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Abstract

We describe a framework for a wireless sensor-based
mobile music environment. Most prior work in this area
has not been truly portable, or has been limited to sim-
ple tempo modification or selection of pre-recorded songs.
The exceptions generally focused on external data rather
than dynamic properties and states of the listener. Our sys-
tem exploits a short-range wireless sensor network (using
the ZigBee protocol and inertial sensors) and a compiler
for PureData, a graphical music processing language. We
demonstrate the system in an interactive exercise applica-
tion running on a Nokia N800.

What about PDa?

PureData Anywhere[1]’s goal is different – PDa was
specifically designed to enable the full PureData interaction
mode and functionality on handheld FPU-less devices. Pu-
DaC, however, trades the interactivity for greater optimiza-
tion of the entire system.

Compiler

Our PD compiler presents a middle ground between
PD and a lower-level language like C, with much of the
ease of use of PD and much of the speed of C. By using
a highly optimizing C compiler, many of the inefficiencies
due to mechanical translation are further eliminated. For
example, many objects in PD patches have exactly one in-
coming connection. A good C compiler, if told to optimize
sufficiently, will take these objects and put them inside their
callers. Further optimizations would then go and find redun-
dant checks on the data type of the incoming message and
discard the second set of checks.
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Since we are converting between one format to an-
other of text, we have written the compiler in Perl. Perl ex-
cels at parsing text, especially rigidly defined text like PD’s
save format. After parsing the entire file into a structure in
memory, we execute the generators for all the objects that
produce the C code for each.

The compiler takes in a plain text PureData patch file
and produces C output. This allows us to take advantage of
the large amount of work that other people have put into op-
timizing compilers without having to implement it ourselves.

The PureData Compiler (PuDaC) replaces each ob-
ject with a uniquely-named subroutine (and possibly some
uniquely-named globals). Each “wire” connecting objects is
replaced with directly calling the connected object.

The compiler runs in two passes (three if you include
the additional stage of running gcc). First it parses the in-
put file, loading all the objects into an associative array with
a UID for the object as the key. The value of each en-
try is an another associative array with several predefined
entries specifying the object’s arguments, the C represen-
tation of the objects attached to the inlets and outlets of
the object, the C-generating perl code for this object, and
a redirection specifying the object has another name (like
sel / select). Then it prints a prologue, executes the
C-generating perl code for all objects, and prints the main
function. This model makes debugging tremendously eas-
ier, although it is probably significantly less efficient than is
possible.

Even so, a simple test patch (which does one million
floating point multiplies) shows a significant performance in-
crease over the plain interpreter: on an Athlon (Thunderbird
core) running at 1066 MHz, PureData takes an average of
533ms, compared to as little as 158ms for the optimized
version of the compiler output, about 30%. (Histograms of
trials are below.)
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Physical Instantiation

The sensor system looks very straightforward. Each
sensor should use a microcontroller, a simple radio, and an
accelerometer, preferably three-axis. When we were intro-
duced to the CC2431, it looked like an ideal solution, be-
cause it had almost everything needed already in it. It’s
tolerant of a wide range of voltages and so could be run di-
rectly off a battery, contains an ADC, and contains its own
integrated ZigBee radio. All we had to add would be the
accelerometer.
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The 5-axis accelerometer/gyroscope (“IMU”, Inertial
Measurement Unit) board from SparkFun Electronics con-
tains an Analog Devices ADXL330M and an InverSense
IDG300. The ADXL330M measures ±3.6 g on all 3 axes,
and is configured to give a 50Hz bandwidth. The IDG300
measures ±500◦/s about the two axes not normal to the
chip, and has a 140Hz bandwidth.

Nokia’s N800 is a small portable computer (measur-
ing 2.95 x 5.66 x 0.51 inches, weighing 7.26 ounces). It
includes bluetooth, 802.11g, an ARM11 processor, a dedi-
cated DSP, and runs the Linux-based Maemo internet tablet
software suite. It shares general features with similar hand-
held computing devices, so the exact choice of platform is
flexible.
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One mapping patch is shown above. The data is ac-
cepted, routed, and the acceleration and angular velocity
from the IMUs are converted to jerk and angular accelera-
tion. We then compute the ratio of local mean to local aver-
age deviation, look for when that exceeds a given threshold,
and feed this output into a delay with holdoff. We also com-
pute the local maximum and minimum of each axis, and
subtract to get a local dynamic range. The delay with hold-
off feeds into a phase-locked loop (PLL) that attempts to
match the phase and frequency of the input, which is at-
tached to simple logic that runs several audio patterns. The
dynamic range, rate of change of dynamic range, and cur-
rent beat rate are used to select which patterns are played.
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An example showing how well it works can be seen
above. The Z axis of the accelometer (labeled a z) was ori-
ented normal to the leg, in the direction of stride (because
no rotation was expected about this axis). The X axis (a x)
was parallel to the leg. |Jerk| and |angular acceleration|
were calculated as the magnitude of the first backwards dif-
ferences on available axes. The detected and predicted
footfalls plots indicate a detection or prediction when they
change from low to high or vice versa. The period ranges
from 0 to 2 seconds. Both plots are approximately 40 sec-
onds (4000 centiseconds) long. The gap seen from 16-17
seconds in the bottom graph is because the data dumping
program momentarily paused.

For jogging data, both the gyroscope and accelerome-
ter data provided a good impulse source, and the detected
footfalls plot shows this. Unfortunately, as can be seen
in both plots, the predicted period oscillates with a period
of 10 steps, never successfully really getting to the true
pace. This is solely the fault of the PID (proportional integral
derivative) controller inside the phase-locked loop. Later
tuning should make this react better, but it is hard to adjust
well.

Conclusions

Because the N800 has a floating point unit, we did not
look into implementing automatic fixed point casting of the
various numbers. As such, the compiler is not yet very use-
ful on small hardware such as cell phones or similar de-
vices, but the small size of the N800 and functional equiv-
alents compares favorably with current portable audio play-
ers. Additionally, several PD functions (such as cos˜ and
osc˜) are implemented using the FPU; for machines that
lack a FPU, a lookup-table based solution will be neces-
sary.

The compiler is distinctly to the point where it produces
useful results, but it needs a lot more effort to bring it to
the point where it could be used in a commercial setting. It
has a number of rough edges, but can now be used on an
experimental basis for further development.
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