avoid making the 

suggestion that this class of devices would play themselves [Sachs 1913]. A recent 

taxonomy by Kvifte [Kvifte 1989] is based more upon the physical manipulations that a 

performer uses to actuate the instrument, such as plucking, bowing, or striking1. 

 

Building and playing musical instruments have long been a part of the human experience. 

The earliest musical instruments that we have evidence of are playable flutes discovered 

in China that have been dated at 9000 years old. To put this figure in perspective, the 

earliest known wheel, made of stone and uncovered in modern-day Iraq, has been dated 

at around 5500 years old. This long history of musical instrument design speaks to the 

centrality of music and musical-instrument construction in the human experience. As a 

result of these many years of human craftsmanship directed towards building playable 

instruments, acoustic musical instruments have converged towards a number of mature 

designs today. Modern versions of acoustic instruments like the violin, flute, and piano 

have the benefit of hundreds or even thousands of years of iterations informing their 

current design. Examination of surviving acoustic instruments from just the past few 

centuries (guitars, for instance) shows that constant changes and refinements to certain 

instruments have been made, while others that matured early (violin, for instance) have 

remained relatively unchanged for hundreds of years. 

                                                 
1 In this case, plucked and bowed violin are in separate families [Goudeseune 2001] 
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1.1.1 The coupling of the physical body to sound in acoustic instruments 
 

The sounds produced by traditional acoustic instruments are intimately connected to the 

component materials, the way that these materials are put together, and the way that a 

performer interacts with the device. We can examine this claim by taking a guitar as an 

example of a stringed acoustic instrument. The body of a guitar is typically made of a 

wood such as mahogany, spruce, maple, cedar, or some variety of rosewood [Santa Cruz 

Guitar Company website], and the strings are made of steel or nylon. In order to create 

sound with a guitar, a performer can strum, tap, pluck, or scrape a pick across the strings. 

The performer can also tap on the body in a percussive way. These manipulations are just 

the most common subset of the enormous range of manipulations that performers over 

the years have used to create sounds with guitars [Frith] [Bailey]. The important point 

about the example is that all of the sounds that are possible to produce with an acoustic 

guitar are linked to the physics of the embodied instrument. These sounds are produced 

when modes of vibration in the resonant cavity of the body become excited by 

manipulations made to the strings or to the body directly. These vibrations project sound 

out into the open air. 

 

Performers have always found new and unusual ways to manipulate acoustic instruments 

in order to create novel sounds with them (see the discussion of affordances below), but 

ultimately the sounds that are possible are constrained by the physics of the instrument. 

When exciting a given physical object to produce audible vibrations, the physical 

structure of the object necessarily constrains the space of possible sounds. 

 

1.2  Multi-DOF human-computer interfaces, and the decoupling of input and 
output 

 
The myriad ways that we interact with musical instruments has changed dramatically 

over the past century. The following section will explore the idea of input affordances, 

degrees-of-freedom, and modern synthesizers. It will provide the backdrop against which 

the mapping problem is framed in the next section.  
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1.2.1 Affordances 
 
Don Norman defined affordances as “the perceived and actual properties of the thing, 

primarily those fundamental properties that determine just how the thing could possibly 

be used.” [Norman 1988] The affordances of acoustic musical instruments are typically 

tied to the sound-production mechanism. For instance, the strings of a guitar afford 

plucking, fretting, and strumming, while the mouthpiece of a saxophone affords blowing, 

and its keys afford pressing. Each of these ways to use the instrument has to do directly 

with the physics of the sound-production mechanism. A sophisticated player of an 

acoustic instrument is aware of many more subtle affordances of their instrument, learned 

and discovered through years of experimentation and familiarity with the device. For 

instance, the body of a stand-up bass can be tapped on in a percussive manner to create a 

rhythm, and the neck of a guitar can be bent to slightly detune the strings. These subtle 

affordances may not have been explicitly designed into the device, but rather they “fall 

out” of the way it is built. Nonetheless, the subtle affordances contribute to the 

complexity of the device, and the resulting expressiveness that is achievable when 

playing. 

 

Electronic music instruments, in contrast to their acoustic predecessors, tend to have 

fewer subtle affordances. They are typically designed to measure a performer’s gesture 

with sensors or switches, converting the instantaneous analog state of the device into a 

discrete symbolic representation. This symbolic representation is then transmitted to a 

sound synthesizer, which generates an output waveform in response. A crucial bottleneck 

in this transmission of information from input gesture to output sound is the intermediate 

symbolic representation. Whereas an acoustic instrument has the benefit of the rich set of 

affordances that fall out of the direct and physically based connection between gesture 

and sound, the input affordances of an electronic music instrument typically have to be 

designed into the system explicitly. Unusual ways of playing electronic music controllers 

are inevitably discovered by creative performers, but since every sensor or switch must 

be placed intentionally by the instrument-designer, there are necessarily fewer of these 

“happy accident” style affordances than the number that fall out of the design of an 

acoustic instrument. 
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One way that performers with electronic music controllers overcome a lack of 

affordances is to develop advanced playing technique. The theremin – the first electronic 

musical instrument to gain any significant degree of popularity – only really had 2 

affordances, the performer’s body distance from two receivers on the instrument was 

linked to volume and pitch [Galeyev 1995]. However, theremin virtuosos over the years 

have developed amazingly fine hand-and-upper-body motor control that allows for a high 

degree of expression and precision. A possible way for an electronic music instrument to 

mitigate its lack of accidental affordances is for its designer to build in a large number of 

explicitly placed affordances. The Sensor Shoe [Paradiso et al. 2000] was a wearable 

shoe controller with 16+ sensors that were mapped to musical events in a number of 

separate performances. Electronic sensors and components are becoming smaller and 

smaller, and thus today it becomes possible to greatly increase the number of sensing 

elements contained by a single electronic music instrument. This is the strategy employed 

by the author, and the result is a multi-degree-of-freedom device. 

 

1.2.2 Multi-degree-of-freedom interfaces 
 

A multi-degree-of-freedom (multi-DOF) interface is one that presents a number of 

different input affordances to the user. These affordances are typically linked to an input 

degree-of-freedom present in the instrument. The distinction between an affordance and 

an input degree-of-freedom is that an input degree-of-freedom is a manipulation of the 

device that is measured by a switch or continuous sensor, while an affordance can be any 

aspect of the device that affects how it can be used. For example, an input degree of 

freedom of a car steering wheel is the amount of rotation applied to the wheel, while an 

affordance might be the horizontal segments of the wheel that allow the driver’s hands to 

be rested on them during calm driving. Turning and resting are both ways that a driver 

interacts with the system, but while the degree of rotation is sensed and used by the 

system, the hand-resting usage is not. Multi-degree-of-freedom computer interfaces offer 

exciting possibilities for electronic musical instrument and interface designers, because 

 22



number and diversity of sensors available today creates the opportunity to build a device 

that can be as expressive – albeit with different affordances – as its acoustic counterparts. 

 

1.2.3 Synthesizers: finally, arbitrary output 
 

The emergence of electronic and digital audio synthesizers in the last century is enabling 

radical and discontinuous change in the way that musical sounds are made and controlled. 

Analog synthesizers use hardware oscillators, filters, analog signal conditioning and 

control electronics to synthesize dynamic spectra-rich tones, while digital synthesizers 

use algorithmic rules and digitized representations of a sound to create their output. The 

variety of sound synthesis techniques in use today is beyond the scope of this work, but 

most notable is the fact that these techniques allow arbitrary waveforms to be produced 

and turned into audible sound. No longer is the sound generated by a system dependent 

on the physics of a physical object; rather, the possible sounds are subject only to the 

limits of the skill and imagination of the audio designer. 

 

1.2.4 Decoupled at last: implementations and implications 
 

Cheap and miniaturized electronic sensors and components, coupled with modern sound 

synthesizers offer a discontinuous leap in musical instrument design because they break 

down the traditionally mandatory coupling between the way a performer plays an 

instrument (affordances and input degrees-of-freedom) and the way it produces audible 

sound (synthesis). In order to create an electronic music controller though, there must 

necessarily be some connection between the performer’s input gesture and the system’s 

output sound. Early electronic music controllers like the theremin featured a direct 

mapping from input to output, the sensed level of some input degree of freedom tied 

directly to an obvious parameter like pitch of volume. With the advent of computers, the 

link between input and output can be made more abstract and “stateful”, with 

sophisticated symbolic processing happening between the input sensor and the 

synthesizer. Over the years there have been several such “glue” implementations, and in 

the following paragraphs we will look specifically at two of them, MIDI and OSC. 
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MIDI is a hardware specification and messaging protocol that was designed in the early 

1980’s to allow arbitrary controller/synthesizer pairings. MIDI’s messaging protocol is 

digital, and messages are typically 2-3 bytes in length. These messages are transmitted 

via an asynchronous serial interface that runs at 31,250 bits/sec (baud). MIDI has 

immense momentum today, being implemented in thousands of commercial hardware 

and software products, and it is certainly the most popular example of the decoupling of 

input control and sound synthesis in electronic music controllers. MIDI revolutionized 

the music industry because it allows physically different controllers to all “speak the 

same language”, providing an opportunity for a new “mix-and-match” modularity in 

coupling controllers to synthesizers. The price of this modularity though, is a number of 

limitations that the protocol imposes on latency and precision for continuous control. For 

instance, the “data byte” of a standard MIDI message only has 7 bits to work with, since 

the state of the MSB determines the difference between a status and data byte. This 

means that at most 128 unique values can be transmitted for a particular control. Another 

limitation is that on a single MIDI circuit there can be at most 16 devices daisy-chained 

together, and the latency through this type of loop can reach perceptually unacceptable 

levels. 

 

Awareness of the control bottleneck-related deficiencies of a MIDI has inspired work in 

various directions. One approach is to “re-couple” the controller’s affordances to the 

sound production mechanism by co-designing the controller and the sound synthesis 

algorithm together [Cook 2003]. A more basic solution is implemented by the 

OpenSound Control (OSC) protocol, which is “a protocol for communication among 

computers, sound synthesizers, and other multimedia devices that is optimized for 

modern networking technology” [OpenSound Control webpage]. OSC is more flexible 

than MIDI in terms of how much data can be packed into messages, how messages are 

addressed to recipients (includes string-matching style wildcards), and is hardware-layer 

agnostic, allowing OSC packets to be routed over a gigabit Ethernet system just as easily 

as a RS232 serial link. Like MIDI, OSC is an open and royalty-free specification, and its 

features make OSC a natural successor to MIDI.  
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Regardless of the intermediate messaging protocol used, the decoupling of the 

performer’s sensed gesture from the commands sent to the synthesizer gives electronic 

music controllers modes of interaction that are not constrained by the instrument’s 

physical acoustics. This decoupling of input and output featured by electronic music 

controllers and synthesizers is shared by any modern human-computer interface. 

 

1.3  The modern mapping problem, and related work 
 

For electronic musical instruments, the modern decoupling of gestural input and 

synthesized output has made possible convergent (many-to-one) or divergent (one-to-

many) mappings of controller degrees of freedom onto synthesizer parameters [Rovan et 

al. 1997]. With N input degrees of freedom, and M synthesizer parameters, there are 

N*M possible direct mappings – not to mention the infinite number of more “stateful” 

mappings. Many people find the built-in mappings of traditional acoustic instruments 

difficult enough to master; with an exponentially expanded and potentially arbitrary 

“mapping space” comes the possibility of even lower usability.  

 

The most transparent approach to mapping the outputs from a music controller to the 

inputs of a synthesizer is to create behavior that mimics that of a similar acoustic 

instrument. Bernd Schoner built a system that learned the low-level associations between 

the sensed input state of a violin and the acoustic output in low-level, data-driven manner. 

Once Schoner’s system had enough examples to characterize the connection between 

input gesture and output sound, it was capable of replicating the behavior of a violin 

[Schoner 1999]. Schoner’s approach has similarities to the current work, in the sense that 

his system learns to associate appropriate output with the sensed gesture of a performer. 

 

Looking further than mappings that mimic acoustic instrument behavior, the growth in 

the possibility space for connecting gesture to sound brings with it the opportunity for 

innovative designs that can make a computer-assisted activity like music-creation more 

enjoyable, efficient, and expressive than ever before.  
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Explicit mapping strategies for electronic music controllers have achieved some success 

within the enthusiast community, but thus far no truly new music controller has gained 

broad acceptance. New electronic instruments that have entered the mainstream, like the 

electronic keyboard and electric guitar, tend to borrow their mappings from existing 

acoustic instruments. In addition, synthesizer manufacturers that get returned units for 

servicing find that users very seldom alter the preset mappings that ship with a device. 

Does this mean that synthesizer manufacturers ship their products with presets so brilliant 

that users never desire to customize? Perhaps more likely is the hypothesis that users find 

it too difficult to create their own mappings, and thus end up leaving the presets 

unchanged. 

 

Research on mapping [Hunt, Wanderley & Kirk 2000] [Hunt & Kirk 2000] has indicated 

that for some multiparametric control tasks people prefer fewer, more abstract degrees of 

freedom to many, simple (separated) degrees of freedom. Hunt, Wanderley and Kirk 

recommend complex mappings such as cross-coupling of input parameters to synthesis 

parameters, and the use of derivatives of input parameters related to the performer’s 

energy. In addition, it has been shown that in certain cases nonlinear couplings of input 

parameters can be effective [Rovan et al. 1997]. It has been suggested that the mapping 

scheme is perhaps the most important element to a controller/synthesizer system [Hunt, 

Wanderley and Paradis 2002]. Another direction is a geometric mapping in euclidian 

spaces of a small number of input parameters onto a larger number of synthesizer 

parameters [Garnett & Goudeseune 1999], with a method for automatically generating 

perceptual parameters for the resulting points in output space called the timbre rover. A 

related implementation defines a rough mapping from a finite number of input space 

configurations to output space configurations, and a corresponding interpolation scheme 

for generating mappings for in-between values [Bowler and Purvis 1990].  
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1.4 Adaptive user interfaces 
 
Adaptive user interfaces are a branch of the field of Human-Computer Interaction that 

borrow techniques from Artificial Intelligence. The goal of an adaptive user interface is 

to “personalize interfaces, based on observation of user activity.” [Langley 1997] 

Currently most adaptive user interfaces operate on non-expressive domains like 

scheduling, information access, and commercial applications [AAAI 2000 Spring 

Symposium], but there has also been work in gestural understanding [Ivanov 2002] 

[Pavlović and Rehg 2000] [Wilson 2000] and mapping. Robust handwriting recognition 

has been a longstanding challenge in the artificial intelligence/pattern recognition 

community [Bledsoe and Browning 1959], and hand-gesture recognition with neural 

networks has been used to drive a speech synthesizer in real-time [Fels & Hinton 1995]. 

Blumberg has created a behavioral learning system called Alpha Wolf in which onscreen 

animal characters learn novel behavior patterns by example, as a human “trainer” leads 

them through novel actions [Blumberg 2002].   The following section will review work in 

adaptive interfaces specifically from the musical domain. 

 

1.5  Existing algorithmic and adaptive musical interfaces 
 

The idea of creating a musical interface that learns, evolves, or adapts to the user is not 

entirely new. There are a number of systems that have been built that explore ways in 

which machine-learning, genetic algorithms and pattern-recognition algorithms could be 

applied to the creation of music. The following section will survey some of these 

systems. 

 

1.5.1 Style Imitation 
 

The ability to construct a musical theory from examples presents a great intellectual 

challenge that, if successfully met, could foster a range of new creative applications 

-Dubnov, Assayag, Lartillot and Bejerano, IEEE 2003 
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Imitating the musical style of a particular composer or performer is the focus of several 

musical learning systems. The way these systems typically operate is to read in a corpus 

of musical examples – commonly in MIDI file format and consisting of a sequence of 

notes scheduled in time - and generate a statistical representation of the corpus. Once the 

representation has been made, the generative process uses it to produce a new sequence 

of notes that has similar statistical characteristics as the original corpus, but that is not a 

note-for-note reproduction of any of the original inputs. Dubnov and Assayag’s system 

models a style as a lexicon of motifs and their associated prediction probabilities. 

Generating new content consists of “stochastically browsing” the prediction tree to 

decide on the next phrase at a given step [Dubnov et al. 2003]. David Cope’s work 

deconstructs pieces from the corpus to identify signatures, melodic snippets that are 

characteristic of the corpus [Cope 1990]. Output generation in Cope’s system is a process 

of recombination, with the reuse of these signatures adding a degree of naturalness to the 

music. Pachet’s Continuator system brings a real-time component to the style imitation, 

generating immediate, stylistically-related responses to musical phrases without the use 

of a large preprocessed corpus [Pachet 2002]. 

 

1.5.2 Adaptive signal processing 
 

The phrase “adaptive signal processing” usually refers to a class of algorithms that adjust 

the parameters of a filter that is being applied to a stream of digital data. The adjustment 

is guided by a feedback loop in order to maximize a particular fitness function applied to 

the output [Widrow & Stearns 1985]. In the present context however, a more pertinent 

type of adaptive signal processing is embodied by Brad Garton’s system Elthar [Garton 

1989]. Elthar is an audio signal processing interface that allows for natural language 

input, and is designed to function with “incomplete or inexact specification of 

parameters.” When given an underspecified directive, Elthar consults a probabilistic 

knowledge base that has been compiled based on a history of interaction with the current 

user to fill in the needed values. Elthar also contains an analogy mechanism that allows it 

to learn descriptive attributes. 
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1.5.3 Evolution-inspired systems 
 

Genetic algorithms are finding a niche in the problem areas of state-space exploration and 

optimization [Koza et al. 1999]. Mandelis’s Genophone software [Mandelis 2001] 

implements the artificial life paradigm by performing “selective breeding” on parameter 

populations in order to choose values for sound synthesis that are pleasing to a user. The 

important aspect of this work from the current point of view is that it allows the user to 

explore a large parameter space, but without requiring intimate knowledge of the sound 

synthesis algorithms. Mandelis’s physical setup consists of a glove with bend-sensors on 

the fingers connected to a computer, and a Korg Prophesy synthesizer to create the 

sounds. 

 

1.5.4 Other learning systems 
 

Some attempts to do better than the manual specification of explicit mappings for 

electronic music controllers have included the use of neural networks to map hand 

gestures onto synthesizer parameters [Modler 2000], [Lee, Freed & Wessel 1991]. Cont, 

Coduys and Henry used Matlab to train neural networks (that ran in Pure Data [Pure Data 

website]) to recognize gestures captured by body-mounted sensors [Cont, et al. 2004]. 

Szilas and Cadoz proposed an analysis method for physical model networks that was 

based on connectionist learning algorithms [Szilas & Cadoz 1993]. Schoner’s system for 

learning the mapping from physical gestures to a synthesized violin output was discussed 

earlier. Some commercial audio synthesizers feature a way to assign midi controllers to 

synthesis parameters. For instance, the Lexicon MPX110 [Lexicon MPX110 website] can 

be put into “Learn Mode” in which twiddling one of the knobs on the front panel and 

sending a MIDI controller message to the unit will create mapping between the particular 

MIDI controller and the knob’s effect. The list continues, but an interesting pattern in the 

existing body of work is the minimal attention paid to the form of the physical device in 

these learning and classifying systems. Perhaps David Wessel said it best in the following 

excerpt from a 1991 issue of the Computer Music Journal [Wessel 1991]. 
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Musicians often speak of a rather special and very personal relationship with their 

instrument. Indeed, many instrumentalists adapt the instrument physically to 

particularities of their playing style – choosing the bridge, string, bow, or the mouthpiece 

reed combinations, and so on. On more poetic occasions a musician will speak as if the 

instrument has come to know something of its player. It would seem quite natural then to 

think about intelligent instruments that could adapt in some automated way to a personal 

playing style. 

-David Wessel 

 

1.6  On embodied instruments 
 

One of the early design decisions in formulating this research project was how much of 

an “object” the final product should be, and how different the device should be from 

existing interfaces. Many of the existing systems cited here are entirely software-based. 

Of the systems that do have a physical component, they tend to employ wearable sensors 

(data-gloves, bend-sensors, etc.) or use a traditional musical interface. Indeed, a look at 

the entire field of adaptive musical interfaces will produce surprisingly few new devices 

that have been built expressly to be entirely new “smart music controllers”. The danger in 

co-opting existing interfaces for a new task is that a well-known controller produces a set 

of assumptions in both performer and audience about how it should be played, and about 

what kind of music will be possible with it. Joel Chadabe made the following comments 

about the piano-style keyboard: 

 
Like every performance device, a keyboard’s structure and, consequently, the physical 

gestures required to play it, cause us to think in a certain way about the music that we 

play. A keyboard is structurally a discontinuous controller which leads us to think of 

music as separate notes; and we play it with our fingers, which suggests a note-after-note 

data entry approach. Deriving from a long history of western music and western tuning 

systems, keyboards satisfy musical needs when those needs are consistent with with 

conventional musical values. When a musical concept is unconventional, however, the 

use of a particular performance device should be carefully considered. 

- Joel Chadabe [Chadabe 2000]  
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Chadabe also emphasizes that a performance device must enable the audience to 

“perceive a meaningful relationship between the performer’s gestures and the musical 

result, highlighting the extreme lack of this relationship in the performances of the 

growing number of “laptop musicians”. Speaking to the specialness of embodiedness, 

Ishii has written about the importance of physical artifacts and the “vestiges of physical 

presence” that are left perceptible when one experiences a handmade piece of work. [Ishii 

1998] In reflecting on his childhood visit to view the original manuscript of a poem by a 

famous Japanese author, Ishii claims that these vestiges become fewer the more digital 

and consequently “dry” an object or work becomes. Ishii also writes about the “co-

evolution” of user and device in the context of ping-pong paddles that are customized by 

users explicitly (by scraping and sanding) and implicitly (by patterns of wear) over the 

years [Ishii, et al. 1999]. Bob Ostertag provides a nice connection between Ishii’s points, 

and the design and construction of music controllers in his article “Human Bodies, 

Computer Music” [Ostertag 2002]. Ostertag quotes his friend Pierre Hébert, writing:  

 
“the measure of a work of art is whether one can sense in it the presence of the artist’s 

body. If so, then it is a success, and if not, it’s a failure.”  

-Pierre Hébert, quoted by Bob Ostertag 

 

Ostertag goes on to clarify that his own view isn’t quite as extreme as Hébert’s, but that 

the physicality of the performer/instrument relationship is an important component to any 

performance. In fact, many musicians talk of having a special connection to their 

instrument. BB King had endless praise for his favorite guitar (which he named 

“Lucille”), and Yo Yo Ma and “Petunia” (his Cello) are inseparable. Along the lines of 

Ishii’s reflection on ping pong paddles acquire, musical instruments similarly come to 

show the personalized wear patterns of their owners, becoming more and more 

“personalized” over the years. This collection of ideas made it clear that constructing a 

new, embodied music controller would be preferable to building a software-only system, 

or attempting to adapt some existing interface to the design. 
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1.7 On human motion, emotion and musical expression 
 

Manfred Clynes has spent his lifetime researching “the relationships between music and 

the brain” [Marrin 1996]. In the 1950’s and 1960’s, Clynes founded the field of Scentics 

which, in his own words, is “the study of genetically programmed dynamic forms of 

emotional expression” [Clynes 1977]. Building his own hardware system, the sentograph, 

Clynes measured gestural responses from the fingertip to emotional experiences like 

listening music. He ran studies on populations around the world, discovering universal 

patterns of response to musical forms. Clynes’ work indicates a universality in human 

gestural responses to music, and is the inspiration for a part of the current work. In the 

current project we have looked for universal patterns in how people associate gesture and 

sound, both in terms of the shapes and energies of gestures that they use to trigger a 

certain sound, and in what types of manipulations they assign to control various sound-

processing effects. 

 

1.8  Project goals 
 
The overall goal of this research project is to build an embodied electronic musical 

instrument that adapts to the player. The claim is made that the low cost and small size of 

electronic sensors and other components, coupled with the current processing power 

possessed by everyday personal computers makes the time ripe to explore ways that 

small, physical music controllers can learn personalized gestures and mappings from a 

user. Rather than the person having to learn the device, the device can begin to learn the 

person. As a step towards demonstrating this claim, a new electronic music controller and 

associated learning and interface system was designed and built. A study was conducted 

that collected users’ subjective responses to the system as well as implicit data from their 

training and play with the system. 

 

The embodied component of the system, the controller, is a multi-degree-of-freedom 

hand-held device that was designed from the ground up to have a number of contact and 

non-contact based, continuous affordances. It features three axes each of acceleration and 
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rotation sensing, a number of force-sensitive-resistor and potentiometer inputs, two back-

to-back bend-sensor pairs, and an electric field sensing apparatus. The data from the 

sensors is collected by a microcontroller and transmitted serially to an external computer, 

where it is analyzed and mapped to auditory outputs. The analysis that happens on the 

remote PC includes dynamic time-warping for classification of gestures, windowed 

variance tracking for activity detection, and scaling of continuous-control data to match 

the range of control afforded by the synthesis algorithms. 

 

The usage scenario is as follows: A user begins by exploring the sound-space that the 

system affords. The purpose of this exploration is to identify sounds that they would like 

to be able to trigger during a performance. In the present implementation the sounds 

available are a number of digitally sampled waveforms taken from drums and other 

percussive instruments, sleigh-bells, a turntable “scratch” sound, some stringed and wind 

instruments, and even white noise. The exploration is a linear traversal of the sounds, 

using a toggle button on the handle of the controller. When the user discovers a sound 

that they like, they train a gesture, or a number of gestures by squeezing on a “trigger” 

button while moving the device through a physical motion. The system builds a model of 

each gesture class, and keeps these models associated with appropriate sound. After 

making a number of these gesture-sound associations, the user can select audio-

processing effects with which they would like to associate an input affordance. During 

each effect training interaction, the user hears one of the sounds from the gesture-training 

interaction, but with an oscillating amount of the effect applied to it, meaning that the 

sound might be soaked in an oscillating reverb, distortion or flange effect, etc.. These 

“variations” on the original sounds are invitations for the user to map a continuous input 

on the device to the associated effect. The mapping is accomplished by example, with the 

user exciting the degree of freedom that they want to associate with the effect. (see 

chapter 3 for specific details on this process) Once trained, the system can be used in a 

performance to trigger and modify sounds. Triggering a sound is accomplished by 

executing the associated gesture, and modification is accomplished by manipulating the 

associated continuous control. 
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This system is meant to accomplish two goals. First, it is intended to demonstrate a new 

way of mapping human gesture to sonic output on a novel, multi-degree of freedom 

electronic music controller. Second, it is meant more broadly to provide an example of an 

adaptive, embodied user interface that develops a personalized set of affordances for a 

user, with a minimal training phase. The author hopes that this example will be a point of 

reference for further work in this area. 

 

Chapter 2 will discuss the design and construction of the physical controller, and will 

show a sample of the data stream generated by the device. Chapter 3 will describe the 

software, including the graphical user interface, the pattern recognition module, and the 

“glue code” that implements the interaction. Chapter 4 presents the design and results of 

the user study, and Chapter 5 concludes with lessons learned and ideas for future work. 
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Chapter 2   
 
 
 
Hardware: Building the physical device 
 
 
 
The physical device is an electro-mechanical sensing and data-transmission platform. It 

provides a tactile and free-gesture, multi-degree-of-freedom interface to the user and 

transmits real-time sensor data back to the host computer that is interpreted by software. 

The initial choice and development of the sensing platform will be discussed in some 

detail, including several modifications made to existing and emerging designs. The 

design of the physical device and its affordances will also be discussed. 

 

2.1 Summary and goals 

 

Figure 2-1: An early brainstorming sketch of the 
device 

 

The design goal for the device was to 

implement an embodied, sensor-rich system 

that would be flexible enough to enable a 

wide range of input affordances and input-

to-output mappings. The large number of 

sensors would provide a multi-degree-of-

freedom interface, allowing the user to apply 

many different types of gesture in order to 

control sounds. 
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2.2 Sensors and Communication: the Stack platform 
 

In order to support the high degree-of-freedom interaction, a sensor-rich platform was 

needed to capture and transmit the data to a PC for processing, gesture recognition, and 

audio triggering, synthesis, and control. The types of sensors that would be employed 

included accelerometers, gyros, force-sensitive-resistors (FSR’s), bend-sensors and 

potentiometers. These requirements meant that this platform would need to support 

rudimentary signal-conditioning, multi-channel analog data capture, and wired or 

wireless serial data transmission. 

 

The Stack [Benbasat, Morris & Paradiso 2003] is a compact, modular, configurable 

wireless sensing system, for which several sensing boards (e.g., tactile, inertial, sonar, 

etc.) have been designed. These boards can be stacked in any order and configuration 

atop a main processor/RF board, allowing the sensor suite to be easily customized. A 

TDMA polling scheme enables multiple stacks to be used simultaneously. Although it 

has been primarily designed for wearable applications, this device serves as a general 

platform for compact multimodal sensing. 

 

The Stack was an appropriate and convenient platform around which to build 

FlexiGesture. Much of the sensing needs of the device were already supported by the 

Stack architecture, and additional features were added easily. Two additional modules 

were built for the stack during the course of the project, an Electric Field Sensing layer, 

and a user interface-oriented Output layer. 

 

Figure 2-2: Close-up of transmit 
(top) and tactile (bottom) layers. 

Figure 2-3: Stack components mounted on the circular PCB. 
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Figure 2-4: Overview of stack configuration used for the device 

2.3 Application-specific circuits 
 

The existing stack layers were designed to be a “simple modular framework for wireless 

sensing” [Stack webpage]. As such, the focus of the development of existing stack layers 

has been on building data-collection capabilities. With the adaptation of the stack to the 

current project, the capability to generate in-situ user feedback became necessary. The 

following sections describe the output layer and the circular PCB, both of which augment 

the basic stack architecture with feedback capabilities. In addition, modifications made to 

the tactile layer in order to condition additional FSR and button inputs are described. 

 

2.3.1 Output Layer 
 

The output layer is a printed circuit board (PCB) that fits into the modular stack 

architecture and that is designed to provide various types of user feedback  (see Appendix 

B for details). The primary modalities of output enabled by the output layer are tactile 

and visual. Tactile output is generated by a vibrating “pancake” style offset-mass motor 

that is driven by a NFET that in turn is driven by a pin on the microcontroller. The tactile 

output modality was not used in the present design, but could be applied to future work. 
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Visual feedback is made possible by a MAX6951 chip that is capable of independently 

driving up to 64 discrete LED’s.  The LED’s themselves are mounted on the circular PCB 

(see section 2.3.2 for details). In addition to the user feedback capabilities, the output 

layer can generate a 3v peak-to-peak squarewave at 30KHz for use in electric field 

sensing (EFS). The squarewave is applied to a LC resonator circuit as in the Lazyfish 

electric field sensing system [Smith 1999], which amplifies the fundamental to roughly 

30v peak-to-peak, and this signal appears on a circular electrode built into the circular 

PCB (see below). The output layer has a Cygnal C8051F331 microcontroller (Now made 

by Silicon Labs, and hereafter referred to as the 331) onboard that is responsible for 

driving the vibrating motor and generating a squarewave for EFS operation. The 331’s 

features include an 8051 core, 768 bytes of internal data RAM, 8k bytes of internal flash 

RAM, 17 port I/O, hardware UART, SMBus, an SPI bus, and an internal 24.5Mhz clock. 

The 331 and the MAX6951 chip are both connected as slaves to the SPI bus which runs 

throughout the entire stack architecture. The Cygnal C8051F206 microcontroller on the 

transmit layer serves as the master on this SPI bus, sending directives to both the LED 

driver and the 331.  

 

C8051F331
microcontroller Antennae

LED
controller SPI

vibrating
motor

FET
circuit

LC
resonator

circuit

rest of stack
architecture

LED ring

 

Figure 2-5: Hardware overview for the output layer 
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2.3.2 Circular PCB 
 

 

Figure 2-6: The circular PCB 

 

The circular PCB is an expansion board that is used in conjunction with the output layer 

board. The circular PCB provides footprints to mount the 64 LED’s in a circular pattern 

around its perimeter, as well as a built-in electrode around its edge for the EFS 

squarewave oscillation. It also has two sets of mounting footprints for the stack, allowing 

the stack layers to be mounted in two separate places while remaining electrically 

connected. The circular PCB has eight through-holes around its edge in a pattern that 

makes it mountable directly on top of a similarly-shaped acrylic layer. 

 

2.3.3 Modifications to the tactile v4 board 
 

The tactile v4 board from the existing stack platform was used as the signal-conditioning 

and multiplexing front-end for both analog and digital sensor readings. The board was 
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originally designed to support up to nine capacitive sensors, two piezoelectric vibration 

sensors, four force-sensitive-resistors and four bend-sensors. The desired affordances of 

the adaptive music controller device did not require the capacitive or vibration sensors, 

but did require two digital inputs and two additional FSR inputs. Table [2-1] indicates 

which of the tactile v4 board’s signal-conditioning circuits were modified, and in what 

ways, in order to provide the needed functionality. 

Original Tactile v4 board signal-

conditioning circuit 

Modified tactile v4 board signal-

conditioning circuit 

capacitive sensor 1 digital button input 1 (modified) 

capacitive sensor 2 digital button input 2 (modified) 

FSR 1 FSR 1 

FSR 2 FSR 2 

FSR 3 FSR 3 

FSR 4 FSR 4 

piezo vibration sensor 1 FSR 5 (modified) 

piezo vibration sensor 2 FSR 6 (modified) 

bend sensor 1 Bend sensor 1 

bend sensor 2 bend sensor 2 

bend sensor 3 bend sensor 3 

bend sensor 4 bend sensor 4 

Table 2-1: Use and modification of signal-conditioning circuits in the Tactile layer 

 

See Appendix B for a complete description of the modifications made to the tactile v4 

board. 

 

2.4  Microcontroller embedded code 
 

The primary responsibilities of the embedded code on the C8051F206 microcontroller are 

to digitize and collect data from the analog sensors, transmit the data back to the PC, and 
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to generate in-situ feedback for the user. The complete code is found in Appendix C and 

figure [3-6] shows the data-collection flow. 

 

2.4.1 Data collection 
 

The data collection system runs as fast as allowed by the latencies required by the ADC 

and serial transmission of the data. On each data collection cycle, thirteen 12-bit samples 

and two digital values are recorded. The 12-bit samples are taken from the 

accelerometers, gyros, FSR’s and bend sensors. The two digital inputs from the digital 

input buttons are read directly from port pins on the microcontroller. The entire data 

collection cycle takes 1.058 milliseconds. 

 

2.4.2 Data transmission 
 

Once the sensor and button data has been collected, it is transmitted by the 

microcontroller to the PC using the hardware UART. Each 52-byte packet is made up as 

follows: 

 

number of bytes description 
8 header 
12 accelerometer and gyro readings 
20 FSR, potentiometer, bend and button readings 
10 footer 
2 ‘\r’ ‘\n’ for line-break 
Total bytes per packet: 52  

Table 2-2: Byte allocation in a single stack data packet 

 

The on-board ADC of the transmit layer has 12-bit resolution, meaning that an 

instantaneous sensor data reading cannot fit into a single 8-bit byte for transmission back 

to the PC. For this reason, each sensor reading is spread across 2 bytes for transmission, 

with the least significant 6 bits transmitted in the first byte, and the most significant 6 bits 

transmitted in the second byte.  This explains why, for instance, the 6-DOF inertial data 

(accelerometers and gyros) requires 12 bytes to transmit. The same rationale holds true 

for the FSR, potentiometer and bend sensor readings. The state of the two digital buttons 
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could have been represented efficiently by combining them into a single byte, but for 

consistency with the rest of the data, the button’s instantaneous states were each 

transmitted in a separate byte, with a 1 or 0 in the least significant bit indicating their 

state. 

 

The header and footer of a stack data packet are static byte sequences used for padding 

the data. These sequences of bytes also enable the software that parses the byte-stream to 

assemble complete data packets to detect the beginning of the sensor data. 

 

For wireless transmission, the sensor data stream must be DC-balanced in order to ensure 

good receiver tracking of the threshold point [Anthes]. Although the current system does 

not use the wireless capabilities of the stack, the data was nonetheless DC-balanced in 

order that the system could be easily used wirelessly in the future. DC-balancing the 

byte-stream means that each transmitted byte must contain an equal number of 1’s and 

0’s, allowing the receiver to determine a threshold to distinguish 1’s from 0’s by low-pass 

filtering the incoming data. Since each of the 12-bit instantaneous sensor readings is split 

into two 6-bit values, a 6-to-8 bit balancing scheme was used, meaning that each possible 

6-bit data value is mapped onto a balanced 8-bit value using a lookup table.  Of the 70 

balanced byte values possible, 64 were used in the lookup table, and 6 values were not. 

Five of the unused byte values were ones which have runs of 4 consecutive highs, which 

can cause tracking problems, as well as the value 0x55, which is reserved for other 

purposes [Benbasat 2000]. On the receiving end, rudimentary error-detection is 

performed by throwing out any packet in which a non-balanced byte is received. This 

scheme allows for error-detection of bytes in which an odd number of bits corrupted, and 

in practice was sufficient. True (parity-based) error correction was not necessary. 

 

The data-encoding scheme described above was taken from [Benbasat 2000]. The 

strengths of the scheme are its low memory overhead (64 bytes for the lookup table), its 

conversion of a 12 bit quantity into two bytes (which are the atomic units of serial data 

transmission), its guarantee that each byte will be DC-balanced and that there will not be 

runs of greater than six. Finally, single-bit errors will always be detected. 
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The entire data transmission cycle takes 4.502 milliseconds, meaning that the period of a 

single data collection/transmission cycle takes 5.56 milliseconds, for an overall sampling 

frequency of ~180Hz. The device transmits continuously, except during gesture 

classification when the PC puts it into no-transmit mode (see section 3.2.3.2 for details). 

 

2.4.3 Feedback generation 
 

The LED’s around the perimeter of the circular PCB are used as feedback. The LED’s 

indicate to the user that the trigger button is depressed, meaning that the device is 

“listening” to the current gesture-in-progress. Once per data-collection/transmission 

cycle, the microcontroller checks the analog value of the voltage on the right-hand index-

finger “trigger” FSR. If the value there is below a threshold, the FSR is considered to be 

depressed by the user’s finger, and all of the LED’s are turned on. If the value is above a 

particular threshold, the FSR is not considered to be depressed, and the LED’s are turned 

off. Hysteresis is implemented in the microcode to prevent flutter if the voltage is near 

the boundary. 
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2.5  Form factor and affordances 
 

The decision to make open-ended gestural control a 

primary interaction modality informed not only the 

sensors that were chosen for use in the device, but 

also the physical affordances implemented. In terms 

of sensors employed, the accelerometers, gyros, and 

electric field sensing enabled the use of free-gesture 

movement of the device as an input to the system. 

But free-gesture systems are known to be poor input 

devices for precise control [O’Modhrain 2000]. The 

theremin, perhaps the most famous open-air 

noncontact controller, does allow for extremely 

expressive control, but is so difficult to master that 

there have been only a handful of virtuosos over the 

nearly 100 years since its invention in 1919. Don 

Buchla’s lightning is another free-gesture non-

contact controller which has been used expressively, 

but which has not entered the mainstream [Buchla 

and associates website]. Max Matthews’ radio baton [Boulanger & Matthews 1997] has 

been used for discrete, symbolic control tasks such as providing a tempo for pre-

sequenced music as well as for free gesture, expressive pieces. To mitigate the difficulty 

in achieving precise control typically associated with non-contact gestural controllers, the 

current device is built also to permit several channels of two-handed, contact-based 

continuous manipulation by a user. The decision was made early in the design process to 

permit two-handed manipulation, since humans are adept at performing fine manipulation 

with both hands, and most musical instruments involve both hands holding or 

manipulating a single object. Table 2-3 on the next page lists the input degrees of 

freedom supported by the device, and identifies the type of affordance provided by each 

sensor. 

Figure 2-7: The device.  

Numbers are indicating the following 
(1) upper thumb button, (2) upper 
squeezable handle (3) rotating carriage  
(4) trigger button (5) lower handle 
button A (6) lower handle button B  
(7) inner carriage (8) battery  
(9) toggle button (10) circular PCB (11) 
lower handle 
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Figure 2-8: The physical device being played 
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Input affordance sensor affordance type 

Acceleration in X ADXL202JE accelerometer inertial 

Acceleration in Y ADXL202JE accelerometer inertial 

Acceleration in Z ADXL202JE accelerometer inertial 

Rotation in X ENC03J gyro inertial 

Rotation in Y ENC03J gyro inertial 

Rotation in Z ADXRS150 gyro inertial 

Left-fingers pressure Interlink 0.2” force-sensitive-resistor isometric 

Left-thumb pressure Interlink 0.2” force-sensitive-resistor isometric 

Right index-finger pressure Interlink 0.5” force-sensitive-resistor isometric 

Right third-finger pressure Interlink 0.5” force-sensitive-resistor isometric 

Right fourth-finger pressure Interlink 0.5” force-sensitive-resistor isometric 

carriage rotation 1/2W 50K potentiometer isometric 

right-hand handle bend in X Images SI Flex Sensor isometric 

right-hand handle bend in Y Images SI Flex Sensor isometric 

up-toggle button digital button circuit digital 

down-toggle button digital button circuit digital 

Position in X Electric Field Sensing circuitry isotonic 

Position in Y Electric Field Sensing circuitry isotonic 

Position in Z Electric Field Sensing circuitry isotonic 

Table 2-3: Input affordances of the device 
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Figure 2-9: How the upper handle’s FSR was attached and surrounded with foam 

 

The main body and rotating carriage sections of the device are built with laser-cut 1/8” 

clear acrylic. The left-hand handle is made of PVC pipe and is attached to the rotating 

carriage with PVC cement. Informal bond-strength tests found PCV cement and acrylic 

cement both satisfactory in joining PCV to acrylic (clear epoxy was weaker than either). 

The left-fingers-pressure FSR is attached directly to the PVC handle, and a rubber foot 

attached to a length of spring-steel applies 

pressure to the FSR when the steel is squeezed2. 

A foam strip curled around the handle protects 

the user from the sharp edges of the steel and 

diffuses squeezing pressure more equally across 

the steel. The left-thumb-pressure FSR is 

mounted directly to one of the 90-degree angle 

portions of PVC. A rubber foot is attached to 

the top of this FSR to make it a visible, feel-

able affordance. Holes drilled in the left-handle PVC allow connecting wires from both of 

the FSR’s to be routed back to the stack inside the PVC handle and then through a ribbon 

cable to the main body. 

 

Figure 2-10: Demonstrating the spring steel, 
rubber foot and FSR mechanism 

 

 

                                                 
2 In the final version of the device, the spring steel is rotated up 90 degrees from the view in figure 2-10 and 
the FSR is oriented in parallel to the direction of the PVC rather than orthogonally as shown. 
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Figure 2-11: Early sketch of the lazy susan idea 

 

Figure 2-12: The spring steel protrudes through the 
upper-carriage “tongue” 

 

The upper carriage is attached to the main body with a “lazy susan” rotating platform 

with ball bearings inside. A vertical tongue attached to the carriage protrudes down 

through a semi-circular slot in the top of the main body. The tongue serves two purposes: 

First, it provides a hard stop for the rotation of the carriage to protect the potentiometer 

from mechanical damage from over-rotation. Second, spring steel attached to the main 

body protrudes through a slot in the tongue and provides rotational resistance 

corresponding to the amount of twist given to the carriage. This push-back gives a degree 

of “passive haptics” to the twisting affordance. A potentiometer is mounted on the upper 

plate of the main body, which protrudes through the upper carriage. The potentiometer’s 

shaft is kept from slipping with a nylon bolt and thus it turns with the carriage, allowing 

its degree of rotation to be measured. 

 

The upper and lower acrylic plates of the main body are separated by 1 1/8”. The height 

of the circular PCB is about 1/16”, which leaves 1 1/16” of vertical space from the 

surface of the circular PCB to the bottom surface of the upper main body plate. This 

clearance is enough to allow for two stack layers to be mounted on each of the mount 

points. The most height-effective configuration of stack layers featured stacking the 

tactile and transmit boards together on one mount point, and the output and IMU boards 

together on the other. 

 

The power board was originally intended to attach directly to the circular PCB. However, 

when assembling the system it became clear that there was not enough space in the 

intended area. The ribbon cables coming from the tactile v4  
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board and the serial line-level converter 

board both ended up in the space where 

the power layer was to be. To solve the 

problem, the power layer was mounted 

underneath the main body with a velcro 

strap attached to a custom acrylic 

harness. 

 

The right hand handle is made from a 

ribbed, flexible piece of plastic tubing. 

It screws into the bottom of the main 

body, and acrylic mounting brackets on 

the inside hold 4 bend sensors in place. 

The mounting brackets for the bend 

sensors are slotted to allow the sensors 

to bend in the direction that they are 

designed for, and to slide in the other, 

remaining flat. Three FSR’s are 

mounted to the outside of the right 

hand handle, placed to rest under the first, second and third fingers. A DB9 connector at 

the bottom of the handle connected to the transmit layer through a serial line driver IC 

allows for optional “wired” operation of the device. 

 

Figure 2-13: The power layer attaches to the bottom   
of the main body. 

 

Figure 2-14: Bend sensors mounted inside the right 
hand handle. 

 

2.6  Electric Field Sensing 

 

Figure 2-15: The Electric Field 
Sensing layer 

 

The system was designed to support transmit-mode 

electric field sensing [Paradiso & Gershenfeld 1997] to 

permit the calculation of the absolute position of the 

device in a small volume of space in front of a performer. 

As was mentioned earlier, the output layer contains a LC 

“tank” circuit which can generate a high-gain voltage 
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oscillation which, when connected to a suitable electrode, forms the transmit part of an 

electric field sensing setup. The circular PCB was fabricated with a circular trace around 

its edge, to be used as the transmit electrode in an EFS setup. The Electric Field Sensing 

stack layer is made to modularly integrate into a stack base-station. The EFS layer 

supports the attachment of 4 receive electrodes that pick up the electric field generated by 

the transmit antenna on the circular PCB. Separate signal-conditioning circuitry is 

implemented for each of the four receive channels on the EFS layer. The EFS layer was 

not used as an input DOF during the user study, but will be enabled in future work. 

antenna

Stack base-station

EFS receive layer

antenna

antenna antenna

(1) 30Khz 
electric field 
emitted by 
antenna ring on 
device

(2) 4 antennas pick 
up signal with 
varying strength

(3) Base-station transmits data 
wirelessly back to computer, 
where triangulation occurs

CPU

 

Figure 2-16: Electric Field Sensing setup 
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Figure 2-17: Hardware system data-capture overview 
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Chapter 3  
 
 
 
Software: Learning, mapping, and glue 
 
 
 
The software component of the adaptive music controller is responsible for allowing the 

user to explore the sound space, to train gesture-to-sound associations, to create mappings 

from input degrees of freedom to effect parameters, and to play with the finished result. 

During play, the software handles incoming data from the controller, performs gesture 

recognition to retrieve trained associations between gesture and sound, and manages the 

mappings from the continuous controls of the device onto the sound modification 

parameters. 

 

3.1  Summary and goals 
 

With the goal of implementing a new paradigm for mapping the affordances of a physical 

musical controller to output sound, there were a number of software-related goals which 

all needed to be simultaneously satisfied. The primary goal was that the system present a 

natural and easy-to-understand way for a user of the instrument to discover, play and 

manipulate sounds that they were interested in. With the aforementioned as a high-level 

goal, a number of more specific objectives became clear. These specific objectives 

included system stability, an easy-to-understand user interface, effective sound space 

navigation, real-time gesture classification, and a novel assignment scheme of 

affordance-to-parameter mappings. The following chapter explains the development of 

the software, and relates the design decisions made back to this set of objectives. 
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3.2  Java, C, and the JNI framework 
 

Choosing a software framework to use was a non-trivial decision. Choice of 

programming framework affects the types of data structures and I/O that are convenient 

to implement and maintain, how a graphical user interface (GUI) can be built, and the 

overall execution speed and efficiency of the program. A decade ago there would have 

been fewer options. Constructing a program of this scope would have taken much longer, 

and included more compromises. Fortunately, in today’s software development 

environment, there exist myriad possibilities for implementation of a project such as this. 

The combination of tools initially chosen was the following: The GUI and “glue” 

interface code was written in Java/Swing, while the data storage and pattern recognition 

routines were initially implemented in C. The Java Native Interface (JNI) API was used 

to connect the Java code to the C code. For the user study, the C module was put aside in 

favor of an easier-to-maintain pure Java implementation. 

 

3.2.1 Java graphical user interface 
 

The graphical user interface allows the user of the system to configure I/O settings related 

to serial input, OSC and MIDI output, to visually inspect the data being collected from 

the sensors, and to manage the creation of gesture-to-sound mappings and continuous-

control-to-effect-parameter mappings. The GUI was created with the free version of 

Borland JBuilder, a robust and full-featured Java IDE and debugger. The GUI is 

organized in a tabbed layout style, and each tab will be discussed in turn. 
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Figure 3-1: I/O setup panel of the GUI Figure 3-2: Effects mapping panel of the GUI 

Figure 3-3: StripCharts panel of theGUI Figure 3-4: Gesture panel of the GUI 
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3.2.1.1 I/O: For configuring I/O setup 
 

The I/O enable and disable section of the GUI is where the user can turn on and off the 

various input and output channels for the application.  

 

The Serial Setup section is where the user can configure the RS232 serial settings. The 

serial port is where data from the physical device enters the system. The user can 

configure which port the application will be attached to, and the baud rate at which the 

application should expect the data to arrive. The port assignment is system-dependent, 

but the baud rate must agree with the data rate that the transmit layer of the stack is 

configured for. The current implementation of the system transmits serial data at 

115200bit/sec. This data rate was chosen to support sampling at rates greater than 100Hz. 

The Java communications API was used to implement the serial data input to the 

program, and the data-handling strategy will be discussed in more detail in section 3.2.2. 

 

The MIDI output section allows the user to configure which MIDI output device and 

channel will be used for communication with the synthesizer. The javax.sound.midi 

package was used as a framework implement the MIDI communication. An additional 

MIDIDeviceManager class was implemented as a wrapper to allow for easier 

management of MIDI port opening and message sending. Used early in the development 

cycle, MIDI output was scrapped in favor of the higher-bandwidth and more flexible 

OSC protocol. 

 

The OSC output section allows the user to configure which IP address or hostname, and 

to what port OSC datagram packets should be sent. OSC is a protocol for communication 

among computers, sound synthesizers, and other multimedia devices that is optimized for 

modern networking technology. A JavaOSC library from Illposed Software was used to 

implement the OSC functionality [Illposed Software webpage]. 

 

The experiment setup section was created to facilitate the running of the user study. This 

part of the GUI allows the experimenter to assign a unique identifier to the current 
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subject, to specify to which experimental condition the current subject belongs, and to 

start and stop data logging for the current subject. The software creates a set of directories 

where the data for the current subject is written. 

 

3.2.1.2 TestPanel: For creating input-DOF to effect mappings 
 

The TestPanel tab in the GUI allows the user to create input-DOF-to-effect mappings. It 

has a button for training each available effect, and a separate button for testing each 

effect. A Stop/Save button stops any ongoing data capture and saves the current 

configuration to disk. 

 

3.2.1.3 Stripcharts: For data visualization 
 

Software and hardware oscilloscopes are a convenient way to visualize real-time signals. 

The StripCharts panel of the GUI allows for the simultaneous, real-time visualization of 

the 16 sensor/button data streams coming from the device. Each individual StripChart is a 

Java component subclassed from JPanel.  The StripChart shows a line-graph that scrolls 

from right-to-left, updating at the rate that the data arrives from the hardware. The 

original StripChart code was written by Andy Wilson [Wilson 2000], and was modified 

by the author in order to allow the user to toggle the drawing behavior, sample storage 

and variance detection on or off. In practice, the author tends to enable related batches of 

charts, such as all accelerometers at once, or all gyros, in order to visually inspect their 

functionality. This enabling/disabling feature for the StripCharts was necessary in order 

to manage the CPU bottleneck on the Swing (graphics) thread produced by multiple 

StripCharts all attempting to update at the ~180Hz data rate. The amount of data history 

retained by a single StripChart was set to 100 samples. This value was tuned by the 

author to balance usefulness with CPU load, since the time required for the drawing of 

each StripChart increases linearly with the number of points stored. 
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3.2.1.4 Gesture control panel 
 

The gesture control panel permits the user to listen to the available sounds, and to make 

gesture-to-sound associations. In Training mode, any gesture executed will be associated 

with the most recently played sound. In Testing mode, any gesture executed will be 

classified against the stored models, and the appropriate sound will be triggered. Play 

mode is like Testing mode, except that the input-DOF-to-effect mappings are also 

enabled. 

 

3.2.2 C and Java modules for data storage and manipulation 
 

In order to achieve the fastest possible execution time for the gesture recognition 

algorithms, the decision was made initially to store and analyze the data in a compiled C 

dynamically-linked-library (DLL) rather than in the Java environment. Compiled C has 

historically been faster than Java, although benchmarks show that Java is closing the gap, 

arguably even outpacing C on certain tasks. The Java Native Interface (JNI) was used to 

write a C DLL that can be loaded into the Java environment. The C module has functions 

for accepting packets of sensor data, storing the data, computing class models and 

computing similarity scores between novel gestures and class models. Section 3.5 

explains the gesture recognition in more detail. Shortly before the user study was to be 

run, a pure-Java version of the data storage and manipulation module was written and 

substituted into the codebase in place of the C DLL. This switch was made in response to 

difficulty in tracking down a latent bug the C module. The pure-Java module was easy to 

maintain, but did increase gesture-recognition latency (see table 3-1 for a comparison). 

 

3.2.3 Multi-threaded serial data handling framework 
 

In order to guarantee the availability of the data-receiving thread while handling the large 

quantity of incoming serial data, the following scheme was used: A queue in the 

SerialConnection object is filled with incoming bytes of serial data. This queue is also 

used as a semaphore, with access to the queue limited to either the SerialConnection 

object, or a SerialGrabber object, but always no more than one at a time. Each time the 
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serialEvent callback in the SerialConnection object is called, indicating that new serial 

data is available, the new bytes are inserted into the queue, and notify() is called, freeing 

up the semaphore. This allows the SerialGrabber object, which is waiting on the 

semaphore, to dequeue all of the new data, inserting the bytes into its own separate 

queue, then immediately freeing the semaphore. Once outside of the synchronized code 

section, the SerialGrabber object notifies any listeners that are registered to accept new 

serial data. The minimal cycles spent inside the synchronized code region by both objects 

ensures efficient data handoff between them and the smoothest possible reception of the 

data. 

SerialConnection

SerialGrabber

New serial data is 
available. Neither 
object holds the 
semaphore.

SerialConnection

SerialGrabber

The SerialConnection 
object claims the 
semaphore and 
transfers the data into 
its queue. When 
finished transferring, 
SerialConnection
immediately calls 
notify(), releasing its 
claim on the 
semaphore..

s

s
D D D

D D D

SerialConnection

SerialGrabber

The SerialGrabber
object is in a wait() 
state, and so 
immediately claims 
the semaphore and 
transfers the data into 
its queue. When 
finished transferring, 
SerialGrabber releases 
the semaphore. D D D

SerialConnection

SerialGrabber

The semaphore is 
free again, allowing 
SerialConnection to 
enqueue the next 
incoming data. The 
SerialGrabber now 
distributes the 
received data to any 
registered listener 
objects.

s

D D D
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(3) (4)
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Figure 3-5: Semaphore-based serial data handling 

 
3.2.3.1 Listener structure 
 

Listeners are software objects that are registered to receive notification about events in a 

program. The use of listeners is typical in an object-oriented programming language like 

Java. In the current application, data from the serial port is handed off to a 

StackDataFilter object, which is responsible for assembling incoming data into a 
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complete packet of sensor data values. Each packet contains all of the values from a 

single sensor data collection cycle in the microcontroller. Once assembled, the packet is 

passed off to a number of other listener objects for storage, display in the GUI, and the 

triggering of navigation and gesture-recording start and stop functions. 

 

3.2.3.2 Managing the serial data flow during CPU-intensive operations 
 

During testing, it was found that inflow of sensor data could crash the system if the 

application was not in a state to actively receive the data. This behavior was traced to a 

bug in the USB serial port emulation driver on the author’s computer. The problem 

would typically happen during gesture-recognition, an operation that was so CPU-

intensive that the rest of the program would suspend temporarily, meanwhile serial data 

would continue to stream into the system. At times, this pause in responsiveness was long 

enough for an internal driver buffer to overflow, crashing the machine. The successful 

workaround was for the application to ask the stack to stop sending data during gesture 

recognition. To accomplish this, bidirectional communication between the computer and 

the hardware was enabled, and just before gesture recognition begins, the java program 

sends a 0x00 byte to the stack, putting it into no-transmit mode. After recognition 

completes, a 0x01 byte is sent, re-starting the flow of data to the PC. This loss of sensor 

data values during gesture recognition was deemed an acceptable compromise, since the 

time duration of the recognition process was small (see table 3-1). 
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Figure 3-6: Software (Java) handling of incoming serial data 

 
3.3 Trigger and Modify 
 

In planning out the interaction style for the device, a conceptual framework was needed 

to guide the affordances, both physical and software, that would be implemented. The 

high-level goal for the device was that it would begin its relationship with the user as a 

blank slate, and would learn to respond appropriately to the user’s actions through a 

training interaction. Moreover, in order to be as flexible as possible in the kinds of sounds 

that could be produced, it was determined that the interaction should include an element 

of symbolic “selection”, as well as an element of continuous “sculpting”. The idea behind 

the symbolic selection aspect of the interface is that it would allow random access to a 

wide space of “ingredient” sounds, while the continuous sculpting part would permit 

these sounds to be warped in expressive parametric ways. In order to implement a 

system, this goal had to be turned into a concrete specification, which raised a number of 

questions. Should the sounds come from an algorithmic synthesizer, or from stored 

digital samples? Should changing the timbre of a sound consist of a parametric variation 

in the underlying synthesis technique, or should it modify the spectral content of the 
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already-synthesized sound? The resolution of these questions, and others, resulted in the 

following high-level system design: 

 

The conceptual model for playing the system can best be described as “trigger-and-

modify”. What this means is that, when playing the system, the typical interaction cycle 

is for the user to first trigger a desired sound (the symbolic part), then to “sculpt” the 

timbre of the sound in a subtractive manner (the continuous part). In order to create an 

adaptive device, both parts of the interaction model needed to be “trainable” by the user. 

The system design of these individual components will be discussed in the following 

sections. 

 

3.4  Exploring the sound space 
 

Digitally sampled waveforms are used in the system as the gesturally-triggered content. 

Various algorithmic digital audio synthesis techniques were considered, such as granular 

synthesis, frequency modulation, and physical modeling. In order to explore the 

parameter spaces offered by these techniques in a satisfactory manner, a compelling 

parameter-space traversal interface would have been required, the development of which 

was beyond the scope of the thesis timeline. Playing and looping digital samples was 

straightforward to implement, and it also avoided constraining the sound of the device to 

the character of a particular algorithmic synthesis technique. With a set of samples for the 

user to choose from, a natural way to traverse them was needed. A toggle button on the 

handle, positioned underneath the user’s 

right thumb, was used to traverse the 

samples. Conceptually arranged in a 

linear list, the next sample in the 

upward direction in the list could be 

heard by pressing the toggle button up. 

Similarly, the user could explore in a 

downward direction by pressing the 

button down.   

 

Figure 3-7: Pushing the toggle button up 
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3.5 Gesture recognition 
 

Human gesture recognition is a subset of the larger field of pattern classification. In the 

abstract, the task of a pattern recognizer is to accept a novel datum, which can be a single 

point, or a signal represented by a sequence of samples, and to classify the datum into one 

of a set of known categories. For instance, a speech recognizer is a pattern classifier that 

operates on time-domain recordings of sampled human speech. The input to a speech 

recognizer at classification-time could be a few seconds of speech, and the output would 

be a textual representation of the words contained therein, perhaps along with a 

confidence score. The confidence score represents how “sure” the algorithm is about its 

response, and a client program may choose to throw out a classification result if the 

confidence score falls below a certain threshold. 

 

3.5.1 Statistical pattern-recognition methods 
 

Statistical pattern-recognition methods are a class of pattern classification algorithms that 

operate by characterizing the variability in the training data, then using this 

characterization to determine the most likely class of a novel datum. Variability is 

typically represented as a Gaussian, and in order to train these systems, enough training 

examples of each class to reasonably estimate appropriate parameters of the Gaussians 

are needed. 

 

A number of what we will call “vector-based” statistical pattern recognition techniques 

are popular with researchers today. Support vector machines (SVM’s) are an example of 

this class of techniques, and they require new data to not only have the same 

dimensionality as the training examples, but it must also have the same number of 

samples. Given a method for making all incoming data examples the same length, these 

vector-based techniques can be quite useful. However, in their basic form most of these 

algorithms don’t work well for time-varying data such as gestures, where the number of 

samples of each new gesture is different. 
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Hidden Markov models [Rabiner 1989] are a statistical pattern-recognition construct that 

can handle time-varying signals. The come in two basic configurations, continuous and 

discrete. The discrete variety assumes a given “alphabet” of states through which data 

vectors are expected to travel, while the continuous variety is flexible about the number 

of states, building more or less of them as needed to describe the training data. Both 

HMM’s and other statistical techniques tend to require a substantial number of training 

examples in order to become robust classifiers, and for that reason they were not used in 

this work. See chapter 5 for ideas about how HMM’s could be useful in future work. 

 

3.5.2 Dynamic time-warping 
 

Dynamic time warping (DTW) is an algorithm based on dynamic programming (DP) 

[Bellman 1957] that finds the optimal alignment between two variable-length sequences 

of data, under certain constraints. In finding the optimal alignment between two 

sequences of data, the dynamic time-warping algorithm warps the two vectors to each 

other non-uniformly, stretching some regions while compressing others. Dynamic 

programming operates on the principle that the optimal solution to a large problem 

should contain optimal solutions to its sub-problems, and that these smaller solutions can 

be stored rather than being computed at each step. DTW has been used heavily in speech 

recognition [Sakoe & Chiba 1978] and DNA sequence-alignment tasks [Needleman & 

Wunsch 1970], and in general is well suited to processing of time-domain sequential 

data.  

 

In the current implementation, the input vectors differ in length from the length of the 

model vectors. In contrast to the DNA sequence-alignment and time-domain speech 

classification tasks, the gestural data vectors are multi-dimensional, representing the six 

inertial data streams. (in future work, the number of features used in the DTW algorithm 

will be expanded to include other continuous-control data) To handle this difference 

during computation, the distance from a single novel “frame” of 6 values to a single  

model “frame” is taken by a sum-of-squared-differences technique across the 6 data 

values.  

 64



 

Figure 3-8: Dynamic time-warping in action 

The top image is a model gesture, and the middle is a new gesture for classification. The bottom image is 
the new gesture, warped to show its best fit to the model gesture. 

 

Dynamic time-warping was chosen as the gesture-recognition algorithm for the current 

project because it provides decent recognition rates in polynomial time, while allowing 

for model-training with a small number of examples. Most importantly, DTW can operate 

on data vectors with different lengths. A fundamental usability goal for the system was 

that it should allow a user to create a gesture-to-sound association easily, and without 

excessive training. This goal suggested that a gesture-classification scheme should be 

used that could classify as robustly as possible without a large number of examples of 

each gesture. The statistical methods mentioned in section 3.5.1 tended to be less suitable 

given this goal, since they require significant amounts of training data before they 

become useful classifiers.  
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Figure 3-9: Overview of the gesture-recognition process 

 
3.5.2.1 Speed of the DTW algorithm 
 

The dynamic time-warping algorithm as implemented here has a complexity of O(N x M 

x D), where N is the number of frames3 in the novel gesture, M is the number of frames 

in the model gesture, and D is the number of features being used. Since the number of 

features is typically some small constant (in the current system D is 6, since we are using 

the 6 inertial DOF’s), this complexity reduces to O(N x M). Practically speaking, what 

this means is that, as the length of the gestures get large, the algorithm requires an 

amount of time that is proportional to roughly the square of the length of the gesture. In 

addition to time, the space required for the algorithm to run is also O(N x M). Following 

is a chart listing some sample classification times measured on the system (these 

measurements were taken with the Java Virtual Machine (VM) v1.4.2_04-b5 from SUN 

Microsystems, with 256MB RAM allocated to the VM, on a 2.66GHz Xeon processor 

host machine with 1Gb of system RAM). No just-in-time (JIT) compilation or other 

optimization was used, but it is expected that these techniques could significantly speed 

up the Java execution time in future work. Fortunately, symbolic gestures tend to be 

short. In the user study (see chapter 4), most of the gestures trained by subjects tended to 

be less than 1 second in length, and the classification time scales only linearly with the 

number of model gestures.  So with 5 gesture classes trained, and an average gesture 

length of 750msec, classification in java would take on the order of ~240msec. 

Additionally, the classification-latency issue is one that faster processors will continue to 
                                                 
3 A “frame” is taken to be a single time-slice of sensor data. In this case, a single frame of inertial data 
would consist of 6 values. 
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alleviate. The continuous effects (see section 3.6) were not timed for latency, but did not 

require classification, and thus were quite fast. 

Short Gesture
Java

Model: 224 frames, 1344 msec

New: 214 frames, 1282 msec

Running time: 62 msec

Model: 197  frames, 1250msec

New: 154 frames, 922msec

* = Java timer resolution too coarse to detect any time difference

Medium Gesture
Java

Model: 537 frames, 3094 msec

New: 551 frames, 3218 msec

Running time: 672 msec

Model: 532  frames, 3125 msec

New: 517 frames, 3000 msec

Running time: 94 msec

C

C

Long Gesture
Java

Model: 2270 frames, 12782 msec

New: 2451 frames, 13765 msec

Running time: 10453 msec

Model: 2292  frames, 12860 msec

New: 2317 frames, 13015 msec

Running time: 4469 msec

C

Running time: 0 msec*

 

Table 3-1: Runs of the DTW algorithm in C and Java, and associated running times 
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3.5.2.2 IMU-based dynamic time-warping recognition trial runs 
 

In order to test the feasibility of using dynamic time-warping for gesture recognition, a 

series of trials was run to test how accurate it could be for the present task. Specimens of 

the inertial parameters (acceleration, rotation) from 10 distinct gesture classes were 

recorded. Each specimen consisted of about 360 samples/sensor (~2 seconds of data) 

from each of the 6 data streams. In total, 30 examples of each gesture were recorded. It 

was decided that the best way to understand the fitness of various classification 

algorithms would be to test them in a situation similar to how they would be used in the 

application. The verification process went as follows: of the 30 gestural examples from 

each class, 5 were taken at random to comprise the training set and the remaining 25 were 

marked as test vectors. In order to understand how DTW performed with respect to some 

other possible pattern classification alternatives, the following schemes were all run 

through classification trials: 

3.5.2.2.1 Naïve distance from the mean gesture:  
In this approach, a model gesture of each class was computed by resampling each of the 

training examples to be the same length, and taking the sample-for-sample mean across 

the training set. Classification of a novel sensor data stream consisted of finding the 

model gesture that had minimal distance from the novel data. 

3.5.2.2.2 Fourier descriptors:  
In this approach, a model gesture of each class was computed by taking the Fourier 

transform of each of the training examples, removing c(0) (the DC frequency coefficient), 

and normalizing the rest of the frequency coefficients c(k) by c(1). Then the model 

gesture was computed as the per-index mean of the first 100 frequency coefficients 

(ranging from 0 to 50Hz) across the 5 training examples. Classification of a novel sensor 

data stream consisted of performing the same spectral decomposition as was done for the 

training examples, then finding the nearest neighbor in the 100-dimensional normalized 

Fourier coefficient space. 
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3.5.2.2.3 Pre-processed naïve distance:  
 

This approach was similar to (1), but the data streams (both training and novel examples) 

were pre-processed in order to trim excess “dead space” before and after each gesture 

example. The location of the dead space was determined based on observing the typical 

variance on the sensors during inertial activity versus the typical variance while the 

device was “at rest”. Once the “at rest” had been characterized, the individual gesture 

0 50 100 150 200 250 300 350 400
-0.5

0

0.5

1

before

0 50 100 150 200 250 300 350 400
-0.5

0

0.5

1

after

Figure 3-10: A single gesture, before (top), and after 
(bottom) preprocessing. Figure 3-11: Locating a region with typical “at rest” 

variance levels. 

  

examples could then be trimmed to remove leading and trailing dead-space – segments 

where the variance was less than a threshold that was a small multiple of the “at rest” 

variance. 

3.5.2.2.4 Pre-processed Fourier descriptors:  
This approach is similar to (2), but the data was trimmed as described in (3). 

3.5.2.2.5 Dynamic Time-Warping:  
In this approach, dynamic time-warping was used on the non-preprocessed data. Model 

gestures were computed as in (1). 
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3.5.2.2.6 Pre-processed dynamic time-warping:  
In this approach, dynamic time-warping was used on pre-processed data. The data was 

pre-processed and model gestures computed as described in (3). 

 

In summary, pre-processing combined with the naïve nearest-neighbor method achieved 

results that were quite good (95%), but dynamic time-warping without preprocessing 

emerged as superior to any of the other techniques (98%). The fact that the fourier-

descriptors technique got worse after preprocessing is understandable since resampling 

the gestures after trimming (such that they are all the same length) alters spectral content. 

pre-processed

not pre-processed

naïve

.97.82.95

.98.90.75
fourier DTW

 

Table 3-2: Results of the gesture-recognition trials 

 

Due to the good recognition rates found, the dynamic time-warping algorithm was chosen 

as the gesture-classification technique for the system. The astute reader will notice 

however, that the pre-processed naïve method achieved classification rates, through 

lower, were quite close to the rates reached by the dynamic time-warping. Moreover, the 

naïve method has a basic complexity of O(N), which scales linearly with the length of the 

data vector. The drawback of the naïve-preprocessed technique would have been the need 

to trim, then resample novel gestures to a standard length before they could be compared 

against a class model. It is not known if the use of the pre-processed naïve method would 

have resulted in faster overall recognition. This question could be investigated in further 

work, but perhaps even more fruitful would be a look at continuous hidden markov 

models for a future refinement of the system (see chapter 5 for more on this thought). 

 

In order to easily segment the data stream into individual gestures (either for 

classification or training), the state of the “trigger” button on the device was used by 
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software to start and stop data capture. This made easy the task of reliably endpointing a 

single example, which is a common problem in pattern classification systems that operate 

on continuous streams of data. 

 

3.6  Interactive mapping of the device inputs 
 

The design goal for the mapping of the input degrees-of-freedom to the effect parameters 

was to make this assignment intuitive and adaptive. In order to keep the system design 

tractable, the decision was made to allow the user to create one-to-one mappings, where a 

single input degree-of-freedom would be linked to a single effect parameter. The input 

degrees of freedom enabled for this purpose were the squeezing pressure on the upper 

handle, the pressure on the thumb button on the upper handle, the rotation of the upper 

carriage with respect to the lower, two directions of bend on the lower handle, and the 

squeezing pressure on the two buttons on the lower handle. Left for future work is the 

enabling of the electric field sensing position, and tilt-sensing on the device as additional 

continuous inputs. 

 

In order to make an input-DOF to effect parameter association, the system sets into 

motion a 0.5Hz oscillation of the given effect, and simultaneously begins watching the 

variance level on all of the enabled sensors. To train the association, the user must 

“follow along” with the oscillation on a given input sensor, actuating it towards one end 

of its dynamic range when the effect is near one extrema, and towards the other end of 

the range when the effect is near the other extrema. For instance, if the effect to be 

trained is a sweeping bandpass filter, the system begins by turning on white noise source 

and sweeping a band-pass filter effect from the bottom to the top of its range on a period 

of 2 seconds. Suppose the user chooses the upper-handle squeeze DOF as the input that 

they would like to assign to the filter effect, and they start to follow along with the effect. 

They might squeeze hardest on the handle when the filter is at its lowest center 

frequency, and most lightly when the filter is at its highest center frequency. After a cycle 

and a half of this (consisting of the passage of 3 extrema), the system notices that (a) the 

upper handle FSR is experiencing the most variance for the past 3 readings, and that (b) 
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the “polarity” of the activity on the given sensor is such that a low value on the sensor 

(tight squeeze) corresponds to a maxima of the filter’s center frequency. With three 

consecutive consistent readings, the software makes the association between the squeeze 

pressure on the upper handle and the filter effect, with an inverse mapping of squeeze 

pressure to center frequency. The input DOF associated and the polarity of the mapping 

are thus flexible, depending on what the user wants, and created by just following along, 

allowing the user to teach the system “by example”.  

 

3.7  Sound Synthesis 
 

Pure-Data (PD) was used for audio output. PD is an open-source free-software 

implementation of a MAX/MSP dataflow-style application that runs on Windows, Linux, 

Irix, and Mac OSX. Operating on a “dataflow” metaphor means that samples are 

generated from a source (in our case they are read out of an array which is loaded from 

disk), and various digital signal processing (DSP) operators – or “effects” - can be 

applied to them before they are sent out to be turned into analog audio by the computer’s 

audio hardware. If a parametric audio synthesis technique had been used, the continuous-

control element of the interaction could have included modification of synthesis 

parameters in addition to modification of the effect parameters. The effects used for the 

current system are a band-pass filter, tremolo, delay, pitch-shift, ring-modulation and 

volume. The “patch” (as PD programs are called) accepts input in the form of 

OpenSoundControl (OSC) messages, which can trigger playback of a sample, enable or 

disable looping of a particular sample, and modulate effect parameters. 
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Figure 3-12: Control data (left) and audio (right) flow in the pure-data patch. 

 

 

Figure 3-13: The PD patch responsible for loading and playing back an audio sample 
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3.8 Software conclusions 
 

The system described provides an interface by which a player can navigate the set of 

available sounds, can assign an open-ended inertial gesture to a sound, can create 

mappings from a number of continuous input DOF’s to effect parameters, and can then 

play with the result. In future work the gesture space available for triggering of sounds 

will be expanded to include the contact-based, and electric-field-sensing inputs. The next 

chapter will describe the user study that was conducted in order to evaluate the adaptive 

features of the system. 
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Chapter 4  
 
 
 
User Study: Design and results 
 
 
 
In order to evaluate the interaction characteristics the new musical interface paradigm 

embodied by the system, it was important to evaluate it with a user study. There were two 

main goals of the study: First, explicit feedback about the interaction would be collected 

from participants about factors like engagement, perception of novelty and 

personalizability, and interest in performance with the system. Second, implicit data 

would be collected about the gestures trained, mappings created, and actions during play 

with the device. This chapter will describe the experimental procedure and results 

obtained. 

 

4.1  Study Procedure 
 

The study was run in April 2004, at the MIT Media Lab. The subjects were students who 

responded to an email that sought participants for a study about a “gestural music 

control” system. Participants were randomly assigned to one of two experimental 

conditions, which we refer to as A and B. Participants in both conditions began the task 

with a survey that asked background questions about their age, gender, level of 

musicality, music performance experience, and music listening habits (see figure E-7 for 

the text of this survey). Once completed, participants in condition A interacted with the 

system in pre-configured mode (described below, and hereafter referred to as Presets), 

after which they filled out a post-part-1 survey (see figure E-8 for the text of this survey). 

They then progressed to the Training mode, followed by a post-part-2 survey, the text of 
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which was identical to the post-part-1 survey (again, see figure E-8 for the text of this 

survey), and then a final survey that asked questions about the experience as a whole (see 

figure E-9 for the text of this survey). Participants in condition B experienced the same 

interaction modes, but in the reverse order, starting with the Training mode, and 

progressing to Presets mode afterwards. In both conditions, data about the triggering of 

gestures was captured and time-stamped. In addition, the gestures and mapping 

associations that subjects trained in condition B were saved to disk. The modes and 

surveys will be commented on further below. 

 

4.1.1 Presets Mode 
 

Subjects in the Presets mode part of the experiment played with the device in a pre-

configured state where they did not train new gestures or create manipulation-to-effect 

mappings. Subjects were given a list of instructions that explained the activity that they 

would be doing (See figure E-2 for these instructions). They were first shown two videos 

that explained how the system worked. The first video (See figure E-5 for the video 

script) was an demonstration of the three gestures that they could use to trigger sounds 

with the system (including an explanation of proper use of the trigger button), as well as 

the use of the toggle button to sustain (loop and un-loop) sounds. The second video (See 

figure E-6 for the video script) was a demonstration of the three input DOF’s that were 

mapped to effect parameters. After viewing the two videos, they were told that they were 

free to interact with the system for as long as they wanted, but that they would be asked 

to move to the next part of the experiment when the time came if they were still playing 

at that point. The subjects were also told that if they felt that they had arrived at a point at 

which they had exhausted their interest in interacting with the system, they could alert the 

experimenter and they would be moved on to the next part of the study at that time. 

 

4.1.2 Training Mode 
  

Subjects in the Training mode part of the experiment were able to train new gestures and 

to create manipulation-to-effect mappings. Subjects were given a list of instructions that 

explained the activity that they would be doing (See figure E-1 for these instructions). 
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They were first shown two videos that explained how the system worked. The first video 

(See figure E-3 for the video script) was an demonstration of how they could explore the 

available sounds, and train gestures to associate with the sounds (this video included an 

explanation of proper use of the trigger button), as well as the use of the toggle button to 

loop and un-loop sounds. The first video also explained how to create manipulation-to-

effect mappings with the system. The second video (See figure E-4 for the video script) 

was a demonstration of the input DOF’s that were available for association with effects. 

After viewing the two videos, they were told to train as many gesture-to-sound 

associations as they liked, and to make as many manipulation-to-effect mappings as they 

liked. They were told that they were free to interact with the system for as long as they 

wanted, but that they would be asked to move to the next part of the experiment when the 

time came if they were still playing at that point. The subjects were also told that if they 

felt that they had arrived at a point at which they had exhausted their interest in 

interacting with the system, that they could alert the experimenter and they would be 

moved on to the next part of the study. 

 

4.1.3 Data saved to disk 
 

In addition to the surveys that participants filled out during the study, data from their 

session was captured and written out to a series of log files. In Training mode, each 

gesture that they trained was saved to a separate text file, and the input-DOF-to-sound 

mappings were saved to disk as a serialized Java object. In both modes, information 

about gestures classified and effect modification messages was written to a separate file. 

 

4.2  Study Design 
 

The study involved 25 participants, and was a within-subjects design, meaning that each 

subject experienced both of the experimental modes. As mentioned above, the Presets 

mode featured the device pre-loaded with gesture and manipulation mappings, and the 

Training mode allowed the user to define their own gesture and manipulation mappings. 

Most of the post-part-1/post-part-2 questions were phrased in a manner like: “How 

expressive did you feel that you could be in using this system?” and subjects responded 
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on a 7-point BIDR-style scale that ranged from (1) “not expressive at all” to (7) 

“extremely expressive”. In all graphs, the height of the bar represents the mean of the 

responses, and the error bars show the standard error. 

 

4.3  Survey-based study Results 
 

This section is broken into three parts. The first part is from the survey after the first 

mode of the experiment. At this point, subjects in either condition had only experienced a 

single mode, Presets or Training. The second part is from the survey after the second 

mode of the experiment, and the third part is from the survey at the end, at which point 

subjects had experienced both experimental modes.  

 

4.3.1 Gesturing (part 1) 
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Learning to gesture  Gesture execution

Presets
Trained

 

Figure 4-1: Ease of learning (left) and executing (right) gestures (part 1) 
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Figure 4-2: Perception of the system’s accuracy in gesture recognition (part 1). 

 

When asked “How easy was it for you to learn to trigger the sounds that you wanted?” 

subjects that had just experienced Training mode tended to report that it was easier than 

those that had experienced Presets mode (avg. 5.25 Training vs. 4.85 Presets).  A similar 

question about creating input-DOF-to-effect mappings showed a less clear preference. 

When asked “How well did the system recognize your gestures?” subjects in Training 

mode tended to respond more favorably than those in Presets mode (avg. 4.75 Training  

vs. 3.92 Presets). These results suggest a more favorable perception towards gesture-

recognition in a system that allows custom-trained gestures. 
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4.3.2 Expressivity and Personalization (part 1) 
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Figure 4-3: Expressivity (part 1) 
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Figure 4-4: Level of personalization (part 1) 

 

Subjects in Training mode rated the system more favorably in terms of expressivity and 

personalization. When asked “How expressive did you feel that you could be in using this 

system?” subjects that had just experienced Training mode reported an average of 3.83 

vs. 3.61 for those in Presets mode. When asked “How much “personalization” did you 

feel that this system offered to you?” the numbers were avg. 4.33 (Training) vs. 3.62 
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(Presets). In response to “Please rate your feelings about the level of personalization you 

experienced”, with the ends of the scale being “far too little personalization” and “far too 

much personalization” the numbers were 3.83 (Training) vs. 3.23 (Presets). 

 

4.3.3 Enjoyability and future play, performance (part 1) 
 

1

2

3

4

5

6

7

How enjoyable was your experience?

Presets
Trained

 

Figure 4-5: Enjoyability (part 1) 
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Figure 4-6: Likeliness to be interested in further play, performance. (part 1) 
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Subjects in the Training mode rated the system as more enjoyable than those in the 

Presets group (avg. 4.83 Training vs. 4.54 Presets). However, when asked how likely 

they would be to want to play or perform with the system again, those in the Presets 

group answered more favorably than those in the Training group (Play: 4.16 Training vs. 

5.16 Presets, Perform: 2.5 Training vs. 3.15 Presets). One possible explanation for this is 

that since the preset gestures and the input-DOF-to-effect mappings were chosen 

carefully by the author (who has significant experience in using the system), they may 

have been a more comfortable set of mappings than those chosen by subjects who were 

using the system for the first time. Indeed, after experiencing both modes, subjects in 

condition B reported that if they had used the Presets mode first, they felt that they would 

have been created more satisfying mappings during Training. In future studies, allowing 

the subjects more time to use the system could alleviate this problem. 

 

The second section is from the survey after the second part of the experiment. At this 

point, subjects in either condition had now experienced both modes, Presets and Training. 

Results from this part were mostly consistent with results from the previous part with 

respect to personalizability, expressivity and enjoyability, but interesting differences 

found on a few of the questions will be discussed. 

 

4.3.4 Gesturing (part 2) 
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Figure 4-7: Ease of learning (left) and executing (right) gestures (part 2) 
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Figure 4-8: Perception of the system's accuracy in gesture recognition (Part 2) 

 

Findings about gesturing after part 2 of the study were inverted from those after part 1. 

Subjects found the Preset condition easier to learn, and easier to execute gestures within. 

In addition, perception of the system’s accuracy in gesture recognition was higher for 

subjects in the Presets condition. These are considered to be ordering effects, or it could 

be that the preset gestures trained by the author were more distinguishable by the system, 

leading to better recognition rates during Presets mode.  
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4.3.5 Future play, performance, and novelty (part 2) 
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Figure 4-9: Likeliness to be interested in further play, performance. (part 2) 
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Figure 4-10: How novel was the system? (part 2) 

 

In contrast to their responses after the first part, subjects after the second part claimed to 

be more likely to want to play (5.69 Training vs. 4.25 Presets) and perform (3.53 

Training vs. 2.33 Presets) with the Training mode system than with the Presets.  They 

also tended to rate the Training mode as more novel than the Presets mode (5.92 Training 

vs. 5.42 Presets). These differences are similar to the “ordering effect” discussed in the 

 84



previous section, but here they are thought to reflect an awareness of the differences 

between presets and open-ended training, and this awareness resulting in a preference for 

a trainable system. 
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Figure 4-11: How expressive did you feel that you could be in using the system?  

 
After the second part, subjects in the Training condition clearly rated the system more 

highly in terms of expressivity. This finding is consistent with the questions that asked 

the subjects about their likeliness to be interested in future play and performance with the 

device (subjects in Training mode were more likely to be interested in both), indicating a 

correlation between expressivity and interest in play and performance with a musical 

instrument. This finding is also interesting when considered alongside the question about 

ease of gesture learning and execution (in which subjects indicated that the Presets mode 

was easier). The combination of these two results indicates that subjects would prefer to 

use the training system, even if it is more difficult to train and execute gestures. 
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4.3.6 Wrap-up questions (Part 3) 
 

After experiencing both Training and Presets mode, and completing the post-mode 

surveys for each mode, subjects were asked questions that compared the two systems 

explicitly. The results of this round of questions indicated a clear preference for the 

Training mode along the dimensions of expressivity, engaging-ness, enjoyability, 

personalization, novelty, and interest in future performance. The one dimension that the 

Presets mode dominated was ease of learning. See the following graphs for a full report. 
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Figure 4-12: Post-study summary questions (group A) 
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Figure 4-13: Post-study summary questions (group B) 

 
4.4 Results from other data captured 
 

The following section summarizes findings from the data captured during the Training 

mode sessions. This section is extremely exploratory, as little could be anticipated about 

the types of gestures that people would assign to the available sounds, and the types of 

mappings that would be preferred in associating inputs DOF’s with effects. 

 

4.4.1 Gesture Length 
 

The first statistic pulled from the implicit data was the length of the trained gestures 

compared to the length of the triggered sounds. The lengths of the gestures for each 

subject were first individually normalized by the average gesture length for the subject, to 

account for differences in gesture-length tendencies between individuals. The results are 

summarized in the following table. 
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sound description sample length avg. normalized gesture len.  

Turntable scratch 0.22 seconds 1.0152 seconds 

Tom hit 0.394 seconds 0.948 seconds 

Sleigh-bell shake 0.429 seconds 0.754 seconds 

Vibraslap 0.862 seconds 0.800 seconds 

Rhythmic clapping 2.116 seconds 1.223 seconds 

Cymbal crash 2.444 seconds 0.903 seconds 

Medium pitch drone 19.597 seconds 1.576 seconds 

Low pitch drone 21.358 seconds 1.046 seconds 

High pitch drone 21.458 seconds 1.239 seconds 

White noise inf 1.273 seconds 

Table 4-1: Sound lengths and average gesture lengths 

 

The following graph plots the same data on a logarithmic scale. 
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Figure 4-14: Suggesting a correlation between sound length and gesture length 

 
Some of the variation in the data in this representation could be due to noise, but when 

the lengths of the sounds are be broken into “short” and “long” categories, the trend 

becomes much more clear. Using 1 second as the dividing line between “short” and 

“long” sounds, we find that the average gesture length associated with “short” sounds is 

 88



0.818 seconds, while the average gesture length associated with “long” sounds is 1.258 

seconds. This indicates that the length of the gesture a person will naturally associate 

with a sound is positively correlated with the length of the sound. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sounds

A
ve

ra
ge

 g
es

tu
re

 le
ng

th

Short Sounds
Long Sounds

 

Figure 4-15: Average gesture length for “short” and “long” sounds 

 

4.4.2 Gesture to sound associations 
 

Perhaps more interesting than correlating the lengths of sounds and gestures is a closer 

look at the features of the gestures being associated with the various sounds. As a 

reminder, trained gestures consist of data from the accelerometers and gyros – inertial 

data. The primary measure analyzed here is the per-sensor root-mean-squared (RMS) 

energy present in the gestures. To preprocess the inertial data, the average energy was 

computed, per-sensor per-subject, and each gesture’s energy profile was then normalized 

by these values. The following table summarizes the average energy from the 

accelerometers and gyros from gestures associated with the 10 sounds. 

 
 turntable tom sleigh vibra clapping cymbal drone drone drone noise 

acc 16.659 17.053 11.802 12.060 12.027 15.953 10.749 2.612 12.132 2.952 

rot 21.079 16.725 13.537 11.635 7.751 14.843 8.369 3.095 10.061 6.691 

Table 4-2: Average gestural acceleration and rotational energy per sound 
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The preceding shows several interesting patterns. First, the “turntable” gestures contain 

much more energy in rotational than in acceleration. By the same token, the “clapping” 

gestures contain more energy in acceleration than in rotation. These findings are 

consistent with the types of motions that are used to produce these sounds under normal 

musical situations: turntable scratching is a very rotation-centric activity, while a 

clapping motion features more acceleration. The gestures associated with the “drone” 

sounds tend to have a more equal combination of acceleration and rotation, which can be 

explained by the observation that the physical motion in normal situations associated with 

creating those sounds is less defined. These patterns suggest that users bring experience 

and metaphors from the physical world to the current open-ended gesture task. (see 

section 5.1 for more discussion on metaphor) A more thorough characterization of 

gestural connection to sound type would be interesting further work. 

 

4.4.3 Input DOF to effect mappings 
 

 # subjects who used it % inverted mapping 

Ring modulation 14 71% 

Volume 15 33% 

Sweeping Band-pass filter 14 36% 

Tremolo 19 47% 

Pitch-shift 22 91% 

Table 4-3: Effects available, usage, and polarity trends observed 

 

The above table has a single sound-modification effect per-row, and it shows two things: 

The first is the number of subjects (out of 25 total) that created a mapping for the 

particular effect, which gives an indication of the effect’s popularity. Most subjects did 

listen to all of the effects before or during the selection process. The second item shown 

by the table is the percentage of the subjects that trained an input-DOF for the effect that 

created an “inverted mapping” for the effect. The polarity of a mapping (inverted vs. non-

inverted) refers to how the range of the sensor is mapped to the range of the effect. If the 
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maximal value from the sensor (for an FSR, given the signal conditioning circuit used, 

this is when there is the least pressure on it) is associated with the minimal value of the 

effect, this is called an inverted mapping, and vice versa. The labeling of the polarity 

(“inverted” vs. “non-inverted”) is essentially meaningless – what is interesting however, 

is the consistency of polarity found on certain DOF’s. For instance, of the 22 subjects that 

created a pitch-shift mapping 91% created an inverted mapping. Similar patterns show up 

in the mapping of ring-modulation, volume, and the band-pass filter. Also interesting is a 

look at the trends in how people mapped particular input DOF’s to effects. 

 
 ring-mod volume sweeping filter tremolo pitch-shift 

 # INV # INV # INV # INV # INV 

top-handle 

squeeze 
2 100% 3 0% 2 0% 5 20% 6 83.3% 

carriage twist 6 50% 3 33% 5 20% 3 100% 5 100% 

low-handle 

mid-button 
2 50% 4 50% 5 40% 5 60% 6 100% 

low-handle 

low-button 
4 100% 5 40% 1 100% 4 50% 5 80% 

Table 4-4: Number of mappings created per category, and polarity consistency 

 

Looking at the raw numbers in the chart can be misleading, since effects like tremolo and 

pitch-shift were more popular in general, thus the high number of mappings from input 

DOF’s to these effects may be part of a distribution. However, the polarity of specific 

mappings is interesting. For instance 100% of the 6 subjects that made a low-handle-mid-

button mapping to the pitch-shift effect created an inverse mapping (meaning that 

pushing harder on the button caused the pitch to shift upwards). At first this may seem 

like a natural consequence of the intuition that squeezing harder should cause “more” of 

the effect, whatever it is. Showing the opposite tendency, however, is the mapping of top-

handle-squeeze-to-tremolo. Of the 5 subjects that made that mapping, only one of them 

trained an inverse mapping.  
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The patterns collected from the way in which people trained gesture-to-sound and input-

DOF-to-effect mappings are interesting in their own right, and could be instructive to 

future electronic music controllers – especially the majority that design controllers with 

preset mappings. In future work, the set of input DOF’s will be expanded to include a few 

other affordances, such as tilt and electric field sensing. Using this work as a starting 

point, a number of more specifically-targeted studies could use the current device or a 

future version to tease apart an even more detailed look at how people naturally create 

mappings when presented with an open-ended, trainable controller.  

 

4.5 Study Conclusions 
 

This chapter has presented the design and results of a user study that was run in April 

2004 that involved 25 participants. Survey questions interspersed throughout the activity 

collected the subjective opinions of the subjects. The surveys produced data about 

engaging-ness, enjoyability, future interest in play and performance, ease of gesturing 

and novelty. In addition to the surveys, implicit data was collected about the types of 

gesture-to-sound and input-DOF-to-effect mappings that the subjects created. See the 

conclusions chapter for more discussion about these findings. 

 

The next chapter will present the conclusions of this work, future directions for work 

with the system, and some ideas about future applications with the system. 
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Chapter 5  
 
 
 
Conclusions and future work 
 
 
 
In this chapter the project is considered in its entirety. We will begin with a summary of 

this thesis, considering the work to date. Future small-scale improvements to the existing 

system will be considered, followed by a discussion of long-term applications of an 

adaptive gestural device. 

 

Overall, the work in this thesis demonstrated that a sensor-rich multi-DOF device can be 

made to flexibly learn open-ended physical gestures, and can allow a user to create 

custom assignments of continuous input DOF to output parameters. This device has also 

been shown to be useful as an investigative tool, helping to understand more about 

intuitive connections between gesture and sound. 

 

5.1 Summary 
 

The system constructed uses a number of inertial, pressure-based and electric field 

sensing circuits in order to provide a flexible and adaptive user interface platform. On the 

hardware end, a microcontroller-based physical device with inertial sensing, electric field 

sensing, a number of contact-based input degrees of freedom, and serial communication 

capabilities was constructed. On the PC, software receives data from the device, storing 

and interpreting it. When configured in training mode, the routines allow custom inertial 
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gestures to be trained and associated with output sounds, and permit continuous input 

degrees of freedom to be flexibly assigned to sound modification (effect) parameters.   

During play mode, the software on the PC uses a dynamic time warping algorithm to 

classify incoming gestures based on the user’s trained class models, and continuously 

updates sound modification parameters based on the state of the continuous input DOF’s. 

The most recent sound triggered can be put into a sustained (looping) state during play 

mode by pressing up on a toggle button. Looping sounds can be layered, and the most 

recent looping is canceled by pressing down on the toggle button. Pressing the toggle 

button directly in cancels all looping. 

 

A user study was designed and run, in which subjective impressions of the system, along 

with implicit performance and configuration choices were collected. Data from a survey 

showed that users found the trainable system more engaging and expressive. Observation 

of subjects during the study indicated a high sense of engagement during the training 

phase. There was inevitably a visible “a-ha” moment when the subject first trained a 

custom gesture and tested it, triggering the associated sound. At that moment, subjects 

would typically sit up straighter, move closer to the computer, and some even made 

utterances of pleased surprise like “cool!” Similar excitement was observed at the 

moment with an input DOF became associated with an effect, and the mapping suddenly 

became enabled. After experiencing both modalities (Training and Presets), subjects 

using the Training mode reported being more likely to want to play and perform with the 

system in the future, and that they found the system more expressive. In addition, this 

group also rated the system favorably in terms of its amount and appropriateness of 

personalization. A survey at the end of the study showed a clear preference for the 

training-mode system in the areas of expressivity, engaging-ness, enjoyability, 

personalization, novelty, and future interest in performance. The only area in the final 

survey in which the Presets mode was rated more highly was in ease of learning to use 

the system. This problem would likely be mitigated in the future by giving players more 

time to familiarize themselves with the device (the entire experiment, including the 

Training and Presets mode lasted less than 1 hour). Overall, subjects found the system 

very compelling, and during the study several of them pushed the system into some sonic 
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and rhythmic spaces that were fascinating to the author and quite different than anything 

he had previously created with the device. 

 

Mapping data captured during the user study suggests that metaphors from experience 

making sounds in the physical world may be an underlying force in the assignment of 

custom gestures. For instance, the gestures that subjects associated with a turntable 

“scratch” sound featured more activity on the gyros than on the accelerometers This 

pattern indicates a tendency towards gestures with rotational motion, which is consistent 

with the way in which an actual turntable “scratch” is executed. By the same token, 

gestures trained for a percussive drum-hit sound tended to contain more acceleration 

energy than rotation, which is consistent with the physical action of striking a drum. The 

explicit use of interface metaphor is an established human-computer-interaction (HCI) 

principle in which a designer couches an interaction or representation in a framework that 

is conceptually familiar to the user [Carroll, et al. 1988]. The HCI concept of metaphor 

can be related to the current data in the following way: The FlexiGesture is open-ended 

enough that subjects may be using metaphor intuitively, their gestures related to actions 

that they know from a lifetime of experience with sounds in the world, even though no 

metaphor is explicitly designed into the system. This spontaneous use of metaphor 

parallels the overarching FlexiGesture philosophy– rather than trying to build in the 

“right” affordances (or metaphors, in this case), the system is flexible enough that users 

can train it in a way that makes the most sense to them individually. Finally, gesture-

length was shown to be correlated with sound length, and clear preferences were found 

for the assignment of input DOF-to-effect mappings. These findings from the implicit 

data are interesting, and they suggest an exciting future use for this device as a refined 

“musical affordance laboratory” tool, enabling the systematic discovery of intuitive 

mappings for computer-generated sound and other media. 

 

5.2 Future Work 
 

As the intent of this thesis was to provide a proof-of-concept, working system that can 

flexibly learn gesture-to-sound and continuous-manipulation-to-effect associations, there 
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are a number of improvements to the hardware and software that could be made that bear 

further discussion.  

 

A software-related feature that was considered but not included in the final version is a 

tilt-based navigation of the sound space, rather than the current list traversal. Coupled 

with a synthesizer that had continuously variable parameters, tilting could provide an 

interesting 2-dimensional navigation metaphor. An idea that was considered early in the 

design process would use a genetic algorithm/hill-climbing metaphor in starting at a 

“seed” set of synthesizer parameters, with a neighborhood of mutations from the seed 

accessible in various directions by tilting the device off-axis around in a circle. When a 

neighbor was found that the user considered more favorable than the seed, a button press 

could make that neighbor into the new seed, which would generate a correspondingly 

new neighborhood of mutations. A related tilt-based navigation interface for physical 

space is discussed in [Eslambolchilar, et al. 2004]. 

 

A hardware feature that could aid in the aforementioned tilt-related navigation would be a 

microcode tilt-sensing algorithm that controls the individual LED’s around the edge of 

the circular PCB. The accelerometers on the inertial layer can be used to sense the tilt of 

the device by calibrating to a baseline of gravity, and detecting slow-moving changes to 

the baseline. The circular PCB was built initially to support rich visual feedback, and 

each of the 64 LED’s can be individually turned on and off, which could enable a “water-

in-a-pan” style visualization of the device’s tilt. The LED’s could also be used in many 

other ways to give the user and audience relevant feedback about the internal state of the 

device, perhaps lending a greater sense of transparency and causality to a performance. 

 

A few interesting variants and uses of the dynamic time-warping algorithm could be tried 

as well. In computing model gestures, any number of in-class examples could be 

combined by running the DTW algorithm on pair-wise on each pair of gestures, then 

warping the N-1 gestures to the 1 that had the lowest error to the others. Once warped to 

the best-fit gesture, the average of all N example gestures could be taken as the class 
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model. As suggested in chapter 3, classification speed could be improved in the future by 

enabling optimization and using just-in-time compilation of the Java bytecode. 

 

A variant on the DTW method used in this work could be to adapt the features employed 

in each run of the algorithm based on which model is being tested against. Each of the 

models could potentially have a different sensor importance profile, which would be the 

subset of sensors that were an important part of that particular gesture. When testing 

against a model gesture, a modified DTW could be run that only analyzed the relevant 

sensor data streams, given the model’s profile. This could potentially result in more 

accurate classification. In addition, a graceful-recovery feature could be added that would 

trigger some “default” or more roughly-classified sound in the cases that classification 

fails. These  would remedy the occasional situation in which no sound is produced in 

response to an executed gesture that has high error compared to all model gestures. 

 

As an alternative to dynamic time warping, the continuous hidden markov model 

algorithm could be applied to the gesture classification task in the system. In contrast to 

the discrete HMM formulation, the continuous HMM does not require the data to be 

drawn from a symbolic alphabet. A continuous HMM formulation would also allow for 

continuous estimation of gesture class as the data entered the system and was processed 

in real-time. This configuration could not only speed up classification, but could allow 

for some form of sound output to be produced before the gesture was fully completed – a 

feature that some users suggested as a possible improvement. The tradeoff in using a 

HMM representation as opposed to the current DTW implementation would be that the 

model could require more training data before becoming a useful classifier. 

 

Finally, as mentioned earlier, the continuous input DOF data could be fed into the gesture 

training and classification routines along with the inertial data streams. In addition, tilt 

and electric field sensing inputs could be added to the set of inputs to the system. 
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5.3  Future Applications 
 

As a music controller, the FlexiGesture has already broken new ground in being a novel 

physical device built specifically to support flexible and adaptive behavior. One direction 

of future applications for the system could be the control of other rich media during 

performance, such as mixing video or dramatic control of theatrical lighting and effects. 

In addition, since the novelty of the system is in its quick and responsive adaptation, the 

training of the gestures and manipulations could be an integral part of a performance, 

introducing the audience to the concept of a real improvised dialogue between performer 

and device. 

 

Moving past the idea of a music controller, future applications of an adaptive system like 

this extend into a wide range of hand-held devices. A living room “wand” that could 

learn to trigger the opening of windows gestured at, or dim the lights based on a squeeze 

or tilt could be compelling and flexible tool. A television remote-control with inertial 

sensing inside could be taught to associate gestures with different television channels, 

providing random-access to favorite stations without having to squander surface real-

estate with a large number of single-purpose buttons. 

 

Computer gaming is another application area that the device could be well suited to. 

Novel commercial and experimental game controllers push the edge of input devices, 

many of them featuring a multi-degree-of-freedom set of input affordances, typically in 

the form of digital buttons for fingers and thumbs, or two-handed twisting of the 

controller [ActiveWindows website]. Some controllers even sense tilt as an input [Saitek 

P2000 Manual] [Joystick Review website]. Equipped with a joystick-style interface 

(USB) to the computer, the device could be used for game control, or for any number of 

media-centric applications for which game controllers have been appropriated [Manor] 

[Sarlo]. 
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There are other objects that could be fitted with the requisite sensing and processing 

capabilities in order to emulate the behavior that the FlexiGesture is capable of. For 

instance, the ubiquitous cellular phone, but equipped with accelerometers inside (phones 

with this feature will be on the market soon), could become an adaptive musical 

instrument, enabling impromptu “jam sessions” on the sidewalk or subway.  Based on a 

common device like a phone, a system like the FlexiGesture could also allow people to 

share gestural music associations, beaming them from device to device with RF or 

infrared communication. Implemented on such a widespread platform, the system could 

aggregate large-scale information about gesture-to-sound associations and interface 

preferences. 

 

5.4 So, will it replace the electric guitar? 
 
There is no short answer to this question. In its current form the FlexiGesture can’t beat a 

piano or a horn at playing a familiar melody, and the guitar has an incredible amount of 

“rock-star-cool” momentum that makes it a juggernaut in the world of musical 

instruments. However, the FlexiGesture illustrates a fresh paradigm. It is the first of a 

new class of instruments that reject the “one-size-fits-all” model in which the player 

practices for years to adapt his gestures to suit the instrument, or struggles with a poorly 

designed user interface to change presets to his liking. An instrument that learns the 

player promises a more satisfying and expressive musical experience, and opens up a user 

base that is far larger than the current number of musicians. Upon hearing about the 

device, numerous non-musicians replied “that’s just what I need!” recounting stories of 

frustration with existing instruments, but an underlying desire to play music. These 

accounts suggest that an adaptive musical instrument could provide a compelling musical 

interface to people who never found success with a traditional instrument. In addition, the 

increased sense of personalization that users felt in training mode indicates that a greater 

sense of attachment could be developed for an adaptive musical instrument. For existing 

electronic musicians, the device would help solve the “laptop” problem by giving the 

audience a better sense of musical causality in connecting the performer’s physical 

actions to the sounds being produced. And to the guitar players, it offers a new expressive 
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set of affordances, and capabilities that are go beyond, or at least in a different direction, 

than what can be done with a guitar. 

 

To put forth a concrete example of the FlexiGesture in use, an ensemble of players with 

new musical instruments was created at MIT in March 2004, as part of a visiting 

residency by experimental composer and musician John Zorn. In the context of a rule-

governed improvisation session, the FlexiGesture was played by the author, and was an 

expressive and contributing member to the overall piece.  

 

Here’s what some great musical thinkers of our time have said about the FlexiGesture: 

 

David, man, that’s really cool! 
- John Zorn, experimental composer and musician (during his artist residency at MIT in March 2004) 

 

It’s very inspiring. Very inspiring. This thing has a great future. Very nice. 
 - Tan Dun, Grammy and Academy award-winning composer (at the Media Lab in April 2004)
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Appendix A  
 
 
 
Abbreviations and symbols 

 
 

 

API

DLL

DOF

DTW

EFS

FSR

GUI

HCI

HMM

IC

JIT

JNI

MIDI

OSC

PCB

PC

PD

UART

USB

 

Application Programming Interface 

Dynamically Linked Library 

Degree Of Freedom 

Dynamic Time-Warping 

Electric Field Sensing 

Force Sensitive Resistor 

Graphical User Interface 

Human-Computer Interaction 

Hidden Markov Model 

Integrated Circuit 

Just-In-Time (compilation) 

Java Native Interface 

Musical Instrument Device Interface 

Open Sound Control 

Printed Circuit Board 

Personal Computer 

Pure Data 

Universal Asynchronous Receiver Transmitter

Universal Serial Bus 
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Appendix B  
 
 
 
Schematics and PCB layouts 

 103



11

22

33

44

55

66

D
D

C
C

B
B

A
A

Ti
tle

N
um

be
r

Re
vi

sio
n

Si
ze B D
at

e:
4/

27
/2

00
4

Sh
ee

t  
  o

f 
Fi

le
:

C:
\D

oc
um

en
ts 

an
d 

Se
tti

ng
s\.

.\O
ut

pu
tL

ay
er

.S
ch

D
ocD
ra

w
n 

By
:

22
uF

Ca
p

10
0n

F
Ca

p

27
pF

Ca
p

56
K

D
IG

/S
EG

3
3

D
IG

/S
EG

2
4

D
IG

/S
EG

1
5

D
IG

/S
EG

0
6

SE
G

8
D

IG
7/

SE
G

7
D

IG
6/

SE
G

6
D

IG
5/

SE
G

5
D

IG
4/

SE
G

4

D
IN

1
CL

K
2

IS
ET

7

O
SC

9
G

N
D

8

M
A

X
69

51

1 2 3 4 5 6 7 8 9

CO
N

12

1 2 3 4 5 6 7 8 9

CO
N

14

A -+

D
N

M
10

K

47
K

G
N

D
0

P0
.0

1

G
N

D
2

V
D

D
3

RS
T/

C2
Ck

4

P2
.0

/C
2D

5

P1.7 6

P1.6 7

P1.5 8

P1.4 9

P1.3
P1

.2
P1

.1

P1
.0

P0
.7

P0
.6

P0.5

P0.4

P0.3
P0.2

P0.1

CY
G

N
A

L_
33

1

1 2 3 4
C2

 IN
TE

RF
A

CE

JP
1

D
IR

7 
is 

N
SS

 fo
r m

ic
ro

's 
SP

I
CE

X
0 

pe
rip

he
ra

l f
or

 P
W

M
 o

ut
pu

t

LE
D

 d
riv

er
 c

hi
pGGGG GGGGG

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

CO
N

N
_R

EC
EP

T_
24

_P
O

S_
SM

D

CE
X

1 
pe

rip
he

ra
l f

or
 fr

eq
ue

nc
y 

ou
tp

ut

3.
3m

H
In

du
ct

or

10
0p

F
Ca

p

10
K

10
K

1
1

2
2

3
3

4
4

5
5

N
PN

ST
A

CY

N
PN

ST
A

CY

O
ut

pu
t L

ay
er

v0
.1

 

3.
3V

M
O

SI
SC

K
D

IR
8

D
IR

1
D

IR
2

D
IR

3

D
IR

4
EN

1
EN

2

EN
3

EN
4

X

IN
T0

IN
T1

D
IR

6

D
IR

5

SC
K

M
IS

O

M
O

SI

N
SS

Ba
tte

ry

D
IR

7

D
IR

8
M

O
TO

R

3.
3V

3.
3V

3.
3V

3.
3V

C2
D

A
T

C2
CL

K3.
3V

C2
CL

K
C2

D
A

T

SC
K

MISO

MOSI
DIR7

MOTOR

SE
G

3

SE
G

4
SE

G
5

SE
G

6
SE

G
7

SE
G

8
SE

G
0

SE
G

1
SE

G
2

SE
0

SE
1

SE
2

SE
3

SE
4

SE
5

SE
6

SE
7

SE
8

3.
3V

H
FO

SC

H
FO

SC

3.
3V

3.
3V

 

 

Figure B-1: Schematic for the Output Layer 
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Figure B-2: PCB for Output Layer top (top) and bottom (bottom)
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Figure B-3: Schematic for the Circular PCB
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Figure B-4: PCB for Circular PCB (top) 
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Figure B-5: PCB for Circular PCB (bottom) 
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Figure B-6: Schematic for the Electric Field Sensing Layer 
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Figure B-7: PCB for the Electric Field Sensing Layer top (top), and bottom (bottom) 
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Figure B-8: A piezo signal-conditioning circuit, 
before re-purposing for FSR use. 

 
Figure B-9: The piezo signal-conditioning circuit, 
after re-purposing for FSR use. 

 

 
Figure B-10: Connection diagram for the 2 digital buttons 

The header connections for 2 primary capacitive sensors on the tactile board were re-appropriated to carry 
signals from the two digital buttons. A pull-up resistor was connected to each, and they were sent back to 
the output layer on lines DIR5 and DIR6.  The header also provides a GND connection for the buttons. 

 111



 112



 
 
 
Appendix C  
 
 
 
Embedded C code 
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Figure C-1: thesis.c embedded C code
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Figure C-2: thesis.h embedded C code
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Figure C-3: 206.h embedded C code
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Figure C-4: output_leds.h embedded C code 

 121



 

 122



 
 

 

 

Figure C-5: output_leds.c embedded C code
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Appendix D  
 
 
 
Java code summary 
 
 
This appendix contains names and descriptions of all Java classes (other than the classes 
in the Java Runtime Environment) written for, and used in this project.
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class AMCGUIStateSaver 
 
Description: Keeps an ArrayList of VarianceReport objects, and an ArrayList of 
MappingData objects. This class is for saving state to disk, and is instantiated at 
serialization-time. 
 
interface ButtonResponder 
 
Description: This interface defines the behavior that a class must implement in order to 
respond to button presses of the toggle button and the trigger button on the device. 
 
class ButtonWatcher 
 
Description: Registered as a StackPacketListener, this class pulls out the digital and 
trigger button state from each StackPacket that comes in, and messages a 
ButtonResponder object with relevant changes in state. This is where the real "dispatch" 
of button commands happens. 
 
class ChartPanelHandler 
 
Description: Registered as a StackPacketListener, this class broadcasts incoming stack 
packets to all ChartPanel objects that it has references to. This is where the data dispatch 
to the StripChart objects in the GUI takes place. 
 
class CommonStackDataFilter 
 
Description: A stack data filter object that handles the "common case", this class is 
instantiated with an array of "flags". These flags are the bytes that are expected (in the 
order given) to proceed each valid data packet from the stack in the serial data stream. 
For instance, in the current implementation, the hex bytes 0x62,0x6D proceed each batch 
of sensor data. This class assembles a complete StackDataPacket object from the serial 
data stream, and passes the completed packet to all registered listeners. 
 
interface DataHandler 
 
Description: This interface defines the behavior that any class handling incoming serial 
data from a stack should implement. It consists of a single function, newData. 
 
class DataLogger 
 
Description: Handles the writing of log data to a log file. Timestamps each log entry to 
millisecond resolution. 
 

 

 

Figure D-1: Main program Java package: edu.mit.media.amc 
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class DataLoggerManager 
 
Description: A wrapper around the DataLogger class, the DataLoggerManager handles 
the initialization of the DataLogger, and provides a function to generate a unique 
directory name - which is useful when running a user study so that each user's data can be 
kept in a separate directory.  
 
class DataStreamCharacterizer 
 
Description: Watches an incoming data stream, and can be queried for information about 
the data, such as instantaneous windowed variance, max variance, max/min values, etc. 
 
class DTW 
 
Description: Pure Java implementation of the Dynamic Time-Warping algorithm. 
Contributors to this code (originally written in C) include Malcom Slaney, Tony 
Robinson, and Yuri Ivanov. 
 
class DTWPureJavaStackGestureRecognizer 
 
Description: Implements the StackGestureRecognizer interface to manage the state 
associated with gesture training. Holds the reference to the data for all of the trained 
gestures, and can be messaged to start/stop data collection for training or classification. 
 
class DTWStackGestureRecognizer 
 
Description: NOT USED IN FINAL VERSION. Concrete implementation of the 
StackGestureRecognizer interface, that uses Dynamic Time-Warping. Passes all data into 
the C .dll for storage, and makes DTW calls to the C .dll. 
 
class FlexibleMappingManager 
 
Description: Manages the creation and clearing of input-DOF to effect parameters. Also 
provides functions that can enable/disable all effects. 
 
abstract class FlexibleMappingObject 
 
Description: A FlexibleMappingObject keeps track of all of the data relevant to a sensor-
to-effect parameter mapping. Designed with OSC communication in mind rather than 
MIDI, this class keeps track of the mapping's symbol, polarity (which end of the input's 
range is mapped to which end of the output's range), and the sensor's VarianceReport 
(this includes information about the max/min of the sensor's range, and is used to scale 
incoming values to a 0-1 range). 
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class FlexibleMIDIMappingObject 
 
Description: Subclass of FlexibleMappingObject that is MIDI-specific. 
 
class FlexibleOSCMappingObject 
 
Description: Subclass of FlexibleMappingObject that is OSC-specific. 
 
class GestureDataManager 
 
Description: Keeps an array of gesture models and examples, and implements the state 
machine that defines how new sensor data should be handled (i.e. should it be put into a 
gesture-class example?, stored in the current SingleGestureData object for subsequent 
classification?, etc..) 
 
class GestureModelsInfo 
 
Description: Keeps track of how many gesture models each class has, and keeps an array 
of SingleGestureInfo objects. This is a state-saver class that is created at serialization-
time. 
 
interface Looper 
 
Description: Interface which defines the messages that any Looper for this device will 
have to implement. Functionality is based on having a toggle button on the device that 
indicate "up", "down" and "in". 
 
class LooperStack 
 
Description: Stack-based sound-looping manager that implements the Looper interface. 
Manages the current set of sounds that are being looped, and allows a user to loop a 
sound, un-loop a sound, and cancel all looping. 
 
class MappingData 
 
Description: Holds the symbol and polarity of a single mapping. This is a state-saver 
class that is created at serialization-time. 
 
class MappingLearner 
 
Description: Watches the variance on all of the sensors while the 
OutputControlMessageSweeper (OCMS) is sweeping a parameter sinusoidally. 
Registered as a listener for "extrema" messages from the OCMS, at each extrema it notes 
the (a) sensor exhibiting the maximal variance, and (b) which end of its dynamic range 
that sensor is closest to. If the MappingLearner sees a consistent pattern of excitation (i.e. 
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same sensor, same polarity) over a given number of consecutive extrema, a mapping is 
created via the FlexibleMappingManager object.  
 
interface MaxMinListener 
 
Description: Interface that defines the behavior that a class must implement in order to be 
a listener registered to receive notification when a running 
OutputControlMessageSweeper object has reached an extrema. Defines a single function, 
maxOrMinReached. 
 
class MidiDeviceManager 
 
Description: Wrapper around the Java MIDI functionality which simplifies the querying 
aspects of the MIDI subsystem, and the sending of MIDI messages. 
 
class MIDIOutputControlMessage 
 
Description: Subclassed from OutputControlMessage, MIDIOutputControlMessage 
knows how to send a MIDI control message 
 
class NonLinearNumberMapper 
 
Description: Built to allow nonlinear mappings from input DOF to output effect 
modulation, this class did not end up being used. 
 
interface NumberMapper 
 
Description: Interface that defines the behavior that a class must implement in order to be 
considered a NumberMapper. The purpose of a NumberMapper is to map an input 
number onto an output number. This interface defines a single function, mapNumber, and 
allows any arbitrary mapping of input sensor value to output effect control value. 
 
class OSCOutputControlMessage 
 
Description: Subclassed from OutpuControlMessage, OSCOutputControlMessage 
knows how to send an OSC control message 
 
abstract class OutputControlMessage 
 
Description: Abstract class which contains the data for a single control message. Holds a 
data value and a String symbol. 
 
class OutputControlMessageRouter 
 
Description: OutputControlMessageRouter runs in its own thread and loops endlessly, 
dequeueing OutputControlMessages in a synchronized way from a queue, and 
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transmitting them to the outside world. This is the bottleneck for all outgoing control 
messages to a synthesizer, and for that reason it is also the class that does much of the 
logging for experimental purposes. 
 
class OutputControlMessageSweeper 
 
Description: Creates a sinusoidally oscillating parameter trajectory to be used in 
affordance mapping. Sends an optional start/stop signal to trigger a particular sound to 
play for the duration of the parameter sweep. 
 
class Queue 
 
Description: A Queue implementation that uses the java Vector class. This is based on 
some code that I found online. 
 
interface SensorDataView 
 
Description: Interface that defines the behavior that a class must implement in order to be 
considered a SensorDataView. Defines two versions of the newData function by which 
the SensorDataView receives a single new datum for storage and/or display. 
 
class SimpleMidiMapper 
 
Description: Permits the simple assignment of indices (zero-indexed integers) to 3-byte 
MIDI messages, and the playing of the messages. 
 
class SingleGestureData 
 
Description: Keeps track of the samples for a single gesture. Contains methods for 
reading a gesture data file from disk, and writing a single gesture data file out to disk.  
 
class SingleGestureInfo 
 
Description: This is a state-saving class that is instantiated at serialization-time to keep 
track of the data associated with a single gesture class. Tracks the presence of a class 
model, the length of the model, the number of gesture examples in that class, the lengths 
of the examples, the filename of the model (if present), and the filenames of each of the 
gesture examples.  
 
class SingleGestureModelData 
 
Description: Stores data for a single gesture class. Keeps a model gesture, and an array of 
examples. 
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class SmartButtonGroup 
 
Description: This class extends javax.swing.ButtonGroup, adding the capability for 
cycling through a list of buttons modulo the number of buttons (i.e. when you try to go 
"down" past the bottom of the list to select the next button, you end up at the top again). 
Provides facilities for selecting next and previous buttons from a list. This class is used in 
the GUI for the list of possible sounds. 
 
class SoundTriggerManager 
 
Description: Manages the starting and stopping of sample playback. 
 
abstract class StackDataFilter 
 
Description: Abstract class meant to provide some common functionality for specific 
StackDataFilter subclasses. A StackDataFilter is responsible for parsing the stream of 
data coming from a Stack into complete data packets, then passing each complete packet 
to each of the registered listeners.  
 
class StackDataPacket 
 
Description: Class for storing a packet of data from the Stack. 
 
class StackDataPacketInfo 
 
Description: Immutable class for storing configuration info about stack data packets. Is 
meant to be used in a static way, this class defines defaults specific to my particular stack 
and device configuration. 
 
class StackDeviceHandler 
 
Description: Manages the serial connection to the stack, including opening and closing of 
the serial channel, and registering/unregistering listeners for data coming from the stack. 
 
interface StackGestureRecognizer 
 
Description: This interface defines behavior that any class that manages data-receiving 
and gesture-recognition activities will have to implement. 
 
interface StackPacketListener 
 
Description: This interface defines the behavior that any class wishing to be a listener for 
Stack packets will have to implement. It consists of a single function, newStackPacket. 
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class StackPacketParser 
 
Description: Separates the data from a single packet, feeding the individual data to the 
appropriate views. Views register as listeners for a particular index of incoming stack 
packets. For instance, StackPacketParser is used to distribute sensor data to the 
StripCharts, since they each only show data from a single sensor. 
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interface SerialClient (written by DJM) 
 
Description: This interface defines the behavior that a SerialClient must implement. 
Defines the portClosed method, as well as two versions of handleNewSerialData. 
 
class SerialConnection (written SUN, modified by DJM) 
 
A class that handles the details of a serial connection. Originally distributed with the 
communications API from Sun Microsystems, this file was modified to enqueue new 
serial data into a queue in a synchronized code block rather than the original behavior in 
which it would write the data into a StringBuffer. 
 
class SerialConnectionException (written by SUN) 
 
Distributed with the communications API from Sun Microsystems, this exception can be 
thrown in the course of serial communication. 
 
class SerialGrabber (written by DJM) 
 
Description: SerialGrabber runs in its own thread, and its purpose is to grab new bytes of 
serial data from the queue in the SerialConnection object. This queue is accessed by both 
SerialGrabber and SerialConnection in a synchronized manner using wait/notify, so 
SerialGrabber is careful to avoid any time-consuming routines within the synchronized 
codeblock. All that is done in the synchronized codeblock is dequeueing of the queue. 
Then, once outside the synchronized block, the data is passed off to any registered 
listeners. 
 
class SerialParameters (written by SUN) 
 
Distributed with the communications API from Sun Microsystems, SerialParameters 
holds all relevant state pertaining to a serial connection. 
 
class serialUtilities (written by DJM) 
 
Description: This class provides a wrapper for the 
CommPortIdentifier.getPortIdentifiers() method which returns an enumeration of the 
available ports on a system. 
 
 
 
 
 
 

 
Figure D-2: Serial Java package: edu.mit.media.amc.serial 
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class ChartPanel (written by drew/ckline/ayb) 
 
Implements a panel full of stripcharts, each of which can display data from a single 
sensor. 
author: Andy Wilson (drew@media.mit.edu) 
modified: Chris Kline (ckline@media) to application-independent 
modified: Ari Benbasat (ayb@media) to add to new innards package 
modified: David Merrill (dmerrill@media) such that addDataSource returns the 
StripChart object that has been instantiated 
 
interface DataSource (written by drew/ckline/ayb) 
  
Interface that defines the behavior that a class must implement in order to be used as a 
DataSource : specifies the method getValue. 
 
interface EnhancedDataHandler (written by DJM) 
 
Interface that defines the behavior that a class must implement in order to be used as a 
EnhancedDataHandler : specifies the method newVarianceReport, which installs a 
VarianceReport into the DataHandler. 
 
interface EnhancedDataSource (written by DJM) 
 
Description: Builds on the DataSource idea from the innards.util.widgets package, adding 
specifications that relate to tracking a running variance, and enabling/disabling the 
processing of the DataSource in order to save on CPU cycles.  
 
class GraphPanel (written by drew/ckline/ayb) 
 
Implements the drawing routines for plotting a single sensor data trace in time, like a 
software oscilloscope. StripChart is based on this class. 
author: Andy Wilson (drew@media.mit.edu) 
extended and augmented by: Chris Kline (ckline@media.mit.edu) 
converted (as if it was hard) to innards package by AYB 
modified to be enable-able/disable-able by DJM 
 
class StripChart (written by drew/ckline/ayb) 
 
Keeps track of the most recent N samples captured from a particular sensor, and uses the 
functionality defined in GraphPanel to plot the data. 
 

 
 

Figure D-3: Sensor data display Java package: innards.util.widgets 
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class StripChartAutoAxes (NOT USING THIS) 
 
A strip chart with asymmetrically smoothed axes (e.g they always get big enough but 
slowly shrink back to be within a certain range of the average of the data). 
 
class VarianceReport (written by DJM) 
 
Description: Data-keeper class for information about the variance on a particular sensor. 
Can be loaded with information about max/min/avg variance seen on the sensor over a 
window of time, as well as max/min instantaneous sample values over the window. Used 
by FlexibleMappingObject's to scale incoming data to lie in the [0-1] range, and by 
MappingLearner to determine which sensor experienced the most variance since the last  
poll. 
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class JDirectoryChooser (written by David Ekholm) 
 
A fix to JFileChooser that correctly allows only directories to be selected. 
Does the trick by accepting "." as selection of the currently displayed directory. David 
Ekholm authored this class, and it is available online as part of his JAlbum project. See 
http://jalbum.net/ for details. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D-4: DirectoryChooser Java package: se.datadosen
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Appendix E  
 
 
 
Experimental materials 



Subject Instructions 
 
1) Watch the two instructional videos to get an 

understanding of how to find sounds, train gestures, 
and make effect associations. 

 
2) Train and test some gestures. (in the ControlPanel tab, 

with the GESTURE TRAINING button depressed for 
training, and the GESTURE TESTING button 
depressed for testing). Try looping and un-looping a 
sound. Click the SAVE button. 

 
3) Make some input-to-effect associations (you can also 

test your associations with the “TEST” button 
underneath each large button). Click the SAVE 
button. 

 
4)  Click back to the ControlPanel and click the PLAY 

button. Spend as much time as you like playing with 
the system (triggering sounds, looping them, applying 
effects, un-looping sounds, etc..). The experimenter 
will stop you when it is time to move on to the next 
part of the experiment, or if you feel that you are 
finished, please alert the experimenter. 

 
 
 
 
 
 
 

Figure E-1: Instruction page given to subjects in the Training condition
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Subject Instructions 

 
 
1) Watch the two instructional videos to get an 

understanding of how the system works. 
 
2) Trigger each of the sounds at least once, and try the 

looping feature.  
 

3) When you have one or more of the sounds looping, try 
out each of the effects. 

 
4) Spend as much time as you like playing with the 

system (triggering sounds, looping them, applying 
effects, un-looping sounds, etc..). The experimenter 
will stop you when it is time to move on to the next 
part of the experiment, or if you feel that you are 
finished, please alert the experimenter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-2: Instruction page given to subjects in the Presets condition 
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This video will show you how to train the system to recognize your own gestures to trigger sounds, and 
your own manipulations to modify the triggered sounds. 
 
To begin, click the "GESTURE  TRAINING" button in the "ControlPanel tab. This will put you into 
gesture training mode. 
 
Now, you can use the thumb toggle button to cycle up or down through the collection of sounds. 
 
When you find a sound that you like, you can train a gesture. This will associate your gesture with the 
sound, like a "gestural bookmark" so that when you are playing the instrument, you can trigger the sound 
with the gesture. 
 
When executing a gesture, you must squeeze and hold the trigger button through the entire gesture. Then, 
let go once you're done. 
 
The lights around the circle will show you when the device is listening to your gesture. 
 
The device can sense movement and rotation in any direction, so your  gesture should be some combination 
of movement and rotation. 
 
Remember. Squeeze and hold the trigger button through your entire gesture. Then let go.  
 
After training a gesture, you can click on the "GESTURE TESTING" button to try it out. Triggering a 
gesture works exactly like training the gesture. Squeeze the trigger button, do the gesture, then let go of the 
trigger button. You can go back and forth between training and testing as many times as you like. 
 
When you've trained as many gestures as you want, click on the save button to save your gestures. 
 
Now, click on the button labeled "tweak mapping", and click on the tab labeled "TestPanel" 
 
Here you can associate the squeezing and twisting inputs of the device with sound effects. Each orange 
button is a different sound effect. 
 
The way it works is this : When you click on the orange button, the system starts sweeping that effect from 
its minimum to its maximum,  and watching for activity on the inputs. 
 
 
 

 

 

 

 
 
 

Figure E-3: “Gesture and Manipulation Training” user study script (Training) 
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This video will demonstrate the force and twist-sensitive inputs that 
are part of the gestural music controller. 
 
This button can sense the continuous pressure you apply to it. 
 
This handle can sense the pressure that you squeeze it with. 
 
The device can sense how it is being twisted. 
 
These buttons can sense the continuous pressure you apply to them. 
 
These inputs will be associated with effect parameters, 
and they allow you to shape the sounds that you trigger with the  
device. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-4: “Affordance Training” user study script (Training) 
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This movie will show you which gestures you can use to trigger sounds with the system. 
 
It's important to remember that when executing a gesture, you must squeeze and hold the trigger button 
through the entire gesture. Then, you can let go when you are done. 
 
Here is the first gesture 
 
Here is the second gesture 
 
Here is the third gesture 
 
Push the toggle button up to put the most recent sound you triggered into looping mode. You can cancel the 
current looping behavior by pressing down on the same button. Press the button directly in to cancel all 
looping. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-5: “Preset Gestures” user study script (Presets) 
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This video will show you how to apply effects to the sounds that you trigger. 
 
Twisting the device like this applies a sweeping filter to the sound. 
 
Squeezing on this button applies a tremolo effect to the sound. 
 
Squeezing on the handle like this applies a pitch shift to the sound. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-6: “Preset Mappings” user study script (Presets) 
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Pre-Interaction Questions 
Answer these questions first, before starting any other part of the experiment. 
 
*  1. What is your experiment ID code? (the experimenter should give you this) [] 
 
*  2. What is your age? [] 
 
*  3. What is your gender? 
 
*  4. How experienced are you at playing any musical instrument (other than singing)? As you answer this 
question, consider of the instrument, if any, that you are most familiar with. 

(1) not experienced at all (2) (3) (4) (5) (6) (7) very experienced 
 
5. What instrument (if any) do you have the most experience with? [] 
 
*  6. About how much time per week (on average) do you spend playing a musical instrument? 
 
 0 min 30 min 1 hr 2 hrs 5 hrs 10 hrs 20+ hrs 
 
*  7. How much experience do you have performing any musical instrument (other than singing)? As you 
answer this question, consider the instrument, if any, that you are most familiar with. 
 
 (1) not experienced at all (2) (3) (4) (5) (6) (7) very experienced 
 
8. What instrument (if any) have you performed with most? 
 
*  9. About how much time per week (on average) do you spend performing with a musical instrument? 
 
 0 min 30 min 1 hr 2 hrs 5 hrs 10 hrs 20+ hrs 
 
*  10. How would you rate your general level of musicianship (including singing)? 
 

(1) novice (2) (3) (4) (5) (6) (7) expert 
 
*  11. How much do you enjoy listening to music? 
 

(1) not at all (2) (3) (4) (5) (6) (7) very much 
 
*  12. About how much time per week (on average) do you spend listening to music? 
 
 0 min 30 min 1 hr 2 hrs 5 hrs 10 hrs 20+ hrs 
 
*  13. How much do you enjoy playing music? 
 

(1) not at all (2) (3) (4) (5) (6) (7) very much 
 
*  14. Have you ever conducted an orchestra or led a band? How experienced are you with this task, or a 
similar one? 
 

(1) not at all experienced (2) (3) (4) (5) (6) (7) very experienced 
 
 

Figure E-7: Pre-interaction survey, filled out by all participants 
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Post-Part-A Questions 
These questions are to be answered after you have completed part A of the study. 
 
*  15. How enjoyable was your experience using this system? 
 

(1) not enjoyable at all (2) (3) (4) (5) (6) (7) extremely enjoyable 
 
*  16. How engaging was your experience using this system? 
 

(1) not engaging at all (2) (3) (4) (5) (6) (7) extremely engaging 
 
*  17. How expressive did you feel that you could be in using this system? 
 

(1) not very expressive (2) (3) (4) (5) (6) (7) extremely expressive 
 
*  18. How easy was it for you to learn to trigger the sounds that you wanted? 
 

(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy 
 
*  19. How easy was it for you to actually trigger the sounds successfully once you had figured out the 
gesture to sound associations? 
 

(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy 
 
*  20. How easy was it for you to learn to manipulate the effects? 
 

(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy 
 
*  21. How easy was it for you to actually manipulate the effects once you had figured out the manipulation 
to effect associations? 
 

(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy 
 
*  22. How likely would you be to want to use this system again in a non-performance (play) context? 
 

(1) not likely at all (2) (3) (4) (5) (6) (7) extremely likely 
 
*  23. How likely would you be to want to perform with this system? 
 
 (1) not likely at all (2) (3) (4) (5) (6) (7) extremely likely 
 
*  24. How much “personalization” did you feel that this system offered to you? 
 

(1) no personalization (2) (3) (4) (5) (6) (7) very much personalization 
 
*  25. Please rate your feelings about the level of personalization you experienced. 
 

(1) far too little personalization (2) (3) (4) (5) (6) (7) far too much personalization 
 
*  26. How appropriate did you feel that the connection was between the types of gestures possible with the 
instrument and the sounds that could be triggered? 
 

(1) not appropriate at all (2) (3) (4) (5) (6) (7) very appropriate   
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*  27. How appropriate did you feel that the connection was between the types of manipulations possible 
with the instrument and the effects that could be controlled? 
 
 (1) not appropriate at all (2) (3) (4) (5) (6) (7) very appropriate 
 
*  28. How well did the system recognize your gestures? 
 

(1) not well at all (2) (3) (4) (5) (6) (7) extremely well 
 
*  29. How novel do you feel this system is? 
 

(1) not very novel (2) (3) (4) (5) (6) (7) extremely novel 
 
*  30. How in control did you feel during your experience with the system? 
 

(1) not in control at all (2) (3) (4) (5) (6) (7) very much in control 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure E-8: Post-part-A/B survey, filled out by all participants 
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 Final Questions 
These questions are the last batch that we will ask you to answer. 
 
*  47. Please rate your general level of enjoyment in playing new musical instruments (instruments that you 
do not have previous experience with). 
 

(1) I do not enjoy this at all (2) (3) (4) (5) (6) (7) I enjoy this very much 
 
*  48. Have you ever built your own traditional musical instrument? [Y/N] 
 
*  49. Have you ever built your own unconventional musical instrument (electronic or otherwise)? [Y/N] 
 
*  50. How creative do you consider yourself? 
 

(1) not very creative (2) (3) (4) (5) (6) (7) extremely creative 
 
*  51. How much of a risk-taker are you? 
 

(1) not at all (2) (3) (4) (5) (6) (7) very much 
 
*  52. How much do you enjoy solving open-ended problems, that have no "right" answer? 
 

(1) do not enjoy this at all (2) (3) (4) (5) (6) (7) enjoy this very much 
 
*  53. How proficient are you with technology? 
 

(1) not at all (2) (3) (4) (5) (6) (7) very much so 
 
*  54. Which of the two setups do you think allows for more expressivity? [first/second] 
 
*  55. Which of the two setups do you think is easier to learn to use? [first/second] 
 
*  56. Which of the two setups do you think is more engaging? [first/second] 
 
*  57. Which of the two setups do you think is more enjoyable to use? [first/second]  
 
*  58. Which of the two setups do you think has a better level of personalization? [first/second] 
 
*  59. Which of the two setups do you think is more novel? [first/second] 
 
*  60. Which of the two setups would you be more interested in performing with? [first/second] 
 
61. Do you have any additional comments about the gestural control system, and how it may or may not 
affect, improve, or detract from your sense of engagement, expressivity, ease of learning and use, feeling of 
personalization, interest in performance, novelty, or anything else? [] 
 
62. Are there other types of input control that you felt were missing, or that you would like to see in this 
instrument? [] 
 
63. Do you have any additional comments about the experience as a whole? [] 
 

 
 

Figure E-9: Final Questions survey, filled out by all participants
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Appendix F  
 
 
 
Pure-Data patches 
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Figure F-1: The main Pure-Data patch for sound triggering and modification
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