FlexiGesture: A sensor-rich real-time adaptive gesture and
affordance learning platform for electronic music control

by
David Jeffrey Merrill

B.S. Symbolic Systems, Stanford University (2000)
M.S. Computer Science, Stanford University (2002)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences
at the
MASSACHUSETTS INSTITUTE OF TECHNLOGY
June 2004

© Massachusetts Institute of Technology, 2004. All Rights Reserved.

Author

Program in Media Arts and Sciences
May 14, 2004

Certified by
Joseph A. Paradiso

Associate Professor of Media Arts and Sciences

Sony Career Development Professor

Program in Media Arts and Sciences

Thesis Supervisor

Accepted by
Andrew B. Lippman

Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences






FlexiGesture: A sensor-rich real-time adaptive gesture and affordance
learning platform for electronic music control

by
David Jeffrey Merrill

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
on May 14, 2004, in partial fulfillment of the
requirements for the degree of
Master of Science in Media Arts and Sciences

Abstract

Acoustic musical instruments have traditionally featured static mappings from input
gesture to output sound, their input affordances being tied to the physics of their sound-
production mechanism. More recently, the advent of digital sound synthesizers and
electronic music controllers has abolished the tight coupling between input gesture and
resultant sound, making an exponentially large range of input-to-output mappings
possible, as well as an infinite set of possible timbres. This revolutionary change in the
way sound can be produced and controlled brings with it the burden of design:
Compelling and natural mappings from gesture to sound now must be created in order to
create a playable electronic music instrument. The goal of this thesis is to present a
device that allows flexible assignment of input gesture to output sound, so acting as a
laboratory to help further understanding about the connection from gesture to sound.

An embodied multi-degree-of-freedom gestural input device was constructed. The
device was built to support six-degree-of-freedom inertial sensing, five isometric buttons,
two digital buttons, two-axis bend sensing, isometric rotation sensing, and isotonic
electric field sensing of position. Software was written to handle the incoming serial data,
and to implement a trainable interface by which a user can explore the sounds possible
with the device, associate a custom inertial gesture with a sound for later playback, make
custom input degree-of-freedom (DOF) to effect modulation mappings, and play with the
resulting configuration.

A user study with 25 subjects was run to evaluate the system in terms of its
engaging-ness, enjoyability, ability to inspire interest in future play and performance,
ease of gesturing and novelty. In addition to these subjective measures, implicit data was
collected about the types of gesture-to-sound and input-DOF-to-effect mappings that the
subjects created. Favorable and interesting results were found in the data from the study,
indicating that a flexible trainable musical instrument is not only a compelling
performance tool, but is a useful laboratory for understanding the connection between
human gesture and sound.

Thesis Supervisor: Joseph A. Paradiso
Title: Associate Professor of Media Arts and Sciences






FlexiGesture: A sensor-rich real-time adaptive gesture and affordance
learning platform for electronic music control

by
David Jeffrey Merrill

The following people served as readers for this thesis:

Thesis Reader
Bruce M. Blumberg
Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences
Massachusetts Institute of Technology
Thesis Reader

Perry R. Cook
Associate Professor of Computer Science and Music
Princeton University






Acknowledgements

I’d like to give acknowledgement to the following people, who have each been an
important part of my progress on this project.

To Joe Paradiso, for believing in my ability to make this research project happen, and
for his continuing support and advice along the way. I have gained much insight into
electronics and music through my work with Joe, and for that experience I am very
grateful.

To Bruce Blumberg and Perry Cook, my gracious readers, for providing early-stage
ideas and enthusiasm for this project, as well as later-stage advice.

To Stacy Morris, who helped me get up and running with the stack hardware, and gave
me bits of her time when there weren’t really any spare bits.

To the staff at the Media Lab, especially Linda Peterson and Lisa Lieberson, for their
invaluable administrative help and counsel during the past year and a half.

To Yuri Ivanov, mentor and friend, for his generous advice and interest in this project.

To Ted Selker, for kicking off this adventure by bringing me to the Media Lab in the
first place, and for teaching me a great deal about building and inventing along the way.

To my colleagues in the Responsive Environments Group, who have been good friends
and wise sources of “how-to” expertise.

To my parents, who always expected me to achieve and gave me the love and support to
do so, to my sister whose talent for “real music” is unmatched, and to my brother whose
creative pursuits are off to a great start. [ appreciate all of you more than you’ll ever
know.

Finally, to Amy, whom I adore and whose companionship is selfless and true.

Thanks everyone!






Table of Contents

ADSITACT ...ttt ettt e e et e et b e e e etb e e e bt e e e aaeeebeeeeaeeeebaeeeabeeenaraeeraeens 3
LSt OF FIGUIES ...ttt ettt ettt ettt e s e ebeesaeeens 13
LISt OF TADIES ....vvieiieeceeee ettt ettt et e e et e e e ta e e eaaaeeeaaaeennreeas 15
1 Introduction: On old and new musical INStIUMENLS .........coceeriiiiiieniieienie e 17
1.1 AcOUSHIC INSIIUMENLS ......ovviiiiiiiiniiiiieiieeii ettt et 19
1.1.1 The coupling of the physical body to sound in acoustic instruments .............. 20

1.2 Multi-DOF human-computer interfaces, and the decoupling of input and output . 20
L.2.1 ASTOTAANCES ... eeiiieiieiiie ettt 21
1.2.2 Multi-degree-of-freedom interfaces..........oceevieeiieriiiiieniiciece e 22
1.2.3 Synthesizers: finally, arbitrary output.........ccccoeeveeeciieecciieecie e 23
1.2.4 Decoupled at last: implementations and implications ...........cccceecverienerruennnene 23

1.3 The modern mapping problem, and related Work...........ccceevviieiiiieiiiinciieeeeee 25
1.4 Adaptive USEr INEEITACES. .. .cuieiieiiieiieeiieeie ettt ettt ettt et e e eaee e 27
1.5 Existing algorithmic and adaptive musical interfaces ...........ccceevevveevveeeeieeeeneeenne, 27
1.5.1 Style IMItation......cccveeeiieiiieiieeie ettt ettt et s aee e s e e 27
1.5.2 Adaptive Signal PrOCESSING ......cccveeeriieeriieeiieeeieeeeieeeeieeeereeesveeesaeeenaeeeenees 28
1.5.3 Evolution-insSpired SYStEIMS .....cc..eevuiiriieriieeieeiieeieesite et esiee e eseee e e saeeenneenes 29
1.5.4 Other 1earning SYSIEMS. ......ccveeeiiieeiieeeiieeeiieeeieeesreeesreeesereeesreeeseeessseeessseens 29

1.6 On embodied INSLIUMENES ......cocueriiriieiieierierie ettt 30
1.7 On human motion, emotion and musical eXPreSSION..........cccveeeruveeeruveerireeesreeenne 32
1.8 PTOJECE ZOALS...couiieiiieiiiciieee ettt ettt ettt et et 32

2 Hardware: Building the physical deviCe..........cccuveciieriiiiiiiiiieiieie et 35
2.1 Summary and ZOQAlS.........cecuiiiiiiieiiie e e e s eas 35
2.2 Sensors and Communication: the Stack platform............cccoooeiiiiiiiiiiiniiniiee 36
2.3 Application-SPECITIC CITCUILS ....uviieririeeiiiieeiieeeiieeeteeeeeeeteeeereeeeteeeeraeesaeeeenreeenns 37
2.3.1 OULPUL LAYET ..eeeiiieeiiie ettt ettt ettt e e e e e 37
2.3.2 CIrcular PCB ..ot 39
2.3.3 Modifications to the tactile v4 board ..........cccoecveeeiiiiiieiienieeeee e 39

2.4 Microcontroller embedded code ..........ccoiiiiiiiiiiiii 40
2.4.1 Data COIECHION .....eeeiiieiiieiieeiie ettt ettt ettt e eaeebe e eenseees 41
2.4.2 Data tranSmISSION ... ..ccvutiriieiieeieeitteeieesite et e stte et e sieeebeesite e bt e sateebeesateebeeeeee 41
2.4.3 Feedback generation ..........cccc.eeeuieriieriienieeiieeieeieesieeeieesiteeseeseaeeseesaeeenseees 43

2.5 Form factor and affordances ...........o.coeouieiieiiiiiieiiieeeeee e 44
2.6 Electric Field SenSing ........cccoeviiiiiiiiiieiieieeieeite ettt 49



3 Software: Learning, mapping, and glUe...........cccocvuieiiieniieiiieniieiiee e 53

3.1 Summary and GOAlIS........cccuieeiiiieiiiecie e e 53
3.2 Java, C, and the JNT framewWoOrK...........coovveoiiiiieiiiiieiiiiiiieeee et 54
3.2.1 Java graphical User INtErfaCe........cccvuvieriiiiiiiieciie ettt 54
3.2.1.1 I/O: For configuring [/O SETUP .....cccveeriieiieeiieiieeieeieeeee et 56
3.2.1.2 TestPanel: For creating input-DOF to effect mappings.........c.ccccveeennnne 57
3.2.1.3 Stripcharts: For data visualization ............ccccceevveriiinieeciieniecieeeeeeieeeen 57
3.2.1.4 Gesture control Panel ...........cccviieciiiiiiieiie e 58
3.2.2 C and Java modules for data storage and manipulation..............ccccceevueernennen. 58
3.2.3 Multi-threaded serial data handling framework............cccccccvvevviienciiencieen. 58
3.2.3.1 LiStENET STIUCIUIE ..c.veeuviiiiiienieeiieieete ettt ettt sttt et sbeeae et sieens 59
3.2.3.2 Managing the serial data flow during CPU-intensive operations............. 60

3.3 Trigger and MOdif......cccueeiiieiieiieeiiee et st 61
3.4 EXploring the SOUNA SPACE .......eeeeviieeiieeciieeeiee ettt et e e et esraeeeeaee e 62
3.5 GEStUIE TECOZNILION .....eeueieeiiieiieeiieeiteeiteeteeteeeteesteeebeesseeesbeessaeenseessseenseesnseenseennns 63
3.5.1 Statistical pattern-recognition methods...........cccveevviiieniiieiiiieiie e, 63
3.5.2 Dynamic tiMe-WarPINg ........c.cecveerurerrueerureereenieessseenseeeseenseeeseessaesseesseessseenses 64
3.5.2.1 Speed of the DTW algorithm...........ccceveiiiiiiiiieiie e 66
3.5.2.2 IMU-based dynamic time-warping recognition trial runs ........................ 68
3.5.2.2.1 Naive distance from the mean gesture:...........eccveeevveeeriieenieeerreeens 68
3.5.2.2.2 FOUTIET dESCIIPLOTS: .eeuvveeurieiieeieeeiieeiieeieeeteeereeteeenneeneeesnseesaeeenseenenes 68
3.5.2.2.3 Pre-processed naive diStance: .........ccceecveeeeieeeriieeeiieeeniee e 69
3.5.2.2.4 Pre-processed Fourier descriptors:........ccoecvierieeiieeneeenieenieeieeneeeenenen 69
3.5.2.2.5 Dynamic Time-Warping: .........cccceevvurieriieeriieeciee e e 69
3.5.2.2.6 Pre-processed dynamic time-warping:...........cceeeeeeveeneeesveeneeeneennne 70

3.6 Interactive mapping of the device INPULS.......cceevcvieiriieeriiie e 71
3.7 S0oUNA SYNTRESIS ..c.vviviiiiiiiiiiieieeteete ettt st 72
3.8 Software CONCIUSIONS .......eiuiiriiiiiiiiiciiteee e 74
4 User Study: Design and reSUILS ..........cccviiriiiiiiiiieeiieeie ettt ens 75
4.1 Study ProCeAUIE .......couiiiiiiiiiiiiiiicteeccet ettt 75
4.1.1 PreSets MOAE ... .ouviiieiieiieiiee ettt sttt 76
4.1.2 Training MO ......oeuieiiieiieiie ettt ettt et 76
4.1.3 Data saved t0 diSK .....ccuiiiiiieiiiieeeeeee e 77
4.2 STUAY DESIZI....eiuviriiiiiiieeiieetete ettt sttt st 77
4.3 Survey-based Study RESUILS .......cccvieiuiiiiiiiiieiieiiece et 78
4.3.1 GeStUIING (PATT 1) .eeeuiieiiieiieie ettt ettt e 78
4.3.2 Expressivity and Personalization (part 1) .........cccccvevieeciienieiiiienieeieenieeeeeenes 80
4.3.3 Enjoyability and future play, performance (part 1) ........cceceeiieniiiininniieene 81
4.3.4 GEStUITNG (PATE 2) .eeeeirieeiiieeeieeerieeeteeetee et e eetreeetreessteesseeessseeessseesnnseesnnses 82
4.3.5 Future play, performance, and novelty (part 2) .......cccoeceevieiiienieniieenieeieene 84
4.3.6 Wrap-up questions (Part 3) .......cccccceeeiieriiiiiiecieeieecee et 86
4.4 Results from other data captured ............cccvveeeiieeiiieeiieeeecce e 87
4.4.1 GeSture Length........c.ooooviiiiiiiieicceceece e e 87
4.4.2 Gesture to SOUNd aSSOCIALIONS .....vvveeevrieereiieeiiieeeieeeeieeeeereeeereeeseaeesreeeeseeeennas 89
4.4.3 Input DOF to effect Mappings .......ccccccvevveeeiienieeiiienieeieesee e esiee e eseee v 90

10



4.5 Study CONCIUSIONS .....eviiiieiiiieiieeiie ettt ettt ettt et e ste et sateebeeseaeenseesaeeenseenees 92

5 Conclusions and fUture WOTK ...........coceriiiiiiiiiiniieeecee e e 93
5.1 SUMMATY 1ottt ettt e ettt e e et e e e e bt e e e sesstaeeeesnsaeeeesnsaeaesanssneeeannns 93
5.2 FUUIE WOTK ...t 95
5.3 FULUre APPLICAtIONS......eiiiiiieeiieeeiiieciieeeieeeetee et e et eesiaeeetaeeeeaeeesaeeesaeeensaeeennes 98
5.4 So, will it replace the electric gUItar?............cccoevieriieriieniieiee e 99

A Abbreviations and SYMDOIS .........c.ceriiiiiiiiiiiieeie e 101

B Schematics and PCB [ayouts..........ccccocuieriiiiiiiiieiiieiecieeteee et 103

C Embedded € COAe......couiriiiiiiiiiieiecieeitee ettt st 113

D Java cOAe SUMMEATY .....cc.oiiiiiiiieiieiie ettt ettt ettt ete et e e b e e ssaeseseesseeenseeneees 125

E Experimental Materials.........cceeiiiiiiiiiieiieiie ettt st 137

F Pure-Data PatChes .......coviiiiiiiieiie ettt 149

BIDLIOZIAPNY ..ottt et e b e nee s 151

11



12



List of Figures

Figure 2-1: An early brainstorming sketch of the device .........cccooceeiiniiiiniiniiiiie, 35
Figure 2-2: Close-up of transmit (top) and tactile (bottom) layers.........ccccceeervervenennens 36
Figure 2-3: Stack components mounted on the circular PCB..........c.ccocoiiniiiinininnnn. 36
Figure 2-4: Overview of stack configuration used for the device ..........ccoceeveriinienennens 37
Figure 2-5: Hardware overview for the output 1ayer..........cccccvevieeiiieniiiciieniecieecie e 38
Figure 2-6: The circular PCB........cocoiiiiiiiiiiiicecceeeeeeeee et 39
Figure 2-7: The deVICE. ..c.eeuiiiiiiieiieieeeecee ettt et 44
Figure 2-8: The physical device being played..........coccvveeviiieriiiiiiieeeeeeeeee e, 45
Figure 2-9: How the upper handle’s FSR was attached and surrounded with foam......... 47
Figure 2-10: Demonstrating the spring steel, rubber foot and FSR mechanism............... 47
Figure 2-11: Early sketch of the lazy susan idea ...........cccooeeiniiniiiiniiniiiieceee 48
Figure 2-12: The spring steel protrudes through the upper-carriage “tongue”................. 48
Figure 2-13: The power layer attaches to the bottom of the main body. ............ccoce.. 49
Figure 2-14: Bend sensors mounted inside the right hand handle. ............c.ccccceeeiennen. 49
Figure 2-15: The Electric Field Sensing layer..........cccooceeviiiiiieiiieniiieieeieeeeeee e 49
Figure 2-16: Electric Field Sensing SEtUP .......cccveervvieeriieeriieeiee e 50
Figure 2-17: Hardware system data-capture OVEIVIEW ..........ccceeceerueerienienieenieneenieenieenens 51
Figure 3-1: I/O setup panel of the GUI........c..cociriiiiiiiniiieeceeeeeeeee e 55
Figure 3-2: Effects mapping panel of the GUI ..........cccvveeiiiiiiiiieeceeeeeeee e 55
Figure 3-3: StripCharts panel of theGUI ..........c.cooeiiiiiiiiiiiiieeeeeeee 55
Figure 3-4: Gesture panel of the GUI ............oooiiiiiieiieee e 55
Figure 3-5: Semaphore-based serial data handling...........cccccecevieniniiniininiinienciienee 59
Figure 3-6: Software (Java) handling of incoming serial data............c.cccccveevciivenieennnnn. 61
Figure 3-7: Pushing the toggle button Up.........ccceeieeiiieriieiiecie et 62
Figure 3-8: Dynamic time-warping in aCtiON..........c.ceecuveeerveeerireeeieieesieeeeieeeeeeeeeneeesneees 65
Figure 3-9: Overview of the gesture-recognition ProCess..........cceerveerieeriveerieesueeneeennens 66
Figure 3-10: A single gesture, before (top), and after (bottom) preprocessing. ............... 69
Figure 3-11: Locating a region with typical “at rest” variance levels. ..........cccccocuenennene. 69
Figure 3-12: Control data (left) and audio (right) flow in the pure-data patch................. 73
Figure 3-13: The PD patch responsible for loading and playing back an audio sample .. 73
Figure 4-1: Ease of learning (left) and executing (right) gestures (part 1) ........cccccueennene. 78
Figure 4-2: Perception of the system’s accuracy in gesture recognition (part 1). ............ 79
Figure 4-3: EXPressivity (PArt 1) ...cc.coceiioniiienienieeienieseeeeese ettt 80
Figure 4-4: Level of personalization (Part 1).........ccceeevvieeriiieeiieeeiiieciee e 80
Figure 4-5: Enjoyability (Part 1) ......cocoviiriiiiiiieieieniereeeceeesee e 81
Figure 4-6: Likeliness to be interested in further play, performance. (part 1).................. 81
Figure 4-7: Ease of learning (left) and executing (right) gestures (part 2) ........cccccveenenn. 82
Figure 4-8: Perception of the system's accuracy in gesture recognition (Part 2).............. 83
Figure 4-9: Likeliness to be interested in further play, performance. (part 2).................. 84
Figure 4-10: How novel was the system? (Part 2) .......cceeevvveeeeiieeeiiieeieeeieeeieeeeiee e 84
Figure 4-11: How expressive did you feel that you could be in using the system?.......... 85
Figure 4-12: Post-study summary questions (Zroup A)....cceeeeuveeeeeeeeniieeeeirieenreeesveeenveens 86

13



Figure 4-13: Post-study summary questions (Zroup B) .......cccceevieriiiiiiiniiiiiiiecees 87

Figure 4-14: Suggesting a correlation between sound length and gesture length............. 88
Figure 4-15: Average gesture length for “short” and “long” sounds..........cccccecveverveennnene &9
Figure B-1: Schematic for the Output Layer ..........cccoecvieviiiiiiiniieieie e, 104
Figure B-2: PCB for Output Layer top (top) and bottom (bottom) ..........c.cccecvveeeerernnnee. 105
Figure B-3: Schematic for the Circular PCB ..........ccccoooiiiiiiiiiiiiceeee 106
Figure B-4: PCB for Circular PCB (10P) ..vvveeiiiieiiieeieeeieeeeeeee e 107
Figure B-5: PCB for Circular PCB (DOttom) ..........cccuieviieriieiiiiieieeeeeeeeie e 108
Figure B-6: Schematic for the Electric Field Sensing Layer.........c.cccoceeveiiencieenneeennne. 109
Figure B-7: PCB for the Electric Field Sensing Layer top (top), and bottom (bottom). 110
Figure B-8: A piezo signal-conditioning circuit, before re-purposing for FSR use. ...... 111
Figure B-9: The piezo signal-conditioning circuit, after re-purposing for FSR use........ 111
Figure B-10: Connection diagram for the 2 digital buttons...........c.cccceveevevieiiieeeeneenne. 111
Figure C-1: thesis.c embedded C code .........cooviiviiiiniiiiiieeceeee e 114
Figure C-2: thesis.h embedded C code ........cooouieiiiiiiiiiiiiieieceeee e 119
Figure C-3: 206.h embedded C cOde .......ccuiieiiiiiiiieeiieceeee e 120
Figure C-4: output_leds.h embedded C code..........cccuveiieniiiiiiniiiiiieceeeeee e, 121
Figure C-5: output_leds.c embedded C code........ccuevvviiieeiiieiiieeiiecieecee e 123
Figure D-1: Main program Java package: edu.mit.media.amc...........cccceeevveercrveenreeennne. 126
Figure D-2: Serial Java package: edu.mit.media.amc.serial..........cccceovveveeneriieneenennne. 133
Figure D-3: Sensor data display Java package: innards.util.widgets............ccceeeeuvennnee. 134
Figure D-4: DirectoryChooser Java package: se.datadosen ...........c.cccceeeevevieniiennennen. 136
Figure E-1: Instruction page given to subjects in the Training condition....................... 138
Figure E-2: Instruction page given to subjects in the Presets condition............c...c........ 139
Figure E-3: “Gesture and Manipulation Training” user study script (Training) ............ 140
Figure E-4: “Affordance Training” user study script (Training).........c.cccceeeveevveenerennnen. 141
Figure E-5: “Preset Gestures” user study script (Presets)........coocveveerieeiieniieeneenieeen. 142
Figure E-6: “Preset Mappings” user study script (Presets).......ccceeeveevierciieniencieeninennnen. 143
Figure E-7: Pre-interaction survey, filled out by all participants...........ccccceceereeenennen. 144
Figure E-8: Post-part-A/B survey, filled out by all participants..........c.ccccceeeveerreenereennen. 146
Figure E-9: Final Questions survey, filled out by all participants ............cccccceeeveennennee. 147
Figure F-1: The main Pure-Data patch for sound triggering and modification............... 150

14



List of Tables

Table 2-1:
Table 2-2:
Table 2-3:

Table 3-1:

Table 3-2

Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:

Use and modification of signal-conditioning circuits in the Tactile layer ...... 40

Byte allocation in a single stack data packet............coeoeeiiiniiiiiniiniieee, 41
Input affordances of the deviCe .........oocveriiiiriiiiiiiiieeeee e 46
Runs of the DTW algorithm in C and Java, and associated running times..... 67

: Results of the gesture-recognition trialS..........cccceevieniiiiieniiiiienieeceeeeee, 70
Sound lengths and average gesture lengths..........c.coeeveeviiieniiiicciecie e, 88
Average gestural acceleration and rotational energy per sound...................... 89
Effects available, usage, and polarity trends observed...........ccceeevveenireennenn. 90
Number of mappings created per category, and polarity consistency............. 91

15



16



Chapter 1

Introduction: On old and new musical instruments

The history of musical instruments has long been about the sounds they make, the
materials they are made from, and the affordances that they provide the performer. From
Chinese bone flutes dated at 9000 years old [Zhang, et al. 1999], to Italian violins from
the 16™ century [NMM website], the art of making an expressive instrument has
consistently taken advantage of the current state-of-the-art in materials and technique. Up
until the past 100 years, the materials available for building musical instruments have
been passives like wood and bone, stone and metal. Instrument makers were craftspeople
that had mastered the art of sculpting and joining these materials, and their instruments

featured affordances like strings to bow, reeds to blow, and keys to strike.

The emergence of electronics and computers, the recent shrinking in size of
microcontrollers and electronic components, and the development of the fields of
artificial intelligence and pattern recognition are allowing the materials and technique of
instrument building to diverge from tradition in a profound and discontinuous manner.
Handheld instruments can now be active, having many different types of built-in sensing,
processing and communication abilities. In addition, the generation of sound is no longer
tied to the physics of a musical instrument. Whereas a 20™ century horn produced sound
by exciting a resonant mode of oscillation in an air chamber made of brass, an electronic
musical instrument today can synthesize sound algorithmically, generating waveforms

with rules that are not governed by any physical constraint.

17



The opportunity created by these new instrument-making capabilities brings with it a
corresponding degree of complexity. The opportunity comes from the fact that the sound
produced by the device is no longer coupled to its physical design. Small, cheap sensors
can be densely packed into an interface, creating a multi-degree-of-freedom device with
input affordances that have no inherent mapping to sound. This decoupling makes the
designer’s imagination the only limit to how a performer can play a device and what
sounds can be produced. The new complexity is that with the exploded range of choices
faced by an instrument-builder, it is not obvious how to decide the ways that the
instrument will sense the performer’s gesture and how that manipulation will be turned

into sound.

This thesis proposes to solve this problem by introducing a new sensor-rich electronic

music controller device, and a novel gesture-to-sound mapping scheme that allows the
device to adapt to the gestures of the user. I hope that this system will serve as a model
for current and future input device designers — musical and otherwise — in building a

personalizable and expressive physical input device.

18



1.1 Acoustic Instruments

An acoustic musical instrument is a device that is played through physical manipulation
by a person, and that creates sound through this manipulation solely by virtue of its
physical construction. Various taxonomies have been proposed by scholars over the years
for acoustic musical instruments, and these categorizations are typically based on the
mechanism by which the sound is produced. Mahillion grouped acoustic instruments into
autophones (bells, xylophones, music boxes), acrophones (wind), chordophones
(stringed), and membranophones (drums) [Mabhillion 1893]. Sachs refined upon this
categorization later, changing the name “autophone” to “idiophone” to avoid making the
suggestion that this class of devices would play themselves [Sachs 1913]. A recent
taxonomy by Kvifte [Kvifte 1989] is based more upon the physical manipulations that a

performer uses to actuate the instrument, such as plucking, bowing, or striking'.

Building and playing musical instruments have long been a part of the human experience.
The earliest musical instruments that we have evidence of are playable flutes discovered
in China that have been dated at 9000 years old. To put this figure in perspective, the
earliest known wheel, made of stone and uncovered in modern-day Iraqg, has been dated
at around 5500 years old. This long history of musical instrument design speaks to the
centrality of music and musical-instrument construction in the human experience. As a
result of these many years of human craftsmanship directed towards building playable
instruments, acoustic musical instruments have converged towards a number of mature
designs today. Modern versions of acoustic instruments like the violin, flute, and piano
have the benefit of hundreds or even thousands of years of iterations informing their
current design. Examination of surviving acoustic instruments from just the past few
centuries (guitars, for instance) shows that constant changes and refinements to certain
instruments have been made, while others that matured early (violin, for instance) have

remained relatively unchanged for hundreds of years.

"In this case, plucked and bowed violin are in separate families [Goudeseune 2001]

19



1.1.1 The coupling of the physical body to sound in acoustic instruments

The sounds produced by traditional acoustic instruments are intimately connected to the
component materials, the way that these materials are put together, and the way that a
performer interacts with the device. We can examine this claim by taking a guitar as an
example of a stringed acoustic instrument. The body of a guitar is typically made of a
wood such as mahogany, spruce, maple, cedar, or some variety of rosewood [Santa Cruz
Guitar Company website], and the strings are made of steel or nylon. In order to create
sound with a guitar, a performer can strum, tap, pluck, or scrape a pick across the strings.
The performer can also tap on the body in a percussive way. These manipulations are just
the most common subset of the enormous range of manipulations that performers over
the years have used to create sounds with guitars [Frith] [Bailey]. The important point
about the example is that all of the sounds that are possible to produce with an acoustic
guitar are linked to the physics of the embodied instrument. These sounds are produced
when modes of vibration in the resonant cavity of the body become excited by
manipulations made to the strings or to the body directly. These vibrations project sound

out into the open air.

Performers have always found new and unusual ways to manipulate acoustic instruments
in order to create novel sounds with them (see the discussion of affordances below), but
ultimately the sounds that are possible are constrained by the physics of the instrument.
When exciting a given physical object to produce audible vibrations, the physical

structure of the object necessarily constrains the space of possible sounds.

1.2 Multi-DOF human-computer interfaces, and the decoupling of input and
output

The myriad ways that we interact with musical instruments has changed dramatically
over the past century. The following section will explore the idea of input affordances,
degrees-of-freedom, and modern synthesizers. It will provide the backdrop against which

the mapping problem is framed in the next section.

20



1.2.1 Affordances

Don Norman defined affordances as “the perceived and actual properties of the thing,
primarily those fundamental properties that determine just how the thing could possibly
be used.” [Norman 1988] The affordances of acoustic musical instruments are typically
tied to the sound-production mechanism. For instance, the strings of a guitar afford
plucking, fretting, and strumming, while the mouthpiece of a saxophone affords blowing,
and its keys afford pressing. Each of these ways to use the instrument has to do directly
with the physics of the sound-production mechanism. A sophisticated player of an
acoustic instrument is aware of many more subtle affordances of their instrument, learned
and discovered through years of experimentation and familiarity with the device. For
instance, the body of a stand-up bass can be tapped on in a percussive manner to create a
rhythm, and the neck of a guitar can be bent to slightly detune the strings. These subtle
affordances may not have been explicitly designed into the device, but rather they “fall
out” of the way it is built. Nonetheless, the subtle affordances contribute to the

complexity of the device, and the resulting expressiveness that is achievable when

playing.

Electronic music instruments, in contrast to their acoustic predecessors, tend to have
fewer subtle affordances. They are typically designed to measure a performer’s gesture
with sensors or switches, converting the instantaneous analog state of the device into a
discrete symbolic representation. This symbolic representation is then transmitted to a
sound synthesizer, which generates an output waveform in response. A crucial bottleneck
in this transmission of information from input gesture to output sound is the intermediate
symbolic representation. Whereas an acoustic instrument has the benefit of the rich set of
affordances that fall out of the direct and physically based connection between gesture
and sound, the input affordances of an electronic music instrument typically have to be
designed into the system explicitly. Unusual ways of playing electronic music controllers
are inevitably discovered by creative performers, but since every sensor or switch must
be placed intentionally by the instrument-designer, there are necessarily fewer of these
“happy accident” style affordances than the number that fall out of the design of an

acoustic instrument.

21



One way that performers with electronic music controllers overcome a lack of
affordances is to develop advanced playing technique. The theremin — the first electronic
musical instrument to gain any significant degree of popularity — only really had 2
affordances, the performer’s body distance from two receivers on the instrument was
linked to volume and pitch [Galeyev 1995]. However, theremin virtuosos over the years
have developed amazingly fine hand-and-upper-body motor control that allows for a high
degree of expression and precision. A possible way for an electronic music instrument to
mitigate its lack of accidental affordances is for its designer to build in a large number of
explicitly placed affordances. The Sensor Shoe [Paradiso et al. 2000] was a wearable
shoe controller with 16+ sensors that were mapped to musical events in a number of
separate performances. Electronic sensors and components are becoming smaller and
smaller, and thus today it becomes possible to greatly increase the number of sensing
elements contained by a single electronic music instrument. This is the strategy employed

by the author, and the result is a multi-degree-of-freedom device.

1.2.2 Multi-degree-of-freedom interfaces

A multi-degree-of-freedom (multi-DOF) interface is one that presents a number of
different input affordances to the user. These affordances are typically linked to an input
degree-of-freedom present in the instrument. The distinction between an affordance and
an input degree-of-freedom is that an input degree-of-freedom is a manipulation of the
device that is measured by a switch or continuous sensor, while an affordance can be any
aspect of the device that affects how it can be used. For example, an input degree of
freedom of a car steering wheel is the amount of rotation applied to the wheel, while an
affordance might be the horizontal segments of the wheel that allow the driver’s hands to
be rested on them during calm driving. Turning and resting are both ways that a driver
interacts with the system, but while the degree of rotation is sensed and used by the
system, the hand-resting usage is not. Multi-degree-of-freedom computer interfaces offer

exciting possibilities for electronic musical instrument and interface designers, because

22



number and diversity of sensors available today creates the opportunity to build a device

that can be as expressive — albeit with different affordances — as its acoustic counterparts.

1.2.3 Synthesizers: finally, arbitrary output

The emergence of electronic and digital audio synthesizers in the last century is enabling
radical and discontinuous change in the way that musical sounds are made and controlled.
Analog synthesizers use hardware oscillators, filters, analog signal conditioning and
control electronics to synthesize dynamic spectra-rich tones, while digital synthesizers
use algorithmic rules and digitized representations of a sound to create their output. The
variety of sound synthesis techniques in use today is beyond the scope of this work, but
most notable is the fact that these techniques allow arbitrary waveforms to be produced
and turned into audible sound. No longer is the sound generated by a system dependent
on the physics of a physical object; rather, the possible sounds are subject only to the

limits of the skill and imagination of the audio designer.

1.2.4 Decoupled at last: implementations and implications

Cheap and miniaturized electronic sensors and components, coupled with modern sound
synthesizers offer a discontinuous leap in musical instrument design because they break
down the traditionally mandatory coupling between the way a performer plays an
instrument (affordances and input degrees-of-freedom) and the way it produces audible
sound (synthesis). In order to create an electronic music controller though, there must
necessarily be some connection between the performer’s input gesture and the system’s
output sound. Early electronic music controllers like the theremin featured a direct
mapping from input to output, the sensed level of some input degree of freedom tied
directly to an obvious parameter like pitch of volume. With the advent of computers, the
link between input and output can be made more abstract and “stateful”, with
sophisticated symbolic processing happening between the input sensor and the
synthesizer. Over the years there have been several such “glue” implementations, and in

the following paragraphs we will look specifically at two of them, MIDI and OSC.

23



MIDI is a hardware specification and messaging protocol that was designed in the early
1980’s to allow arbitrary controller/synthesizer pairings. MIDI’s messaging protocol is
digital, and messages are typically 2-3 bytes in length. These messages are transmitted
via an asynchronous serial interface that runs at 31,250 bits/sec (baud). MIDI has
immense momentum today, being implemented in thousands of commercial hardware
and software products, and it is certainly the most popular example of the decoupling of
input control and sound synthesis in electronic music controllers. MIDI revolutionized
the music industry because it allows physically different controllers to all “speak the
same language”, providing an opportunity for a new “mix-and-match” modularity in
coupling controllers to synthesizers. The price of this modularity though, is a number of
limitations that the protocol imposes on latency and precision for continuous control. For
instance, the “data byte” of a standard MIDI message only has 7 bits to work with, since
the state of the MSB determines the difference between a status and data byte. This
means that at most 128 unique values can be transmitted for a particular control. Another
limitation is that on a single MIDI circuit there can be at most 16 devices daisy-chained
together, and the latency through this type of loop can reach perceptually unacceptable

levels.

Awareness of the control bottleneck-related deficiencies of a MIDI has inspired work in
various directions. One approach is to “re-couple” the controller’s affordances to the
sound production mechanism by co-designing the controller and the sound synthesis
algorithm together [Cook 2003]. A more basic solution is implemented by the
OpenSound Control (OSC) protocol, which is “a protocol for communication among
computers, sound synthesizers, and other multimedia devices that is optimized for
modern networking technology” [OpenSound Control webpage]. OSC is more flexible
than MIDI in terms of how much data can be packed into messages, how messages are
addressed to recipients (includes string-matching style wildcards), and is hardware-layer
agnostic, allowing OSC packets to be routed over a gigabit Ethernet system just as easily
as a RS232 serial link. Like MIDI, OSC is an open and royalty-free specification, and its

features make OSC a natural successor to MIDI.

24



Regardless of the intermediate messaging protocol used, the decoupling of the
performer’s sensed gesture from the commands sent to the synthesizer gives electronic
music controllers modes of interaction that are not constrained by the instrument’s
physical acoustics. This decoupling of input and output featured by electronic music

controllers and synthesizers is shared by any modern human-computer interface.

1.3 The modern mapping problem, and related work

For electronic musical instruments, the modern decoupling of gestural input and
synthesized output has made possible convergent (many-to-one) or divergent (one-to-
many) mappings of controller degrees of freedom onto synthesizer parameters [Rovan et
al. 1997]. With N input degrees of freedom, and M synthesizer parameters, there are
N*M possible direct mappings — not to mention the infinite number of more “stateful”
mappings. Many people find the built-in mappings of traditional acoustic instruments
difficult enough to master; with an exponentially expanded and potentially arbitrary

“mapping space” comes the possibility of even lower usability.

The most transparent approach to mapping the outputs from a music controller to the
inputs of a synthesizer is to create behavior that mimics that of a similar acoustic
instrument. Bernd Schoner built a system that learned the low-level associations between
the sensed input state of a violin and the acoustic output in low-level, data-driven manner.
Once Schoner’s system had enough examples to characterize the connection between
input gesture and output sound, it was capable of replicating the behavior of a violin
[Schoner 1999]. Schoner’s approach has similarities to the current work, in the sense that

his system learns to associate appropriate output with the sensed gesture of a performer.

Looking further than mappings that mimic acoustic instrument behavior, the growth in
the possibility space for connecting gesture to sound brings with it the opportunity for
innovative designs that can make a computer-assisted activity like music-creation more

enjoyable, efficient, and expressive than ever before.

25



Explicit mapping strategies for electronic music controllers have achieved some success
within the enthusiast community, but thus far no truly new music controller has gained
broad acceptance. New electronic instruments that zave entered the mainstream, like the
electronic keyboard and electric guitar, tend to borrow their mappings from existing
acoustic instruments. In addition, synthesizer manufacturers that get returned units for
servicing find that users very seldom alter the preset mappings that ship with a device.
Does this mean that synthesizer manufacturers ship their products with presets so brilliant
that users never desire to customize? Perhaps more likely is the hypothesis that users find
it too difficult to create their own mappings, and thus end up leaving the presets

unchanged.

Research on mapping [Hunt, Wanderley & Kirk 2000] [Hunt & Kirk 2000] has indicated
that for some multiparametric control tasks people prefer fewer, more abstract degrees of
freedom to many, simple (separated) degrees of freedom. Hunt, Wanderley and Kirk
recommend complex mappings such as cross-coupling of input parameters to synthesis
parameters, and the use of derivatives of input parameters related to the performer’s
energy. In addition, it has been shown that in certain cases nonlinear couplings of input
parameters can be effective [Rovan et al. 1997]. It has been suggested that the mapping
scheme is perhaps the most important element to a controller/synthesizer system [Hunt,
Wanderley and Paradis 2002]. Another direction is a geometric mapping in euclidian
spaces of a small number of input parameters onto a larger number of synthesizer
parameters [Garnett & Goudeseune 1999], with a method for automatically generating
perceptual parameters for the resulting points in output space called the timbre rover. A
related implementation defines a rough mapping from a finite number of input space
configurations to output space configurations, and a corresponding interpolation scheme

for generating mappings for in-between values [Bowler and Purvis 1990].

26



1.4 Adaptive user interfaces

Adaptive user interfaces are a branch of the field of Human-Computer Interaction that
borrow techniques from Artificial Intelligence. The goal of an adaptive user interface is
to “personalize interfaces, based on observation of user activity.” [Langley 1997]
Currently most adaptive user interfaces operate on non-expressive domains like
scheduling, information access, and commercial applications [AAAI 2000 Spring
Symposium], but there has also been work in gestural understanding [Ivanov 2002]
[Pavlovi¢ and Rehg 2000] [Wilson 2000] and mapping. Robust handwriting recognition
has been a longstanding challenge in the artificial intelligence/pattern recognition
community [Bledsoe and Browning 1959], and hand-gesture recognition with neural
networks has been used to drive a speech synthesizer in real-time [Fels & Hinton 1995].
Blumberg has created a behavioral learning system called Alpha Wolf in which onscreen
animal characters learn novel behavior patterns by example, as a human “trainer” leads
them through novel actions [Blumberg 2002]. The following section will review work in

adaptive interfaces specifically from the musical domain.

1.5 Existing algorithmic and adaptive musical interfaces

The idea of creating a musical interface that learns, evolves, or adapts to the user is not
entirely new. There are a number of systems that have been built that explore ways in
which machine-learning, genetic algorithms and pattern-recognition algorithms could be
applied to the creation of music. The following section will survey some of these

systems.

1.5.1 Style Imitation
The ability to construct a musical theory from examples presents a great intellectual

challenge that, if successfully met, could foster a range of new creative applications

-Dubnov, Assayag, Lartillot and Bejerano, IEEE 2003

27



Imitating the musical style of a particular composer or performer is the focus of several
musical learning systems. The way these systems typically operate is to read in a corpus
of musical examples — commonly in MIDI file format and consisting of a sequence of
notes scheduled in time - and generate a statistical representation of the corpus. Once the
representation has been made, the generative process uses it to produce a new sequence
of notes that has similar statistical characteristics as the original corpus, but that is not a
note-for-note reproduction of any of the original inputs. Dubnov and Assayag’s system
models a style as a lexicon of motifs and their associated prediction probabilities.
Generating new content consists of “stochastically browsing” the prediction tree to
decide on the next phrase at a given step [Dubnov et al. 2003]. David Cope’s work
deconstructs pieces from the corpus to identify signatures, melodic snippets that are
characteristic of the corpus [Cope 1990]. Output generation in Cope’s system is a process
of recombination, with the reuse of these signatures adding a degree of naturalness to the
music. Pachet’s Continuator system brings a real-time component to the style imitation,
generating immediate, stylistically-related responses to musical phrases without the use

of a large preprocessed corpus [Pachet 2002].

1.5.2 Adaptive signal processing

The phrase “adaptive signal processing” usually refers to a class of algorithms that adjust
the parameters of a filter that is being applied to a stream of digital data. The adjustment
is guided by a feedback loop in order to maximize a particular fitness function applied to
the output [Widrow & Stearns 1985]. In the present context however, a more pertinent
type of adaptive signal processing is embodied by Brad Garton’s system Elthar [Garton
1989]. Elthar is an audio signal processing interface that allows for natural language
input, and is designed to function with “incomplete or inexact specification of
parameters.” When given an underspecified directive, Elthar consults a probabilistic
knowledge base that has been compiled based on a history of interaction with the current
user to fill in the needed values. Elthar also contains an analogy mechanism that allows it

to learn descriptive attributes.

28



1.5.3 Evolution-inspired systems

Genetic algorithms are finding a niche in the problem areas of state-space exploration and
optimization [Koza et al. 1999]. Mandelis’s Genophone software [Mandelis 2001 ]
implements the artificial life paradigm by performing “selective breeding” on parameter
populations in order to choose values for sound synthesis that are pleasing to a user. The
important aspect of this work from the current point of view is that it allows the user to
explore a large parameter space, but without requiring intimate knowledge of the sound
synthesis algorithms. Mandelis’s physical setup consists of a glove with bend-sensors on
the fingers connected to a computer, and a Korg Prophesy synthesizer to create the

sounds.

1.5.4 Other learning systems

Some attempts to do better than the manual specification of explicit mappings for
electronic music controllers have included the use of neural networks to map hand
gestures onto synthesizer parameters [Modler 2000], [Lee, Freed & Wessel 1991]. Cont,
Coduys and Henry used Matlab to train neural networks (that ran in Pure Data [Pure Data
website]) to recognize gestures captured by body-mounted sensors [Cont, et al. 2004].
Szilas and Cadoz proposed an analysis method for physical model networks that was
based on connectionist learning algorithms [Szilas & Cadoz 1993]. Schoner’s system for
learning the mapping from physical gestures to a synthesized violin output was discussed
earlier. Some commercial audio synthesizers feature a way to assign midi controllers to
synthesis parameters. For instance, the Lexicon MPX110 [Lexicon MPX110 website] can
be put into “Learn Mode” in which twiddling one of the knobs on the front panel and
sending a MIDI controller message to the unit will create mapping between the particular
MIDI controller and the knob’s effect. The list continues, but an interesting pattern in the
existing body of work is the minimal attention paid to the form of the physical device in
these learning and classifying systems. Perhaps David Wessel said it best in the following

excerpt from a 1991 issue of the Computer Music Journal [Wessel 1991].

29



Musicians often speak of a rather special and very personal relationship with their
instrument. Indeed, many instrumentalists adapt the instrument physically to
particularities of their playing style — choosing the bridge, string, bow, or the mouthpiece
reed combinations, and so on. On more poetic occasions a musician will speak as if the
instrument has come to know something of its player. It would seem quite natural then to

think about intelligent instruments that could adapt in some automated way to a personal

playing style.
-David Wessel

1.6 On embodied instruments

One of the early design decisions in formulating this research project was how much of
an “object” the final product should be, and how different the device should be from
existing interfaces. Many of the existing systems cited here are entirely software-based.
Of the systems that do have a physical component, they tend to employ wearable sensors
(data-gloves, bend-sensors, etc.) or use a traditional musical interface. Indeed, a look at
the entire field of adaptive musical interfaces will produce surprisingly few new devices
that have been built expressly to be entirely new “smart music controllers”. The danger in
co-opting existing interfaces for a new task is that a well-known controller produces a set
of assumptions in both performer and audience about how it should be played, and about
what kind of music will be possible with it. Joel Chadabe made the following comments

about the piano-style keyboard:

Like every performance device, a keyboard’s structure and, consequently, the physical
gestures required to play it, cause us to think in a certain way about the music that we
play. A keyboard is structurally a discontinuous controller which leads us to think of
music as separate notes, and we play it with our fingers, which suggests a note-after-note
data entry approach. Deriving from a long history of western music and western tuning
systems, keyboards satisfy musical needs when those needs are consistent with with
conventional musical values. When a musical concept is unconventional, however, the
use of a particular performance device should be carefully considered.

- Joel Chadabe [Chadabe 2000]

30



Chadabe also emphasizes that a performance device must enable the audience to
“perceive a meaningful relationship between the performer’s gestures and the musical
result, highlighting the extreme lack of this relationship in the performances of the
growing number of “laptop musicians”. Speaking to the specialness of embodiedness,
Ishii has written about the importance of physical artifacts and the “vestiges of physical
presence” that are left perceptible when one experiences a handmade piece of work. [Ishii
1998] In reflecting on his childhood visit to view the original manuscript of a poem by a
famous Japanese author, Ishii claims that these vestiges become fewer the more digital
and consequently “dry” an object or work becomes. Ishii also writes about the “co-
evolution” of user and device in the context of ping-pong paddles that are customized by
users explicitly (by scraping and sanding) and implicitly (by patterns of wear) over the
years [Ishii, et al. 1999]. Bob Ostertag provides a nice connection between Ishii’s points,
and the design and construction of music controllers in his article “Human Bodies,

Computer Music” [Ostertag 2002]. Ostertag quotes his friend Pierre Hébert, writing:

“the measure of a work of art is whether one can sense in it the presence of the artist’s
body. If so, then it is a success, and if not, it’s a failure.”

-Pierre Hébert, quoted by Bob Ostertag

Ostertag goes on to clarify that his own view isn’t quite as extreme as Hébert’s, but that
the physicality of the performer/instrument relationship is an important component to any
performance. In fact, many musicians talk of having a special connection to their
instrument. BB King had endless praise for his favorite guitar (which he named
“Lucille”), and Yo Yo Ma and “Petunia” (his Cello) are inseparable. Along the lines of
Ishii’s reflection on ping pong paddles acquire, musical instruments similarly come to
show the personalized wear patterns of their owners, becoming more and more
“personalized” over the years. This collection of ideas made it clear that constructing a
new, embodied music controller would be preferable to building a software-only system,

or attempting to adapt some existing interface to the design.

31



1.7 On human motion, emotion and musical expression

Manfred Clynes has spent his lifetime researching “the relationships between music and
the brain” [Marrin 1996]. In the 1950’s and 1960’s, Clynes founded the field of Scentics
which, in his own words, is “the study of genetically programmed dynamic forms of
emotional expression” [Clynes 1977]. Building his own hardware system, the sentograph,
Clynes measured gestural responses from the fingertip to emotional experiences like
listening music. He ran studies on populations around the world, discovering universal
patterns of response to musical forms. Clynes’ work indicates a universality in human
gestural responses to music, and is the inspiration for a part of the current work. In the
current project we have looked for universal patterns in how people associate gesture and
sound, both in terms of the shapes and energies of gestures that they use to trigger a
certain sound, and in what types of manipulations they assign to control various sound-

processing effects.

1.8 Project goals

The overall goal of this research project is to build an embodied electronic musical
instrument that adapts to the player. The claim is made that the low cost and small size of
electronic sensors and other components, coupled with the current processing power
possessed by everyday personal computers makes the time ripe to explore ways that
small, physical music controllers can learn personalized gestures and mappings from a
user. Rather than the person having to learn the device, the device can begin to learn the
person. As a step towards demonstrating this claim, a new electronic music controller and
associated learning and interface system was designed and built. A study was conducted
that collected users’ subjective responses to the system as well as implicit data from their

training and play with the system.
The embodied component of the system, the controller, is a multi-degree-of-freedom

hand-held device that was designed from the ground up to have a number of contact and

non-contact based, continuous affordances. It features three axes each of acceleration and

32



rotation sensing, a number of force-sensitive-resistor and potentiometer inputs, two back-
to-back bend-sensor pairs, and an electric field sensing apparatus. The data from the
sensors is collected by a microcontroller and transmitted serially to an external computer,
where it is analyzed and mapped to auditory outputs. The analysis that happens on the
remote PC includes dynamic time-warping for classification of gestures, windowed
variance tracking for activity detection, and scaling of continuous-control data to match

the range of control afforded by the synthesis algorithms.

The usage scenario is as follows: A user begins by exploring the sound-space that the
system affords. The purpose of this exploration is to identify sounds that they would like
to be able to trigger during a performance. In the present implementation the sounds
available are a number of digitally sampled waveforms taken from drums and other
percussive instruments, sleigh-bells, a turntable “scratch” sound, some stringed and wind
instruments, and even white noise. The exploration is a linear traversal of the sounds,
using a toggle button on the handle of the controller. When the user discovers a sound
that they like, they train a gesture, or a number of gestures by squeezing on a “trigger”
button while moving the device through a physical motion. The system builds a model of
each gesture class, and keeps these models associated with appropriate sound. After
making a number of these gesture-sound associations, the user can select audio-
processing effects with which they would like to associate an input affordance. During
each effect training interaction, the user hears one of the sounds from the gesture-training
interaction, but with an oscillating amount of the effect applied to it, meaning that the
sound might be soaked in an oscillating reverb, distortion or flange effect, etc.. These
“variations” on the original sounds are invitations for the user to map a continuous input
on the device to the associated effect. The mapping is accomplished by example, with the
user exciting the degree of freedom that they want to associate with the effect. (see
chapter 3 for specific details on this process) Once trained, the system can be used in a
performance to trigger and modify sounds. Triggering a sound is accomplished by
executing the associated gesture, and modification is accomplished by manipulating the

associated continuous control.

33



This system is meant to accomplish two goals. First, it is intended to demonstrate a new
way of mapping human gesture to sonic output on a novel, multi-degree of freedom
electronic music controller. Second, it is meant more broadly to provide an example of an
adaptive, embodied user interface that develops a personalized set of affordances for a
user, with a minimal training phase. The author hopes that this example will be a point of

reference for further work in this area.

Chapter 2 will discuss the design and construction of the physical controller, and will
show a sample of the data stream generated by the device. Chapter 3 will describe the
software, including the graphical user interface, the pattern recognition module, and the
“glue code” that implements the interaction. Chapter 4 presents the design and results of

the user study, and Chapter 5 concludes with lessons learned and ideas for future work.

34



Chapter 2

Hardware: Building the physical device

The physical device is an electro-mechanical sensing and data-transmission platform. It
provides a tactile and free-gesture, multi-degree-of-freedom interface to the user and
transmits real-time sensor data back to the host computer that is interpreted by software.
The initial choice and development of the sensing platform will be discussed in some
detail, including several modifications made to existing and emerging designs. The

design of the physical device and its affordances will also be discussed.

2.1 Summary and goals

The design goal for the device was to
implement an embodied, sensor-rich system
that would be flexible enough to enable a
wide range of input affordances and input-
to-output mappings. The large number of

sensors would provide a multi-degree-of-

freedom interface, allowing the user to apply
many dlfferent types Of gesture ln Order to Figure 2-1: An eal‘ly brainstorming sketch of the

device
control sounds.

35



2.2 Sensors and Communication: the Stack platform

In order to support the high degree-of-freedom interaction, a sensor-rich platform was
needed to capture and transmit the data to a PC for processing, gesture recognition, and
audio triggering, synthesis, and control. The types of sensors that would be employed
included accelerometers, gyros, force-sensitive-resistors (FSR’s), bend-sensors and
potentiometers. These requirements meant that this platform would need to support
rudimentary signal-conditioning, multi-channel analog data capture, and wired or

wireless serial data transmission.

The Stack [Benbasat, Morris & Paradiso 2003] is a compact, modular, configurable
wireless sensing system, for which several sensing boards (e.g., tactile, inertial, sonar,
etc.) have been designed. These boards can be stacked in any order and configuration
atop a main processor/RF board, allowing the sensor suite to be easily customized. A
TDMA polling scheme enables multiple stacks to be used simultaneously. Although it
has been primarily designed for wearable applications, this device serves as a general

platform for compact multimodal sensing.

The Stack was an appropriate and convenient platform around which to build
FlexiGesture. Much of the sensing needs of the device were already supported by the
Stack architecture, and additional features were added easily. Two additional modules
were built for the stack during the course of the project, an Electric Field Sensing layer,

and a user interface-oriented Output layer.

Figure 2-2: Close-up of transmit Figure 2-3: Stack components mounted on the circular PCB.

(top) and tactile (bottom) layers.

36



force-
sensitive

resistors IMU layer detects

acceleration, rotation and tilt

IMU layer

tactile layer /

output layer \

transmit layer
Wired or wireless
serial data link TT

| cpU |

Figure 2-4: Overview of stack configuration used for the device

potentiometer

vibrating
motor

digital buttons

2.3 Application-specific circuits

The existing stack layers were designed to be a “simple modular framework for wireless
sensing” [Stack webpage]. As such, the focus of the development of existing stack layers
has been on building data-collection capabilities. With the adaptation of the stack to the
current project, the capability to generate in-situ user feedback became necessary. The
following sections describe the output layer and the circular PCB, both of which augment
the basic stack architecture with feedback capabilities. In addition, modifications made to

the tactile layer in order to condition additional FSR and button inputs are described.

2.3.1 Output Layer

The output layer is a printed circuit board (PCB) that fits into the modular stack
architecture and that is designed to provide various types of user feedback (see Appendix
B for details). The primary modalities of output enabled by the output layer are tactile
and visual. Tactile output is generated by a vibrating “pancake” style offset-mass motor
that is driven by a NFET that in turn is driven by a pin on the microcontroller. The tactile

output modality was not used in the present design, but could be applied to future work.

37



Visual feedback is made possible by a MAX6951 chip that is capable of independently
driving up to 64 discrete LED’s. The LED’s themselves are mounted on the circular PCB
(see section 2.3.2 for details). In addition to the user feedback capabilities, the output
layer can generate a 3v peak-to-peak squarewave at 30KHz for use in electric field
sensing (EFS). The squarewave is applied to a LC resonator circuit as in the Lazyfish
electric field sensing system [Smith 1999], which amplifies the fundamental to roughly
30v peak-to-peak, and this signal appears on a circular electrode built into the circular
PCB (see below). The output layer has a Cygnal C8051F331 microcontroller (Now made
by Silicon Labs, and hereafter referred to as the 331) onboard that is responsible for
driving the vibrating motor and generating a squarewave for EFS operation. The 331°s
features include an 8051 core, 768 bytes of internal data RAM, 8k bytes of internal flash
RAM, 17 port I/O, hardware UART, SMBus, an SPI bus, and an internal 24.5Mhz clock.
The 331 and the MAX6951 chip are both connected as slaves to the SPI bus which runs
throughout the entire stack architecture. The Cygnal C8051F206 microcontroller on the
transmit layer serves as the master on this SPI bus, sending directives to both the LED

driver and the 331.

rest of stack
architecture
= =

LC
resonator
circuit

LED
controller

C8051F331

microcontroller Antennae

vibrating

Figure 2-5: Hardware overview for the output layer

38



2.3.2 Circular PCB

Figure 2-6: The circular PCB

The circular PCB is an expansion board that is used in conjunction with the output layer
board. The circular PCB provides footprints to mount the 64 LED’s in a circular pattern
around its perimeter, as well as a built-in electrode around its edge for the EFS
squarewave oscillation. It also has two sets of mounting footprints for the stack, allowing
the stack layers to be mounted in two separate places while remaining electrically
connected. The circular PCB has eight through-holes around its edge in a pattern that

makes it mountable directly on top of a similarly-shaped acrylic layer.

2.3.3 Modifications to the tactile v4 board

The tactile v4 board from the existing stack platform was used as the signal-conditioning

and multiplexing front-end for both analog and digital sensor readings. The board was

39



originally designed to support up to nine capacitive sensors, two piezoelectric vibration
sensors, four force-sensitive-resistors and four bend-sensors. The desired affordances of
the adaptive music controller device did not require the capacitive or vibration sensors,
but did require two digital inputs and two additional FSR inputs. Table [2-1] indicates
which of the tactile v4 board’s signal-conditioning circuits were modified, and in what

ways, in order to provide the needed functionality.

Original Tactile v4 board signal- Modified tactile v4 board signal-
conditioning circuit conditioning circuit

capacitive sensor 1 digital button input 1 (modified)
capacitive sensor 2 digital button input 2 (modified)
FSR 1 FSR 1

FSR 2 FSR 2

FSR 3 FSR 3

FSR 4 FSR 4

piezo vibration sensor 1 FSR 5 (modified)

piezo vibration sensor 2 FSR 6 (modified)

bend sensor 1 Bend sensor 1

bend sensor 2 bend sensor 2

bend sensor 3 bend sensor 3

bend sensor 4 bend sensor 4

Table 2-1: Use and modification of signal-conditioning circuits in the Tactile layer

See Appendix B for a complete description of the modifications made to the tactile v4

board.

2.4 Microcontroller embedded code

The primary responsibilities of the embedded code on the C8051F206 microcontroller are

to digitize and collect data from the analog sensors, transmit the data back to the PC, and

40




to generate in-situ feedback for the user. The complete code is found in Appendix C and

figure [3-6] shows the data-collection flow.

2.4.1 Data collection

The data collection system runs as fast as allowed by the latencies required by the ADC
and serial transmission of the data. On each data collection cycle, thirteen 12-bit samples
and two digital values are recorded. The 12-bit samples are taken from the
accelerometers, gyros, FSR’s and bend sensors. The two digital inputs from the digital
input buttons are read directly from port pins on the microcontroller. The entire data

collection cycle takes 1.058 milliseconds.

2.4.2 Data transmission

Once the sensor and button data has been collected, it is transmitted by the

microcontroller to the PC using the hardware UART. Each 52-byte packet is made up as

follows:

number of bytes description

8 header

12 accelerometer and gyro readings

20 FSR, potentiometer, bend and button readings
10 footer

2 r’ “\n’ for line-break

Total bytes per packet: 52

Table 2-2: Byte allocation in a single stack data packet

The on-board ADC of the transmit layer has 12-bit resolution, meaning that an
instantaneous sensor data reading cannot fit into a single 8-bit byte for transmission back
to the PC. For this reason, each sensor reading is spread across 2 bytes for transmission,
with the least significant 6 bits transmitted in the first byte, and the most significant 6 bits
transmitted in the second byte. This explains why, for instance, the 6-DOF inertial data
(accelerometers and gyros) requires 12 bytes to transmit. The same rationale holds true

for the FSR, potentiometer and bend sensor readings. The state of the two digital buttons

41




could have been represented efficiently by combining them into a single byte, but for
consistency with the rest of the data, the button’s instantaneous states were each
transmitted in a separate byte, with a 1 or 0 in the least significant bit indicating their

state.

The header and footer of a stack data packet are static byte sequences used for padding
the data. These sequences of bytes also enable the software that parses the byte-stream to

assemble complete data packets to detect the beginning of the sensor data.

For wireless transmission, the sensor data stream must be DC-balanced in order to ensure
good receiver tracking of the threshold point [Anthes]. Although the current system does
not use the wireless capabilities of the stack, the data was nonetheless DC-balanced in
order that the system could be easily used wirelessly in the future. DC-balancing the
byte-stream means that each transmitted byte must contain an equal number of 1’s and
0’s, allowing the receiver to determine a threshold to distinguish 1’s from 0’s by low-pass
filtering the incoming data. Since each of the 12-bit instantaneous sensor readings is split
into two 6-bit values, a 6-to-8 bit balancing scheme was used, meaning that each possible
6-bit data value is mapped onto a balanced 8-bit value using a lookup table. Of the 70
balanced byte values possible, 64 were used in the lookup table, and 6 values were not.
Five of the unused byte values were ones which have runs of 4 consecutive highs, which
can cause tracking problems, as well as the value 0x55, which is reserved for other
purposes [Benbasat 2000]. On the receiving end, rudimentary error-detection is
performed by throwing out any packet in which a non-balanced byte is received. This
scheme allows for error-detection of bytes in which an odd number of bits corrupted, and

in practice was sufficient. True (parity-based) error correction was not necessary.

The data-encoding scheme described above was taken from [Benbasat 2000]. The
strengths of the scheme are its low memory overhead (64 bytes for the lookup table), its
conversion of a 12 bit quantity into two bytes (which are the atomic units of serial data
transmission), its guarantee that each byte will be DC-balanced and that there will not be

runs of greater than six. Finally, single-bit errors will always be detected.

42



The entire data transmission cycle takes 4.502 milliseconds, meaning that the period of a
single data collection/transmission cycle takes 5.56 milliseconds, for an overall sampling
frequency of ~180Hz. The device transmits continuously, except during gesture

classification when the PC puts it into no-transmit mode (see section 3.2.3.2 for details).

2.4.3 Feedback generation

The LED’s around the perimeter of the circular PCB are used as feedback. The LED’s
indicate to the user that the trigger button is depressed, meaning that the device is
“listening” to the current gesture-in-progress. Once per data-collection/transmission
cycle, the microcontroller checks the analog value of the voltage on the right-hand index-
finger “trigger” FSR. If the value there is below a threshold, the FSR is considered to be
depressed by the user’s finger, and all of the LED’s are turned on. If the value is above a
particular threshold, the FSR is not considered to be depressed, and the LED’s are turned
off. Hysteresis is implemented in the microcode to prevent flutter if the voltage is near

the boundary.

43



2.5 Form factor and affordances

The decision to make open-ended gestural control a
primary interaction modality informed not only the

sensors that were chosen for use in the device, but

also the physical affordances implemented. In terms
of sensors employed, the accelerometers, gyros, and
electric field sensing enabled the use of free-gesture
movement of the device as an input to the system.

But free-gesture systems are known to be poor input
devices for precise control [O’Modhrain 2000]. The

theremin, perhaps the most famous open-air

noncontact controller, does allow for extremely

Figure 2-7: The device.

expressive control, but is so difficult to master that Numbers are indicating the following

(1) upper thumb button, (2) upper

there have been only a handful of virtuosos over the squeezable handle (3) rotating carriage

nearly 100 years since its invention in 1919. Don (4) trigger button (5) lower handle
button A (6) lower handle button B
Buchla’s lightning is another free-gesture non- (7) inner carriage (8) battery

. . (9) toggle button (10) circular PCB (11)
contact controller which has been used expressively,  lower handle

but which has not entered the mainstream [Buchla

and associates website]. Max Matthews’ radio baton [Boulanger & Matthews 1997] has
been used for discrete, symbolic control tasks such as providing a tempo for pre-
sequenced music as well as for free gesture, expressive pieces. To mitigate the difficulty
in achieving precise control typically associated with non-contact gestural controllers, the
current device is built also to permit several channels of two-handed, contact-based
continuous manipulation by a user. The decision was made early in the design process to
permit two-handed manipulation, since humans are adept at performing fine manipulation
with both hands, and most musical instruments involve both hands holding or
manipulating a single object. Table 2-3 on the next page lists the input degrees of
freedom supported by the device, and identifies the type of affordance provided by each

SENsSor.

44



Figure 2-8: The physical device being played

45



Input affordance sensor affordance type
Acceleration in X ADXL202JE accelerometer inertial
Acceleration in Y ADXL202JE accelerometer inertial
Acceleration in Z ADXL202JE accelerometer inertial
Rotation in X ENCO031J gyro inertial
Rotationin Y ENCO03J gyro inertial
Rotation in Z ADXRS150 gyro inertial
Left-fingers pressure Interlink 0.2” force-sensitive-resistor | isometric
Left-thumb pressure Interlink 0.2” force-sensitive-resistor | isometric
Right index-finger pressure | Interlink 0.5” force-sensitive-resistor | isometric
Right third-finger pressure | Interlink 0.5” force-sensitive-resistor | isometric
Right fourth-finger pressure | Interlink 0.5 force-sensitive-resistor | isometric
carriage rotation 1/2W 50K potentiometer isometric
right-hand handle bend in X | Images SI Flex Sensor isometric
right-hand handle bend in Y | Images SI Flex Sensor isometric
up-toggle button digital button circuit digital
down-toggle button digital button circuit digital
Position in X Electric Field Sensing circuitry isotonic
Position in Y Electric Field Sensing circuitry isotonic
Position in Z Electric Field Sensing circuitry isotonic

Table 2-3: Input affordances of the device

46




Figure 2-9: How the upper handle’s FSR was attached and surrounded with foam

The main body and rotating carriage sections of the device are built with laser-cut 1/8”
clear acrylic. The left-hand handle is made of PVC pipe and is attached to the rotating
carriage with PVC cement. Informal bond-strength tests found PCV cement and acrylic
cement both satisfactory in joining PCV to acrylic (clear epoxy was weaker than either).
The left-fingers-pressure FSR is attached directly to the PVC handle, and a rubber foot
attached to a length of spring-steel applies
pressure to the FSR when the steel is squeezed”.
A foam strip curled around the handle protects
the user from the sharp edges of the steel and
diffuses squeezing pressure more equally across

the steel. The left-thumb-pressure FSR is

mounted directly to one of the 90-degree angle

portions of PVC. A rubber foot is attached to
Figure 2-10: Demonstrating the spring steel,

the top of this FSR to make it a visible, feel- rubber foot and FSR mechanism

able affordance. Holes drilled in the left-handle PVC allow connecting wires from both of

the FSR’s to be routed back to the stack inside the PVC handle and then through a ribbon

cable to the main body.

? In the final version of the device, the spring steel is rotated up 90 degrees from the view in figure 2-10 and
the FSR is oriented in parallel to the direction of the PVC rather than orthogonally as shown.

47



Figure 2-11: Early sketch of the lazy susan idea Figure 2-12: The spring steel protrudes through the
upper-carriage “tongue”

The upper carriage is attached to the main body with a “lazy susan” rotating platform
with ball bearings inside. A vertical tongue attached to the carriage protrudes down
through a semi-circular slot in the top of the main body. The tongue serves two purposes:
First, it provides a hard stop for the rotation of the carriage to protect the potentiometer
from mechanical damage from over-rotation. Second, spring steel attached to the main
body protrudes through a slot in the tongue and provides rotational resistance
corresponding to the amount of twist given to the carriage. This push-back gives a degree
of “passive haptics” to the twisting affordance. A potentiometer is mounted on the upper
plate of the main body, which protrudes through the upper carriage. The potentiometer’s
shaft is kept from slipping with a nylon bolt and thus it turns with the carriage, allowing

its degree of rotation to be measured.

The upper and lower acrylic plates of the main body are separated by 1 1/8”. The height
of the circular PCB is about 1/16”, which leaves 1 1/16” of vertical space from the
surface of the circular PCB to the bottom surface of the upper main body plate. This
clearance is enough to allow for two stack layers to be mounted on each of the mount
points. The most height-effective configuration of stack layers featured stacking the
tactile and transmit boards together on one mount point, and the output and IMU boards

together on the other.
The power board was originally intended to attach directly to the circular PCB. However,

when assembling the system it became clear that there was not enough space in the

intended area. The ribbon cables coming from the tactile v4

48



board and the serial line-level converter
board both ended up in the space where
the power layer was to be. To solve the

problem, the power layer was mounted

underneath the main body with a velcro
strap attached to a custom acrylic

harness.

The right hand handle is made from a Figure 2-13: The power layer attaches to the bottom
of the main body.
ribbed, flexible piece of plastic tubing.
It screws into the bottom of the main
body, and acrylic mounting brackets on
the inside hold 4 bend sensors in place.
The mounting brackets for the bend
sensors are slotted to allow the sensors

to bend in the direction that they are

designed for, and to slide in the other,

remaining flat. Three FSR’s are , . )
Figure 2-14: Bend sensors mounted inside the right

mounted to the outside of the right hand handle.

hand handle, placed to rest under the first, second and third fingers. A DB9 connector at

the bottom of the handle connected to the transmit layer through a serial line driver IC

allows for optional “wired” operation of the device.

2.6 Electric Field Sensing

The system was designed to support transmit-mode
electric field sensing [Paradiso & Gershenfeld 1997] to
permit the calculation of the absolute position of the

device in a small volume of space in front of a performer.

As was mentioned earlier, the output layer contains a LC

“tank” circuit which can generate a high-gain voltage Figure 2-15: The Electric Field
Sensing layer

49



oscillation which, when connected to a suitable electrode, forms the transmit part of an
electric field sensing setup. The circular PCB was fabricated with a circular trace around
its edge, to be used as the transmit electrode in an EFS setup. The Electric Field Sensing
stack layer is made to modularly integrate into a stack base-station. The EFS layer
supports the attachment of 4 receive electrodes that pick up the electric field generated by
the transmit antenna on the circular PCB. Separate signal-conditioning circuitry is
implemented for each of the four receive channels on the EFS layer. The EFS layer was
not used as an input DOF during the user study, but will be enabled in future work.

(2) 4 antennas pick

up signal with
varying strength

‘: i :: F S EFS receive layer
t 4
1 u T. Stack base-station

— (1) 30Khz
electric field

emitted by
antenna ring on

device

(3) Base-station transmits data CPU

wirelessly back to computer,
where triangulation occurs

—

Figure 2-16: Electric Field Sensing setup

50



BUTTON

(DIGITAL)
1

BUTTON

(DIGITAL)

2

PR

993

Signal
Conditioning

Signal
Conditioning

Multiplexer

Multiplexer

C8051F206

JL

Max233

Figure 2-17: Hardware system data-capture overview

51

_&JEF
PC




52



Chapter 3

Software: Learning, mapping, and glue

The software component of the adaptive music controller is responsible for allowing the
user to explore the sound space, to train gesture-to-sound associations, to create mappings
from input degrees of freedom to effect parameters, and to play with the finished result.
During play, the software handles incoming data from the controller, performs gesture
recognition to retrieve trained associations between gesture and sound, and manages the
mappings from the continuous controls of the device onto the sound modification

parameters.

3.1 Summary and goals

With the goal of implementing a new paradigm for mapping the affordances of a physical
musical controller to output sound, there were a number of software-related goals which
all needed to be simultaneously satisfied. The primary goal was that the system present a
natural and easy-to-understand way for a user of the instrument to discover, play and
manipulate sounds that they were interested in. With the aforementioned as a high-level
goal, a number of more specific objectives became clear. These specific objectives
included system stability, an easy-to-understand user interface, effective sound space
navigation, real-time gesture classification, and a novel assignment scheme of
affordance-to-parameter mappings. The following chapter explains the development of

the software, and relates the design decisions made back to this set of objectives.

53



3.2 Java, C, and the JNI framework

Choosing a software framework to use was a non-trivial decision. Choice of
programming framework affects the types of data structures and I/O that are convenient
to implement and maintain, how a graphical user interface (GUI) can be built, and the
overall execution speed and efficiency of the program. A decade ago there would have
been fewer options. Constructing a program of this scope would have taken much longer,
and included more compromises. Fortunately, in today’s software development
environment, there exist myriad possibilities for implementation of a project such as this.
The combination of tools initially chosen was the following: The GUI and “glue”
interface code was written in Java/Swing, while the data storage and pattern recognition
routines were initially implemented in C. The Java Native Interface (JNI) API was used
to connect the Java code to the C code. For the user study, the C module was put aside in

favor of an easier-to-maintain pure Java implementation.

3.2.1 Java graphical user interface

The graphical user interface allows the user of the system to configure I/O settings related
to serial input, OSC and MIDI output, to visually inspect the data being collected from
the sensors, and to manage the creation of gesture-to-sound mappings and continuous-
control-to-effect-parameter mappings. The GUI was created with the free version of
Borland JBuilder, a robust and full-featured Java IDE and debugger. The GUI is

organized in a tabbed layout style, and each tab will be discussed in turn.

54



Controller

=101 x|

=10l

Adaptive Music Controller
File  Help

*TestPanel*
[0 enable & disable

StripChartsPanel

™ Serial input ON
W output G
 MIDI output

= OSC output

*ControlPanel*

~MIDI Setup

RIDI Qutput MIDI Output Channel

=k

[1eva Sound syrthesizer
stetus  omtal  ota2

IlTexIF\EI\ﬂ iTextField2 [iTextField3

~experimert setup

10 Setup *TestParel® | StripChartsPanel | *CortrolPanst

TEST RINGMOD

TRAIN YOLUME TRAIN TREMOLO TRAIN DELAY
Send Test Message subject number " condtion &
002 " condtion & TEST YOLUME | TEST FILTER | TEST TREMOLO | TEST DELAY | TEST PITCH-SHFT
start symbol twesk syrmibol duration (ms) trecuency (Hz)
OSC Setuy
Serial Setup " Jips_en [ros _vaiue: [10000 o
Fort BaudRale STOPSAVE
[com | fr1szo0 =] F¥ send start syriol
remote host |15.85. 45121 sat
I™ data flow on I~ send stop symbol
remate port: l—“a“g =
Figure 3-1: I/O setup panel of the GUI Figure 3-2: Effects mapping panel of the GUI
e Music Controller =] 4] Adaptive Music Controller — ol x|
File Help File  Help
10 Setup | “Testpanar StripChartsPane! | scortrolpanst | 10 Setup | *TestPaner | StripChartsPanel *ControlPane!*
facceld Aarl
15 1.5
0.0 0.0
0.0 3000 0.0 3000
faccely Her2 ibend
& Gesture class 1 | # examples:|0
15 15 14
bo M oo bo TWESK MAFPING || Gesture class 2 | # examples:[0
0.0 3000 0.0 3000 0.0 3000
 Gesture class 3 | # examples: |0
Jaccelz Har3 ibend2
5 w s 5  Gesture class 4 | # sxamples:|0
0 o8 oo SAVE GESTURE TRAINING  Gesture class 5 | # examples: |0
oo 2000 0o 3000 0.0 3000
e Hard Ahurmbbutton " Gesture class 6 | # sxamples: [0
15 |>\W_~ 15 15  Gesture class 7 | # examples: |0
0.0 0.0 0.0
0o 2000 oo =000 00 2000  Gesture class B | # examples: |0
iyroY Hars Ahumbbutton2 " Gesturs class § | # examples:[0
15 15 14
s ; |
» L/vv\/‘\—- - - Gesture class 10 # sxamples:|0 Resst
oo 2000 on 2000 oo 3000
igyroZ Har6
15 15
0o 0o
oo 2000 on 2000

starting data capturs

Figure 3-3: StripCharts panel of theGUI

55

Figure 3-4: Gesture panel of the GUI




3.2.1.1 I/O: For configuring 1/O setup

The I/0 enable and disable section of the GUI is where the user can turn on and off the

various input and output channels for the application.

The Serial Setup section is where the user can configure the RS232 serial settings. The
serial port is where data from the physical device enters the system. The user can
configure which port the application will be attached to, and the baud rate at which the
application should expect the data to arrive. The port assignment is system-dependent,
but the baud rate must agree with the data rate that the transmit layer of the stack is
configured for. The current implementation of the system transmits serial data at
115200bit/sec. This data rate was chosen to support sampling at rates greater than 100Hz.
The Java communications API was used to implement the serial data input to the

program, and the data-handling strategy will be discussed in more detail in section 3.2.2.

The MIDI output section allows the user to configure which MIDI output device and
channel will be used for communication with the synthesizer. The javax.sound.midi
package was used as a framework implement the MIDI communication. An additional
MIDIDeviceManager class was implemented as a wrapper to allow for easier
management of MIDI port opening and message sending. Used early in the development
cycle, MIDI output was scrapped in favor of the higher-bandwidth and more flexible
OSC protocol.

The OSC output section allows the user to configure which IP address or hostname, and
to what port OSC datagram packets should be sent. OSC is a protocol for communication
among computers, sound synthesizers, and other multimedia devices that is optimized for
modern networking technology. A JavaOSC library from Illposed Software was used to

implement the OSC functionality [Illposed Software webpage].

The experiment setup section was created to facilitate the running of the user study. This

part of the GUI allows the experimenter to assign a unique identifier to the current

56



subject, to specify to which experimental condition the current subject belongs, and to
start and stop data logging for the current subject. The software creates a set of directories

where the data for the current subject is written.

3.2.1.2 TestPanel: For creating input-DOF to effect mappings

The TestPanel tab in the GUI allows the user to create input-DOF-to-effect mappings. It
has a button for training each available effect, and a separate button for testing each
effect. A Stop/Save button stops any ongoing data capture and saves the current

configuration to disk.

3.2.1.3 Stripcharts: For data visualization

Software and hardware oscilloscopes are a convenient way to visualize real-time signals.
The StripCharts panel of the GUI allows for the simultaneous, real-time visualization of
the 16 sensor/button data streams coming from the device. Each individual StripChart is a
Java component subclassed from JPanel. The StripChart shows a line-graph that scrolls
from right-to-left, updating at the rate that the data arrives from the hardware. The
original StripChart code was written by Andy Wilson [Wilson 2000], and was modified
by the author in order to allow the user to toggle the drawing behavior, sample storage
and variance detection on or off. In practice, the author tends to enable related batches of
charts, such as all accelerometers at once, or all gyros, in order to visually inspect their
functionality. This enabling/disabling feature for the StripCharts was necessary in order
to manage the CPU bottleneck on the Swing (graphics) thread produced by multiple
StripCharts all attempting to update at the ~180Hz data rate. The amount of data history
retained by a single StripChart was set to 100 samples. This value was tuned by the
author to balance usefulness with CPU load, since the time required for the drawing of

each StripChart increases linearly with the number of points stored.

57



3.2.1.4 Gesture control panel

The gesture control panel permits the user to listen to the available sounds, and to make
gesture-to-sound associations. In Training mode, any gesture executed will be associated
with the most recently played sound. In Testing mode, any gesture executed will be
classified against the stored models, and the appropriate sound will be triggered. Play
mode is like Testing mode, except that the input-DOF-to-effect mappings are also
enabled.

3.2.2 C and Java modules for data storage and manipulation

In order to achieve the fastest possible execution time for the gesture recognition
algorithms, the decision was made initially to store and analyze the data in a compiled C
dynamically-linked-library (DLL) rather than in the Java environment. Compiled C has
historically been faster than Java, although benchmarks show that Java is closing the gap,
arguably even outpacing C on certain tasks. The Java Native Interface (JNI) was used to
write a C DLL that can be loaded into the Java environment. The C module has functions
for accepting packets of sensor data, storing the data, computing class models and
computing similarity scores between novel gestures and class models. Section 3.5
explains the gesture recognition in more detail. Shortly before the user study was to be
run, a pure-Java version of the data storage and manipulation module was written and
substituted into the codebase in place of the C DLL. This switch was made in response to
difficulty in tracking down a latent bug the C module. The pure-Java module was easy to

maintain, but did increase gesture-recognition latency (see table 3-1 for a comparison).

3.2.3 Multi-threaded serial data handling framework

In order to guarantee the availability of the data-receiving thread while handling the large
quantity of incoming serial data, the following scheme was used: A queue in the
SerialConnection object is filled with incoming bytes of serial data. This queue is also
used as a semaphore, with access to the queue limited to either the SerialConnection

object, or a SerialGrabber object, but always no more than one at a time. Each time the

58



serialEvent callback in the SerialConnection object is called, indicating that new serial
data is available, the new bytes are inserted into the queue, and notify() is called, freeing
up the semaphore. This allows the SerialGrabber object, which is waiting on the
semaphore, to dequeue all of the new data, inserting the bytes into its own separate
queue, then immediately freeing the semaphore. Once outside of the synchronized code
section, the SerialGrabber object notifies any listeners that are registered to accept new
serial data. The minimal cycles spent inside the synchronized code region by both objects

ensures efficient data handoff between them and the smoothest possible reception of the

data.
| The SerialConnection
SerialConnection object claims the
[DIDED] - semaphore and
transfers the data into
New serial data is its queue. When
available. Neither finished transferring,
object holds the ( \ SerialConnection
semaphore. SerialGrabber immediately calls SerialGrabber
notify(), releasing its
semaphore..
- ./
(D) 2)
The SerialGrabber The semaphore is
object is in a wait() SerialConnection free again, allowing SerialConnection
state, and so SerialConnection to
immediately claims enqueue the next
the semaphore and incoming data. The
transfers the data into SerialGrabber now
its queue. When distributes the / \
finished transferring, | SerialGrabber received data to any SerialGrabber
SerialGrabber releases registered listener
the semaphore. EEE. objects. |:|:|:|:| - [DDMD|
-/ -

€) (4)

Figure 3-5: Semaphore-based serial data handling

3.2.3.1 Listener structure

Listeners are software objects that are registered to receive notification about events in a
program. The use of listeners is typical in an object-oriented programming language like
Java. In the current application, data from the serial port is handed off to a

StackDataFilter object, which is responsible for assembling incoming data into a

59



complete packet of sensor data values. Each packet contains all of the values from a
single sensor data collection cycle in the microcontroller. Once assembled, the packet is
passed off to a number of other listener objects for storage, display in the GUI, and the

triggering of navigation and gesture-recording start and stop functions.

3.2.3.2 Managing the serial data flow during CPU-intensive operations

During testing, it was found that inflow of sensor data could crash the system if the
application was not in a state to actively receive the data. This behavior was traced to a
bug in the USB serial port emulation driver on the author’s computer. The problem
would typically happen during gesture-recognition, an operation that was so CPU-
intensive that the rest of the program would suspend temporarily, meanwhile serial data
would continue to stream into the system. At times, this pause in responsiveness was long
enough for an internal driver buffer to overflow, crashing the machine. The successful
workaround was for the application to ask the stack to stop sending data during gesture
recognition. To accomplish this, bidirectional communication between the computer and
the hardware was enabled, and just before gesture recognition begins, the java program
sends a 0x00 byte to the stack, putting it into no-transmit mode. After recognition
completes, a 0x01 byte is sent, re-starting the flow of data to the PC. This loss of sensor
data values during gesture recognition was deemed an acceptable compromise, since the

time duration of the recognition process was small (see table 3-1).

60



SerialConnection | | SerialGrabber

serialEvent

thread wait/notify

(queue) ‘ v (queue)

handleNewSerialData

StackDataFilter

(assembles complete sensor
data packets

StackDeviceHandler

handleNewData

S

N
GUI
(stripcharts)

Figure 3-6: Software (Java) handling of incoming serial data

data
Dathtream(?haracterizer storage
Objects (variance watch)

3.3 Trigger and Modify

In planning out the interaction style for the device, a conceptual framework was needed
to guide the affordances, both physical and software, that would be implemented. The
high-level goal for the device was that it would begin its relationship with the user as a
blank slate, and would learn to respond appropriately to the user’s actions through a
training interaction. Moreover, in order to be as flexible as possible in the kinds of sounds
that could be produced, it was determined that the interaction should include an element
of symbolic “selection”, as well as an element of continuous “sculpting”. The idea behind
the symbolic selection aspect of the interface is that it would allow random access to a
wide space of “ingredient” sounds, while the continuous sculpting part would permit
these sounds to be warped in expressive parametric ways. In order to implement a
system, this goal had to be turned into a concrete specification, which raised a number of
questions. Should the sounds come from an algorithmic synthesizer, or from stored
digital samples? Should changing the timbre of a sound consist of a parametric variation

in the underlying synthesis technique, or should it modify the spectral content of the

61



already-synthesized sound? The resolution of these questions, and others, resulted in the

following high-level system design:

The conceptual model for playing the system can best be described as “trigger-and-
modify”. What this means is that, when playing the system, the typical interaction cycle
is for the user to first trigger a desired sound (the symbolic part), then to “sculpt” the
timbre of the sound in a subtractive manner (the continuous part). In order to create an
adaptive device, both parts of the interaction model needed to be “trainable” by the user.
The system design of these individual components will be discussed in the following

sections.

3.4 Exploring the sound space

Digitally sampled waveforms are used in the system as the gesturally-triggered content.
Various algorithmic digital audio synthesis techniques were considered, such as granular
synthesis, frequency modulation, and physical modeling. In order to explore the
parameter spaces offered by these techniques in a satisfactory manner, a compelling
parameter-space traversal interface would have been required, the development of which
was beyond the scope of the thesis timeline. Playing and looping digital samples was
straightforward to implement, and it also avoided constraining the sound of the device to
the character of a particular algorithmic synthesis technique. With a set of samples for the
user to choose from, a natural way to traverse them was needed. A toggle button on the
handle, positioned underneath the user’s )
right thumb, was used to traverse the
samples. Conceptually arranged in a
linear list, the next sample in the
upward direction in the list could be
heard by pressing the toggle button up.

Similarly, the user could explore in a

downward direction by pressing the

Figure 3-7: Pushing the toggle button up

button down.

62



3.5 Gesture recognition

Human gesture recognition is a subset of the larger field of pattern classification. In the
abstract, the task of a pattern recognizer is to accept a novel datum, which can be a single
point, or a signal represented by a sequence of samples, and to classify the datum into one
of a set of known categories. For instance, a speech recognizer is a pattern classifier that
operates on time-domain recordings of sampled human speech. The input to a speech
recognizer at classification-time could be a few seconds of speech, and the output would
be a textual representation of the words contained therein, perhaps along with a
confidence score. The confidence score represents how “sure” the algorithm is about its
response, and a client program may choose to throw out a classification result if the

confidence score falls below a certain threshold.

3.5.1 Statistical pattern-recognition methods

Statistical pattern-recognition methods are a class of pattern classification algorithms that
operate by characterizing the variability in the training data, then using this
characterization to determine the most likely class of a novel datum. Variability is
typically represented as a Gaussian, and in order to train these systems, enough training
examples of each class to reasonably estimate appropriate parameters of the Gaussians

are needed.

A number of what we will call “vector-based” statistical pattern recognition techniques
are popular with researchers today. Support vector machines (SVM’s) are an example of
this class of techniques, and they require new data to not only have the same
dimensionality as the training examples, but it must also have the same number of
samples. Given a method for making all incoming data examples the same length, these
vector-based techniques can be quite useful. However, in their basic form most of these
algorithms don’t work well for time-varying data such as gestures, where the number of

samples of each new gesture is different.

63



Hidden Markov models [Rabiner 1989] are a statistical pattern-recognition construct that
can handle time-varying signals. The come in two basic configurations, continuous and
discrete. The discrete variety assumes a given “alphabet” of states through which data
vectors are expected to travel, while the continuous variety is flexible about the number
of states, building more or less of them as needed to describe the training data. Both
HMM’s and other statistical techniques tend to require a substantial number of training
examples in order to become robust classifiers, and for that reason they were not used in

this work. See chapter 5 for ideas about how HMM’s could be useful in future work.

3.5.2 Dynamic time-warping

Dynamic time warping (DTW) is an algorithm based on dynamic programming (DP)
[Bellman 1957] that finds the optimal alignment between two variable-length sequences
of data, under certain constraints. In finding the optimal alignment between two
sequences of data, the dynamic time-warping algorithm warps the two vectors to each
other non-uniformly, stretching some regions while compressing others. Dynamic
programming operates on the principle that the optimal solution to a large problem
should contain optimal solutions to its sub-problems, and that these smaller solutions can
be stored rather than being computed at each step. DTW has been used heavily in speech
recognition [Sakoe & Chiba 1978] and DNA sequence-alignment tasks [Needleman &
Wunsch 1970], and in general is well suited to processing of time-domain sequential

data.

In the current implementation, the input vectors differ in length from the length of the
model vectors. In contrast to the DNA sequence-alignment and time-domain speech
classification tasks, the gestural data vectors are multi-dimensional, representing the six
inertial data streams. (in future work, the number of features used in the DTW algorithm
will be expanded to include other continuous-control data) To handle this difference
during computation, the distance from a single novel “frame” of 6 values to a single
model “frame” is taken by a sum-of-squared-differences technique across the 6 data

values.

64



mean gesture

time-warped gesture

Figure 3-8: Dynamic time-warping in action

The top image is a model gesture, and the middle is a new gesture for classification. The bottom image is
the new gesture, warped to show its best fit to the model gesture.

Dynamic time-warping was chosen as the gesture-recognition algorithm for the current
project because it provides decent recognition rates in polynomial time, while allowing
for model-training with a small number of examples. Most importantly, DTW can operate
on data vectors with different lengths. A fundamental usability goal for the system was
that it should allow a user to create a gesture-to-sound association easily, and without
excessive training. This goal suggested that a gesture-classification scheme should be
used that could classify as robustly as possible without a large number of examples of
each gesture. The statistical methods mentioned in section 3.5.1 tended to be less suitable
given this goal, since they require significant amounts of training data before they

become useful classifiers.

65



pairwise DTW between G Finds index of the
and each model gesture minimum error score

’ GestureModel 1 H error score 1 ‘

new (endpointed) gesture G

’ GestureModel 2 H error score 2 ‘

Ry T Pt e ey : DT ’ GestureModel 3 H error score 3 ‘
[ ]

trigger
sound

’ GestureModel N Herror score N ‘

Figure 3-9: Overview of the gesture-recognition process
3.5.2.1 Speed of the DTW algorithm

The dynamic time-warping algorithm as implemented here has a complexity of O(N x M
x D), where N is the number of frames’ in the novel gesture, M is the number of frames
in the model gesture, and D is the number of features being used. Since the number of
features is typically some small constant (in the current system D is 6, since we are using
the 6 inertial DOF’s), this complexity reduces to O(N x M). Practically speaking, what
this means is that, as the length of the gestures get large, the algorithm requires an
amount of time that is proportional to roughly the square of the length of the gesture. In
addition to time, the space required for the algorithm to run is also O(N x M). Following
is a chart listing some sample classification times measured on the system (these
measurements were taken with the Java Virtual Machine (VM) v1.4.2_04-b5 from SUN
Microsystems, with 256MB RAM allocated to the VM, on a 2.66GHz Xeon processor
host machine with 1Gb of system RAM). No just-in-time (JIT) compilation or other
optimization was used, but it is expected that these techniques could significantly speed
up the Java execution time in future work. Fortunately, symbolic gestures tend to be
short. In the user study (see chapter 4), most of the gestures trained by subjects tended to
be less than 1 second in length, and the classification time scales only linearly with the
number of model gestures. So with 5 gesture classes trained, and an average gesture
length of 750msec, classification in java would take on the order of ~240msec.

Additionally, the classification-latency issue is one that faster processors will continue to

3 A “frame” is taken to be a single time-slice of sensor data. In this case, a single frame of inertial data
would consist of 6 values.

66



require classification, and thus were quite fast.

alleviate. The continuous effects (see section 3.6) were not timed for latency, but did not

Short Gesture

Java

C

Model: 224 frames, 1344 msec
New: 214 frames, 1282 msec

Model: 197 frames, 1250msec
New: 154 frames, 922msec

Running time: 62 msec

Running time: 0 msec*

Medium

Gesture

Java

C

Model: 537 frames, 3094 msec
New: 551 frames, 3218 msec

Model: 532 frames, 3125 msec
New: 517 frames, 3000 msec

Running time: 672 msec

Running time: 94 msec

Long Gesture

Java

C

Model: 2270 frames, 12782 mseg
New: 2451 frames, 13765 msec

Model: 2292 frames, 12860 msec
New: 2317 frames, 13015 msec

Running time: 10453 msec

Running time: 4469 msec

* = Java timer resolution too coarse to detect any time difference

Table 3-1: Runs of the DTW algorithm in C and Java, and associated running times

67




3.5.2.2 IMU-based dynamic time-warping recognition trial runs

In order to test the feasibility of using dynamic time-warping for gesture recognition, a
series of trials was run to test how accurate it could be for the present task. Specimens of
the inertial parameters (acceleration, rotation) from 10 distinct gesture classes were
recorded. Each specimen consisted of about 360 samples/sensor (~2 seconds of data)
from each of the 6 data streams. In total, 30 examples of each gesture were recorded. It
was decided that the best way to understand the fitness of various classification
algorithms would be to test them in a situation similar to how they would be used in the
application. The verification process went as follows: of the 30 gestural examples from
each class, 5 were taken at random to comprise the training set and the remaining 25 were
marked as test vectors. In order to understand how DTW performed with respect to some
other possible pattern classification alternatives, the following schemes were all run

through classification trials:

3.5.2.2.1 Naive distance from the mean gesture:
In this approach, a model gesture of each class was computed by resampling each of the

training examples to be the same length, and taking the sample-for-sample mean across
the training set. Classification of a novel sensor data stream consisted of finding the

model gesture that had minimal distance from the novel data.

3.5.2.2.2 Fourier descriptors:
In this approach, a model gesture of each class was computed by taking the Fourier

transform of each of the training examples, removing c(0) (the DC frequency coefficient),
and normalizing the rest of the frequency coefficients c(k) by ¢(1). Then the model
gesture was computed as the per-index mean of the first 100 frequency coefficients
(ranging from 0 to 50Hz) across the 5 training examples. Classification of a novel sensor
data stream consisted of performing the same spectral decomposition as was done for the
training examples, then finding the nearest neighbor in the 100-dimensional normalized

Fourier coefficient space.

68



3.5.2.2.3 Pre-processed naive distance:

This approach was similar to (1), but the data streams (both training and novel examples)
were pre-processed in order to trim excess “dead space” before and after each gesture
example. The location of the dead space was determined based on observing the typical
variance on the sensors during inertial activity versus the typical variance while the

device was “at rest”. Once the “at rest” had been characterized, the individual gesture

o 1 bbb L L
0.5
wh s Bl Illhl‘_lfll ____________ |
OW“M&U&@QQ&*}ZXQ Mmooy s - = H“h ,ﬂ I |'rrT| T | T r | | T rri- i r,
055 ) 150 b2;))0 750 30 350 400 et i|’.?1"r rr Hf"'H‘ l’u’ﬂ“’" 8 FT?‘H'HH’:";’-” H’H"

g\ b b

vt AR

i

Figure 3-10: A single gesture, before (top), and after

(bottom) preprocessing. Figure 3-11: Locating a region with typical “at rest

variance levels.

examples could then be trimmed to remove leading and trailing dead-space — segments
where the variance was less than a threshold that was a small multiple of the “at rest”

variance.

3.5.2.2.4 Pre-processed Fourier descriptors:
This approach is similar to (2), but the data was trimmed as described in (3).

3.5.2.2.5 Dynamic Time-Warping:
In this approach, dynamic time-warping was used on the non-preprocessed data. Model

gestures were computed as in (1).

69



3.5.2.2.6 Pre-processed dynamic time-warping:
In this approach, dynamic time-warping was used on pre-processed data. The data was

pre-processed and model gestures computed as described in (3).

In summary, pre-processing combined with the naive nearest-neighbor method achieved
results that were quite good (95%), but dynamic time-warping without preprocessing
emerged as superior to any of the other techniques (98%). The fact that the fourier-
descriptors technique got worse after preprocessing is understandable since resampling

the gestures after trimming (such that they are all the same length) alters spectral content.

naive fourier DTW

not pre-processed 15 .90 98
pre-processed 95 .82 97

Table 3-2: Results of the gesture-recognition trials

Due to the good recognition rates found, the dynamic time-warping algorithm was chosen
as the gesture-classification technique for the system. The astute reader will notice
however, that the pre-processed naive method achieved classification rates, through
lower, were quite close to the rates reached by the dynamic time-warping. Moreover, the
naive method has a basic complexity of O(N), which scales linearly with the length of the
data vector. The drawback of the naive-preprocessed technique would have been the need
to trim, then resample novel gestures to a standard length before they could be compared
against a class model. It is not known if the use of the pre-processed naive method would
have resulted in faster overall recognition. This question could be investigated in further
work, but perhaps even more fruitful would be a look at continuous hidden markov

models for a future refinement of the system (see chapter 5 for more on this thought).

In order to easily segment the data stream into individual gestures (either for

classification or training), the state of the “trigger” button on the device was used by

70



software to start and stop data capture. This made easy the task of reliably endpointing a
single example, which is a common problem in pattern classification systems that operate

on continuous streams of data.

3.6 Interactive mapping of the device inputs

The design goal for the mapping of the input degrees-of-freedom to the effect parameters
was to make this assignment intuitive and adaptive. In order to keep the system design
tractable, the decision was made to allow the user to create one-to-one mappings, where a
single input degree-of-freedom would be linked to a single effect parameter. The input
degrees of freedom enabled for this purpose were the squeezing pressure on the upper
handle, the pressure on the thumb button on the upper handle, the rotation of the upper
carriage with respect to the lower, two directions of bend on the lower handle, and the
squeezing pressure on the two buttons on the lower handle. Left for future work is the
enabling of the electric field sensing position, and tilt-sensing on the device as additional

continuous inputs.

In order to make an input-DOF to effect parameter association, the system sets into
motion a 0.5Hz oscillation of the given effect, and simultaneously begins watching the
variance level on all of the enabled sensors. To train the association, the user must
“follow along” with the oscillation on a given input sensor, actuating it towards one end
of its dynamic range when the effect is near one extrema, and towards the other end of
the range when the effect is near the other extrema. For instance, if the effect to be
trained is a sweeping bandpass filter, the system begins by turning on white noise source
and sweeping a band-pass filter effect from the bottom to the top of its range on a period
of 2 seconds. Suppose the user chooses the upper-handle squeeze DOF as the input that
they would like to assign to the filter effect, and they start to follow along with the effect.
They might squeeze hardest on the handle when the filter is at its lowest center
frequency, and most lightly when the filter is at its highest center frequency. After a cycle
and a half of this (consisting of the passage of 3 extrema), the system notices that (a) the

upper handle FSR is experiencing the most variance for the past 3 readings, and that (b)

71



the “polarity” of the activity on the given sensor is such that a low value on the sensor
(tight squeeze) corresponds to a maxima of the filter’s center frequency. With three
consecutive consistent readings, the software makes the association between the squeeze
pressure on the upper handle and the filter effect, with an inverse mapping of squeeze
pressure to center frequency. The input DOF associated and the polarity of the mapping
are thus flexible, depending on what the user wants, and created by just following along,

allowing the user to teach the system “by example”.

3.7 Sound Synthesis

Pure-Data (PD) was used for audio output. PD is an open-source free-software
implementation of a MAX/MSP dataflow-style application that runs on Windows, Linux,
Irix, and Mac OSX. Operating on a “dataflow” metaphor means that samples are
generated from a source (in our case they are read out of an array which is loaded from
disk), and various digital signal processing (DSP) operators — or “effects” - can be
applied to them before they are sent out to be turned into analog audio by the computer’s
audio hardware. If a parametric audio synthesis technique had been used, the continuous-
control element of the interaction could have included modification of synthesis
parameters in addition to modification of the effect parameters. The effects used for the
current system are a band-pass filter, tremolo, delay, pitch-shift, ring-modulation and
volume. The “patch” (as PD programs are called) accepts input in the form of
OpenSoundControl (OSC) messages, which can trigger playback of a sample, enable or

disable looping of a particular sample, and modulate effect parameters.

72



| UDP (OSC) receiver |

control signals: samples
on/off, loop/un-loop

] message router

control signals: effect
parameters, effects on/off

Samples are loaded from disk

A

—

—

Sample 1

i

loop

i

Sample 2

loop

Sample 3 Sample 4 Sample N
1l " ) " ) "
A | - | .| -

] loop ] loop [] loop

N

_

\/

Each effect can be
individually enabled or
bypassed

band-pass filter

Figure 3-12: Control data (left) and audio (right) flow in the pure-data patch.

inlet

route bang float

iloadbana

Erint sampletrigger~error :|

‘stop' kills looping ->
i{do I want this?)

=

argqunents: 1) sample file

2) name of storage array to use

corments: bang or 1 in left inlet to trigger sample

E“sanple file {msec)

ok let)

ine|

0 in left inlet to stop playing
1 in right inlet to enable looping, 0 cancels

¢<- control looping behavior {1, D)

$2-arvay

500[<- outputs a '1' when sound is playing, '0' when it stops

{uses a [line] with a 20 msec ramp, so that it's not harsh)

tlet|

Figure 3-13: The PD patch responsible for loading and playing back an audio sample

73



3.8 Software conclusions

The system described provides an interface by which a player can navigate the set of
available sounds, can assign an open-ended inertial gesture to a sound, can create
mappings from a number of continuous input DOF’s to effect parameters, and can then
play with the result. In future work the gesture space available for triggering of sounds
will be expanded to include the contact-based, and electric-field-sensing inputs. The next
chapter will describe the user study that was conducted in order to evaluate the adaptive

features of the system.

74



Chapter 4

User Study: Design and results

In order to evaluate the interaction characteristics the new musical interface paradigm
embodied by the system, it was important to evaluate it with a user study. There were two
main goals of the study: First, explicit feedback about the interaction would be collected
from participants about factors like engagement, perception of novelty and
personalizability, and interest in performance with the system. Second, implicit data
would be collected about the gestures trained, mappings created, and actions during play
with the device. This chapter will describe the experimental procedure and results

obtained.

4.1 Study Procedure

The study was run in April 2004, at the MIT Media Lab. The subjects were students who
responded to an email that sought participants for a study about a “gestural music
control” system. Participants were randomly assigned to one of two experimental
conditions, which we refer to as A and B. Participants in both conditions began the task
with a survey that asked background questions about their age, gender, level of
musicality, music performance experience, and music listening habits (see figure E-7 for
the text of this survey). Once completed, participants in condition A interacted with the
system in pre-configured mode (described below, and hereafter referred to as Presets),
after which they filled out a post-part-1 survey (see figure E-8 for the text of this survey).
They then progressed to the Training mode, followed by a post-part-2 survey, the text of

75



which was identical to the post-part-1 survey (again, see figure E-8 for the text of this
survey), and then a final survey that asked questions about the experience as a whole (see
figure E-9 for the text of this survey). Participants in condition B experienced the same
interaction modes, but in the reverse order, starting with the Training mode, and
progressing to Presets mode afterwards. In both conditions, data about the triggering of
gestures was captured and time-stamped. In addition, the gestures and mapping
associations that subjects trained in condition B were saved to disk. The modes and

surveys will be commented on further below.

4.1.1 Presets Mode

Subjects in the Presets mode part of the experiment played with the device in a pre-
configured state where they did not train new gestures or create manipulation-to-effect
mappings. Subjects were given a list of instructions that explained the activity that they
would be doing (See figure E-2 for these instructions). They were first shown two videos
that explained how the system worked. The first video (See figure E-5 for the video
script) was an demonstration of the three gestures that they could use to trigger sounds
with the system (including an explanation of proper use of the trigger button), as well as
the use of the toggle button to sustain (loop and un-loop) sounds. The second video (See
figure E-6 for the video script) was a demonstration of the three input DOF’s that were
mapped to effect parameters. After viewing the two videos, they were told that they were
free to interact with the system for as long as they wanted, but that they would be asked
to move to the next part of the experiment when the time came if they were still playing
at that point. The subjects were also told that if they felt that they had arrived at a point at
which they had exhausted their interest in interacting with the system, they could alert the

experimenter and they would be moved on to the next part of the study at that time.

4.1.2 Training Mode

Subjects in the Training mode part of the experiment were able to train new gestures and
to create manipulation-to-effect mappings. Subjects were given a list of instructions that

explained the activity that they would be doing (See figure E-1 for these instructions).

76



They were first shown two videos that explained how the system worked. The first video
(See figure E-3 for the video script) was an demonstration of how they could explore the
available sounds, and train gestures to associate with the sounds (this video included an
explanation of proper use of the trigger button), as well as the use of the toggle button to
loop and un-loop sounds. The first video also explained how to create manipulation-to-
effect mappings with the system. The second video (See figure E-4 for the video script)
was a demonstration of the input DOF’s that were available for association with effects.
After viewing the two videos, they were told to train as many gesture-to-sound
associations as they liked, and to make as many manipulation-to-effect mappings as they
liked. They were told that they were free to interact with the system for as long as they
wanted, but that they would be asked to move to the next part of the experiment when the
time came if they were still playing at that point. The subjects were also told that if they
felt that they had arrived at a point at which they had exhausted their interest in
interacting with the system, that they could alert the experimenter and they would be

moved on to the next part of the study.

4.1.3 Data saved to disk

In addition to the surveys that participants filled out during the study, data from their
session was captured and written out to a series of log files. In Training mode, each
gesture that they trained was saved to a separate text file, and the input-DOF-to-sound
mappings were saved to disk as a serialized Java object. In both modes, information

about gestures classified and effect modification messages was written to a separate file.

4.2 Study Design

The study involved 25 participants, and was a within-subjects design, meaning that each
subject experienced both of the experimental modes. As mentioned above, the Presets
mode featured the device pre-loaded with gesture and manipulation mappings, and the
Training mode allowed the user to define their own gesture and manipulation mappings.
Most of the post-part-1/post-part-2 questions were phrased in a manner like: “How

expressive did you feel that you could be in using this system?”” and subjects responded

77



on a 7-point BIDR-style scale that ranged from (1) “not expressive at all” to (7)
“extremely expressive”. In all graphs, the height of the bar represents the mean of the

responses, and the error bars show the standard error.

4.3 Survey-based study Results

This section is broken into three parts. The first part is from the survey after the first
mode of the experiment. At this point, subjects in either condition had only experienced a
single mode, Presets or Training. The second part is from the survey after the second
mode of the experiment, and the third part is from the survey at the end, at which point

subjects had experienced both experimental modes.

4.3.1 Gesturing (part 1)

OPresets
B Trained

Learning to gesture Gesture execution

Figure 4-1: Ease of learning (left) and executing (right) gestures (part 1)

78



6

5 |

4 T OPresets
J_ @ Trained

3 n

How well did the system recognize your gestures?

Figure 4-2: Perception of the system’s accuracy in gesture recognition (part 1).

When asked “How easy was it for you to /earn to trigger the sounds that you wanted?”
subjects that had just experienced Training mode tended to report that it was easier than
those that had experienced Presets mode (avg. 5.25 Training vs. 4.85 Presets). A similar
question about creating input-DOF-to-effect mappings showed a less clear preference.
When asked “How well did the system recognize your gestures?” subjects in Training
mode tended to respond more favorably than those in Presets mode (avg. 4.75 Training
vs. 3.92 Presets). These results suggest a more favorable perception towards gesture-

recognition in a system that allows custom-trained gestures.

79



4.3.2 Expressivity and Personalization (part 1)

OPresets
B Trained

-

How expressive could you be?

Figure 4-3: Expressivity (part 1)

OPresets
B Trained

How personalized? How appropriate?

Figure 4-4: Level of personalization (part 1)

Subjects in Training mode rated the system more favorably in terms of expressivity and
personalization. When asked “How expressive did you feel that you could be in using this
system?”’ subjects that had just experienced Training mode reported an average of 3.83
vs. 3.61 for those in Presets mode. When asked “How much “personalization” did you

feel that this system offered to you?” the numbers were avg. 4.33 (Training) vs. 3.62

80



(Presets). In response to “Please rate your feelings about the level of personalization you
experienced”, with the ends of the scale being “far too little personalization” and “far too

much personalization” the numbers were 3.83 (Training) vs. 3.23 (Presets).

4.3.3 Enjoyability and future play, performance (part 1)

1

OPresets
B Trained

How enjoyable was your experience?

Figure 4-5: Enjoyability (part 1)

OPresets
B Trained

Likely to play with it Likely to perform with it

Figure 4-6: Likeliness to be interested in further play, performance. (part 1)

81



Subjects in the Training mode rated the system as more enjoyable than those in the
Presets group (avg. 4.83 Training vs. 4.54 Presets). However, when asked how likely
they would be to want to play or perform with the system again, those in the Presets
group answered more favorably than those in the Training group (Play: 4.16 Training vs.
5.16 Presets, Perform: 2.5 Training vs. 3.15 Presets). One possible explanation for this is
that since the preset gestures and the input-DOF-to-effect mappings were chosen
carefully by the author (who has significant experience in using the system), they may
have been a more comfortable set of mappings than those chosen by subjects who were
using the system for the first time. Indeed, after experiencing both modes, subjects in
condition B reported that if they had used the Presets mode first, they felt that they would
have been created more satisfying mappings during Training. In future studies, allowing

the subjects more time to use the system could alleviate this problem.

The second section is from the survey after the second part of the experiment. At this
point, subjects in either condition had now experienced both modes, Presets and Training.
Results from this part were mostly consistent with results from the previous part with
respect to personalizability, expressivity and enjoyability, but interesting differences

found on a few of the questions will be discussed.

4.3.4 Gesturing (part 2)

7

6 |

5 |

4 OPresets
B Trained

3 n

2 |

1

Easy to learn Easy to execute

Figure 4-7: Ease of learning (left) and executing (right) gestures (part 2)

82



6 n

5 | I

4 OPresets
B Trained

3 n

2 |

1

How well did the system recognize your gestures?

Figure 4-8: Perception of the system's accuracy in gesture recognition (Part 2)

Findings about gesturing after part 2 of the study were inverted from those after part 1.
Subjects found the Preset condition easier to learn, and easier to execute gestures within.
In addition, perception of the system’s accuracy in gesture recognition was higher for
subjects in the Presets condition. These are considered to be ordering effects, or it could
be that the preset gestures trained by the author were more distinguishable by the system,

leading to better recognition rates during Presets mode.

83



4.3.5 Future play, performance, and novelty (part 2)

OPresets
B Trained

Likely to play Likely to perform

Figure 4-9: Likeliness to be interested in further play, performance. (part 2)

T

OPreset
B Trained

How novel was the system?

Figure 4-10: How novel was the system? (part 2)

In contrast to their responses after the first part, subjects after the second part claimed to
be more likely to want to play (5.69 Training vs. 4.25 Presets) and perform (3.53
Training vs. 2.33 Presets) with the Training mode system than with the Presets. They
also tended to rate the Training mode as more novel than the Presets mode (5.92 Training

vs. 5.42 Presets). These differences are similar to the “ordering effect” discussed in the

84



previous section, but here they are thought to reflect an awareness of the differences
between presets and open-ended training, and this awareness resulting in a preference for

a trainable system.

7

6

5 |

4 T OPresets
J_ B Trained

How expressive could you be?

Figure 4-11: How expressive did you feel that you could be in using the system?

After the second part, subjects in the Training condition clearly rated the system more
highly in terms of expressivity. This finding is consistent with the questions that asked
the subjects about their likeliness to be interested in future play and performance with the
device (subjects in Training mode were more likely to be interested in both), indicating a
correlation between expressivity and interest in play and performance with a musical
instrument. This finding is also interesting when considered alongside the question about
ease of gesture learning and execution (in which subjects indicated that the Presets mode
was easier). The combination of these two results indicates that subjects would prefer to

use the training system, even if it is more difficult to train and execute gestures.

85



4.3.6 Wrap-up questions (Part 3)

After experiencing both Training and Presets mode, and completing the post-mode
surveys for each mode, subjects were asked questions that compared the two systems
explicitly. The results of this round of questions indicated a clear preference for the
Training mode along the dimensions of expressivity, engaging-ness, enjoyability,
personalization, novelty, and interest in future performance. The one dimension that the

Presets mode dominated was ease of learning. See the following graphs for a full report.

100.00%

90.00% -

80.00% -
70.00% -
60.00% - )
o
40.00%
30.00%
20.00%
10.00% -
0.00%

o c o Q< % 5 °© =

> £ e} o 4 =
g g & > s TR <) c's

S = o ®© o > > N < = )
] ow =) = 9 O = o n &
[SIN7] = 3 c c = © s o =
0 = o o = oc o 5 €
2= Q2 Qo ) 25 > L <
3% n = = N c O
55§ 5 g% =3
Z w = o o

Figure 4-12: Post-study summary questions (group A)

86



100.00%

90.00% - ]

80.00%
70.00%
60.00% -
O Presets
50.00% - .
W Trained
40.00% -
30.00% -
20.00%
10.00% -
0.00% : . : : : ‘ ‘

ing
ion

Allows for
more
expressivity
Easier to learn
to use
More engag
More enjoyable
Better level of
personalizati
More novel
Interest in
performing with

Figure 4-13: Post-study summary questions (group B)
4.4 Results from other data captured

The following section summarizes findings from the data captured during the Training
mode sessions. This section is extremely exploratory, as little could be anticipated about
the types of gestures that people would assign to the available sounds, and the types of

mappings that would be preferred in associating inputs DOF’s with effects.

4.4.1 Gesture Length

The first statistic pulled from the implicit data was the length of the trained gestures
compared to the length of the triggered sounds. The lengths of the gestures for each
subject were first individually normalized by the average gesture length for the subject, to
account for differences in gesture-length tendencies between individuals. The results are

summarized in the following table.

87



sound description

sample length

avg. normalized gesture len.

Turntable scratch

0.22 seconds

1.0152 seconds

Tom hit

0.394 seconds

0.948 seconds

Sleigh-bell shake

0.429 seconds

0.754 seconds

Vibraslap 0.862 seconds 0.800 seconds
Rhythmic clapping 2.116 seconds 1.223 seconds
Cymbeal crash 2.444 seconds 0.903 seconds
Medium pitch drone 19.597 seconds 1.576 seconds

Low pitch drone

21.358 seconds

1.046 seconds

High pitch drone

21.458 seconds

1.239 seconds

White noise

inf

1.273 seconds

Table 4-1: Sound lengths and average gesture lengths

The following graph plots the same data on a logarithmic scale.

100

10 1

Length (seconds)

A

/\.\-/'

—&— Sound length
—l— Gesture length

s € 7 5 9 10

0.1

Sound index

Figure 4-14: Suggesting a correlation between sound length and gesture length

Some of the variation in the data in this representation could be due to noise, but when
the lengths of the sounds are be broken into “short” and “long” categories, the trend
becomes much more clear. Using 1 second as the dividing line between “short” and

“long” sounds, we find that the average gesture length associated with “short” sounds is

88




0.818 seconds, while the average gesture length associated with “long” sounds is 1.258

seconds. This indicates that the length of the gesture a person will naturally associate

with a sound is positively correlated with the length of the sound.

- - -
- N » D
!

I
o

Average gesture length
o
oo

o
S
"

o
o

o

Sounds

O Short Sounds
B Long Sounds

Figure 4-15: Average gesture length for “short” and “long” sounds

4.4.2 Gesture to sound associations

Perhaps more interesting than correlating the lengths of sounds and gestures is a closer

look at the features of the gestures being associated with the various sounds. As a

reminder, trained gestures consist of data from the accelerometers and gyros — inertial

data. The primary measure analyzed here is the per-sensor root-mean-squared (RMS)

energy present in the gestures. To preprocess the inertial data, the average energy was

computed, per-sensor per-subject, and each gesture’s energy profile was then normalized

by these values. The following table summarizes the average energy from the

accelerometers and gyros from gestures associated with the 10 sounds.

turntable | tom sleigh | vibra clapping | cymbal | drone | drone | drone | noise
acc 16.659 17.053 | 11.802 | 12.060 | 12.027 | 15.953 | 10.749 | 2.612 | 12.132 | 2.952
rot 21.079 16.725 | 13.537 | 11.635 | 7.751 14.843 | 8.369 | 3.095 | 10.061 | 6.691

Table 4-2: Average gestural acceleration and rotational energy per sound

89




The preceding shows several interesting patterns. First, the “turntable” gestures contain
much more energy in rotational than in acceleration. By the same token, the “clapping”
gestures contain more energy in acceleration than in rotation. These findings are
consistent with the types of motions that are used to produce these sounds under normal
musical situations: turntable scratching is a very rotation-centric activity, while a
clapping motion features more acceleration. The gestures associated with the “drone”
sounds tend to have a more equal combination of acceleration and rotation, which can be
explained by the observation that the physical motion in normal situations associated with
creating those sounds is less defined. These patterns suggest that users bring experience
and metaphors from the physical world to the current open-ended gesture task. (see
section 5.1 for more discussion on metaphor) A more thorough characterization of

gestural connection to sound type would be interesting further work.

4.4.3 Input DOF to effect mappings

# subjects who used it % inverted mapping
Ring modulation 14 71%
Volume 15 33%
Sweeping Band-pass filter 14 36%
Tremolo 19 47%
Pitch-shift 22 91%

Table 4-3: Effects available, usage, and polarity trends observed

The above table has a single sound-modification effect per-row, and it shows two things:
The first is the number of subjects (out of 25 total) that created a mapping for the
particular effect, which gives an indication of the effect’s popularity. Most subjects did
listen to all of the effects before or during the selection process. The second item shown
by the table is the percentage of the subjects that trained an input-DOF for the effect that
created an “inverted mapping” for the effect. The polarity of a mapping (inverted vs. non-

inverted) refers to how the range of the sensor is mapped to the range of the effect. If the

90




maximal value from the sensor (for an FSR, given the signal conditioning circuit used,
this is when there is the least pressure on it) is associated with the minimal value of the
effect, this is called an inverted mapping, and vice versa. The labeling of the polarity
(“inverted” vs. “non-inverted”) is essentially meaningless — what is interesting however,
is the consistency of polarity found on certain DOF’s. For instance, of the 22 subjects that
created a pitch-shift mapping 91% created an inverted mapping. Similar patterns show up
in the mapping of ring-modulation, volume, and the band-pass filter. Also interesting is a

look at the trends in how people mapped particular input DOF’s to effects.

ring-mod volume sweeping filter tremolo pitch-shift

# INV # INV # INV # INV # INV
top-handle

2 100% 3 0% 2 0% 5 20% 6 83.3%
squeeze

carriage twist 6 50% 3 33% 5 20% 3 100% 5 100%

low-handle

2 50% 4 50% 5 40% 5 60% 6 100%
mid-button
low-handle

4 100% 5 40% 1 100% 4 50% 5 80%
low-button

Table 4-4: Number of mappings created per category, and polarity consistency

Looking at the raw numbers in the chart can be misleading, since effects like tremolo and
pitch-shift were more popular in general, thus the high number of mappings from input
DOF’s to these effects may be part of a distribution. However, the polarity of specific
mappings is interesting. For instance 100% of the 6 subjects that made a low-handle-mid-
button mapping to the pitch-shift effect created an inverse mapping (meaning that
pushing harder on the button caused the pitch to shift upwards). At first this may seem
like a natural consequence of the intuition that squeezing harder should cause “more” of
the effect, whatever it is. Showing the opposite tendency, however, is the mapping of top-
handle-squeeze-to-tremolo. Of the 5 subjects that made that mapping, only one of them

trained an inverse mapping.

91




The patterns collected from the way in which people trained gesture-to-sound and input-
DOF-to-effect mappings are interesting in their own right, and could be instructive to
future electronic music controllers — especially the majority that design controllers with
preset mappings. In future work, the set of input DOF’s will be expanded to include a few
other affordances, such as tilt and electric field sensing. Using this work as a starting
point, a number of more specifically-targeted studies could use the current device or a
future version to tease apart an even more detailed look at how people naturally create

mappings when presented with an open-ended, trainable controller.

4.5 Study Conclusions

This chapter has presented the design and results of a user study that was run in April
2004 that involved 25 participants. Survey questions interspersed throughout the activity
collected the subjective opinions of the subjects. The surveys produced data about
engaging-ness, enjoyability, future interest in play and performance, ease of gesturing
and novelty. In addition to the surveys, implicit data was collected about the types of
gesture-to-sound and input-DOF-to-effect mappings that the subjects created. See the

conclusions chapter for more discussion about these findings.

The next chapter will present the conclusions of this work, future directions for work

with the system, and some ideas about future applications with the system.

92



Chapter 5

Conclusions and future work

In this chapter the project is considered in its entirety. We will begin with a summary of
this thesis, considering the work to date. Future small-scale improvements to the existing
system will be considered, followed by a discussion of long-term applications of an

adaptive gestural device.

Overall, the work in this thesis demonstrated that a sensor-rich multi-DOF device can be
made to flexibly learn open-ended physical gestures, and can allow a user to create
custom assignments of continuous input DOF to output parameters. This device has also
been shown to be useful as an investigative tool, helping to understand more about

intuitive connections between gesture and sound.

5.1 Summary

The system constructed uses a number of inertial, pressure-based and electric field
sensing circuits in order to provide a flexible and adaptive user interface platform. On the
hardware end, a microcontroller-based physical device with inertial sensing, electric field
sensing, a number of contact-based input degrees of freedom, and serial communication
capabilities was constructed. On the PC, software receives data from the device, storing

and interpreting it. When configured in training mode, the routines allow custom inertial

93



gestures to be trained and associated with output sounds, and permit continuous input
degrees of freedom to be flexibly assigned to sound modification (effect) parameters.
During play mode, the software on the PC uses a dynamic time warping algorithm to
classify incoming gestures based on the user’s trained class models, and continuously
updates sound modification parameters based on the state of the continuous input DOF’s.
The most recent sound triggered can be put into a sustained (looping) state during play
mode by pressing up on a toggle button. Looping sounds can be layered, and the most
recent looping is canceled by pressing down on the toggle button. Pressing the toggle

button directly in cancels all looping.

A user study was designed and run, in which subjective impressions of the system, along
with implicit performance and configuration choices were collected. Data from a survey
showed that users found the trainable system more engaging and expressive. Observation
of subjects during the study indicated a high sense of engagement during the training
phase. There was inevitably a visible “a-ha” moment when the subject first trained a
custom gesture and tested it, triggering the associated sound. At that moment, subjects
would typically sit up straighter, move closer to the computer, and some even made
utterances of pleased surprise like “cool!” Similar excitement was observed at the
moment with an input DOF became associated with an effect, and the mapping suddenly
became enabled. After experiencing both modalities (Training and Presets), subjects
using the Training mode reported being more likely to want to play and perform with the
system in the future, and that they found the system more expressive. In addition, this
group also rated the system favorably in terms of its amount and appropriateness of
personalization. A survey at the end of the study showed a clear preference for the
training-mode system in the areas of expressivity, engaging-ness, enjoyability,
personalization, novelty, and future interest in performance. The only area in the final
survey in which the Presets mode was rated more highly was in ease of learning to use
the system. This problem would likely be mitigated in the future by giving players more
time to familiarize themselves with the device (the entire experiment, including the
Training and Presets mode lasted less than 1 hour). Overall, subjects found the system

very compelling, and during the study several of them pushed the system into some sonic

94



and rhythmic spaces that were fascinating to the author and quite different than anything

he had previously created with the device.

Mapping data captured during the user study suggests that metaphors from experience
making sounds in the physical world may be an underlying force in the assignment of
custom gestures. For instance, the gestures that subjects associated with a turntable
“scratch” sound featured more activity on the gyros than on the accelerometers This
pattern indicates a tendency towards gestures with rotational motion, which is consistent
with the way in which an actual turntable “scratch” is executed. By the same token,
gestures trained for a percussive drum-hit sound tended to contain more acceleration
energy than rotation, which is consistent with the physical action of striking a drum. The
explicit use of interface metaphor is an established human-computer-interaction (HCI)
principle in which a designer couches an interaction or representation in a framework that
is conceptually familiar to the user [Carroll, et al. 1988]. The HCI concept of metaphor
can be related to the current data in the following way: The FlexiGesture is open-ended
enough that subjects may be using metaphor intuitively, their gestures related to actions
that they know from a lifetime of experience with sounds in the world, even though no
metaphor is explicitly designed into the system. This spontaneous use of metaphor
parallels the overarching FlexiGesture philosophy— rather than trying to build in the
“right” affordances (or metaphors, in this case), the system is flexible enough that users
can train it in a way that makes the most sense to them individually. Finally, gesture-
length was shown to be correlated with sound length, and clear preferences were found
for the assignment of input DOF-to-effect mappings. These findings from the implicit
data are interesting, and they suggest an exciting future use for this device as a refined
“musical affordance laboratory” tool, enabling the systematic discovery of intuitive

mappings for computer-generated sound and other media.

5.2 Future Work

As the intent of this thesis was to provide a proof-of-concept, working system that can

flexibly learn gesture-to-sound and continuous-manipulation-to-effect associations, there

95



are a number of improvements to the hardware and software that could be made that bear

further discussion.

A software-related feature that was considered but not included in the final version is a
tilt-based navigation of the sound space, rather than the current list traversal. Coupled
with a synthesizer that had continuously variable parameters, tilting could provide an
interesting 2-dimensional navigation metaphor. An idea that was considered early in the
design process would use a genetic algorithm/hill-climbing metaphor in starting at a
“seed” set of synthesizer parameters, with a neighborhood of mutations from the seed
accessible in various directions by tilting the device off-axis around in a circle. When a
neighbor was found that the user considered more favorable than the seed, a button press
could make that neighbor into the new seed, which would generate a correspondingly
new neighborhood of mutations. A related tilt-based navigation interface for physical

space is discussed in [Eslambolchilar, et al. 2004].

A hardware feature that could aid in the aforementioned tilt-related navigation would be a
microcode tilt-sensing algorithm that controls the individual LED’s around the edge of
the circular PCB. The accelerometers on the inertial layer can be used to sense the tilt of
the device by calibrating to a baseline of gravity, and detecting slow-moving changes to
the baseline. The circular PCB was built initially to support rich visual feedback, and
each of the 64 LED’s can be individually turned on and off, which could enable a “water-
in-a-pan” style visualization of the device’s tilt. The LED’s could also be used in many
other ways to give the user and audience relevant feedback about the internal state of the

device, perhaps lending a greater sense of transparency and causality to a performance.

A few interesting variants and uses of the dynamic time-warping algorithm could be tried
as well. In computing model gestures, any number of in-class examples could be
combined by running the DTW algorithm on pair-wise on each pair of gestures, then
warping the N-1 gestures to the 1 that had the lowest error to the others. Once warped to

the best-fit gesture, the average of all N example gestures could be taken as the class

96



model. As suggested in chapter 3, classification speed could be improved in the future by

enabling optimization and using just-in-time compilation of the Java bytecode.

A variant on the DTW method used in this work could be to adapt the features employed
in each run of the algorithm based on which model is being tested against. Each of the
models could potentially have a different sensor importance profile, which would be the
subset of sensors that were an important part of that particular gesture. When testing
against a model gesture, a modified DTW could be run that only analyzed the relevant
sensor data streams, given the model’s profile. This could potentially result in more
accurate classification. In addition, a graceful-recovery feature could be added that would
trigger some “default” or more roughly-classified sound in the cases that classification
fails. These would remedy the occasional situation in which no sound is produced in

response to an executed gesture that has high error compared to all model gestures.

As an alternative to dynamic time warping, the continuous hidden markov model
algorithm could be applied to the gesture classification task in the system. In contrast to
the discrete HMM formulation, the continuous HMM does not require the data to be
drawn from a symbolic alphabet. A continuous HMM formulation would also allow for
continuous estimation of gesture class as the data entered the system and was processed
in real-time. This configuration could not only speed up classification, but could allow
for some form of sound output to be produced before the gesture was fully completed — a
feature that some users suggested as a possible improvement. The tradeoff in using a
HMM representation as opposed to the current DTW implementation would be that the

model could require more training data before becoming a useful classifier.
Finally, as mentioned earlier, the continuous input DOF data could be fed into the gesture

training and classification routines along with the inertial data streams. In addition, tilt

and electric field sensing inputs could be added to the set of inputs to the system.

97



5.3 Future Applications

As a music controller, the FlexiGesture has already broken new ground in being a novel
physical device built specifically to support flexible and adaptive behavior. One direction
of future applications for the system could be the control of other rich media during
performance, such as mixing video or dramatic control of theatrical lighting and effects.
In addition, since the novelty of the system is in its quick and responsive adaptation, the
training of the gestures and manipulations could be an integral part of a performance,
introducing the audience to the concept of a real improvised dialogue between performer

and device.

Moving past the idea of a music controller, future applications of an adaptive system like
this extend into a wide range of hand-held devices. A living room “wand” that could
learn to trigger the opening of windows gestured at, or dim the lights based on a squeeze
or tilt could be compelling and flexible tool. A television remote-control with inertial
sensing inside could be taught to associate gestures with different television channels,
providing random-access to favorite stations without having to squander surface real-

estate with a large number of single-purpose buttons.

Computer gaming is another application area that the device could be well suited to.
Novel commercial and experimental game controllers push the edge of input devices,
many of them featuring a multi-degree-of-freedom set of input affordances, typically in
the form of digital buttons for fingers and thumbs, or two-handed twisting of the
controller [ActiveWindows website]. Some controllers even sense tilt as an input [Saitek
P2000 Manual] [Joystick Review website]. Equipped with a joystick-style interface
(USB) to the computer, the device could be used for game control, or for any number of
media-centric applications for which game controllers have been appropriated [Manor]

[Sarlo].

98



There are other objects that could be fitted with the requisite sensing and processing
capabilities in order to emulate the behavior that the FlexiGesture is capable of. For
instance, the ubiquitous cellular phone, but equipped with accelerometers inside (phones
with this feature will be on the market soon), could become an adaptive musical
instrument, enabling impromptu “jam sessions” on the sidewalk or subway. Based on a
common device like a phone, a system like the FlexiGesture could also allow people to
share gestural music associations, beaming them from device to device with RF or
infrared communication. Implemented on such a widespread platform, the system could
aggregate large-scale information about gesture-to-sound associations and interface

preferences.

5.4 So, will it replace the electric guitar?

There is no short answer to this question. In its current form the FlexiGesture can’t beat a
piano or a horn at playing a familiar melody, and the guitar has an incredible amount of
“rock-star-cool” momentum that makes it a juggernaut in the world of musical
instruments. However, the FlexiGesture illustrates a fresh paradigm. It is the first of a
new class of instruments that reject the “one-size-fits-all” model in which the player
practices for years to adapt his gestures to suit the instrument, or struggles with a poorly
designed user interface to change presets to his liking. An instrument that learns the
player promises a more satisfying and expressive musical experience, and opens up a user
base that is far larger than the current number of musicians. Upon hearing about the
device, numerous non-musicians replied “that’s just what I need!” recounting stories of
frustration with existing instruments, but an underlying desire to play music. These
accounts suggest that an adaptive musical instrument could provide a compelling musical
interface to people who never found success with a traditional instrument. In addition, the
increased sense of personalization that users felt in training mode indicates that a greater
sense of attachment could be developed for an adaptive musical instrument. For existing
electronic musicians, the device would help solve the “laptop” problem by giving the
audience a better sense of musical causality in connecting the performer’s physical

actions to the sounds being produced. And to the guitar players, it offers a new expressive

99



set of affordances, and capabilities that are go beyond, or at least in a different direction,

than what can be done with a guitar.

To put forth a concrete example of the FlexiGesture in use, an ensemble of players with
new musical instruments was created at MIT in March 2004, as part of a visiting
residency by experimental composer and musician John Zorn. In the context of a rule-
governed improvisation session, the FlexiGesture was played by the author, and was an

expressive and contributing member to the overall piece.

Here’s what some great musical thinkers of our time have said about the FlexiGesture:

David, man, that’s really cool!

- John Zorn, experimental composer and musician (during his artist residency at MIT in March 2004)

1t’s very inspiring. Very inspiring. This thing has a great future. Very nice.

- Tan Dun, Grammy and Academy award-winning composer (at the Media Lab in April 2004)

100



Appendix A

Abbreviations and symbols

API  Application Programming Interface
DLL Dynamically Linked Library
DOF  Degree Of Freedom
DTW  Dynamic Time-Warping
EFS Electric Field Sensing
FSR  Force Sensitive Resistor
GUI  Graphical User Interface
HCI  Human-Computer Interaction
HMM  Hidden Markov Model
IC Integrated Circuit
JIT  Just-In-Time (compilation)
JNI  Java Native Interface
MIDI  Musical Instrument Device Interface
OSC  Open Sound Control
PCB  Printed Circuit Board
PC  Personal Computer
PD  Pure Data
UART  Universal Asynchronous Receiver Transmitter

USB  Universal Serial Bus

101



102



Appendix B

Schematics and PCB layouts

103



9

g [ TN, SAUIS PUE SIS0 ST
Jo 1 | FO0TILTH e
oA d
sy soquiny g
J1oAeT Jndin
TIAN0 -
DVREINID =

OISO ——2
awor | anze
dey de)y diy> 10AUp (FAT

& | I3 omsoia
LoasLola
(o — SO
o YD ooasod

X T
o —| Nid 108010

AS SO #Z LEDRI NNOD

—mTn e
&l

OS0MH O

EEEE

ADVISNAN!

AEE

ndino Kouanbasy oy (raagduad X

d XD
0] SNt LI

ALb,

i

| ANG[9OION
D

ATE

LT EEEE
T
3
W= | s sl
ORI | DT
aan ——acs
ano f——{[i-
00d 0%
ao
0o o
EEEE &
ArE
- )
1EE7TVND,
2
F
F

Figure B-1: Schematic for the Output Layer

104



s‘GG’TDUT Rev 0.1 Jang
¢C>2004 ResEnv
MIT “Media Lab
dmerrill, joep

| TN

Figure B-2: PCB for Output Layer top (top) and bottom (bottom)

105



14 7 € T I

TRE UREICPQUOS I T\ S3UmaS PUe i D ]
o 090 | HO0TLTY e
OIS
‘0A
[4Y UOISIASY JoquinN s
g0d Tenany
o
9NOD facy aT aT aT aT aT aT aT Luo
.__ Lo 19Sa | N0 [£95a | SN 95d | N3 1950 | N [9sa | NS fessa | N sssd | N [essa | e
>2“ ¢ o1 0
€
pieoq AI)eq 0} SJOUUOD -> >§“ M
Jeisneg’ 9
ad ad ad ag ag ag J<| Je| oLoId
. 9sSa | 0 [ssSa | S tsSa | SN £55a | S [essa | S [issa | S fossa | N fetsa | e
DS o0
b . ar ar aT ar ad aT aT aT SLoIa
SOd ¥ LdEDE NNOD SSA | SO [5a | NS orsd | N4 shsa | N8 [msa | NS [esa | NX [asa | N8 [sa | N
— 353 0
— 6
— 8
— L
— 9
— S
— v ar ar ar ar aT aT aT aT vlod
J— ¢ 0rSA | S0 [655a | S0 865 | N [Le5a | N [ossa | NS [sesa | Sy [resa | NS fessa | N
— z
; VOIS o0
TRproH =
z ar ar ar ar aT aT aT aT ELIOId
- eS| NS 1S | N 05sd | N fessa | N [szsa | NY [csa | NS fosaT | NS fswsa | e
<t TS €0
ad ag ag ag ag ag ag ag aoia
- VoS | N [esa | NS [csa | N [isa | N fozsa | N [e1sa | N [sisa | SN [eisa | e
OS] (@5 ™
90S]
LS,
OS]
XS 39proH 03] -
1035, Lo
] 6 b— ax ax ax ax ax ax ax ax
s [[OE O [ 91SA | ¢ [S1Sa | S [rIsa | S [e1sa | N [aisa | S s | S foisa | NS | esa | e
LS, 5 ¢ om €S 1
SO BES oS [59)
OBy o B
€04 58
108 ¢ ! ooms
9t
ad ad ad ad ag ag ag ad oLoid
o SSA | N £SA | NG 9Sd | NG s | NG 1SA | N80 | N Ba | NS 18a | S
0D J T a ) a A g100]
I fa g ja § A J F_P \4

<
B
o

Figure B-3: Schematic for the Circular PCB
106




4: PCB for Circular PCB (top)

Figure B

107



Figure B-5: PCB for Circular PCB (bottom)

108



ADG608

£
. B
i .
a 8
]
g
NS
el [ |
o

MHDRIX2

1P3

Tile EFS Receive Board

0

‘Number

4287004

EFSR

C\Documents and Seff

Date:
File:

Figure B-6: Schematic for the Electric Field Sensing Layer

109




BND
=] roce u""“ o

L
J.

al: DHII

Electri Field Sensing

®

° o
i

Rev 0.1 Jan
(c22004.ResEnwv

MIT Hg-ia Lab

©

GND

Figure B-7: PCB for the Electric Field Sensing Layer top (top), and bottom (bottom)

110



vce
A
M Q3
BIT-NPN
PVDF 1
RO
piezo oM
R11
10 K
R10
10 M

Figure B-8: A piezo signal-conditioning circuit,
before re-purposing for FSR use.

vCC

J2 INTO
CAP1 DIR7
< lcAap2 SCK
MOS
CON2 VCC DIRS
DIR3
VCC DIR2| _
15 DIR1
100 Ohm DIR4
15 NSS
3.3k MISq
DIRG 1
DIRB 1;
INTL 14

CON14

9
10

VCC
VCC

A
10K

L7 .
<-transistor
[

ouT

Xgﬂ
RVS
R11
g SR ;10 K
%
Figure B-9: The piezo signal-conditioning circuit,
after re-purposing for FSR use.

Figure B-10: Connection diagram for the 2 digital buttons

The header connections for 2 primary capacitive sensors on the tactile board were re-appropriated to carry
signals from the two digital buttons. A pull-up resistor was connected to each, and they were sent back to
the output layer on lines DIRS5 and DIR6. The header also provides a GND connection for the buttons.

111



112



Appendix C

Embedded C code

113



cI090878p Yoolo Bursstm /f

STCEUS (IORETTTOS0 [BUISIUT STCRSTA // fEEND = NDIDSO
IoqBITI0EC [BUISIXS 073 YOIIRE // D0XD = NDIDSD

‘pelaels )
Sey TE3SATO [BUISINS TTIUN 3TEM /7 {{(08X0 ¥ MIEDS0) i) STTUM

f{--AeTeb)eTTUM
caiany Buttred sacisq sm 1< Aelsa /f fecE=AvTap

fORNG = NDLOM

Tsmty Bopuojem STUAEsSTR /f AMEO = NOLAM
TB38AIo [PUISTX® STQRUE [/ faeX0 = NDEIS0
AeTap quUT

}

(PTOA) 9TUTSSC PTOA
f¢ T03ETTT050 2U3 dn 395 +f

{
}

5 adnaregut (JYOCTOTTIIN proa
fo00z = proyssayly sanssead Iano jut

‘{Isqunoo Ieyo peubisun
AUBTHT TN ‘MOTTTI Ieyd paubisum

fgrapayosyo’ degssury ny
feden fzder ‘ades ‘wdeo nt

o3 TIMS eATP ‘YDFTMS SATP ' 9ISI GISI’PISI’ wIsS1’EAsy 1IS1°zpusd’Ipuad Ny
tfaxtp tesmed eTofo UT AT1q

fEawp ATMSURIY IBUe paubIsun

fgngels Teys psubisun

{1T®q ATEN MIpEsy AIrn ¥I Ieyo paubisum

¢ [EZIS8 EA4And] Ing 4Ien x4 eqepl Ieyoe pesubisun //
{[EZI5 WEAANE]Inc 3Ten KT viepl Ieys paubisun
{gZI=00B NT

{1zT8008 NI

{AT=s00®R NT

{xrso0e N1

fzozfb ni

‘Roxib nt

‘xozfb ni

fg.,ed = AAYH 3T4S
‘1,24 = MS¢ 3TAS
fo Ed = ELEd JTGS

fa,1d =FNE 3TOS

f5,Td =€NA 3TdS

fp,1d =ENH 3TOS

f8,1d STHA 3145

fo,1d = €¢ 3198

f1,1d = T¥ 3145

‘2,14 = 0% 3TaS

fL,1d = ¥ 3198

1In3s W S

L NIJXA SUuTIsph
T LUOd¥NA SUTISbE

‘{Eee ' eEe’ BEE 'GEE GTE EIT OTL 608 FOE
TEOETTOE §6T LET GAT PRT 08T 8LT LLT
TELTTOLT 68T/ 88T 55T €8T 86T #GT
CESTIOST 6FPT  LF T/ EPT ' TFT 68T "SET

HTT PTIT €11/ 80T 80T 50T 20T 'TOT
f66°E6 70668 98 8B BL LLISLITL 8BS
YLE'FSTES TS8R ek ek 6T 6T LT e

= [ve]dnyool aryc psubrsun egept
a1y dnyool ut Bnta /ff

‘z ed = SUTA 3105

‘e ed = SEI 2Tds
‘e ed = PIId 3T4S
fa,zd = HId 3108
‘5.,2d = Zd1d 11ds
fr.Ed = T8I 11ds

SSUTT 403ITp 2I8T00d //

fs.ed = LlAsEEMAS 315
fL,Ed = STLUAL 1TSS
fo,ed = CHLD TS
‘T,ed = TELD 1TAs

sqxod sxeTo8a //

0057 FICHSEYHL SMNS53¥d HOIH sutlep
0007 QIOHSANHL AHNSSAET MOT SUTISDE

LOATICOYLEA O SUTIApE
5QAT OQ SUTISPE
TYNOTLOBHIATA O SUTISPE //

(43 HEIS ddddnd Suijepy
IT=BTIEUAL [ 0=0uLD SNENL L3S SUTISpH
fo=p[qeudl T=0dLD DHd LIS 2UTIeph

SLNELENOD TPU0TS [/

““““““““““““““““““““““““““““““““““““““““ vt

f(pron) Ing KT 3IeW yoouo Ieyo paubisun
f{pToa) Ing ¥7 1dEN yosyo IeYD peubIsun
{(a3hq aeyo poubrsun) o3Ad 3IEn pUSS proa
f(pTon) WSI_OLEEN PTOA

f(pTOA) JTUI OLEY¥N PTOA

f{PTOA) BIBTESA] TUSUBIY PTIOA

£(uT IeUD paubISUN)MUISS PIOA

¢ (aeyo peubrsun’Ieyo peublsun) S8TQUINESUEI] PIOA
f{PIOA) BERI3TWSUEI] pIon
f(PTOA)STEOOYIOSTIOD DTIOA
f{proa)BoTRUYYOSTTOD pTOA

{(pToa) 3TUT PTIOA

SEAALOLO¥A uoTioung [/
............................................................................. I

Wl STS8UY, SPNTOUTH

W7 SpaT andgno. SPNTOUTH
Wl CBOZ, SPNTOUTH

<7 0Tp3Se SPNTOUTH

AesEquUad TIY ‘ STIIOWH ASELS A Us3]TIm pod Wol] SHMOITOT #
vooe ATenidged (peTITROM =
TTTIISH p1aRd :TIOYINE &
c-e-e- e

075158 =/

I 25vd D SISTHL

thesis.c embedded C code

Figure C-1

114



J(++1 753007 XM d¥0r170=1)10]

fEUT = SUIA
fTUT = S¥Id

i1 autT
000T S400T XMW YD SUTISDE
} (zut gqur ‘rut qurmmdesiss proa

£ {++T ¢ 5001 ZM>T¢0=1) 107
fZ<s (PONOBUT) = 2
FLSS(E0N0FUT) = T4

‘TOMOBUT = 0%
‘1_3u1t

08 BA00T XM SUTISDE
} (ut aeyo psubrisun)xnmaes pros

fo=Agrrp=s[oio ur=ssned

{0 = pIOM ZZISOOE = DIOM TZISODE = pIom ATSDOE = PIOM® M[S20E
fp = prom zorAD = paom AcIAB = piom-¥xoziAB

SOTCRTIRA YURTE//

{O=0HLD
{T=THLD
I233TMSURIY UO UINL//

ITpuSH
¢(yqTuT prab pel =bpeq

wmruTn o3 ssaulybiaq gAT 3es f/ f(ooxo’ Zoxo)psl 1ds £31a4m
(spom 3InEIep) ubBTIY SIET SY3 I0T SUTT S0 2UY SATIp f/ ‘T = QT S0

YR0XQ = MDO0IAS
e
(3P STARUS Id5) MAIAS ¢ T <- 0 314 =
(8TqeuUs IsgsSem) NALSK ¢ T <- T 914 =
DARTS B 5B POICEUS ST 20Tasp Isasusym T O3 385 (Bel pajos1ss oApls) TESATS ¢ 0 <- 2 31 =
sIempiey Aq pelesio ‘ (BerI AsSng aTwsuelq) ASExXL 0 - £ 919 %
iSTHL ¥¥ETY (BBTI UNITSA0 SATSOSI) MHAOXH ¢ 0 <- b 3Tq =
[SIHL d4%dTD (Be13 9InE] Spom) AdOM ¢ 0 =- 5 3Tq &
iSTHL ¥¥ETY (FeT7 UOTSTTTON 23TIA) TOOM ¢ O <- & 314 =
[SIHL d4%dTD (Be1J 3dnaTsqut I48) 4IdS * 0 <- L 9714 =
(325 531 Mo0Ids =y3 dn 385 I Moy =/
fLoXo = DAD0IAS
1E38AI0 ZHA 0T
I
Sqno peITUS g TTTM SATC § 4Byg Suesm TTT .

spom-Isqsem Buting IsqstBel Ids syl JOo Ino Ul 9ITUS ©F S9Tq JO ISqunu ¢ [fFRTTSE-0J0Y¥EudTs 3o
PRIATUSUET] USSC SABY PIOM 145 oU3 30 531q £ o3 dn aql Jo yorum ¢ o <- £/p/5 319 =

8]E]E S[PT UT MOT SUTT HDS
potaad w05 30 sEps 35111 uo patdues wiep

tAgtaetod yoo1o 1ds) 104¥D ¢ 0 <- @ 3T s g
(zseud yooro Tds) WHAMD ¢ 0 <- L 3T =+
(388 £31) D400Ids dn 188 I M0U &/

sIs]s1beI orlrosds-Ids =yl dn 988 f/
5qaT o0 IPITH

andut Boreue Jo peailsul) o/ [e31bIp oq o3 g4 3o 11e drgss /f {AA¥0 = AACHED
sT ‘495 0] (1ds x03) Tind-usnd sq prnous ¢,zd 'z Ed ‘o0.Ed f/ fdoxo = ADEldd
sgaed T1¢ Zog sdn-1ind yesm sTgeus ‘319 STdEuUs Ids =Uy3 38s // {10M0 = XWELEd

(Ids aul = 3104 dn 398 //

uteip-usdo sIr 8°0d PUR 50d SIns

‘o=
(¥4 ST T°0d pug

#ol 4INEIsp pue (1)

qIneisp Y3 ST STYg) souepsdut ybty pue (o)

GTWSURIY PUE SATSOSI 05 Apesd [/
adnzrsqur qrod TRTIISS aul uUo uIng /7
uc sxe sydnaasqur (eqelb sans siyEM /7
T ATAYNE LIMEHELNT TYMMELEA [/
‘eIsl THIISS

SOUSTSISI TRL
asTroseId PUR YDOTD DAY =Y
apon BUTyoeIl U0 UINL/[
m BoTeur =43 uo

DY WS UINL/ S

¢

}ot((1-83I8 ¥EJdng) == 1TeY QI8N XI) 3§

}oAt ==

[[°22 Io1 JnosWTy pried 00545 <- ¥d '00ZSTT <- wd /j/

([9/I89Uncd 41d-g ‘2 spow) Isurg (etxss dn dmess /f/
qrod TerIss drgss ff
T/4IDSAS JO PEeISUT ‘AIDBAS =8sn /[

(TOX0) LYYn Uo wIng //

I03EITTI0S0 [RUISIXS O3 YogzIms //
‘paaTIEls [/
SBY [¥3SAI0 [BUISIMS T[TJuUn 31EM //

syew o3 Juem S feENo = dDeldd

frexo = AdeLud/[
PHNI=C NI =2NE= T FALNO = ADTLE
‘YL ST o'od) /) (TOXO = AD0Ldd
Tind-ysnd =q pinoys sandano //
uteap wsdo og prneoys sandur /[

{0 = IL fO0=Id
fo1%0 =| =EI

{1oxo =| 1EIE
sy o3 Bututejzsd jings saowm /[

SLIESTOL | ¥EILOL =| acWL
0 I3 Isjsucastsoce drass//

IS3UIf/ fadh = HOOJEY

9 98s8// fID| BTEYS = JID0DdY
‘ = WLDdY
wIngf f 10zx0 = TSOHAY

1 = NADAY
oae dnges /7

fo = 459

7()3TUI oLuen
{ {33 TUTOSO
1
(PTEAITTUT PIOA
uotgouny dngss ff

|
i

234q Teyo peubrsun) =3dq 3IEn puss proa

{
f(0) uIN3BI

} es18 {
f(P5Z) UINISI

(0 == pEsy 4Ien X)) JT =819 |
(P52 UINISI

1TB7 24BN %I - pEel I8N XI) IT

1

(pToA) Ing I 3den yosyo Iego peubisun

£ {T) 4AWLL LHWLE
(00N TAX0 1 T) HAMIL LES
WEXO = THL '00X0 = TOL 398 //

{OYOTIELIES TL 7 YAWILTL = OCWL
INCEATIOAY | LIASL¥YN = NCOS
IMTETL =] MODAD

AATAYNALEEN =] HdOLEd

(1 Ismrg Butsn) mmoo [eiIss dngss /f

{0 = 1IB] 2IBN XTI
‘o = pesy 4IEn XI
} (pToa) ATUI OL¥WN PTOA

fROM0 = NDIDSO

f{{0EN0 F NOXDEO) i) STIUM

7 28ng

D' SISHHL

115



MOHNZH
FLLTTYDTE WD

{00X0 S TOXOE (SHIM = [1]18740 YoJTMS_sITp
fo0M0 = [0]93AQ UDITMS BITP

‘1 == p¥1qg = zdmey

{00M0TOMOE (SUIA = [T]1534q UDITMS_GITP
fo0¥0 = [0]83AQ UDITMS SITD

f1 == 5¥IQ = TSy

S¥IQ PUE SHIA 3O 330 sules 18316Tp su3 qwal <Wa> //

f (8151 DT¢ TUOLS

{{++T 84007 BENRAFT/0=T) 10T
uotieIsdo I07 ATEM // (LSNATY)STTUM
F1=ASNAAY

f (L) 3RS

YSTUT O

i

*(5I51) OT¢ TIOLS

{{++T1fadooT AsnwdrT/0=T)a0d
uotieIsde I0I ATEM // * (ASNATE)STTUA
fT=EEnAaY

{{B) IMMAES

YSTUTI o

I

{(PISI) DY HUOLS

{{(++1¢8d001 EENTA~T/0=T)303
uotieIsds IoI ITEM // ¢ (RSNATE)STIUM
fT=ASNAAY

f{5) MRS

YSTUTI o

)

f(EIS1)DTY AUOLS

¢ (++1¢54001 EEN¥I>T/0=1)103
uotjersdo IoI JTEM // ¢ (ASNATE)STTUM
f1=A50AaY

f(¥) e s

YSTuTg o

i)

f(ZI53) DA¥ HHOLS

{{++T!5d00T AENRAFT/0=T) 10T
uotieIsdo I07 1TEM // f(LSNATYE)STTUM
f1=A50ady

f{g) Muye s

YSTUT O

i

f {1151 DT¢ FHOLS

{{(++T! 5000 ASAWAFT0=T)T0]
uotieIsdo I0I ATEM // ¢ (LSDATY)STTUM
fT=ESNAAY

f (2} IS S

YSTUT O

i

! (ZPUSC) DTE TIOLS

{(++1¢ 84000 Asnwd>T/0=T)a0d
uotiersde I0I ATeM f/ f(LSNATE)STTUA
fT=ESNAaY

(T3S

YSTUTy O

i

L TPUS) DT AUOLS

I (++1/54001 ESN¥I>T/0=T1)103
uotieIsds IoI ITEM // ¢ (RSNATE)STIUM
fT=ASNAAY

7 10) Ies

YSTUTI o

)

(&' T)0oae LIS
T = zna

fzdmen ‘tdmay Teus paubisun
‘T qur

ysTurd

UsTuIl

ysTuty

ysTuty

ysTurd

UsTuIl

ysTuty

} Oeae@gsaisb proa

fo=TNa
FLL T D WEETD

¢ {z0aAB) DY FHOLE

f{4+4T 53000 BESAYAP T/ 0=T) I0T

og uctqeasds 103 4TEM [/ f(ASNATE)STTUM
fT=R5NATY

Y (3) XpE s

oxfb 7 moIz eiep 303TTCD 7/

! (A0IAB) DTE FUOLS

£ (++1784001 BSNYA>T/0=T)I03

o3 uotaeasds I07 JTEM // ¢ (ASNATEISTIUM
fT=RENAQY

{(Z) XTMge s

oIAB R moII BIER 05TTCD //

! (®oZAB) DT¢ FUOLS

f{++T¢ 84000 ASNYE>T{0=T)a0T

o7 uoTieIsds I07 ATeM [/ ! (ASNATY)STTUA
fI=REnddY¥

YT MRS

oIAb ¥ moIl ®aEp 408T110D //

f({2219008) DT FHOLS

f(+4T/ 54007 @50YSrT70=T) 203

07 uotqeasde IoJ 9TeM [/ f(LSNATE)ISTIUM
fT=R5NATY

7 (F) XIHge S

dzgswuods [200F 2 WOII BIRR 3091190 \\

£{121200¥) DO¥ HAHOLE

f{4+4T 53000 BESAYAP T/ 0=T) I0T

og uctqeasds 103 4TEM [/ f(ASNATE)STTUM
fT=R5NATY

Y e ME s

ISSMOIS[R00E TZ WOIZ ¥IBp 309TTOD //

! (AT200®) D¢ AHOLS

£ (++17840001 BSNYA>T/0=T)I03

o3 uotieisdo I03 3TEM /7 f(ARSNATE)STIUM
1= KSNAaE

7 (0) mIes

ISIBWOISTSLOR A WOII B8P 3087100 [/

f(AT200B) DTE FHOLE

£ {++1f8d00T FSNVA>170=T) 203

o7 uoTieIsds I07 ATeM [/ ! (ASNATY)STTUA
fI=KSnAaY

Y 15) MIIE s

I278W0IB[B00E ¥ WOIT BIBp 30BTI0D //

BQER 908TTeD/ /(L T)DaYE LES
1=1N3

‘T 3utT
005 54007 ZASMYA SUTISPE
5L 001 HSMEd SUTISpH
} treaeamIieh proa

ca8ng

IXSISHHL

116



{({yeqeausddsh
{ () E3RanMIaSh
BIED 180 [/

sloAc 38113 sy 3dnigsqul 5,ussop 3T 98Y3 OB // ¢ (€) HAMIL LUWLS

{{adxo

7 (00x0

(0030

f{00x0

(00X

{(00%0

f{00x0

(0030

#{00X0" 00X0’ 00O’ 00X0 00X’ 00N’ 00X0‘ 0oX0} = [g]5sfed xeys psubrsun
feduey ‘edusg ‘dusg ‘LT aeyo psubrsun

fOOXD

FAAXO

fo0ND

fOOXD

fO0XD

fOOXD

{000

fo0ND

R laxada)

’ooxo

i fieide)

R laxada)

elsxd)

R laxada)

fo0Xo

fooxo

IOETIOOELYT o0 JSpITH#

!

asaszo] utrds f/ (T)s1Tum

SreqEp QTWSUEI] 09 ST JTnEISp /) T0X0 = BYER JTUSURI]

JTek o]

fo0x0

fooxo

faq430

fooxo

JTek o]

fo0xn

fooxo

OO0

F00X0

OO0

OO0

it 6ld)

OO0

fO0X0

OO0

f OO

foox0

fooXo

f OO

f00XO

fAANG

fo0X0

fooXo

Butyafitens SZTITRTITUT // 7 () 3TUT

fooXo = uo ede spel Ieyo peubisun

(PTOA)UTEW pIoA

SUTINOY NIWW //

““““““““““““““““““““““““““““““““““““““““ 4

f{yIeelo p1ab pel =bHpeq
{(moned) s1931 ARTap

fQOX0 'omEp) UsRIos meIp pIIb pel osSIp
fyIesTo prIb per =Bpeq
¢ (eened) s1811 ARTep

' QOM0 '00X0) USSIDS melp prab ps{ osSTp
f(yaeaTo p1Ib pel =bpeq
{ (eened) s1831 ARlep

fQoM0 'O0¥0) USSTIOS meIp pTIB paT oSTD
f(yIeelo prab pel =bHpeq
! (asned) sT511_ARTSp

f0oX0 'omEp) UsRIos meIp pIIb pel osSIp
f(yaesTo prIb pol ebpeq
{ (eened) s181T ARTep

f0ONC OOMO)USSIOS #eIp PIIL Bl oSID
f{yIeelo p1ab pel =bHpeq
‘(moned) s1931 ARTap

fQOX0 'omEp) UsRIos meIp pIIb pel oSIp
f(yaes1o prab pel =bpeq
f(mpaned) s1eq1 AvTep

fAAM0 0 0X0) USSIDS MeAp plab ps{ oSTp
f(yaeaTo p1Ib pel =bpeq
{ (eened) s1831 ARlep

fooM0 'Ag¥0) USSI0s meIp pTIB pal osSTD

(asmed JUT) TITAS 037 PIoA

{

{ (AAAAX0) STOIT AR TSD
}ot++[0 fsferep mnu=CL ‘o=C[) oI
‘00 qut

(shelsp wnu 3ur peubisun)Aeiep ebsw pioa

f{0 < --IST W) STTM

Jtpus
7 (08%0) A3TSUSIUT p1Ib paT_sbpeq
SId7 Od ISpITH

}

}

}

(T89T UNE quT peublsun)sIsqT ABTSP PTOA

i :uou.anﬁouﬁzmeuG‘ S_oﬁﬁﬁoui__m“wu%u 55 TAQINESURIY
¢ {[119340 U293 Tas” SITP ' (019940 403 THs 51 TP) 58 TOqINESUBIY
Yo3TAS SU3 Jo 93¥3s 93 JTWsURIY [/

£¢ [11=3da zpusg’ [o] 23Aq” 2puUsdq) s [QqINESURIY
#{ [T123A0” TPUSA’ [0] 234d° TRUS) S5 TAqTNESURTY
f{[1]189Aq sx81 " [0]994d  6I5]) S& [UINESUBIY
£ IT123A0 SI517 (012340 5I57) 52 TUATNESURTY
f{[11834q" p3S3 ' [0]994q pIS]) S8 [qINESURIY
L [T]183A £I5T " (015340 €I5T) S TAUUTINESURIY
f{ [11834q" £153 ' [0]994q £15]) S8 [qqINESURIY
U [T]183A TIST ' (015340 TIST) S TAUINESURIY
el1ep DolRuER pu=s//
] (eje@sajTwsuell proa

f([T1834q 20346 [0] 149" 20T AD) 58 TOTNESURIY
£ [11eg3ig AodAB’ [0] eadq- foadb) se TagINESURIY
f([T183Ad 0 1ABY [0] 214q " ®0IAB) 58 TOINESURIY

w3ep oxlb puss//

f{[T]894q 1212008  [0] 8940 1219008 58 [QUINESURIY
f{[T]a3Ag ATeooe ! [0]2340 ATS008) 55 TUINESURIY
£ [1]89d4q K800 [0]894q ‘X [9008) 58 [QINESURIY
vlep I=200B PUSS/ /S

}

(PTOA) BIRAMMIZTNSUETY PTOA

Y (Ine) MES

fuildmyoor = 3ne

‘3eU0R (ZFFUBTY | S<<m0T) = UT
{{aqno) aNE S

furldnyoor = ano

S3Tg XIS 381711/ fdexosmol = UT

qno’'ut aeyo psubrsun
YooId 3T XIS yowe souetTed oa [/

}

(moT TeUo poubrsun ‘ubry Ieys poullsun) SoTIINESUEI] PTOA

(2’ E)Ddd_dvaTo

* (edB0) DOY AHOLE

f{++1f 54001 @50Vd> 1701203

UsTutl o7 uotiwIsde IoJ JTEM /¢ (RSNETE) STTUM
fI=ESnAdY

Lot oy mdenges

€ Iosuss//

¢ tede0) DOW FHOLS

f(+4T Y Bd00T BSNTdF T0=T) 303

ystuty of uorgeisdo IoI 9TEM // f(ESNATE)STTUM
‘T=EKSnAaY

{0 Ty amdepges

z I05us5//

ANT AW 03 (F'E) AT Iod (@) f/ f{e’E)odY Las

i1 3uUT
““““““““““““““ » QEAd¥// ] Oe3eadesish proa

Fadng

IXSISHHL

117



{

Be13 59&q peatsoel syl IesTo //f ‘o = Id4

‘ANES = BIED 3TWSURIZ

urngeI (I4i) IT

59dnIIsqUT pegETaI-JINSUEI] JNOGE SIED 3, UCp an //
}
¥ 3dNITISIUT (PTOA) USI OLAWN PIOA
“““““““““““““““““““““““““““““““““““““ s
Ws1oldNn S/
““““““““““““““““““““““““““““““““““““““““ i
““““““““““““““““““““““““““““““““““““““““ /"
seurqnod eotalss gdnITsqur f/
““““““““““““““““““““““““““““““““““““““““ /"

uotgouny utem ff {
dool aTTyUm utEW S/ |

ITPUSE

{FICHSHYHL HNSSEEd MOT = proyssayy sinsgesad tano
{00¥0 = U0 SIE SpaT
f()330 =pe1 11¥®

} tuo ear spel) IT
} @512 {
{
[ITOHSAYHL HENSSEES HOIH = pTOUSsIuy sanssead xano
{10M0 = UC 8I® SpEl
f{ymo spel 1I®
} (w0 ea® speTi) IT
} (prouseryy sanssead Iano > pIomccisy) IT
uogang 19BBTIY 03 poaeTaI YorqpssI TENSTA [/

5037 o0 ISpITH

ITpusy

fLouy ) aNEs
FLIN ) aMAS
YesId-8UTT] B PUSE [/

20T // f(eeX0)QES
€8 // fLEEN0) IS
Z0T // f(eex0)QEs
15 /f fleeNo)@Es
Z0T // f(eexo)qEs
15 /7 fleExo)mEs
ZoT // f(9ex0)dMAS
15 // fleexo)mms
ZoT // f(9ex0)dMAS
15 // flTexo)dmas

{{)elRQESA]TUSUBIY
£ () EIRANMIATUSURIY

60T ff 7(peX0)dNds
26 // f(Ze0)dpES
€5T // Fle6XO)ONAS
ZOT ff f(8BM0)QMES
15 /f fleeNo)dEs
0T ff f1D0N0)AMNAS
O/ fLooXo) s
552 /) faaxo)dEs

{5NWEL 13S
=1
} te3ep amnsuex) It
INOEAIEDEY | LIG2LEYN = NCOS //
fomd Las /[

Jipusy

] tooxo == ¢dme3 2% gexo == zdwej ®% rero == duwsl) 3T
fands = edusy
fednsy = zdusy
fzdusq = dusg
‘o= Td
(I¥y It
eiep Butisenbsa ‘rsijnduoo uorielsesed [/
211 WoI] paaTlsded =9 07 d9X0 fLeXo I0] s3Tem dool Butmoliol sul /[

fDEd 1as

spom ssucdssI/ITBe B 0lUT oxaTw sy sand spoo STUL S/
TYNOILOFHIAIE 00 J=plTh

¢ 280

IXSISHHL

118



JTpusk

f{gArTep wnu quT psubTsun)Aelsp eGem proa
{1937 wnu qut psubroun)sisaT ABTSh proA

(SMIC) SaET U3 107 SUTL 50 /f/ f5.6d = aaT_50 31dsS
(L¥IQ) ISTTOIIUCOOIOTW parodg andqno suj Jo] SUTT 80 // ‘e,ed = 40 80 3198

"H SISAHL__ SUTIepk

TH SISEHL  ISpUITH

i
POOE AIENIGEI (LETITRON +
TTTIISW D TABRT TIOUINT ¢

““““ *
U STSET x

I 28ng

Y SISAY]

thesis.h embedded C code

Figure C-2

119



¢ () SEMIL dOLS
N\ {{0==8mMEUY T 2T TUM
A f{55M0) Ind
Y £ (T==8UB U T ST 1M
Y f{55X0) Lnd
Yo f(unu HERIL LEELE
\ f{0==SWEUL T T TUM
N f{gsxo)ind
\ f{T==2Weu] T 3T UM
N f{5sx0)Lnd
Y7 (0030 000 UMW AL 135 _
_f (0N YAAIL dOLE
Ay Aw;:u‘mEmcuﬁQ\EﬂE:hDQmEHBOZ HSIW OL ASIH HAWIL 2UTISpH
{ £ {00X0 0 0XO M) YAWIL LAS] (0==3NosmTy)It
Y {unu) HHMIL dOLS
{1 #desaq) (1==smeudty || 0==qnoswTI) IT ‘I=-Jroswty | (1) STII4
Y f{g5xe)Lnd
Y {/emTa=qnosmii} (o=iqnosmTa)IT
{1 Mmsaq) (o==sweulTq || o0==qnosmTl) IT fT=-noswT] | (1) STTUM
% {5530} Lnd
Y {fsmTg=qnoswTl) (0=rqnosmiliIT
Y £ (MU WANTL LHYLS
{1 Mmsaq) (1==sweulTq || 0==qnosmwTl) IT fr=-nosWT] | (1) STTUM
% {5530} Lnd
Y {fewTa=qnosmia} (o=;InoeswTl)IT
{1 7qmsaq) (o==omweuliq || 0==3n0osWTI3) IT ‘T=-JN0SWTY | (1) STTUM
Y f(5GXH0) Lnd
Y Xooxo‘ooxoé:nu:m“ﬁw 135
Y f () MAMIL QLS
Y feurisimosury
Y (3WTY'SmenAT M) ESIY OL ASIY YEWIL SUTISDE
(N §HMIL 0L S

A f{T==SMEu] T T TIM
Y {5530} Lnd
Y £ (I HAWIL LEYLE
\ F{o==suRul T STTUM
Y f{55¥0) Lnd
A f{1==Sweus TN ST TUM
Y f{55¥0) Lnd
Y {00X0 " 0030 N HAMIL L3S
o F [N WAMIL JOLS
Y (8WT] 'SWEU] T UNT) LOCHHWILON 1174 OL H5I8 HHWIL SUTISpH
{7 {00X0 " 00K MM ¥AWT L LIS} (0==3N0smIa) T
7 (unu) AWIL dOLS
A\ {1 aeaaq} co==ameudrq || o==3nosmid)IT ‘T=-3N05WT3 | (1) TTUM
Y f{gs¥0) Lnd
Y [/swri=anosmii) (0=i3nosmidrgt
N £ (MUY HAEHIL LEELE
N {1 7eag) (T==omeudrg || 0==3nosmil) 3T ST=-3N0SWTY | () STTUM
Y f{55¥0) Lnd
% {/swr3=gnoswii} (0=ijnoswia)gt
Ay {1faesaq} (o==smeuqtq || 0==qnosmil) IT ‘T=-JnoswTy | (1) STTUM
Y f{5530) Lnd
Y (00M0 " 00NO ' UM HAWIL LAS
Y f {unu ) HAMIL d0LE
Y fBmTy=anosmT g
Y (BT SURULTUNT) TI¥ OL 3518 SEMIL SUTISpH
‘ARf IS40 OU ST SI9UY Ing ‘Sind U3 d07 20vld 5u3 ATTRSI 30U ST STUL //
IInas Ismty sdoM [/

INZdYRE=EIL  HEARUDH=EHL () EHEMIL OUOIEYE SUTISp#
{MOT=TEJ¥0H / UBTY=HEd¥Od (#OT 'YBTY) A¥OTAY CUAMIL LIS SUTISP#

SN HHTL= (1] 99407 UN AUNUEEHL = [0]994q TN (Un ‘mnu) 3315 Z30LE SUTIspd
(B TU=INTH FHL fAST=WNUHFTL (MOT ‘YSTY 'WNU) HAMIL L1ES SUTISDH
{OSUNUEREL (NI ) WEWT L JOLE SUTISD#

T SUNUH L (i) HAWIL LUYLS SUTISPH

JIngs IsWTL oTSed [/

(¥)Lnd sUTI=p#
{f¥=an@sfo=11} (I1)3T (N Ind SUTI=DH//
S+ puss ‘oz JT ‘suop ST puss snotasid JT ¥osUo puUss DUTXOCTI-UCH &/
H=ANAS0=TLf (TLi)2TTUM () AMES SUTISP#
S+ cpuss ‘3Tq I jesey "Hurch
TTT3& 3.UST puss snopasid sy 843 5I05 SYEN ©F XO5UD pUss DUTNDOTE +/

gezsd //

futde>1) =| Facuyatodpsdfogxo= 150xdY (uTd’qI0d) DOV _EWEID SUTISPY

fHODOY= [0]93Ad U f1o00v= [1] 2349 un (Un) o0¥ Hd0LS SUTI=pd

furds=1) ~=% gacg#izodipdutd| (e->330d) =| TS0XMN (utd‘qzod)ndy LES SUTISpH

33nas oad/y

|
f[z]234q Teys paubtoun
fprom  qutr peubtsun

} uwotun gepadiy

SUCTUN pUE S2ANIONIIS /)

U HASZO0E SPNTOUTH
< O0ZITSOED> SPNTOUTH
JSx SUSTITUIIBE IT4S pUR ¥45 spn{2UI =/

P
TARTIOIZUCIOIOTH ZTeINdy *
B3 IOT SOISEM [UIESN JO WOTISETTOD B 3B JBEIS ¥

ETIION \W.UWUM, piUE JespqUsE TIV SJIOUINT +

I 28nd

1967

206.h embedded C code

Figure C-3

120



o

ITpus#
f(aunoo qut psubtsun’ut Jeyo peubisum)zox awuo paubisun
f(quneo qut peubtsun’ut Jeye psubisun) [ox amgo peufitsun

frantea Ieys psubtsun) a3Aqpuas proa
{(geqAq Jeyo psubisun ‘1egAq avuc peubisun) pel 1ds s3Tam DIOa
fiegep Mol qul psubisun ‘mnu moI Ivyo psublsun) zomol meap prIb pol oBped DIoa
{(gqEp MoI 1UT peubIsUn ‘nnu mol IeUD peubISUN) mol melp prib pel =Epeq DIOA

f(gmox ieyo peubisun ‘rmox ieyo psubrsun

oI aeqs peubtsun ‘smel Jeys psubreun ‘pmox aeys psubrsun
lemox aego peubtsun ‘zmex seys peubrsun ‘Tmox aeyo peubisun) usexos meap prab pel oSTR pPIOA
! (poads 1emo paubrsun ‘3o uo 1eno paubrsun) yurig prab ps1 obpedq proa

f(emol Ieyo psubrsun ‘imox Jeyo psubrsun
T Ieqo peubtsun smor Ieyo pruBTsuUn Cemox Ieyos peubrsun

a1 aeqo psubtsun ‘emol Jeqs peubtsun imox aeyo psubtsun) g usedos meap prab pel 0STp pIOA

Ym0l Jeyo peubrsun fimox 1eyo paubrsun

lpmoI aeqo peubtsun ‘gmol Jeyo psubisun ‘pmox aeyo psubtsun
femox 1eo peublsun ‘Emol amus paubroun ‘TmoI Ieyo psubBrsun) useIos meap pPTIL POT 0STh DPIOA
{({pToa) Imelo prab pel =Bpeq pIoa
f{us 1eyp paubisun) srcdeus prab pel o8ped DIoA
¢ (AqTsuequT Ieyo peubisun) Aqrsusqur prab pel ebpeq pToa
fiproa) 3tur prab per ebpeq proa
{ (puemos puss 1eys psubtsun ‘ssfeds aeus psubTsun ‘pe yotym JeUs psuBTsun) 330 pST DIOA
f(puewmoo” pues Jeyo peubrsun ‘sefeds iwyo peubrsun ‘per yotum leye psubrsun)uc pel proa

{{)330_Spel_IT¥ DPIoA
f(yuo” spaT TTE DIoA

o MOTE SNITE  SUTISDH
1 LE¥d ANITE  SuTIspd

H_QuU0E_LNdLno surlepd
H QU¥0d LNdLNO JSPUITH

Fes

*

ZITMOqTET 3B AT USIITIN OpCD WOII SMOIICE
po0Z ATENIGEA (PETITOON +

TTTIIsM prA®d  IOU3NY

“““““““ .

ysper gndine =

I 28nd

y-spay mdine

t leds.h embedded C code

outpu

Figure C-4

121



‘emoT TEYD poubISUN fGMOT IS paubrsun

‘g/peT yotum = xpT =beds ‘paod IEYD peubisun ‘omod IvYD psubisun

ut s.31 sbed yotum Jno 2Inkri f/ ‘ZMOT TRYD poUBISUN ‘TMOI IYD psubTsSuUn) UssIos MEIp pTIB pST OSTR pIOA
fysew 4o ‘3T Yyoruym Ipyo poubisun {

} txp1 sbed. aeys psubisun £(00X0 00X ‘oo0X0 ‘Q0X0 ‘000 TQ0X0 Q00 ‘0oXo)ussIos meIp prab peT ostp
‘eaiq ysems: Teyo psubisun ‘pel yoliym Ieys psubisun)xpl pue ysew g3sb proa } y3ze spel 1TE proa
{ o {

f{aunoo-g) Pr OT | QUMOD << UT) UINISI (FAN0 CAANO Td4¥0 CAdM0 Cdd¥o C4ANO C4dMo ‘4dMo)ussIss meIp prib pa1 ostp
} } (juc spsl 1TE pIOA

(qunco quT paubTSUN’UT TEUs pOuBISUN IOT IeUp paRubISUN

{ {

{

£ (QUNE0-8) << T | QUNGD > UT) UINgsT {
} f(goXo OX0) PT Tds 23TIm
{qunoo qul peublisun‘ul Ieyo psubisun) (ol IvYo psubisun } @518 {
aoetd ur 234 v s3wj0I ff f{doXo voX0) PaT Tds 23TIm
}otLewd ANItd == pesds) IT
{ _ P o512 {
£ (dmaq) uINge T STOMO FOMO) PST TS s3TIM
{ 1 {0 == 730U 11
f1-4 wr o (UT B (T w> TONO)) =| dusg }
}o(++T feeT fos=T) ToZ (peads aeyo psubrsun ‘130 uo Ieyo peubisun) yurlq prab ps1 =bpeq proa
fp=dnsq Teyo pesubrisun {
‘T gut TEN0 FOXO)PRT TdS S3TIM
(uT Ieyo paubisun)aify @SIsAsI IeyD vocmﬁmcw (pToa) Ivato prab pe1 obpeq Eow

894g B UT ISpPIC 314 =YY esSIssed /S

{

{ f(us'poxoypsT 1ds sqTam
{(gmoX’Lpx0)pal 1ds s3tam }
L (LmOI apxo)peT 1ds e3Tam (us IBYS peubisun) sTqeus prab ps1 =Bpeq ploa
{{enoX'spxo)psl 1ds s3tam
{smox prro)peT Tds sgTam (
{(pmOI ' Ebxo)pel 1ds s3Tam f(A3Tsusgut ‘goxo) pel tds s3rim
{emoIZpxo)paT Tds s3TIM ¥
{(gmoI' TFX0)pel 1ds s3Tam (A31susqutr aeyo peubisun) Aatsusjur prab per sbpeq proa
TmoT opxo) paT TdS 23TaIM
fo=dueg Teyo paubrsum prIb ouy aesto fyaesto prab pet ebpeq f
} spow uotgeasdo TeWIcuU o 985 ¢ asgsibex uctieanbrjuco f/ f(Toxo'poxo)pel Tds sgram
(SMOT Teqo peubTsun fAMOX TeUD peulisun pefeTdsTp oIe L-0 S3TBTIP 38Ul ©5 'L O3 JTWIT URDS 325 /7 7 (L0X0'£ox0)pal_1ds oirim
‘emoI IO peublsun ‘gmoI IBYD psubIsun qsemol 07 AJTSUSAUT 988 // f(0oXo'Zoxo)psT 1ds sqTam
‘PMOT TEY0 pRUBTSUn CEMOT TEUD peulrsun (ToTapyag 3TETP 2U3 Op 3,USSOP 3T JBUI OS) SPO0sp SICESTP // f(00X0 ToX0)pel TdS a3Tam
fgmoI Ieyo peublsun ‘ImoI IeHo peublsun) g uselos melp plib pel oSIp pIoa }
(pToa) 3TUT prab pe1 =bpeq proa
{ diys IzATIP @ET SY3 UT SI1sSTBex woriwanbriucs sy dn s395 [/
{{gmoI’Lexo)ps 1ds s3ram
f(LmoI sexo)pat 1ds s3TIM f(ut 1myo peubrsun)sidg 251451 1By paubrsum
{(amoI’'sexo)pel 1ds s3Tam {(geqdq 1wyo peubisun ‘Tegdq ieyo pesubisunipsl 1ds ®371am DIOA
fiGmoT poxo)peT_Tds eaTam f{aunmoo Jut paubBtsun’ut Jeyo peubisum)dox aeuo peubisun
{(pmOI ' Eexo)pel 1ds s3Tam f{qunoo Jut psubBtsun’ut aeys psubisun) tox aeys psubtsun
femoI’Zoexo)paT 1ds s3Tam
{(gmoI' Tex0)pel 1ds s3Tam U-STSSY] SPNTOUTH
f(TmoI 0exo)paT 1ds s3Tam U spal andino spnlout#
Id8 =43 03 Ine 3T 83Tam ‘mou Jf/ =Y QOEATS080> SENTOUTH
f(GMOT)89Aq BSI8ABT = SHOI// rel
f(gmox)e3fq osasasl = ZMOI// ¥
SMOT pUB EMOT SEUBITE-5I O PeSU 18ITI ZITMOATET JEN AT USIITIM 5poD WoIT SMOLIOT ¢
Fo0z AIENIGd (LB TITRON *
fo=dmeq Teys peubrsun TTTITSN PIABT  CJIOUINY »
---- *
(gmoI IEYD psubrsun Lm0l IBUD paubrsun J 2repeT mdine .

T 280 >spaf mmdine

122



g0 1I8SSE-S1p [/ ST = @1 80

2517 oY 03 ISIING JTUSUEIY 107 JTEA /f f(ESTEL) BT TUM
Izszang Jndane o3 o3Ag satTam [/ fgadid = LYA0Ids
Bel1 adnazsqut sy Iesto ff fE0N0 = NDOIIS
2217 =2q o3 IsJIing ITWSUBI] I0I JTem /[ f{ABEHL) B TTUM
Te21Ing gndano oq egAg saTIm ff f189A = L¥a0TdS
sbet1 Butuiem sui aesto // fE0N0 = NDOIAS
8811 =g o7 I=JING JTUSUBRI] JIo] JTEM [/ f{RBEXL) STTUM
20 jI83sR /[ fo = m@T SR

}

(ge3Aq 1eyo psubtsun ‘I1s3Agq aryo psubtsun) psl Tds ®31Im DIOA

f([L)s=abed’ [9]ssbed’ [¢]sebed’ [r] sobed’ [c] sabed’ [z]sabed
t[1]1sebed’ [o] sebed)useTos meap pTab pel osSTp (puNmMoD puss) IT
fygew do~ =% [sbed yoiym]ssbed
siabed yoTums ‘ysem Wo® ‘peT UoTUMI ¥pT pus ysem gab

fysew wo ‘31 yotus ‘ebed yotum Jeus psubrsun
} (puemuos puss Ieqs psubrsun
‘sefed: 1euo psubtsun ‘par yorum IrUD psubisun) 310 Pl DlOA

f( [L1sebed’ (8] ssbed’ [g]sabed’ [r] sebed’ [¢]ssbed’ [z]ssbed
' [1152bed’ [0] sebed)usetos meIp PTID peT OSTP (PUBIMOD pUSS) IT
‘ysew go =| [ebed uyotym]ssbed
f{afed yoTume ‘YSEW HOR ‘PST UOTUMI NPT puUR ysew 39b

fysem do ‘sbed yorym aeyo psubisun
1 (puBNmO > puss IeMo peubtsum
‘gsbeds aeyo peubtsun ‘pel yolym ieyo psubrsuniuc psi proa

fyseN O = 9340 HSEL.

{{31q yoTym'ySel go)Iod = YSew Ho
fopx0 = YSEW €O
} ss1s {
(3T YOTUM YSEW WO} [OT = YSEW "o
‘ogx0 = YSEWw HO
}otw == xpr ebeds || T == xp1 eleds) 3T
a1q sqetadoxdde f/
2yg uo uang o3 o3dq JEU3 YITM HO o3 ¥sTw oug ejeisush //

‘g3pel UOTUM = 3Td YOTUM
ST 4T 24Tg UoTum qno sanbry /)

7 a8ng

>spaf mmdine

t leds.c embedded C code

output

Figure C-5

123






Appendix D

Java code summary

This appendix contains names and descriptions of all Java classes (other than the classes
in the Java Runtime Environment) written for, and used in this project.

125



class AMCGUIStateSaver

Description: Keeps an ArrayList of VarianceReport objects, and an ArrayList of
MappingData objects. This class is for saving state to disk, and is instantiated at
serialization-time.

interface ButtonResponder

Description: This interface defines the behavior that a class must implement in order to
respond to button presses of the toggle button and the trigger button on the device.

class ButtonWatcher

Description: Registered as a StackPacketListener, this class pulls out the digital and
trigger button state from each StackPacket that comes in, and messages a
ButtonResponder object with relevant changes in state. This is where the real "dispatch"
of button commands happens.

class ChartPanelHandler

Description: Registered as a StackPacketListener, this class broadcasts incoming stack
packets to all ChartPanel objects that it has references to. This is where the data dispatch
to the StripChart objects in the GUI takes place.

class CommonStackDataFilter

Description: A stack data filter object that handles the "common case", this class is
instantiated with an array of "flags". These flags are the bytes that are expected (in the
order given) to proceed each valid data packet from the stack in the serial data stream.
For instance, in the current implementation, the hex bytes 0x62,0x6D proceed each batch
of sensor data. This class assembles a complete StackDataPacket object from the serial
data stream, and passes the completed packet to all registered listeners.

interface DataHandler

Description: This interface defines the behavior that any class handling incoming serial
data from a stack should implement. It consists of a single function, newData.

class DataLogger

Description: Handles the writing of log data to a log file. Timestamps each log entry to
millisecond resolution.

Figure D-1: Main program Java package: edu.mit.media.amc

126



class Datal.oggerManager

Description: A wrapper around the Datal.ogger class, the Datal.oggerManager handles
the initialization of the DatalLogger, and provides a function to generate a unique
directory name - which is useful when running a user study so that each user's data can be
kept in a separate directory.

class DataStreamCharacterizer

Description: Watches an incoming data stream, and can be queried for information about
the data, such as instantaneous windowed variance, max variance, max/min values, etc.

class DTW

Description: Pure Java implementation of the Dynamic Time-Warping algorithm.
Contributors to this code (originally written in C) include Malcom Slaney, Tony
Robinson, and Yuri Ivanov.

class DTWPureJavaStackGestureRecognizer

Description: Implements the StackGestureRecognizer interface to manage the state
associated with gesture training. Holds the reference to the data for all of the trained
gestures, and can be messaged to start/stop data collection for training or classification.

class DTWStackGestureRecognizer

Description: NOT USED IN FINAL VERSION. Concrete implementation of the
StackGestureRecognizer interface, that uses Dynamic Time-Warping. Passes all data into
the C .dlI for storage, and makes DTW calls to the C .dlL.

class FlexibleMappingManager

Description: Manages the creation and clearing of input-DOF to effect parameters. Also
provides functions that can enable/disable all effects.

abstract class FlexibleMappingObject

Description: A FlexibleMappingObject keeps track of all of the data relevant to a sensor-
to-effect parameter mapping. Designed with OSC communication in mind rather than
MIDI, this class keeps track of the mapping's symbol, polarity (which end of the input's
range is mapped to which end of the output's range), and the sensor's VarianceReport
(this includes information about the max/min of the sensor's range, and is used to scale
incoming values to a 0-1 range).

127



class FlexibleMIDIMappingObject

Description: Subclass of FlexibleMappingObject that is MIDI-specific.

class FlexibleOSCMappingObject

Description: Subclass of FlexibleMappingObject that is OSC-specific.

class GestureDataManager

Description: Keeps an array of gesture models and examples, and implements the state
machine that defines how new sensor data should be handled (i.e. should it be put into a
gesture-class example?, stored in the current SingleGestureData object for subsequent
classification?, etc..)

class GestureModelsInfo

Description: Keeps track of how many gesture models each class has, and keeps an array
of SingleGesturelnfo objects. This is a state-saver class that is created at serialization-
time.

interface Looper

Description: Interface which defines the messages that any Looper for this device will
have to implement. Functionality is based on having a toggle button on the device that
indicate "up", "down" and "in".

class LooperStack

Description: Stack-based sound-looping manager that implements the Looper interface.
Manages the current set of sounds that are being looped, and allows a user to loop a
sound, un-loop a sound, and cancel all looping.

class MappingData

Description: Holds the symbol and polarity of a single mapping. This is a state-saver
class that is created at serialization-time.

class MappingLearner

Description: Watches the variance on all of the sensors while the
OutputControlMessageSweeper (OCMS) is sweeping a parameter sinusoidally.
Registered as a listener for "extrema" messages from the OCMS, at each extrema it notes
the (a) sensor exhibiting the maximal variance, and (b) which end of its dynamic range
that sensor is closest to. If the MappingLearner sees a consistent pattern of excitation (i.e.

128



same sensor, same polarity) over a given number of consecutive extrema, a mapping is
created via the FlexibleMappingManager object.

interface MaxMinListener

Description: Interface that defines the behavior that a class must implement in order to be
a listener registered to receive notification when a running
OutputControlMessageSweeper object has reached an extrema. Defines a single function,
maxOrMinReached.

class MidiDeviceManager

Description: Wrapper around the Java MIDI functionality which simplifies the querying
aspects of the MIDI subsystem, and the sending of MIDI messages.

class MIDIOutputControlMessage

Description: Subclassed from OutputControlMessage, MIDIOutputControlMessage
knows how to send a MIDI control message

class NonLinearNumberMapper

Description: Built to allow nonlinear mappings from input DOF to output effect
modulation, this class did not end up being used.

interface NumberMapper

Description: Interface that defines the behavior that a class must implement in order to be
considered a NumberMapper. The purpose of a NumberMapper is to map an input
number onto an output number. This interface defines a single function, mapNumber, and
allows any arbitrary mapping of input sensor value to output effect control value.

class OSCOutputControlMessage

Description: Subclassed from OutpuControlMessage, OSCOutputControlMessage
knows how to send an OSC control message

abstract class OutputControlMessage

Description: Abstract class which contains the data for a single control message. Holds a
data value and a String symbol.

class OutputControlMessageRouter

Description: OutputControlMessageRouter runs in its own thread and loops endlessly,
dequeueing OutputControlMessages in a synchronized way from a queue, and

129



transmitting them to the outside world. This is the bottleneck for all outgoing control
messages to a synthesizer, and for that reason it is also the class that does much of the
logging for experimental purposes.

class OutputControlMessageSweeper

Description: Creates a sinusoidally oscillating parameter trajectory to be used in
affordance mapping. Sends an optional start/stop signal to trigger a particular sound to
play for the duration of the parameter sweep.

class Queue

Description: A Queue implementation that uses the java Vector class. This is based on
some code that I found online.

interface SensorDataView

Description: Interface that defines the behavior that a class must implement in order to be
considered a SensorDataView. Defines two versions of the newData function by which
the SensorDataView receives a single new datum for storage and/or display.

class SimpleMidiMapper

Description: Permits the simple assignment of indices (zero-indexed integers) to 3-byte
MIDI messages, and the playing of the messages.

class SingleGestureData

Description: Keeps track of the samples for a single gesture. Contains methods for
reading a gesture data file from disk, and writing a single gesture data file out to disk.

class SingleGesturelnfo

Description: This is a state-saving class that is instantiated at serialization-time to keep
track of the data associated with a single gesture class. Tracks the presence of a class
model, the length of the model, the number of gesture examples in that class, the lengths
of the examples, the filename of the model (if present), and the filenames of each of the
gesture examples.

class SingleGestureModelData

Description: Stores data for a single gesture class. Keeps a model gesture, and an array of
examples.

130



class SmartButtonGroup

Description: This class extends javax.swing.ButtonGroup, adding the capability for
cycling through a list of buttons modulo the number of buttons (i.e. when you try to go
"down" past the bottom of the list to select the next button, you end up at the top again).
Provides facilities for selecting next and previous buttons from a list. This class is used in
the GUI for the list of possible sounds.

class SoundTriggerManager

Description: Manages the starting and stopping of sample playback.

abstract class StackDataFilter

Description: Abstract class meant to provide some common functionality for specific
StackDataFilter subclasses. A StackDataFilter is responsible for parsing the stream of
data coming from a Stack into complete data packets, then passing each complete packet
to each of the registered listeners.

class StackDataPacket

Description: Class for storing a packet of data from the Stack.

class StackDataPacketInfo

Description: Immutable class for storing configuration info about stack data packets. Is
meant to be used in a static way, this class defines defaults specific to my particular stack
and device configuration.

class StackDeviceHandler

Description: Manages the serial connection to the stack, including opening and closing of
the serial channel, and registering/unregistering listeners for data coming from the stack.

interface StackGestureRecognizer

Description: This interface defines behavior that any class that manages data-receiving
and gesture-recognition activities will have to implement.

interface StackPacketListener

Description: This interface defines the behavior that any class wishing to be a listener for
Stack packets will have to implement. It consists of a single function, newStackPacket.

131



class StackPacketParser

Description: Separates the data from a single packet, feeding the individual data to the
appropriate views. Views register as listeners for a particular index of incoming stack
packets. For instance, StackPacketParser is used to distribute sensor data to the
StripCharts, since they each only show data from a single sensor.

132



interface SerialClient (written by DJM)

Description: This interface defines the behavior that a SerialClient must implement.
Defines the portClosed method, as well as two versions of handleNewSerialData.

class SerialConnection (written SUN, modified by DIM)

A class that handles the details of a serial connection. Originally distributed with the
communications API from Sun Microsystems, this file was modified to enqueue new
serial data into a queue in a synchronized code block rather than the original behavior in
which it would write the data into a StringBuffer.

class SerialConnectionException (written by SUN)

Distributed with the communications API from Sun Microsystems, this exception can be
thrown in the course of serial communication.

class SerialGrabber (written by DJM)

Description: SerialGrabber runs in its own thread, and its purpose is to grab new bytes of
serial data from the queue in the SerialConnection object. This queue is accessed by both
SerialGrabber and SerialConnection in a synchronized manner using wait/notify, so
SerialGrabber is careful to avoid any time-consuming routines within the synchronized
codeblock. All that is done in the synchronized codeblock is dequeueing of the queue.
Then, once outside the synchronized block, the data is passed off to any registered
listeners.

class SerialParameters (written by SUN)

Distributed with the communications API from Sun Microsystems, SerialParameters
holds all relevant state pertaining to a serial connection.

class serialUtilities (written by DIM)
Description: This class provides a wrapper for the

CommPortldentifier.getPortldentifiers() method which returns an enumeration of the
available ports on a system.

Figure D-2: Serial Java package: edu.mit.media.amc.serial

133



class ChartPanel (written by drew/ckline/ayb)

Implements a panel full of stripcharts, each of which can display data from a single
sensor.

author: Andy Wilson (drew@media.mit.edu)

modified: Chris Kline (ckline@media) to application-independent

modified: Ari Benbasat (ayb@media) to add to new innards package

modified: David Merrill (dmerrill@media) such that addDataSource returns the
StripChart object that has been instantiated

interface DataSource (written by drew/ckline/ayb)

Interface that defines the behavior that a class must implement in order to be used as a
DataSource : specifies the method getValue.

interface EnhancedDataHandler (written by DJM)

Interface that defines the behavior that a class must implement in order to be used as a
EnhancedDataHandler : specifies the method new VarianceReport, which installs a
VarianceReport into the DataHandler.

interface EnhancedDataSource (written by DJM)

Description: Builds on the DataSource idea from the innards.util.widgets package, adding
specifications that relate to tracking a running variance, and enabling/disabling the
processing of the DataSource in order to save on CPU cycles.

class GraphPanel (written by drew/ckline/ayb)

Implements the drawing routines for plotting a single sensor data trace in time, like a
software oscilloscope. StripChart is based on this class.

author: Andy Wilson (drew@media.mit.edu)

extended and augmented by: Chris Kline (ckline@media.mit.edu)

converted (as if it was hard) to innards package by AYB

modified to be enable-able/disable-able by DJM

class StripChart (written by drew/ckline/ayb)

Keeps track of the most recent N samples captured from a particular sensor, and uses the
functionality defined in GraphPanel to plot the data.

Figure D-3: Sensor data display Java package: innards.util.widgets

134



class StripChartAutoAxes (NOT USING THIS)

A strip chart with asymmetrically smoothed axes (e.g they always get big enough but
slowly shrink back to be within a certain range of the average of the data).

class VarianceReport (written by DIM)

Description: Data-keeper class for information about the variance on a particular sensor.
Can be loaded with information about max/min/avg variance seen on the sensor over a
window of time, as well as max/min instantaneous sample values over the window. Used
by FlexibleMappingObject's to scale incoming data to lie in the [0-1] range, and by
MappingLearner to determine which sensor experienced the most variance since the last
poll.

135



class JDirectoryChooser (written by David Ekholm)
A fix to JFileChooser that correctly allows only directories to be selected.
Does the trick by accepting "." as selection of the currently displayed directory. David

Ekholm authored this class, and it is available online as part of his JAIbum project. See
http://jalbum.net/ for details.

Figure D-4: DirectoryChooser Java package: se.datadosen

136



Appendix E

Experimental materials



Subject Instructions

1) Watch the two instructional videos to get an
understanding of how to find sounds, train gestures,
and make effect associations.

2) Train and test some gestures. (in the ControlPanel tab,
with the GESTURE TRAINING button depressed for
training, and the GESTURE TESTING button
depressed for testing). Try looping and un-looping a
sound. Click the SAVE button.

3) Make some input-to-effect associations (you can also
test your associations with the “TEST” button
underneath each large button). Click the SAVE
button.

4) Click back to the ControlPanel and click the PLAY
button. Spend as much time as you like playing with
the system (triggering sounds, looping them, applying
effects, un-looping sounds, etc..). The experimenter
will stop you when it is time to move on to the next
part of the experiment, or if you feel that you are
finished, please alert the experimenter.

Figure E-1: Instruction page given to subjects in the Training condition

138



Subject Instructions

1) Watch the two instructional videos to get an
understanding of how the system works.

2) Trigger each of the sounds at least once, and try the
looping feature.

3) When you have one or more of the sounds looping, try
out each of the effects.

4) Spend as much time as you like playing with the
system (triggering sounds, looping them, applying
effects, un-looping sounds, etc..). The experimenter
will stop you when it 1s time to move on to the next
part of the experiment, or if you feel that you are
finished, please alert the experimenter.

Figure E-2: Instruction page given to subjects in the Presets condition

139



This video will show you how to train the system to recognize your own gestures to trigger sounds, and
your own manipulations to modify the triggered sounds.

To begin, click the "GESTURE TRAINING" button in the "ControlPanel tab. This will put you into
gesture training mode.

Now, you can use the thumb toggle button to cycle up or down through the collection of sounds.
When you find a sound that you like, you can train a gesture. This will associate your gesture with the
sound, like a "gestural bookmark" so that when you are playing the instrument, you can trigger the sound

with the gesture.

When executing a gesture, you must squeeze and hold the trigger button through the entire gesture. Then,
let go once you're done.

The lights around the circle will show you when the device is listening to your gesture.

The device can sense movement and rotation in any direction, so your gesture should be some combination
of movement and rotation.

Remember. Squeeze and hold the trigger button through your entire gesture. Then let go.

After training a gesture, you can click on the "GESTURE TESTING" button to try it out. Triggering a
gesture works exactly like training the gesture. Squeeze the trigger button, do the gesture, then let go of the
trigger button. You can go back and forth between training and testing as many times as you like.

When you've trained as many gestures as you want, click on the save button to save your gestures.

Now, click on the button labeled "tweak mapping", and click on the tab labeled "TestPanel"

Here you can associate the squeezing and twisting inputs of the device with sound effects. Each orange
button is a different sound effect.

The way it works is this : When you click on the orange button, the system starts sweeping that effect from
its minimum to its maximum, and watching for activity on the inputs.

Figure E-3: “Gesture and Manipulation Training” user study script (Training)

140



This video will demonstrate the force and twist-sensitive inputs that
are part of the gestural music controller.

This button can sense the continuous pressure you apply to it.

This handle can sense the pressure that you squeeze it with.

The device can sense how it is being twisted.

These buttons can sense the continuous pressure you apply to them.
These inputs will be associated with effect parameters,

and they allow you to shape the sounds that you trigger with the
device.

Figure E-4: “Affordance Training” user study script (Training)

141



This movie will show you which gestures you can use to trigger sounds with the system.

It's important to remember that when executing a gesture, you must squeeze and hold the trigger button
through the entire gesture. Then, you can let go when you are done.

Here is the first gesture

Here is the second gesture

Here is the third gesture

Push the toggle button up to put the most recent sound you triggered into looping mode. You can cancel the

current looping behavior by pressing down on the same button. Press the button directly in to cancel all
looping.

Figure E-5: “Preset Gestures” user study script (Presets)

142



This video will show you how to apply effects to the sounds that you trigger.
Twisting the device like this applies a sweeping filter to the sound.
Squeezing on this button applies a tremolo effect to the sound.

Squeezing on the handle like this applies a pitch shift to the sound.

Figure E-6: “Preset Mappings” user study script (Presets)

143



Pre-Interaction Questions
Answer these questions first, before starting any other part of the experiment.

* 1. What is your experiment ID code? (the experimenter should give you this) []
* 2. What is your age? []
* 3. What is your gender?
* 4. How experienced are you at playing any musical instrument (other than singing)? As you answer this
question, consider of the instrument, if any, that you are most familiar with.
(1) not experienced at all (2) (3) (4) (5) (6) (7) very experienced
5. What instrument (if any) do you have the most experience with? []
* 6. About how much time per week (on average) do you spend playing a musical instrument?

0 min 30 min 1 hr 2 hrs 5 hrs 10 hrs 20+ hrs

* 7. How much experience do you have performing any musical instrument (other than singing)? As you
answer this question, consider the instrument, if any, that you are most familiar with.

(1) not experienced at all (2) (3) (4) (5) (6) (7) very experienced

8. What instrument (if any) have you performed with most?

* 9. About how much time per week (on average) do you spend performing with a musical instrument?
0 min 30 min 1 hr 2 hrs 5 hrs 10 hrs 20+ hrs

* 10. How would you rate your general level of musicianship (including singing)?
(1) novice (2) (3) (4) (5) (6) (7) expert

* 11. How much do you enjoy listening to music?
(1) notatall (2) (3) (4) (5) (6) (7) very much

* 12. About how much time per week (on average) do you spend listening to music?
0 min 30 min 1 hr 2 hrs 5 hrs 10 hrs 20+ hrs

* 13. How much do you enjoy playing music?
(1) notatall (2) (3) (4) (5) (6) (7) very much

* 14. Have you ever conducted an orchestra or led a band? How experienced are you with this task, or a
similar one?

(1) not at all experienced (2) (3) (4) (5) (6) (7) very experienced

Figure E-7: Pre-interaction survey, filled out by all participants

144



Post-Part-A Questions
These questions are to be answered after you have completed part A of the study.

* 15. How enjoyable was your experience using this system?
(1) not enjoyable at all (2) (3) (4) (5) (6) (7) extremely enjoyable
* 16. How engaging was your experience using this system?
(1) not engaging at all (2) (3) (4) (5) (6) (7) extremely engaging
* 17. How expressive did you feel that you could be in using this system?
(1) not very expressive (2) (3) (4) (5) (6) (7) extremely expressive
* 18. How easy was it for you to learn to trigger the sounds that you wanted?
(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy

* 19. How easy was it for you to actually trigger the sounds successfully once you had figured out the
gesture to sound associations?

(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy
* 20. How easy was it for you to learn to manipulate the effects?
(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy

* 21. How easy was it for you to actually manipulate the effects once you had figured out the manipulation
to effect associations?

(1) not easy at all (2) (3) (4) (5) (6) (7) extremely easy
* 22. How likely would you be to want to use this system again in a non-performance (play) context?
(1) not likely at all (2) (3) (4) (5) (6) (7) extremely likely
* 23. How likely would you be to want to perform with this system?
(1) not likely at all (2) (3) (4) (5) (6) (7) extremely likely
* 24, How much “personalization” did you feel that this system offered to you?
(1) no personalization (2) (3) (4) (5) (6) (7) very much personalization
* 25. Please rate your feelings about the level of personalization you experienced.
(1) far too little personalization (2) (3) (4) (5) (6) (7) far too much personalization

* 26. How appropriate did you feel that the connection was between the types of gestures possible with the
instrument and the sounds that could be triggered?

(1) not appropriate at all (2) (3) (4) (5) (6) (7) very appropriate

145



* 27. How appropriate did you feel that the connection was between the types of manipulations possible
with the instrument and the effects that could be controlled?

(1) not appropriate at all (2) (3) (4) (5) (6) (7) very appropriate
* 28. How well did the system recognize your gestures?
(1) notwell at all (2) (3) (4) (5) (6) (7) extremely well
* 29. How novel do you feel this system is?
(1) not very novel (2) (3) (4) (5) (6) (7) extremely novel
* 30. How in control did you feel during your experience with the system?

(1) not in control at all (2) (3) (4) (5) (6) (7) very much in control

Figure E-8: Post-part-A/B survey, filled out by all participants

146



Final Questions
These questions are the last batch that we will ask you to answer.

* 47,

Please rate your general level of enjoyment in playing new musical instruments (instruments that you

do not have previous experience with).

* 54,

* 55,

*56.

* 57.

* 58.

*59.

* 60.

(1) Ido notenjoy this at all (2) (3) (4) (5) (6) (7) I enjoy this very much

. Have you ever built your own traditional musical instrument? [Y/N]
. Have you ever built your own unconventional musical instrument (electronic or otherwise)? [Y/N]

. How creative do you consider yourself?

(1) not very creative (2) (3) (4) (5) (6) (7) extremely creative

. How much of a risk-taker are you?

(1) notatall (2) (3) (4) (5) (6) (7) very much

. How much do you enjoy solving open-ended problems, that have no "right" answer?

(1) do not enjoy this at all (2) (3) (4) (5) (6) (7) enjoy this very much

. How proficient are you with technology?

(1) notatall (2) (3) (4) (5) (6) (7) very much so
Which of the two setups do you think allows for more expressivity? [first/second]
Which of the two setups do you think is easier to learn to use? [first/second]
Which of the two setups do you think is more engaging? [first/second]
Which of the two setups do you think is more enjoyable to use? [first/second]
Which of the two setups do you think has a better level of personalization? [first/second]
Which of the two setups do you think is more novel? [first/second]

Which of the two setups would you be more interested in performing with? [first/second]

61. Do you have any additional comments about the gestural control system, and how it may or may not
affect, improve, or detract from your sense of engagement, expressivity, ease of learning and use, feeling of
personalization, interest in performance, novelty, or anything else? []

62. Are there other types of input control that you felt were missing, or that you would like to see in this
instrument? []

63. Do you have any additional comments about the experience as a whole? []

Figure E-9: Final Questions survey, filled out by all participants

147






Appendix F

Pure-Data patches

149



x wol_walue]
u

= trem value
o

x ps_ualng]

u

DSP pipeline

[volwme]

aatabe out]

L1

= delay valud

R

% e e [x\a P
i = s &
3 w«um S

[ammpose 4s49] < aceept 03C conmestions on pert 4949
[route fuol_sn fucl_valus /vef_en fuef_walue /trem em

Ftxem walue fdelay en /delay value /ps_en /ps_valus /am_en
&

am_value

alick here o stark!

-

i- 4 dep 0

Froute ftrigl ftrigi-loop /trigz /trigZ-leop /krig3
lFerigs-losp ferigt ferigi-losp ferigs /twigS-leep /txigh
lFerigh-losp ferig? ferigi-losp ferigd /twigs-leep /twigd

Perigs-losp ferigln ftmigio-locp

Ege=p

[Eang1etriagen avisarad
T

EC

Cl

|

s |

[

[eamgle i

vj Dt; ovj‘ 7 Lt

i nkact ap pav oL ag|
1]

r.@\

i AR
Jemsfonst foueeghen v cerae]
= frm ozl |
I

LLE ' /
e

L)

b Forseesd]

ey
FrEL [P‘W Frrs o]

e ——p—p—— |

[vtotnromag male

| ST pp————— -

Fangictrigger wav/arones wav dromed]

T ——

I
[rew_out] [Bv10thramss g mare]

Figure F-1: The main Pure-Data patch for sound triggering and modification

150



Bibliography

AAAI 2000 Spring Symposium on Adaptive User Interfaces, technical report at:
http://www.isle.org/~aui/papers/, Spring Symposium webpage at:
http://www.aaai.org/Symposia/Spring/2000/

ActiveWindows “Microsoft SideWinder Dual-Strike” review, website at:
http://activewin.com/reviews/hardware/joysticks/microsoft/dual strike/index.shtml

Anthes, Joshua. Unique considerations for data radio UARTS.
http://www.rfm.com/corp/appdata/ AN43.pdf.

Bailey, Derek. website: http://www.shef.ac.uk/misc/rec/ps/efi/mbailey.html
Ballard, D. An Introduction to Natural Computation. MIT Press, Cambridge, MA. 1997

Bellman, R.E. Dynamic Programming, Princeton University Press, Princeton, New
Jersey, USA, 1957.

Benbasat, Ari. "An Inertial Measurement Unit for User Interfaces,"
Masters of science thesis. MIT Media Lab, 2000.

Benbasat, A.Y., Morris, S.J, and Paradiso, J.A. "A Wireless Modular Sensor Architecture
and its Application in On-Shoe Gait Analysis". In Proceedings of the 2003 IEEE
International Conference on Sensors. Volume 2, pp 1086-1091. 2003

Bledsoe, W. W., and Browning, 1., “Pattern Recognition and Reading by Machine”, In
Proceedings of the Eastern Joint Computer Conference. 1959.

Blumberg, Bruce et al. “Integrated Learning for Interactive Synthetic Characters”. In
Proceedings of ACM SIGGRAPH. 2002.

Boulanger, R., and Matthews, M. “The 1997 Mathews Radio-Baton & Improvisation
Modes”. From the Proceedings of the 1997 International Computer Music Conference.
Thessaloniki Greece. 1997

Bowler, 1., A. Purvis, P. Manning, and N. Bailey. 1990. "On Mapping N Articulation
onto M Synthesiser-Control Parameters." In Proceedings of the 1990 International

Computer Music Conference. San Francisco, International Computer Music Association,
pp. 181-184.

Buchla and Associates, website at: http://www.buchla.com/



Carroll, J.M., Mack, R.L, and Kellogg, W.A. “Interface metaphors and user interface
design.” Handbook of human-computer interaction. Helander, M. (ed.) Elsevier Science
Publishers B.V. (North-Holland). 67-85. 1988

Chadabe, Joel. “Devices I Have Known and Loved”. In Trends in Gestural Control of
Music. M.M. Wanderley and M. Mattier, eds. Ircam — Centre Pompidou. 2000

Clynes, Manfred. Sentics: the Touch of the Emotions. New York: Doubleday and
Company, 1977.

Cont, A., Coduys, T., and Henry, C. “Real-time Gesture Mapping in Pd Environment
using Neural Networks”. In the proceedings of the International Conference on New
Interfaces for Musical Expression. Hamamatsu 2004.

Cook, P., “Remutualizing the Instrument: Co-Design of Synthesis Algorithms and
Controllers.” In Proceedings of the Stockholm Music and Acoustics Conference (SMAC).
Stockholm, Sweden. 2003

Cope, David, "Pattern Matching as an Engine for the Computer Simulation of Musical
Style". In Proceedings of the 1990 International Computer Music Conference. San
Francisco: Computer Music Association. 1990

Dubnov, S., Assayag, G., Lartillot, O., and Bejerano, G. Using Machine-Learning
Methods for Musical Style Modeling. In IEEE Computer, Volume 36, Issue 10. October
2003

Duda, Richard O., Hart, Peter E., Stork, David G., Pattern Classification (Z”d Edition).
Wiley-Interscience. 2000

Eslambolchilar, P., Crossan, A., and Murray-Smith, R. “Model-based Target Sonification
on Mobile Devices”. In the Proceedings of the International Workshop on Interactive
Sonification. Bielefeld. 2004

Fels, S. and Hinton, G., “Glove-TalkIl: An Adaptive Gesture-to-Formant Interface”, In
Proceedings of Computer Human Interaction 1995 (SIGCHI9S), pp. 456--463, May 7-11,
Denver, CO. 1995

Frith, Fred. website: http://www.fredfrith.com/

Gadd, A., and Fels, S. MetaMuse: Metaphors for Expressive Instruments. In Proceedings
of the International Conference on New Interfaces for Musical Expression. Dublin 2002.

Galeyev, B. "Leon Theremin---Electronic Art Pioneer," in Soviet Faustus (Kazan, 1995)
96 pp.

152



Garnett, G., and C. Goudeseune, "Performance Factors in Control of High-Dimensional
Spaces". In Proceedings of the 1999 International Computer Music Conference. San
Francisco, International Computer Music Association, pp. 268 - 271. 1999

Garton, Brad, "The Elthar Program", Perspectives of New Music. Vol 27. No. 1 1989.

Goudeseune, Camille. Composing with Parameters for Synthetic Instruments.
Dissertation, University of Illinois at Urbana-Champaign. 2001.

Hunt, A., and R. Kirk. "Mapping Strategies for Musical Performance." In M. Wanderley
and M. Battier, eds. Trends in Gestural Control of Music. Ircam - Centre Pompidou. 2000

Hunt, A., M. Wanderley, and R. Kirk. "Towards a Model for Instrumental Mapping in
Expert Musical Interaction." In Proceedings of the 2000 International Computer Music
Conference. San Francisco, International Computer Music Association, pp. 209-
212.2000

Hunt, A., Wanderly, M. and Paradis, M. "The Importance of Parameter Mapping in
Electronic Instrument Design." In New Interfaces for Musical Expression proceedings.
Dublin, 2002.

Illposed Software webpage, online at: http://www.mat.ucsb.edu/~c.ramakr/illposed/
Ishii, H., Wineski, C., Orbanes, J., Chun, B., and Paradiso, J. “PingPongPlus: Design of
an Athletic-Tangible Interface for Computer-Supported Cooperative Play.” In the

proceedings of the Conference on Human Factors in Computing Systems. 1999

Ishii, Hiroshi. “The Last Farewell - Traces of Physical Presence.” In Interactions, volume
v.4. 1998

Ivanov, Y. State Discovery for Autonomous Learning. PhD Thesis. Massachusetts
Institute of Technology. 2002

Joystick Review website:
http://www.joystickreview.com/microsoft/sidewinderfreestylepro.asp

Kaelbling, L. Learning in Embedded Systems. PhD Thesis, Stanford University 1990

Koza, J., Bennett, F., Andre, D., and Keane, M. Genetic Programming Ill: Darwinian
Invention and Problem Solving. Morgan Kaufmann. 1999

Kvifte, T. Instruments and the electronic age: toward a terminology for a unified
description of playing technique. Oslo: Solum Forlag. 1989

153



Langley, P. (1997). “Machine learning for adaptive user interfaces”. In Proceedings of
the 21st German Annual Conference on Artificial Intelligence (pp. 53-62). Freiburg,
Germany: Springer.

Lee, M., A. Freed, and D. Wessel. 1991. "Real-Time Neural Network Processing of
Gestural and Acoustic Signals." In Proceedings of the 1991 International Computer

Music Conference. San Francisco, International Computer Music Association, pp. 277-
280.

Lexicon MPX110 website, online at: http://www.lexiconpro.com/mpx110/index.asp

Mahillon, V.C. 1893. Catalogue descriptif et analytique du Musée instrumental du
Conservatoire royal de musique de Bruxelles. Brussels : Th. Lombaerts.

Mandelis, J., “Genophone: An Evolutionary Approach to Sound Synthesis and
Performance,” Proceedings ALMMA 2001 : Artificial Life Models for Musical
Applications Workshop, Prague, Czech Republic: Editoriale Bios, pp. 37-50, 2001.

Manor, Justin. http://acg.media.mit.edu/people/manor/fabrique.html

Marrin, T. Toward an Understanding of Musical Gesture: Mapping Expressive Intention
with the Digital Baton. MS Thesis. MIT. 1996

Marrin, T. and Paradiso, J. "The Digital Baton: a Versatile Performance Instrument."
International Computer Music Conference Proceedings. Thessaloniki, Greece, 1997.

Marrin, T. and Picard, R. "The Conductors Jacket: a Testbed for Research on Gestural
and Affective Expression." Presented at the XII Colloguium for Musical Informatics, in
Gorizia, Italy, September 1998.

Mitchell, T., Machine Learning. McGraw Hill, 1997

Modler, P., Myatt, T., and Saup, M. “An Experimental Set of Hand Gestures for
Expressive Control of Musical Parameters in Realtime”. New Interfaces for
Musical Expression proceedings. Montreal, 2003.

Modler, P. 2000. "Neural Networks for Mapping Gestures to Sound Synthesis." In M.
Wanderley and M. Battier, eds. Trends in Gestural Control of Music. Ircam - Centre
Pompidou.

National Museum of Music website “Images from the Rawlins Gallery” page, at
http://www.usd.edu/smm/Cellos/Amati/Amaticello.html

Needleman, S.B., and Wunsch, C.D. “A general method applicable to the search for

similarities in the amino acid sequences of two proteins.” 1970 Journal of Molecular
Biology 48:443-453.

154



Norman, D. A. The Psychology of Everyday Things. New York: Basic Books. 1988.

OpenSound Control Home Page, online at:
http://www.cnmat.berkeley.edu/OpenSoundControl/

Ostertag, Bob. “Human Bodies, Computer Music”. In Leonardo Music Journal. Journal
12.2002.

O’Modhrain, Sile. Playing by Feel: Incorporating Haptic Feedback into Computer-
Based Musical Instruments. PhD Dissertation. Stanford University. 2000

Pachet, Francois, “The Continuator: Musical Interaction with Style”, In ICMA, editor,
Proceedings of ICMC, pages 211-218, September 2002. ICMA.

Paradiso, Joseph A., “The Brain Opera Technology: New Instruments and Gestural
Sensors for Musical Interaction and Performance”, Journal of New Music Research. Vol
28. No 2 (June) 1999.

Paradiso, J., and Gershenfeld, N. “Musical Applications of Electric Field Sensing”. In
Computer Music Journal 21(2) Summer, pp. 69-89. 1997.

Paradiso, J., Hsiao, K., Benbasat, A., and Teegarden, Z. "Design and Implementation of

Expressive Footwear." IBM Systems Journal, Volume 39, Nos. 3 & 4, October 2000, pp.

511-529

Pavlovi¢, V., and Rehg, J. “Impact of dynamic model learning on classification of human

motion”. In IEEE Conference on Computer Vision and Pattern Recognition, pages 788-
795, Hilton Head, SC. 2000.

Pure Data website: http://pure-data.iem.at/

Rabiner. L. “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition”, Proceedings of the IEEE, Vol. 77, No. 2, February 1989

Rovan, J., M. Wanderley, S. Dubnov, and P. Depalle. "Instrumental Gestural Mapping
Strategies as Expressivity Determinants in Computer Music Performance." Kansei, The
Technology of Emotion.Proceedings of the AIMI International Workshop, A. Camurri,
ed. Genoa: Associazione di Informatica Musicale Italiana, pp. 68-73. 1997

Sachs, Curt Reallexicon der Musikinstrumente (1913)

Saitek P2000 Manual: http://www.saitek.com/manuals/p2000.pdf

155



Sakoe, H. and Chiba, S. “Dynamic programming algorithm optimization for spoken word
recognition.” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.
ASSP-26, 43-49. 1978.

Santa Cruz Guitar Company. http://www.santacruzguitar.com/scgc_woods.htm

Sarlo, Joseph. http://crca.ucsd.edu/~jsarlo/pd/

Selker. T. Gesture Ball project webpage (2000), online at:
http://cac.media.mit.edu:8080/contextweb/project?name=Gesture Ball

Schoner, B. Cooper, C. and Gershenfeld, N. "Cluster-Weighted Sampling for Synthesis
and Cross-Synthesis of Violin Family Instruments," In Journal of New Music Research.
1999.

Smith, Joshua. Electric Field Imaging. PhD Thesis, MIT Media Lab. 1999

Stack webpage, online at: http://www.media.mit.edu/resenv/Stack/

Sutton, R. and Barto, A. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA. 1998.

Szilas, N., and Cadoz, C. “Physical models that learn”. In the proceedings of the
International Conference on Computer Music. Tokyo. 1993.

Therrien, C. Decision Estimation and Classification: An Introduction to Pattern
Recognition and Related Topics. John Wiley and Sons, New York, NY. 1989

Wessel, David. “Instruments That Learn, Refined Controllers, Source Model
Loudspeakers”. In Computer Music Journal, Volume 15, Number 4. Winter 1991

Wessel, D., and Wright, M. "Problems and Prospects for Intimate Musical Control of
Computers," New Interfaces for Musical Expression proceedings. Seattle, 2001.

Widrow, B., and Stearns, S.D. Adaptive Signal Processing. Prentice Hall, Englewood
Cliffs, New Jersey, 1985.

Wilson, Andrew D., “Adaptive Models for the Recognition of Human Gesture” PhD
Thesis. Massachusetts Institute of Technology. 2000

Winkler, T. 1995. "Making Motion Musical: Gestural Mapping Strategies for Interactive
Computer Music." In Proceedings of the 1995 International Computer Music

Conference. San Francisco, International Computer Music Association, pp. 261-264.

Zhang, et al, “Oldest playable musical instruments found at Jiahu early Neolithic site in
China”. Nature (401): 366 — 368, 23 September 1999

156



	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acoustic Instruments
	The coupling of the physical body to sound in acoustic instruments

	Multi-DOF human-computer interfaces, and the decoupling of input and output
	Affordances
	Multi-degree-of-freedom interfaces
	Synthesizers: finally, arbitrary output
	Decoupled at last: implementations and implications

	The modern mapping problem, and related work
	Adaptive user interfaces
	Existing algorithmic and adaptive musical interfaces
	Style Imitation
	Adaptive signal processing
	Evolution-inspired systems
	Other learning systems

	On embodied instruments
	On human motion, emotion and musical expression
	Project goals
	Summary and goals
	Sensors and Communication: the Stack platform
	Application-specific circuits
	Output Layer
	Circular PCB
	Modifications to the tactile v4 board

	Microcontroller embedded code
	Data collection
	Data transmission
	Feedback generation

	Form factor and affordances
	Electric Field Sensing
	Summary and goals
	Java, C, and the JNI framework
	Java graphical user interface
	I/O: For configuring I/O setup
	TestPanel: For creating input-DOF to effect mappings
	Stripcharts: For data visualization
	Gesture control panel

	C and Java modules for data storage and manipulation
	Multi-threaded serial data handling framework
	Listener structure
	Managing the serial data flow during CPU-intensive operations


	Trigger and Modify
	Exploring the sound space
	Gesture recognition
	Statistical pattern-recognition methods
	Dynamic time-warping
	Speed of the DTW algorithm
	IMU-based dynamic time-warping recognition trial runs
	Naïve distance from the mean gesture:
	Fourier descriptors:
	Pre-processed naïve distance:
	Pre-processed Fourier descriptors:
	Dynamic Time-Warping:
	Pre-processed dynamic time-warping:



	Interactive mapping of the device inputs
	Sound Synthesis
	Software conclusions
	Study Procedure
	Presets Mode
	Training Mode
	Data saved to disk

	Study Design
	Survey-based study Results
	Gesturing (part 1)
	Expressivity and Personalization (part 1)
	Enjoyability and future play, performance (part 1)
	Gesturing (part 2)
	Future play, performance, and novelty (part 2)
	Wrap-up questions (Part 3)

	Results from other data captured
	Gesture Length
	Gesture to sound associations
	Input DOF to effect mappings

	Study Conclusions
	Summary
	Future Work
	Future Applications
	So, will it replace the electric guitar?

	Bibliography

