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ABSTRACT

 

The long term goal is to create a ‘paintable computer’ — an instance of
several thousand copies of a single integrated circuit (IC), each the size of a
large sand kernel, uniformly distributed in a semi-viscous medium and applied
to a surface like paint. Each IC contains an embedded micro, memory and a
wireless transceiver in a 4 

 

mm

 

2

 

 package, is internally clocked, and communi-
cates locally.

While the hardware presents its own challenges, the deeper problems lie
in the programming model. In this research, we develop a candidate program-
ming model and qualify its performance over a set of representative applica-
tions. Work begins with a hardware reference model for the individual
computing particles. A first cut programming model is proposed and initial
applications are developed. Results from the applications are fed back to
drive an iterative refinement of the programming model, followed by a suc-
ceeding rounds of application development.

Preliminary thesis statement: “A programming model employing a self-
organizing ecology of mobile code fragments supports a variety of useful
applications on a paintable computer”
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1  Introduction

 

Scenario — Painting the computing

 

In the next years, process technology will arrive at the point
where autonomous computing elements can be scaled to the size of
large sand kernels and sold at bulk prices. Coupled with a commen-
surate shrink in the footprint of sensors and actuators, the concept
of “personal computing” will take on a radically new dimension.
While the details of how people relate to this ultra-commoditized
form of computing remain largely conjectural, a couple of points are
already apparent:

1) As the computing elements become resilient to environmental
stress, they will migrate off the expensive, precision engi-
neered motherboards, and into everyday objects such as fur-
niture, clothing and random surfaces.

2) People will find it more natural to deal with computation as a
bulk item, preferring to manipulate it by the jar full, by the bolt,
by the cord, or by the shot glass.

One could loosely delineate commodity level computing as
those instances where the price of the computing is so low that it is
comparable to detergent and where the form factor is so small that it
seamlessly blends into everyday environment. As a representative
embodiment, this thesis pursues the notion of a 

 

paintable computer

 

— an instance of a pinless IC with an on board micro, 50K of mem-
ory and a wireless transceiver, all shrunk down to the size of a small
match head and powered parasitically. Several thousand of these

particles would be suspended into a viscous medium and deposited
it on surfaces like paint. Once exposed to power, they should boot
and self organize their local address space. External I/O would be
via physical contact with an object fitted with a transceiver whose
protocols are identical to the transceivers on the chips.

In a paintable computer, 
miniaturized low power 
micro’s are pseudo randomly 
distributed over a surface.

Communication, supported 
by wireless links, is limited to 
the local neighborhood.



 

2

 

While the details will change en route to practice, this notion of a

 

paintable

 

 captures the essence of what could be a big part of our
computing future: computation as a tangible, fluidly dispersible addi-
tive to ordinary objects. Want a surface to be smart? Add a layer of
computing. Want it to be smarter? Add a second coat. Has the com-
puting lost its luster? Get out the belt sander.

For many, this level of miniaturization and transparency seems
fanciful. But for manufacturers in the allied fields (mixed signal
CMOS, MEMs, sensors, optics), the path toward the requisite manu-
facturing capabilities seems natural, indeed in many cases almost
pre-ordained. And yet, the uncertainty persists. Indeed, it is exactly
those manufacturers — who for years have seen pieces of the pro-
duction puzzle falling into place — who have always recoursed to the
question “How would anyone ever program such an ensemble?”.

Back in the lab, visions of ultra-dense computing have been
doing the rounds for some years now under monikers like moletron-
ics[5], smart dust[3], and amorphous computing[1]. Topics range
from complete architectures for distributed sensing, to simple com-
puting on biological, molecular and atomic substrates.

In my view, the most important component of the work is not the
development of the enabling hardware. Rather, it is the definition of
how non-specialists will use this form of computing. When a 4’x4’
slab of plywood is embedded with 600 GOPs of compute capacity

 

1

 

and gets machined into a table top, either the table is going to
become complex or the computing is going to become transparent
— and with that many MIPs to spare, most of the lay public will
gratefully opt for the transparency. 

 

Focus

 

The focus of this research will be on the programming model for
the 

 

paintable

 

. Given that neither the hardware, nor the programming
model, nor the applications yet exist, this choice may at first appear
somewhat arbitrary. However, if one considers the challenges in
actually realizing a paintable computer in the context of today’s tech-
nology, the largest leap of faith is, by far, the programming model.

Advances in integrated systems have been so regular over such
a protracted period that the phrase Moore’s Law is long since a
household word. Most of the hardware capabilities predicated by this
thesis proposal are well aligned with the expected near term
advances in IC process technology, with power harvesting being the
notable exception. While not yet on the shelves at Fry’s
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 the hard-

 

1. 750 processors per square foot, each with a micro running at 50 MHz

2. one of the original consumer electronics superstores, located in Silicon 
Valley

The largest question 
marks are hanging 
over the program-
ming model.

Steady progress has 
brought the paintable’s 
hardware in sight, if 
not within reach...
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ware is currently within a tractable number of engineering clever-
ness units away from being buildable. However the willingness to
invest those cleverness units is gated on the appearance of a practi-
cal programming model.

By contrast, the art of decentralized programming for fine grain
parallel machines has advanced in fits and starts with no dominant
direction or consistent rate. Proposed techniques are often tightly
bound to exotic hardware architectures whose only advantage over
an expensive von Neuman contemporary is speed. Many of these
programming techniques rise and fall with the hardware in a market-
place where the novelty of the programming model is a burden to
those who would be obliged to an expensive retrofit of preexisting
application software.

For progress on the software front to be comparable to that of
the hardware, we would have to be making rapid, steady, and tangi-
ble progress toward a general technique for chunking application
code into arbitrarily small segments for distribution onto dense
arrays of computing nodes. Yet, to date, there is no such program-
ming model in sight. Nor is there likely to be. I can not see the day
when applications like MS-Word will be efficiently realized as several
thousand minute code fragments running concurrently on slow
embedded micro’s.

 

The trick is going to be to identify largely ignored
yet useful applications which add value in the commodity computing
context

 

.

 

Approach

 

The steady advances in the hardware, the lagging, sporadic
progress in the programming model, and the resulting dearth of
applications all suggest an approach for this research:

1) Define a hardware reference model for a single 
computing ‘particle’.

2) Propose a system architecture consisting of models for the
applications programming, the inter-particle communication
and the external I/O.

3) Enshrine this system architecture into a simulator.

4) Develop representative applications.

5) Use results from applications development to drive a round of
refinement on the system’s architecture. Loop back to step 3.

 The hardware reference model is a behavioral definition of a
computing particle, with the details of the various sub-systems
grounded in current engineering practice. Less a final blueprint for
an IC, the goal is to capture the essential features of the 

 

paintable

 

 at
the level of a single particle. The reference model would capture fea-

... while progress on 
parallel program-
ming has been spo-
radic and fleeting.
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tures like the amount of memory, the clock rate of the processor, the
range and bandwidth of the communication sub-system and the total
power required.

The iterative refinement would begin with a first cut at the pro-
gramming model and associated models for the inter-particle data
exchange and the external I/O. A simulator would be written around
this model and used as a platform for developing applications.
Results from the application development would be fed back into
another round of refinements for the programming model. 

 

Likely Results

 

The ultimate goal of this work is to help unlock the latent poten-
tial of a powerful yet largely ignored architecture. In the best case,
this work will help avalanche a rethinking of how best to distribute
processing in a sensory rich environment. Along the way, several
useful by-products will necessarily emerge:

• The programming model itself 

• A simulator 

• Descriptions of the various algorithms for which
a 

 

paintable

 

 is well suited 

• Several novel applications with quantitative
performance analyses 

• A table-scale environment for demonstration and test 

We expand on these contributions later in a dedicated section.

 

Why the Media Lab

 

This work resonates with the media lab on a number of levels. It
continues in the tradition of several members of the faculty. It builds
on work ongoing in multiple groups. It exploits material resources
unique to the lab, both internal and externally through the sponsors.
It contributes to several pursuits which have been core to the lab.
And in its execution, it will adhere to the lab’s charter of mixing the
eclectic other-worldly with the practical.

Superficially, this work could be characterized as distributed
computing meets miniaturized sensing, meets embedded network-
ing, meets visual and audio scene analysis, meets societies of min-
iaturized mobile agents. As this proposal unfolds, I hope that the
reader will sense the influence of several members of the faculty;
notably Neil, Mitch, Pattie, Marvin, and of course, Mike and Andy.
The overlap extends to several ML projects, both past and present.
Examples include Rob Poor’s work on embedded networking, the
distributed computing efforts of Jacky Mallet and Nelson Minar,
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Bernd Schoner’s work on physical modeling, Dan Ellis’s thesis work
on prediction driven analysis, the Star-Logo project in Mitchel’s
group, and the structured video work in the garden. All of these
efforts have directly influenced the approach taken in this work.

To the extent that we can, we want to learn by building. And the
greater Media Lab community is a unique concentration of many of
the requisite resources. 

• PhM for sensors and comm 

• the IC design / fab resources of the sponsors

• the compute resources required to develop applications 
on large scale simulation.

• experience in room scale HCI (I/O bulb)

Topically, the notion of a paintable computer is not unique to the
Media Arts and Sciences. Indeed, the epicenter for related work on
the hardware and core system software is the CS departments of
select universities. Premier among them is the amorphous comput-
ing group at MIT. A joint effort of the AI lab and the LCS, their work
has done much to define the field. Nevertheless, this field is still a
young one, the programming model still a question mark, and appli-
cations in both commerce or the arts have been notably lacking. The
Media Arts and Sciences’ unique offering to this field derives from
its expertise in video, audio digital expression., and past work on
cooperative systems.

 

Roadmap

 

The remainder of this document discusses the project in detail.
The next two sections review the relevant background. Section 2
surveys recent hardware efforts for ultra dense computing, and posi-
tions the paintable computer in this context. Section 3 describes the
challenges of constructing robust programming models for parallel
machines, and looks at why past efforts have failed. Section 4
advances an alternate approach based on self-organizing behavior
of miniature mobile agents.

The remaining sections contain the nuts-and-bolts of the pro-
posal. Section 5 describes the proposed work at the level of general
strategy and specific execution. Section 6 lists the expected contri-
butions. Section 7 revisits the question of why this work should be
done at MIT Media.Section 8 is the fine print — scheduling, required
resources, and deliverables. The body of the proposal concludes
with a fictitious bio and some unread references.

Two appendices and two separate documents are attached. As
of this writing, approximately a third of the ML faculty have kindly
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offered their time to privately discuss this proposal in one of its for-
mative stages. Appendix 1 catalogs some of the most ardent objec-
tions to this work - along with my equally ardent responses - into a
list of 

 

Frequently Flung Arrows

 

. The argument for the inevitability of a
paintable-computing-like hardware quickly turned into an extended
rant. The body of this rant has been broken out into a separate essay
and buried in appendix 2. This need only be read by those who
question the relentless progression toward this architecture.

The attached documents are the data sheet and a survey article
from the last chip I shepherded through an IC fab before entering the
Ph.D. program. It is a mixed signal device with a full featured a base-
band video decoder. The aggregate processing power is well in
excess of a 386. In the IC geometries common in 1995 (0.8 micron)
the actual die area was appr. 40 

 

mm

 

2

 

 — about 1/6 the size of a
dime. In today’s geometry (0.18 micron), the area would be under 3

 

mm

 

2

 

 — about 1/5 the size of a match head. If manufactured in 0.1
micron, it could not be sold stand alone

 

1

 

.

 

2  Paintable Hardware

 

This section outlines the hardware architecture of a 

 

paintable

 

and positions it in the context of parallel computing. The notion of a
paintable computer is distilled to a list of characteristics. These char-
acteristics are enshrined in a first cut hardware reference model for
a single 

 

paintable

 

 microchip. Ensembles of these chips collectively
constitute a paintable computer as an instance of massive parallel-
ism. Past work in parallel machines is surveyed in tabular form, and
the 

 

paintable

 

 is compared to it’s closest relatives.

 

1. When the die area shrinks below a certain point, it is no longer econom-
ical to package them separately, unless the production volumes are 
immense.

The hardware reference 
model for a computing 
‘particle’ consists of:

• Power harvesting Sub-
system

• A wireless transceiver 
for local communica-
tions

• A general purpose 
micro processor

• Order 100k of RAM
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Paintable Particle

 

Up to this point, the notion of a paintable computer has been
vaguely described as computational elements which can be painted
onto an arbitrary surface and which somehow organize themselves
to do useful work. Structuring this research requires a more formal
description of the hardware. As an aid to definition, we propose a
hardware reference model constructed around a single IC with
dimensions 2 mm x 2 mm. Onboard subsystems include a block for
power harvesting, a full featured micro, an RF transceiver for inter-
particle communication, a 50 MHz internal clock, and appr. 50K
RAM for program and data space. Each of these subsystems is
described in more detail below. Less a production grade design,
these specs are intended as a reference grounded in current engi-
neering practice. One area where current practice fails is in the
nomenclature. Throughout the remainder of this document, we
adopt the name ‘particle’ to describe this IC.

The power harvesting subsection must couple to an external
power source without requiring precision connections or placement.
The chip should be able to assume any orientation and any position
within a defined area and still receive some amount of power. To
compensate for fluctuations due to the chip’s position relative to the
source, the power subsystem will regulate the system clock to
match the chips’s requirements to the available power. Several can-
didate techniques using capacitive or inductive coupling are avail-
able, but none of stock methods yet offer close to sufficient power. In
terms of available cells from industrial libraries, this subsystem is the
least mature.

By contrast, seasoned designs for a suitable micro-processor
are comparatively plentiful. A rough cut at a standard spec would be
a standard ‘08 class embedded controller, pulling 500 uA per MHz
clock and occupying appr. 2 mm

 

2

 

. A number of peripherals are also
commonplace; FLASH storage, timers, UARTs, and low fidelity A/D
ports.

The inter-particle communication would borrow from related
work on IC’s for near-field RF. Much remains to be clarified regard-
ing the details of the modulation technique, the bandwidth / power /
distance trade-offs and methods for local selectivity. However, there
is a good body of past practice from both research and industry to
draw on. For the reference model, we assume a minimum band-
width of at least 100 kb/s in both directions.

In typical operation, an ensemble of these particles would be
deposited on a surface in close proximity to each other. Once
exposed to power, each particle would boot, contact it’s neighboring
particles and dynamically configure the ensemble’s address space.

Throughout, we 
refer to the individ-
ual computing 
nodes as ‘particles’.



 

8

 

The method for supplying code for the on-board micro is described
below in the section on the programming model.

While ill-suited as a blueprint for product, this reference model
does capture the requisite characteristics for a 

 

paintable

 

 particle:

1) no precision placement

2) no dedicated interconnects

3) no need to differentiate or sort particles by functionality

4) asynchronous timing model

5) networking model based on spatial locality

6) vanishingly small unit cost ($0.002 / MIP)

 

1

 

7) node size on the order of a pin head

To expand on this last point. While the results from this research
will likely be applicable to systems which operate on a much larger
spatial scale (for example, that of a factory floor) we specifically tar-
get applications where several thousand processing nodes fall within
an arms length of a human. While this delineation is admittedly arbi-
trary and will not be rigidly enforced, it does reflects a strong per-
sonal bias that this is where the interesting new applications lie.

 

Related Work

 

Fascination with parallel computing dates back at least to the
appearance of the microprocessor. The following table lists some
representative efforts and groups them by granularity, scale, archi-
tectural maturity and the degree to which computing is task-specific.

Architecturally, the 

 

paintable

 

 is most closely related to work on
the micronscale machines. Both employ mature logic components
based on stock silicon processes, hence the moniker ‘micronscale’.
Both define systems as aggregates of miniature autonomous com-
puting elements, running asynchronously, communicating locally
and deployed by the hundreds or thousands.

In contrast to the 

 

paintable

 

, most of the micronscale projects
focus on advancing the monolithic integration of computing, net-
working and microsensing. Target applications are those which
involve spacing between the particles on the order of one to ten
meters (ex. inventory control, environmental temperature control,
and battlefield surveillance). No general purpose programming
model have been proposed and the architectures are necessarily
task-specific.

 

1. Die cost of $16.00 / in

 

2

 

 Die size of 4 

 

mm

 

2

 

50 MHz clock speed
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Parallel Computing at a Glance

 

Family Research / Products
Defining

Characteristics

 

Traditional 
Parallelism
(coarse grain)

• shared memory 
multiprocessors

• networked distrib-
uted applications

• process level parallelism supported by 
threading

• commercially successful

• VLIW • instruction level and sequence level 
parallelism

• data Flow Programming Model with con-
trol flow scripted by compiler

• application specific

Traditional 
Parallelism 
(fine grain)

• Connection 
Machine

• MassPar

• instruction and sequence level 
parallelism

• overtaken by conventional architectures

• unconventional programming models

• expensive

Distributed
Control 

• cars

• TV’s

• ubiquitous
computing [20]

• Smart Matter [4]

• process level parallelism

• coarse grain variants already commer-
cially successful

• fixed functionality, not programmable

Distributed 
Sensing / 
Micronscale
Computing

• BSAC [11]

• WINS [3]

• MTL (MIT)

• Sensor Fusion

• still predominately a research effort

• fine grain parallelism with node counts in 
the thousands

• ad hoc, task-specific programming model 
for system level

• order unity ratio of sensors/actuators to 
processing nodes

• traditional logic components assembled 
in non-traditional system architectures

Nanoscale
Computing

• cellular
computing [1]

• CAEN’s [5]

• quantum
computing [9]

• early research phase. Still assembling 
simple gates

• ultra-fine granularity

• unconventional substrates (biological, 
molecular, atomic)

• too early to worry about a programming 
model.

(Coarse)

(Fine)

Grain
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3  Programming Models 

 

While the basic hardware architecture is a commonly shared
ideal, the programming model appears to be a commonly shared
question mark. In this context, the phrase “programming model” col-
lectively refers to the rules for assembling the machine instructions
into functions, the means by which the functions exchange data
among themselves and with the external environment, the mecha-
nisms for grouping functions into applications, the management of
limited system resources (memory, CPU cycles), and the authoring
environment. 

This section considers the boundary conditions imposed on the
programming model by the 

 

paintable

 

 architecture. We synthesize a
set of basic requirements, compare these requirements against past
work in parallel processing, and highlight the open problems. Self
organization is advanced as an attractive alternative to the traditional
approaches.

 

Boundary Condition from the Hardware

 

An instance of thousands of miniature processing nodes, run-
ning asynchronously (if at all) and communicating locally via an ad
hoc network places unusual demands on the programming model.
Worst among these are:

 

Asynchrony

 

 Clock level synchrony is out of the question. Two
neighboring particles can not be guaranteed to have the same
clock rate, let alone lock them. Event level synchrony also
seems beyond reach. In an unknown topology with sporadic
unit failures, there is no way for a process on one particle to
predict what processes will be running on a neighboring parti-
cle. Code running on one particle should never explicitly syn-
chronize to events generated on another particle.

extreme 

 

Fault Tolerance 

 

Allied with the inherent asynchrony
is the propensity of individual particles to fail completely. A
defining characteristic of a paintable computer is that the user
should be permitted certain tasks that will cause some parti-
cles to die. For example, if a 

 

paintable

 

 is layered onto a
wooden surface, the user should think nothing of driving a nail
into that surface, or machining it to an arbitrary shape.

 

Network Locality

 

 Particles can only communicate directly
with other particles in the immediate spatial vicinity. While the
size of the neighborhood can vary substantially, current exper-
iments run on neighborhood sizes ranging from 8 to 20 parti-
cles. 

 

Adaptive Topology

 

 Any truly 

 

paintable

 

 system will have final

A checklist for paintable 
software:

• ASYNCHRONY

• FAULT TOLERANCE

• NETWORK LOCALITY

• ADAPTIVE TOPOLOGY

• CODE COMPACTNESS

• SHARED DATA

• MOBILITY
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topology which is unknown at the time that much of the appli-
cation code is written. While it will always be possible to
recover an approximate coordinate system at run-time, no
application code should rely on a particular spatial layout of
the processors. As a consequence, no application code can
explicitly address a processing node by location — neither as
an absolute location nor as a relative location (ex. two hops
north).

 

Code Compactness

 

 On-particle memory is very limited,
inter-particle comm bandwidth is slow compared to processor
speed, and there is no external support for virtual memory.
Functions running on a given particle should therefore be self
contained and sized to fit completely in a single particle.

 

Shared Data

 

 Nevertheless, the utility of a single particle’s
computation will often go up if it has access to results from
local computations on neighboring particles. With the caveat
that no process can predict what processes are running in the
neighborhood, tagged data passed from the neighborhood
should be available to processes running on a given particle.

 

Mobility

 

 Capacity for inter-particle migration of code seg-
ments will increase both the functionality of the individual par-
ticles and the adaptability of the overall system. The restriction
here is that exact trajectory of the migrating code can not pre-
ordained.

 

Past work and Open Problems

 

This is a singularly challenging venue for any known program-
ming model. And surprisingly, there has been little published work
on suitable models from those people most in need of it — the
research groups doing the ultra dense micronscale hardware. To
date, the literature from these groups contains almost no explicit
treatment of a programming model

 

1

 

.The notable exception being
the amorphous computing group at LCS, whose work is considered
in some detail later in this section.

Conversely there is an ocean of prior art on programming for
parallel systems. Examples include data flow[10], distributed com-
puting[14][15], decentralized computing[8], and the custom operat-
ing systems for special purpose hardware[12]. The most relevant
subset is the work on fine grain parallelism, where the capacity of
the individual processing nodes are relatively modest and size of the
ensemble number into the thousands. Programming models for
these machines get us some of what we are after, but suffer a cru-

 

1. When I figure out what it is about this problem that they know and I 
don’t, I am going to feel really silly.
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cial limitation. To develop this point, we look one of the 

 

paintable’s

 

architectural predecessors, massive parallelism on the Connection
Machine.

 

SIMD and the Connection Machine

 

 In a Single Instruction Multiple
Data (SIMD) architecture, the machine’s memory is divided up
among multiple processors with each processor privately managing
its share of the memory. A single instruction sequence is broadcast
simultaneously to every processor which executes the instructions in
lockstep. Each processor can optionally ‘sit out’ an instruction
depending on its internal state. Interprocessor network topologies
vary, but no node can commence with a particular instruction until all
the nodes have completed the previous one.

An elegant exemplar of this architecture was the Connection
Machine (CM) from the now defunct Thinking Machines Corp[12].
The CM 1 and 2 were prototypical instances of fine grained parallel-
ism. At a full compliment, there were 64 K

 

1

 

 bit slice processors,

 

2

 

each with approximately 1K bytes of private local storage. Intercon-
nect topology was a 16 dimensional hypercube. In this address
space, each processor node had 16 immediate neighbors. While any
one processor could send messages to any of the others, the 16
‘neighbors’ in a sense constituted a locality with messages to any of
the processors outside this locality requiring multiple hops. The cen-
tral insight of the CM was that, 

 

for a parallel machine to be useful,
the topology of the machine had to be well matched to the natural
topology of the problem

 

3

 

 and that by nature, the n-dimensional
hypercube could efficiently emulate a wide variety of useful topolo-
gies. Much of the CM’s development effort went into maximizing the
speed and flexibility of the router — hence the name Connection
Machine.

In operation, an external controller first mapped the topology of
an application onto the 16 D hypercube as a preprocessing step.
The resulting data structure was serially loaded into the CM and
operated on in parallel. If the nature of the problem was such that
operations performed at all the nodes of the data structure were sim-
ilar or at least clustered into a small number of groups, SIMD worked
well. If they were not, the SIMD machine was reduced to an ineffi-
cient emulator of a MIMD

 

4

 

 machine.

 

1. K = 1024 

2. Later versions employed powerful SPARC processors to approximate a 
MIMD architecture.

3. example: Parallel nodes arrayed on a 2D Cartesian grid is a natural 
topology for the processing of still images.

4. MIMD: Multiple Instruction, Multiple Data
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So, how does the CM brand of the SIMD programming model
rate on the 

 

paintable

 

’s score card?

On the plus side, the CM was moderately fault tolerant, could
support a locality restriction, could share data between nodes and
could adapt to limited variations in the topology of the hardware. On
the down side, the CM rigidly enforces lockstep synchrony at the
instruction level. With the instruction stream supplied serially from
an external controller, there was no motivation to produce compact
code. Similarly, code migration as envisioned in a 

 

paintable

 

 runs
counter to the basic definition of SIMD.

Not very promising.

 

What price Engineering Determinism?

 

 Given that the paintable is
basically a MIMD machine, why dwell on the shortcomings of SIMD?
Because SIMD on the CM lucidly illustrates a fundamental problem
endemic to all models for parallel programming — engineering
determinism. Consider the effort involved in building a programma-
ble machine with 1000 two-input adders running in parallel. Adders
are vanishingly cheap. And getting 1000 adders to concurrently sum
their input is not hard. The magic is getting them to add the right two
numbers, at precisely the right instant, and to pass the result to the
right destination, all under control of a program written by a human.
In massively parallel systems like the CM, the overhead for this con-
trol completely dominates the system cost. Our willingness to toler-
ate this ‘control surcharge’, however excessive, traces back to the
belief that the only reliable order which can be foisted on a complex
system is an order which is authored by a human.

Transparent systemization — the ability to proscribe the state
behavior of a system down to the finest component level — is a
design dogma born of engineering necessity. In an era when the
individual processing elements were expensive, this ‘necessity’
made good sense and was seldom challenged. But as unit costs for
the processing nodes tumble, the overhead costs of maintaining
explicit control of an ensemble rapidly increase. The rate of this
increase suggests that engineering determinism as a design strat-
egy will fail to scale. For those who would build a 

 

paintable

 

, this
forces the search for an alternative.

 

Self Organization

 

Such an alternative has emerged in the form of self organizing
systems. These are systems where useful organization and behav-
ior emerge on a macro scale as the result of interactions confined to
a much smaller micro scale. Small scale, local interactions — often
completely defined by a few simple rules — result in large scale
behavior that appears to be very complex — so complex that early
efforts to model it usually assumed intricate centralized control.

A paintable score card for 
SIMD:

 ASYNCHRONY

 XX FAULT TOLERANCE

 XXX NETWORK LOCALITY

 X ADAPTIVE TOPOLOGY

 CODE COMPACTNESS

 XXX SHARED DATA

 MOBILITY
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Self organization is treated formally in the work on Complex
Adaptive Systems. Local interactions operating randomly form the
basis of distinct feed forward and dissipative mechanisms whose
competition guides the overall system toward one of several equilib-
rium states. These equilibrium states can often manifest themselves
as observable structures. Changes in the composition of the global
environment alter the balance between the competing mechanisms,
causing the decay of the existing structure in favor of a new one.
Critically, the global behavior of the system derives from the balance
of the competing processes operating on the macro level. And those
processes in turn emanate from the rules governing the local inter-
actions. 

For engineers, this is both good news and bad news. The good
news is that, because the global behavior depends on the rules
defining the local interactions (as opposed to any specific instance
of an interaction), the behavior is largely robust to structural vari-
ances. For example, the pressure in a gas vessel does not depend
on any one of the molecular collisions. The bad news is that emer-
gent behavior often can not be characterized at a sufficient level of
detail. For example, while specific types of patterns can be reliably
generated, there is limited capability to define the exact shape of the
pattern.

Self Organization - Applications

In nature, there are many systems that depend exclusively on
self organization to manage their affairs. In engineered systems,
there are a number of applications which employ self organization.
However, almost all of these applications are implemented as con-
ventional structured programs running on general purpose
machines. Typical self organizing apps include Cellular Autom-
ata[19], Self Organizing Maps[13], Cluster Weighted Modeling[16],
load balancing techniques for telecom networks[17], behavioral sys-
tems for synthetic characters (ALIVE, Synthetic Fish Bowl), colonies
of ant-like robots for remote exploration[18], computing on graphical
networks and Bayesian Belief propagation[7].

Two of these appear to be particularly relevant to a paintable.

CA Cellular Automata[19] is perhaps the most familiar
instance of self organization at a scale similar to one targeted
in this work. CA was described in the 1950’s as a technique for
simulating the behavior of fluids and gases. Computing nodes
are arranged in a dense, regular lattice with a fixed number of
neighbors. At the micro scale, nodes limit their communication
to their immediate spatial neighbors, passing tokens which
represent the arrival or departure of a gas particle and its
properties. Simple update rules describe the outgoing trajec-

An increasing number 
of applications are 
structured around 
self-organization
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tory of the visiting particles. At the macro level, the behavior of
the gas conforms to global models described by differential
equations.

CWM Cluster Weighted Modeling[16] is an example of the
dimensionality reduction techniques used to generate models
of complex physical systems. In CWM, sampled input and out-
put are collected and used to train an ensemble of interacting
clusters. Each cluster embodies a simple (often linear) trans-
formation as a model for mapping between input and output.
The micro level consists of the individual clusters. Each clus-
ters employs EM to jointly compete for subsets of the input
space and adjust the parameters of its transform to better
approximate the output space. At the macro level, the
weighted superposition of the cluster outputs define the
response of the physical system.

Self Organization Architectures

While self organization appears often at the application level,
there are only a few instances of whole systems being built from the
ground up around self organization. A definitive example of such a
system is the work of the amorphous computing group at AI/LCS[1].
They employ self organization in the strict sense; all computation is
based on local interactions only. In their original programming
model, all code is permanently embedded into the particles at the
time of manufacture. This code contains multiple functions that can
be ‘woken up’ in response to a number of predefined conditions —
including the arrival of message tokens passed from neighboring
particles.

A growing point language (GPL) has been developed for approx-
imating planar graphs onto a single 2D layer of particles[6]. Commu-
nication of state data between the particles is implicit in the diffusion
of ‘pheromones’. At each particle, the local pheromone profile is
sensed and used to compute a tropism1 which directs the propaga-
tion/replication of migrating ‘growing points’. On entry into a particle,
the growing point ‘activates’ elements of the particle’s code which
analyzes the particle’s local state and performs any or all of three
tasks:

1) produce pheromones which are secreted to neighboring parti-
cles.

2) produces/updates static local symbols intended to represent
predefined material properties.

1. This work relies heavily on biological metaphors. A ‘tropism’ in this con-
text can be regarded as a function of several gradient fields

Self organization is 
almost never found 
as a core element of 
an operating sys-
tem.
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3) directs the further migration of the growing point.

Those who have done too much UNIX programming could
regard the particles as an array of locally interconnected computers
and the growing points as wandering interrupts, embodied as
tokens. A local copy of all the code necessary to service the interrupt
resides on all the machines. In the absence of an interrupt token, the
machines communicate locally by passing a small number of pre-
defined housekeeping messages back and forth. When an interrupt
token arrives, the service routine wakes up and selects internal func-
tions based on the state of the machine and the parameters passed
along with the token. On completion, the token is passed on to one
or more of the neighboring machines.

Given a distribution of particles on a regular lattice, any planar
graph can be expressed as set of GPL commands compiled down to
a set of local commands for embedding into all the particles. Useful
performance has also been demonstrated when the requirement for
distribution on a regular lattice is relaxed.

4  Programming a Paintable
The research proposed herein would apply self organization to

construct a processing environment where application level software
modules self assemble from randomly distributed code fragments.
The self assembly would use sensor input as a driver and the con-
stituency of the code fragments as a guiding boundary condition.

Self Assembling Code

To contrast this with conventional programming practice, con-
sider a simple function consisting of three interconnected subrou-
tines. Conventional programming techniques proscribe a priori a
fixed set of predefined paths for the data flow between the subrou-
tines. Metaphorically, one could regard the subroutines as blocks
positioned in a static scaffolding.

Functions which self assemble follow the alternative metaphor of
organisms swimming around a medium, colliding randomly and

Tradition:

Program flow is 
encased in a fixed 
structure with pre-
defined branches.
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interacting in response to chemical signatures embedded on their
surface. In practice, we would approximate this by considering the
machine’s memory space as a fluid medium in which tagged data
can be arbitrarily positioned. The individual subroutines would be
encapsulated in an active wrapper that would support mobility, cou-
ple to the wrappers of other subroutines, and interact with the
tagged data.

In the absence of input data, the dissipative mechanism domi-
nates, suppressing the grouping of the code fragment, leaving them
to diffuse randomly throughout the memory. The arrival of the rele-
vant input changes the balance, naturally fostering certain groupings
of the code fragments. This self assembly would continue until the
feed forward and dissipative mechanisms arrived at a new balance,
supporting a stable grouping of the code fragments into a macro
function.

Alternative:

Individual subroutines 
are enveloped in a 
‘wrapper’ which supplies 
mobility and gates the 
I/O access.

Mobile code fragments 
diffuse randomly through-
out the system memory.

Input data appearing at 
the memory’s ‘membrane’ 
is enveloped in a wrapper’ 
and seeks to catalyze a 
self-organizing structure.
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Fanciful? Perhaps. Yet, a preliminary definition of the program-
ming model for the paintable has been developed which captures
much of this dynamic. This model is outlined below in three parts;
the organization of the RAM space, a normative definition of the
code fragments and a description of how the two interact.

Memory Allocation

Programs, that are running on the particle’s micro, reside in the
particle’s RAM space. Most of the RAM is available for use as pro-
gram, data and scratch space for these programs. However a sec-
tion of the RAM is reserved what is called the I/O space — an area
which is at least readable by any program running on the particle’s
micro. A subset of the I/O space is called the HomePage. The
HomePage is an area where programs can both read and write
tagged data. Any program local to the particle can post to the Home-
Page. And posts to the HomePage are readable by all local pro-
grams.

The remainder of the I/O space is subdivided into mirrored
instances of the HomePages of neighboring particles. When a pro-
gram on a given particle posts a piece of tagged data to the parti-
cle’s HomePage, copies of that post appear at the mirror sites of all
the neighboring particles. The caveat is that the latency in the mirror-
ing operation is unconstrained. 

The I/O space could be regarded as a public bulletin board,
where the HomePage portion is writable and the entire I/O space is
readable

Code Segments

All software intended to run on a particle’s micro must be orga-
nized into autonomous modules — or code segments — which con-
form to three normative requirements: 

1) They are self contained modules capable of fitting entirely in the
RAM space of a single particle. Here, the phrase ‘self con-

organization of the RAM 
space of a particle
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tained’ means that they do not explicitly depend on subrou-
tines or functions which are external to the code segment. 

2) They gate their entire I/O through the I/O space in the particle’s
RAM.

3) They define some support for 5 simple functions which the par-
ticle’s O/S can give them. These five functions are Install, De-
Install, Update, Transfer-Refused, and Transfer-Granted.

A legal, if near useless, code segment would be one that
answers a call to Install by posting a “Hello World” to the HomePage,
answers the Update command by posting the text “I’m still here,”
answers the Transfer-Refused command by posting “Lonely Heart
seeks Soulmate,” responds to the Transfer-Granted command by
erasing it’s posts and migrating to a neighboring particle, and
responds to De-Install by erasing all of it’s posts and erasing itself.

RAM space permitting, a particle will accommodate multiple
code segments simultaneously. But it is up to the particle’s OS to
enforce any pre-defined boundaries on RAM usage.

Run-time Scheduling

At run-time, code segments migrate nomadicly looking for parti-
cles on which to install themselves In those particles where entry
into the program RAM is successful, the code segments will set up
shop and begin searching for relevant data in the I/O space. The
side effect of the code segment’s activities its additional posts to the
HomePage. Often, the number of code segments seeking entry will
exceed the particle’s capacity. The allocation of program space is
regulated by the O/S in response to competition among the code

Code Segments are self 
contained functions 
which:

• fit completely in the 
RAM space of a sin-
gle particle

• have handles for at 
least 5 commands.

• gates all I/O through 
the particles I/O 
space
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segments. Each code segment must draw it’s competitive advantage
from the I/O space and therefore, indirectly from the activity of other
code segments. The competition is arbitrated by the particle’s OS.
And when a particular code segment loses out, it is de-installed and
passed to the output port to migrate further via diffusion.

Metaphorically, the contents of the I/O space can be compared
to soil with a particular nutritional profile. The code segments are in
turn comparable with plant life trying to take root in the soil while
concurrently contributing to the soil’s nutritional capacity — albeit
without depleting the existing storage.

5  Proposed Research
For those readers who have taken the short cut to this section,

the starting point for this thesis work can be summarized as follows:

The ability to manufacture autonomous computing nodes
on the scale of sand kernels can now be regarded as pre-
ordained. The progress of sensors and actuators is follow-
ing a similar curve, albeit with some delay. Ensembles of
these processors / sensor particles will be embedable into
to ordinary surfaces at densities as high as a thousand
per square foot. A programming model which requires that

Behavioral description of 
Programming Model:

Code segments wander 
nomadicly between parti-
cles,

.. pass through the active 
FIFO {bassinet) and are 
installed in the RAM space

... communicate via tagged 
posts to the I/O page 

... compete for available 
space in the program RAM

... with the losers queued for 
deportation to the neighbor-
ing particles.
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each of these particles be individually programmed and
monitored will exceed most people’s threshold for manag-
ing complexity. An alternate programming model built
around self-organization would be an attractive alterna-
tive.

Strategy

The thesis work will begin with a tractable hardware reference
model and a set of criteria that the system must satisfy. This will pro-
duce boundary conditions on the software that we will accept as
immutable. A programming model will then be proposed and itera-
tively refined, with each iteration driven by insights from the develop-
ment of several applications in a simulated environment. In creating
these applications, the challenge will be to reduce some desired glo-
bal behavior to a collection of unreliable, poorly synchronized local
interactions operating on the scale of a single communication
radius. As work proceeds, the changes to the programming model
should become less and less constitutive. Ultimately we do not
expect to arrive at the demonstrably best programming model.
Rather, the intent is to identify a model with merit, demonstrate its
efficacy and explore its limits.

Execution

Work will proceed in five interdependent threads, with each
thread feeding results back on the ones before it. These five threads
are the Hardware Reference Model, the System Architecture, the
Simulator, sample Applications, and breadboard emulators for the
actual hardware. These threads are interdependent in obvious ways.
For example, before work on any of the other four threads can begin,
an provisional hardware reference model must be built around some
reasonable assumptions regarding the particles basic properties.
Yet, work on the simulated applications and the hardware bread-
boarding should highlight the need for some changes and/or addi-
tions in the reference model.

Hardware Reference Model The purpose of the hardware refer-
ence model (HWRM) is to establish reasonable bounds on the capa-
bilities of the particles. In particular, a detailed model for the wireless
subsystem and the resulting interconnect topology will have to be
established. The HWRM will be defined with one eye on current
engineering practice and another on the core characteristics of a
paintable computer.

An example a of compromise which can be made at this level
involve the details of the power subsystem. It is not clear that con-
tactless techniques for power transmission will supply sufficient
power for the particles to do anything interesting. Yet, the core
requirements of a paintable could in fact be met by an alternative
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involving direct supply of power, provided that the restriction against
precision placement of the particles is upheld.

System Architecture The system architecture consists of the
programming model and the associated models for external I/O and
inter-particle communication. This work forms the heart of the dis-
sertation, and will undergo constant refinement throughout the
course of the work.

To appreciate the challenge taken up in this work, consider the
nature of the hardware. On the one hand, the basic attributes read
like a compiler designer’s epitaph; an unknown number of micros
arranged in an unknown topology with slow, asynchronous local
interconnects. Individually, each micro is too resource poor to do any
useful work, the network message flow is chaotic and the unit reli-
ability is low. On the other hand, this same hardware sports enor-
mous raw compute capacity, vanishingly small unit costs and
extreme ease of handling. Our ability to tap this potential turns on
the programming model’s ability to overcome the obstacles.

As a solution, I propose employing self organization at the level
of the code segments — autonomous software fragments which
embody some atomic function (ex. simple integration) and employ
several strategies for executing that function in a dynamic, randomly
changing environment. Code segments would compete for access to
system resources (memory / CPU cycles) in a computing venue
designed to permit each code segments to selectively aid or impede
the others. Based on the competition, the code segments would
organize themselves into macro functions in a manner reminiscent
of the emergent behavior of adaptive systems.

Simulator The simulator fulfils several important needs. The first
is visualization. Development, debugging and performance analysis
invariably involve observing snap shots of selected state data for
large groups of particles. Assembling these snap shots serially by
querying each of several hardware particles would be onerous and
error-prone. Software control of the visualization will often be the
only viable option.

Simulation also offers an escape from the “catch-22” of manufac-
ture. Sans a simulator, the applications could only be developed on
running hardware — hardware which most manufactures would
decline to build in the absence of some detailed description of the
target apps. While bread boarding may be an option, the changes
occurring early in the development cycle are likely to be too frequent
and too elemental to practically realize in hardware.

The simulator will be one of the key deliverables of this research.
An initial skeleton version, modeled after the Amorphous Computing
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Group’s HLSIM[2] is currently running. It models the particles
behaviorally and suffices for the development of simple applications.
It is written in Java to support portability and ease of threading1. As
the research progresses, the software will be constantly refined.
Several of these refinements can already be anticipated:

• port to a dual or quad

• more realistic network model

• support for arrays of I/O portals with a density on par with 
the particles

• support for multiple layers of paint

Applications The applications qualify the programming model
and serve as a general sanity check on the concept of a paintable.
In the course of this work, I am envisioning the development of four
— still to be determined — applications. Each application will be
selected with several criteria in mind:

• it must demonstrate a compelling functionality, preferably 
a compute intensive one

• it must showcase a particular class of algorithms (e.g., 
modified EM)

• it should guide the evolution of the simulator

• serve as a vehicle for refining the programming model

Each application will be written up to the level of an internal tech-
nical report and, where reasonable, a webpage with a demo will also
be provided. The four algorithms and associated applications are
listed below (as Algorithm / Application) This list is tentative and sub-
ject to change as the work progresses. However, while still in need
of much work, the first two are far enough along to demonstrate the
concept. The last one (TBD) is the most ill-defined. The general
intent is to apply a distributed technique for physical modeling in a
feedback control app. In this case, the density of the sensor and/or
actuators would be on par with that of the particles. As a preferred
placeholder, a candidate app would be acoustic room modeling for
blind source separation.

Algorithm / Application

Diffusion / Holistic Data Storage 
Patterning / Surface Bus 

Statistical Inference / Image Segmentation

1. I am already sorry I said that

Applications will qual-
ify the programming 
model.
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Cluster Weighted Modeling / (TBD)

Hardware Ultimately, the goal is to fab particles and build a sys-
tem. But progress depends on commitment from one or more of the
sponsors. In the face of this uncertainty, we are forced to rely on
bread boards of discrete components. Within the scope of this thesis
work, I will structure the hardware activities to serve two ends. Pri-
marily, hardware development should qualify and support assump-
tions made in development of the simulator. Secondarily, the
hardware development should highlight the comparative simplicity of
the an IC and attract the attention of a potential provider of foundry
services.

Concretely, I foresee at least one experiment involving board
development; a proof of concept for an electrostatic alternative to the
RF subsystem for wireless communication. In this alternative, the
particles would still communicate wirelessly, but via electostatic
loading of a resistive sheet as opposed to radio frequency wave
propagation. This work will provide a baseline on the communication
bandwidth between the particles. If successful, this experiment
would also move the complexity of the chip design from ‘doable’ to
‘very easy’. 

6  Contributions
Up Front 

Superficially, this dissertation will proffer a novel model for the
programming and networking of an ultra-dense array of loosely con-
nected computing nodes. The model will be qualified with perfor-
mance data from selected applications coded and tested on a
simulator. These applications will be both interesting in their own
right and representative of a broader class of algorithms.

A contribution more lasting than quickly obsoleted performance
figures would be an instance of consciousness raising within the
engineering community. Although the situation is improving, self
organization is not regarded yet a fully vested member of the engi-
neers’ tool kit. This work will argue that some degree of self organi-
zation is necessary if one would engage the huge compute capacity
of a paintable at its unique price point. To the degree that an interest-
ing set of algorithms can demonstrate compelling behavior with
acceptable reliability, this dissertation will lend credence to the use
of self organization as an engineering tool.

Cumulatively, these results should be an important resource for
the system designer who is both attracted to the affordances of a
paintable, and fearful of the limited application domain. All of this
alone should add up to “an original and significant contribution to

?
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knowledge.” It will even be a useful one if any of these applications
really works.

Deeper Questions

On a more profound level, this work should produce insights into
two deeper questions.

1) In a dense, sensor rich environment, what is the appropriate
degree of centralization for the processing?

Traditionally, raw sensor data is shipped with minimal prepro-
cessing to a central computing node for processing. This architec-
ture was less a reflection of the basic nature of the problem as it was
a bow to the relative costs of the computation, sensing and comm
bandwidth.

The falling costs of dense sensor arrays and miniaturized com-
puting nodes have driven alternative architectures where substantial
processing takes place in the immediate spatial vicinity of small sub-
groups of sensing elements. An illustrative example of this trend is
the work on artificial retinas, a single monolithic device where small
groups of processing elements are uniformly interspersed among
the elements of a photosensor array. Local filtering operations at
multiple scales emulate the preprocessing thought to occur in the
human retina. 

Originally,

multisensor systems fed 
the sensor data directly 
to a central processing 
node.

Recently,

Falling costs and 
increased mobility have 
enable hierarchical archi-
tectures better matched 
to the particular problem.
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In the design of practical computing systems, the architecture
evolves in response to a number of factors: total system cost, sensi-
tivity to unit failure, responsiveness to variable input behavior, cost of
communication bandwidth, development time, and prevailing preju-
dices within the design community. For a given application, the com-
plex question of the optimal cost must ultimately be answered in the
marketplace. However by raising the bar on the mobility and granu-
larity of the processing, this research could enable systems which
are both adaptive and better suited to difficult problems. 

 2) What is the nature of scheduling, multitasking, queuing and
load management in a computing architecture that does not explic-
itly support any of them?

The concepts of multitasking, scheduling, queuing and load
management are essential to most computing environments and are
explicitly supported in contemporary architectures. The program-
ming model advanced in this work is characterized by miniature
mobile agents, nomadicly wandering between particles, and com-
peting with each other for processing resources. The basis for the
competition is the input data available at a given location and the
side effects of the operations of other nearby agents. Here, each
agent is free to choose its own strategy for migration and competi-
tion.

In distributed, data-driven environments such as this, the over-
head required to explicitly schedule and direct the agents is prohibi-
tive. To the degree to which they are supported at all, scheduling,
queuing, multitasking and load balancing will have to be implicit in
the rules governing the agent’s competition. Should this strategy
compare favorably to conventional techniques (assuming it works at
all), it would constitute an important result.

7  Why the Media Arts and Sciences
The Media Arts and Sciences is about communication and

expression. And communication is about creating and exchanging
symbols. The more content rich and expressive the symbols, the
greater their potential for enhancing communication.

But the best symbols are useless if they are not easily accessible
for a human. And much of the work at MAS bumps up against two
basic limits: 1) the restrictive access to the internal state of a com-
puter/network and 2) the architectural limits on the quantity and vari-
ety representations that can be built on the available data. In other
words, the machine is not doing enough and we don’t have a good
view of what it is doing.

This thesis work explores an architecture that not only creates an
immense amount of compute capacity, but that also draws it one



27

step closer into the human sphere. Almost any environmental arti-
fact can be given some amount of computing ability. Physical con-
tact between objects not only supports communication between
them, but integration of the distinct devices into a single computing
whole.

The machine itself is not a MAS thesis, the MAS thesis is what
we do with it. The architecture as proposed is, in effect, a massively
powerful 'representation generator'. The computing strategy is to
create a massive number of wildly differing representations and to
structure their interaction such that, for a given problem, the most
relevant representations “float to the top” into view. How we employ
this strategy to produce symbols that enhance communication is the
portion of the work which seems ideally suited for a Media Lab.
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8  Fine Print
Deliverables

1) The simulator and supporting doc’s

2) A table-scale demo running on the IO bulb

3) Tech report write ups for the four applications

Resources

For the table scale demo:

• a dual or quad multiprocessor (preferably a quad) with a 
mature Java 1.2 VM and support for video capture and 
display

• an IO-bulb installation, with a higher resolution projector.

• several software development environments (Java, C++)

For hardware evaluation:

• parts and PC-fab services for the construction of at least 
200 ‘motes’ (emulator boards)

Time Line

July 3 Provisional hardware reference model
Tentative System Architecture 
Spec down version of Simulator

Sept. 4 Application Patterning / Surface Bus 
Simulator Port to multiprocessor machine 
Hardware Testbed for inter-particle comm 

Nov. 6 Application Diffusion / Holistic Data Storage 
Simulator Table scale demo
System Arch Tech report level write up

Dec. 4 Application Inference / Image Segmentation
Simulator Preliminary Docs
Hardware Breadboard for networking particles/

Jan. 8 Simulator Final Docs
Updated networking model

Dissertation Outline

Feb 5. Application Physical Modeling / TBD
Simulator Support for dense IO arrays

Mar.5 Draft Dissertation
(mid Mar.) Thesis Defense
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A1   Frequently Flung Arrows
In conversation with Media Lab faculty, several objections to the

proposed work come up regularly. Here are some frequently flung
arrows and my equally frequent responses.

Determined attempts at parallel processing systems have come and
gone, invariably yielding to advances in classic von Neuman
machines. Today, there are well reasoned arguments that parallel
computation will never be as efficient as von Neuman architectures.
What do you know that they don’t?

The question of efficiency continues to be debated. But the best
answer to this question is to note its increasing irrelevance. As the
price per unit MIP continues to fall, the question of how to use them
to maximum efficiency becomes increasingly moot. With time, com-
pute capacity will become a subordinate part of the design equation,
being eclipsed by items such as ease of use. 

What will keep this from going down the same road of the Connec-
tion Machine?

Find me a Connection Machine that you can buy at Home Depot,
paint onto a table top, upgrade with a paintbrush, ‘pour’ code into,
and that continues to work with a 40% defect rate, — and I’ll con-
cede the point. 

I believe that computation’s diffusion into the environment will
ultimately progress past the point of no return. In the case of embed-
ded micro-controllers running distributed control, we are long since
there. And it was economics, not fiat which drove this choice.
Machines that embed several hundred GOPs into environmental
mainstays such as furniture are operating on a different economic
plane than the CM — even if those GOPs are not general purpose
von Neuman GOPs.

It remains to be seen if this architecture goes anywhere. But the
CM is no guide.

IC design is risky and difficult to manage. We already have an
impressive collection of networked general purpose machines. Can
not much of this work be simulated.?

Arrow

Arrow

Arrow
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From my current perspective, I do not see any real hope of simu-
lating several thousand computing particles on a collection of net-
worked machines. The problem is not the compute capacity, it is the
difference between the way processing gets distributed over a tradi-
tional network and how it gets distributed locally amid a dense parti-
cle ensemble. This is in part a question of my skill as a programmer
and in part a matter of basic architectural limitations.

I see more promise in the use of a multiprocessor / shared mem-
ory machine; either a quad G4 from Apple or a quad Alpha from
Compact. The simulator I am writing will be readily portable to such
a machine and will likely take good advantage of the additional pro-
cessors. This will support at least some simple examples.

But even if the bulk of the experiments are developed and run on
a simulator, we will need at least some hardware development to
qualify the decisions made in the design of the simulator and to
scale up to really meaningful applications.

Making hardware for hardware’s sake is coming at the research from
the wrong end. Constructing the hardware first and then searching
for applications is a proven dead end — and you’re not even promis-
ing to complete the hardware!

True, this work is unabashedly hardware driven. But the argu-
ment in favor of this hardware goes beyond the traditional arguments
of increased compute capacity and the enabling of some exotic high
end application. Unlike traditional sojourns into parallel computing,
this proposal follows a relentless trend that is almost as old as the
transistor itself; the trend toward cheaper, ever more powerful and
accessible computing. 

The economics of a paintable can be as interesting as its engi-
neering. A function or program which runs on a paintable does not
have to work twice as well as it does on a PC — it does not even
have to work half as well — because if done correctly, computing
which is buried in the table top could be a lot easier to use that the
MIP’s caged in the beige boxes. And a paintable only has to do a few
things well to be worth the marginal cost.

Parenthetically, the argument against the “hardware first”
approach ignores the history of the microprocessor. Briefly, Intel built
the first micro expecting the mainframe and min-computer houses to
snap them up. Ooops. Turns out the monolithic processor denied the
target customers their value add. The calculator market was a
respectable lifeboat. But the micro seemed destined for the eco-

Arrow
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nomic sidelines until it grew its own market by enabling the develop-
ment of the PC.

Finally, as of this writing, I have no idea if a killer app exists. But I
explicitly reject the precondition on research that we exclusively fol-
low the path of

problem -> algorithm -> hardware.

The instance of a novel, potent architecture in need of a single
enabling advance is as valid a basis for research as any to be found. 

This is at least two theses! Getting this hardware to breath at all
seems like a thesis unto itself. Thoughtful development of a pro-
gramming model and some useful applications seems like another
full time task.

The accent of this work will be on the programming model. The
hardware will be treated as an adjunct... if perhaps a somewhat
demanding one.

If treating design of an IC as an “adjunct” sounds crazy, consider
the following. In a 10 month period shortly before entering graduate
school, I “built” a commercially viable IC from start to finish (i.e. from
paper to wafer) The crucial point is recognizing that the word “built”
means doing the system design in the context of an industrial IC
manufacturing operation. Given the requisite corporate support (cir-
cuit designers, layout, fab time, application support), the position of
the project manager/ systems designer is one of those positions in
the development food chain where the minimal effort produces the
biggest bang.

This strategy obviously presumes the enthusiastic cooperation
of at least one IC manufacturer. The necessary level of corporate
commitment involves forces over which I obviously have limited con-
trol. Hence my unwillingness to unilaterally promise hardware. 

What evidence do you have that anything useful will run on this
architecture? You appear to be starting from a point where there is
little precedent to suggest the kind of applications which are well
suited for your paintable.

This was perhaps the most difficult hurdle to overcome. I esti-
mate that I have already done over a third of the thesis work just to
produce two simple “Hello World” level applications; Holistic Data

Arrow
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Storage and the Surface Bus. While neither of these is compelling,
they are both ‘real’ in that they are novel, serve a useful purpose and
have the potential for finding their way into actual practice. 

There is an argument which goes beyond the level of specific
applications. It states that as the scale of the computing nodes
shrink, relative to the objects of the ambient physical environment,
the science of programming begins to look like physics. Namely, that
the overall behavior of a system will be expressible by macro-rules in
the form of F=ma, which are independent of specific computational
events. This is not to imply that the laws of Newtonian physics will
map directly. Rather it means that global computational behavior will
emerge which can be modeled by tools such as differential equa-
tions.

None of this qualifies as evidence that the applications for a
paintable are out there. But this does put this research in a sparsely
explored regime of computing. We will have to see if anything comes
of it.
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A2   The Tide
This appendix outlines the rationale for the novel form of the pro-

posed hardware. Quantifiable trends in process technology, eco-
nomics and HCI are reviewed against the historical development of
commercial and personal computing. We argue that the confluence
of these trends set the stage for the rise of a dense, decentralized
form of personal computing, which we later dub “commodity comput-
ing”. This discussion indulges in a measure of guesswork tempered
by years of experience as an IC system’s designer for the consumer
sector.

Computing’s Natural Modes

Already today, technology can support a near infinite variety of
computing machines. Why then has only a small number of machine
types emerged and prevailed? One answer is that computing is, in
essence, a complex system. When people structure their comput-
ing, they do so in response to a myriad of interrelated forces:

• economics of development, production, sales, and distri-
bution 

• human affordances 

• social conventions 

• advances in allied technologies (display, sensing, soft-
ware design) 

• networked externalities (Metcalf’s Law) 

• relative importance of the problem space 

• alternative (low tech) solutions

Like all complex systems, computing organizes itself into natural
modes, with each mode supporting a locally optimal trade-off
between functionality and cost. This thesis work is predicated on the
notion that paintable computing is on the verge of coming into its
own as a natural mode. In this section, we characterize this mode by
examining the forces which are shaping it.

Process Technology: The Driver

Few industries have a breakneck pace of change buried as
deeply in their blood as the microchip industry. And the motor for this
dynamism is process technology. Intel co-founder Gordon Moore
gave us the coffee table maxim for this dynamic with his edict that
the number of transistors will double every 18 months. But the regu-
lar halving of the transistor area belies the more powerful driver —
the regular subsumption of previously disparate functions onto sin-
gle monolithic dies. High volume, stock IC processes, which used to

Commercial computing 
is a complex system with 
natural modes... and 
paintable computing is a 
newly emerging mode.

Process technology is 
the driver forcing the dif-
fusion of computation 
into the everyday envi-
ronment.
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restrict themselves to circuits for digital logic, now combine discrete
logic, dense memory, and integrated analog subsystems for high
speed A/D conversion, sensing and communications. A compelling
contemporary example are recently introduced CMOS IC’s which
combine digital logic and optical sensing to yield single chip cam-
eras. 

This preordained rate of technical advance has, in turn, been
enshrined in the economics of the IC industry, creating a textbook
virtuous circle1. For IC’s sold in large volumes, the first order deter-
minant of price has always been the area of the die2. With every 2x
shrink, silicon manufactures must sell 8x the functionality just to
keep the revenues flat. 

But flat revenues are not enough. Each succeeding generation of
IC’s typically requires either a new fab, or extensive remakes of
existing plant, effectively raising the bar on the revenues. Additional
momentum comes from manufactures of allied technology (displays,
storage, software, communication, power), who build their product
plans around the expectation of expanding functionality and / or fall-
ing costs.

In this environment, IC manufactures have evolved two preferred
recipes for economic survival; 1) subsuming existing functionality
within existing systems, and 2) pioneering new markets. Computing
systems are typically assembled from IC’s from various manufac-
tures. With each shrink, the IC manufacturers must try to subsume
as much of the total system as possible onto their die — ultimately
yielding the system-on-a-chip offerings that have become common. 

Even the largest of the existing markets are bounded. For regular
access to the huge capital invest, most manufactures must recourse
to the two axioms which have guided the industry since its inception:
the genuine growth is in the new markets, and for chips which are
regularly doubling in power, there are always new markets.

All this adds up to an industry where the impulse for technical
innovation has fed on itself to become self perpetuating, taking on a
sense of urgency along the way. Many manufacturers have adopted
as gospel the need to expand into virgin markets, with an obvious
strategy being the steady encroachment into the ambient environ-
ment. The vehicle for this encroachment is IC’s which are ever more
autonomous and environmentally aware.

1. albeit one whose ‘virtue’ is apparent only to those who can keep up

2. The figure used throughout this document is $16.00 per square inch for 
a stock CMOS process

The IC manufacturer’s 
creed consists of three 
laws:

• Expensive innovation is 
their meal ticket. 

• New markets are where 
the money is. 

• The ambient environment 
is the endless frontier.
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As a sanity check, consider the migration of computers from the
air conditioned machine room, to the space next to the lab bench,
onto the office desktop, onto the lap and into the pocket. With each
lurch, the technology of computing overcame seemingly intractable
barriers of power, weight, speed, price, and functionality. Tightly cou-
pled to these advances have been the evolution of human-computer
communication: from standing in line with a stack of punch cards, to
peering through the virtual horizontal slit of a printer-terminal, to
mousing icons on a video monitor onto simple handwriting.

Is there a limit to all this? Yes. And for conventional silicon pro-
cesses, this limit is already in sight. However, my sense is that con-
ventional digital logic is good for at least 8 rounds of the Gordon
Moore diet plan (down to 10 nm feature sizes). And we seem certain
to acquire additional sensing capability along the way.

The Paintable Mode

All this stands us before the question: “When we pass through
the shrink that leaves us with full featured, environmentally aware,
autonomous processors, each squeezed into a pinhead and sold in
bulk, what new natural modes will appear and what will they look
like?” There are certain to be multiple new forms. But there are at
least three reasons why I believe that the paintable will emerge as a
mode distinct from the others.

1) The incremental cost per MIP will plummet. As the peren-
nial scarce resource, compute capacity has always been the
dominant cost item in the design of personal computing sys-
tems. As compute capacity becomes cheaper and cheaper
relative to the other design criteria, architectural efficiency will
be deemphasized in favor of other concerns such as human
affordances. And it is this increased accent on human affor-
dances which favors the ubiquity of a paintable.

2) The marginal cost of adhering to existing programming
models will become intolerably high. The claim of vanishing
unit cost for MIPs is moderated by the caveat that we do not
yet have good techniques for programming large ensembles of
asynchronous processors. Since the days of the first micro-
processors, we have always paid a price for this shortcoming;
a price which has risen steadily. While we may never obviate
the need for the Touring model, the search for a new program-
ming model tailored to a dense, decentralized architecture will
become increasingly cost driven.

3) Given any amount of MIP’s, some software applications
developer will find a way to over tax them. This claim is specu-
lative and somewhat at odds with the claim #2 above. Namely
that designers will trade MIP’s against HCI related affor-



38

dances. Still, there is no evidence that the society’s appetite for
compute cycles is waning. And as the MIP’s become available,
software developers will seek interesting, useful ways to
employ them. Invariably, some applications will be targeted for
use on the most powerful platforms commonly available.

This final point has particular import for the wearables commu-
nity, where the availability of power constitutes a hard upper bound.
For any given amount of processing which can be carried or worn,
the stationary local environment will always support more. Bluntly, if
someone squeezes a PowerPC 6-0-zillion into a nose ring, 50 of
them can always be networked and embedded into a lamp shade. A
similar dynamic is at work with the price: where the densest, most
power frugal MIP’s are the most expensive. So, while you will always
be able to use what you can carry, you will unlikely be able to carry
all you can use.

IC (d)Lemma:

For any real N, where N is 
the maximum available 
compute capacity on a con-
sumer PC, some software 
developer will introduce a 
popular application opti-
mized for use on machine 
with capacity N+ε.
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