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Introduction

The arena of musical scales and tuning has cer-
tainly not been a quiet place to be for the past three
hundred years. But it might just as well have been if
we judge by the results: the same 12V2 equally
tempered scale established then as the best avail-
able tuning compromise, by J. S. Bach and many
others (Helmholtz 1954; Apel 1972), remains to
this day essentially the only scale heard in Western
music. That monopoly crosses all musical styles,
from the most contemporary of jazz and avant-
garde classical, and musical masterpieces from the
past, to the latest technopop rock with fancy syn-
thesizers, and everywhere in between. Instruments
of the symphony orchestra attempt with varying
degrees of success to live up to the 100-cent semi-
tone, even though many would find it inherently far
easier to do otherwise: the strings to “lapse” into
Pythagorean tuning, the brass into several keys of
Just intonation (Barbour 1953). And these easily
might do so were it not for the constant viligance
on the part of performers, and the readily available
yardsticks for equal temperament provided by the
woodwinds to some extent, but more so by the harp,
organ, or omnipresent piano (inexact standards that
they may in truth be).

Yet this apparent lack of adventurousness is not
due to any lack of good alternatives (Olson 1967;
Backus 1977; Lloyd and Boyle 1979; Bateman 1980;
Balzano 1980) or their champions. Indeed an experi-
enced musician would have to be preposterously
naive, sheltered, and deaf (!) not to have encoun-
tered at least a name or two like Yasser (1975) or
Partch (1979), or in an earlier era, Bosanquet, White,
Brown, or General Thompson (Helmholtz 1954;
Partch 1979). These pioneers were certainly not
known for their shy reticence on behalf of their
various tuning reform proposals. Nearly all built or
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Tuning: At the
Crossroads

planned the construction of instruments that per-
formed within the new “tuning of choice,” and all
published papers or books demonstrating the supe-
riority of their new scales in at least some way over
equal temperament. The tradition has continued
with Yunik and Swift (1980), Blackwood (1982), and
the present author (Milano 1986), and shows no
sign of slowing down despite the apparent apathy
with which the musical mainstream has regularly
greeted each new proposal.

Of course there’s a perfectly reasonable explana-
tion for the mainstream’s evident preference to re-
main “rut-bound” when by now there are at least
a dozen clearly better-sounding ways to tune our
scales, if only for at least part of the time: it re-
quires a lot of effort of several kinds. I'm typing this
manuscript using a Dvorak keyboard (for the first
time!), and I assure you it’s not easy to unlearn the
QWERTY habits of a lifetime, even though I can
already feel the actual superiority of this unloved
but demonstrably better keyboard. It's been around
since 1934, and only now with computers and speed
and accurate data-entry tasks such as “directory
assistance’ is there the slightest chance it may be
resurrected as a long overdue replacement for the
deliberately slow (no kidding!) layout developed by
Sholes over a century ago.

Musical keyboards are a fundamental part of the
West’s music-making culture, so keyboards need to
be addressed with regard to compatibility with any
existent or forthcoming tuning schema. Clearly the
fretless string family is almost unrestricted as to
the particular scales and tuning that can be used
(the musician’s ears and training are rather a different
matter). This is sufficient reason for the historical
concern given to new and modified keyboard designs
by past proponents of tuning reform (Bosanquet,
White, Yasser, etc.), although in practice Partch and
others have frequently “made do” with the standard
seven-white, five-black.

But as with Dvorak replacing QWERTY, it’s diffi-
cult to challenge any sort of standard, once that
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standard has persisted for more than one genera-
tion. We all tend to forget the precariousness with
which all standards are birthed, and grant those that
come before us a sacrosanct status which is likely
unjustifiable, and which the original designers
might, if alive today, find quite laughable.

Tuning and the Zealot

No doubt frustrations do spawn a missionary zeal,
and there is ample evidence that all of the pioneers
we've been talking about had their fair share of
frustration and zeal. It’s both instructive and amus-
ing to read, back-to-back, the books on tuning by
Partch (1979) and Barbour (1953). Partch was argu-
ably the greatest champion of Just intonation of
this century, and his writing frequently lapses into
often humorous sarcasm:

Name-Your-Octave-Pay-Your-Pounds-and-Take-
It-Away Jennings (Partch 1979, p. 394)

and emphatic impatience with those who seem
most unwilling to accept the clear superiority of
Just tuning:

.. . and the ear does not budge for an instant
from its demand for a modicum of consonance
in harmonic music nor enjoy being bilked by
near-consonances which it is told to hear as
consonances. The ear accepts substitutes
against its will (Partch 1979, p. 417).

While understandable, the pervasive undertone is
eventually wearying (even if most often justified)
and does little to attract complete sympathy from a
neutral reader. Barbour’s classic study (which Partch
generously praises) is no less subtlely dogmatic, al-
though in this case the a priori ideal is not Just in-
tonation, but equal temperament. He calculates
every alternative tuning’s “deviation” from 122,
and argues most on behalf of those which exhibit
the least mean and standard deviations from equal
temperament. There’s something uncomfortably

circular in the reasoning throughout the book, sort
of like:

Given, equal temperament
Therefore, equal temperament
QFE D:
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This unfortunate quality of ““sentence first, verdict
afterwards” places Barbour’s otherwise laudable
achievement into the same zealot’s pulpit with
Partch, Yasser, Bosanquet, Poole, Brown, Perret,
Captain Herschel, General Thompson, and others.

Barbour’s Tuning and Temperament also suffers
from several small errors:

“Furthermore, Cx~® and E§ 3 differed by only six
cents . . .” (p. 112). The second note ought be
Ef 2.

“. .. ingenious mechanism by which Db and Ab
could be substituted for C§ and Df . . .”

(p. 108). But G is the fifth above Cf, not Df.

“. . . and (the log of) 21%/31 1757916100, . . .”

(p. 119). But the correct log is .1747916100.

and, in light of many more as above, from
hypocracy:

“There were, as usual with Kircher, many
errors . . .” (p. 110).

and from sarcasm:

“Only in the design of the keyboards did the in-
ventors show their ingenuity, an ingenuity that
might better have been devoted to something
more practical” (p. 113).

which quite ignores the ingenuity spent developing
the traditional seven-white, five-black keyboard
Barbour accepts as a “given,” to say nothing of the
merits of many possible good new scales that really
do require effort and ingenuity to find. Talk about

a closed mindset! And Barbour represents among
musical theorists the best of the knowledgeable
“champions” on behalf of equal temperament. This
certainly seems to be a subject that attracts pas-
sionate words (see Lloyd and Boyle 1979, Chapter 8
for even more) from all sides!

The Crossroads

It may seem unfair to single out Barbour as above,

although somehow I wince more from his and other
theorists’ polemic on behalf of “the haves” of status
quo versus “the have nots” of anyone who might not

totally agree with the final sentence of Barbour’s
book:
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Perhaps the philosophical Neidhardt should be
allowed to have the last word on the subject:
“Thus equal temperament carries with itself
its comfort and discomfort, like the holy estate
of matrimony."

That’s a cute quote, but its use here is not a little
smug, suggesting what was “good enough for
Grandpa” ought be good enough in perpetuity for
the rest of us. There’s no thought I've read by even
the most messianic of tuning reformists that raises
my hackles as much.

The truth of the matter is that up until now
there’s simply been no way to investigate beyond
the standard scale within the limits of the precision
of the available technology. Acoustic instruments
are almost compatible with a +5—10-cent pitch
tolerance at best. A fine grand piano cannot be ex-
pected to perform much better (Helmholtz 1954,
pp. 485-493), not to overlook its particularly pro-
nounced octave stretching (Backus 1977, p. 292;
Benade 1976, pp. 313—322), a phenomenon we will
examine later. Even the best analog synthesizers
cannot do much better, and up until recently did a
lot worse (I shudder to remember the constant pitch
drifts while realizing Switched-on Bach on an early
Moog!).

More frustrating than that is the usual limit on
number of notes in an octave, which really was the
wholly “economic” reason for musicians of Bach’s
time to yield the much preferable sounds of the sev-
eral varieties of meantone tuning for 122 equal
temperament. Ellis describes the results in his fine
appendixes to Helmholz’s book (1954, p. 434):

If carried out to 27 notes . . . it would probably
have still remained in use. . . . The only objec-
tion . . . was that the organ-builders, with rare
exceptions . . . used only 12 notes to the octave
... and hence this temperament [Meantone)|
was first styled “unequal” (whereas the organ,
not the temperament was—not unequal, but—
defective) and then abandoned.

Not everyone agreed with abandoning meantone.
The English held out on many instruments until
the end of the last century. Even now the truce of

equal temperament is not altogether as benign as
all of us born into it commonly assume:

The first of these pieces contained a number
of sustained major thirds, which work perfectly
well on an organ tuned to one of the unequal
temperaments common in the seventeenth
century, but which fight unmercifully on to-
day’s equally tempered instruments. During
the playing of it the audience stirred uneasily,
and, when I have played the tape, numerous
musicians . . . have asked me what terrible
thing went wrong with the organ. Most are in-
credulous when the explanation is given, even
when they listen to the piece by Bach played
the same evening on the identical organ, sound-
ing . . . like the admirable instrument it is,
Bach . . . arranged for his thirds to come and
go, well disguised by their musical context.”
(Benade 1976, pp. 312—-313).

Computer-controlled synthesis, on the other
hand, has no inherent need to respect these here-
tofore inescapable limitations. There’s certainly
little need here to provide any further motivation
for breaking out of the three-century “rut” that this
long introductory material has documented. The
exponential growth in computers has finally ex-
panded to include systems designed expressly for
music production, editing, and performance at low
enough cost to be as affordable as, say, a good grand
piano. This is the first time instrumentation exists
that is both powerful enough and convenient enough
to make practical the notion: any possible timbre,
in any possible tuning, with any possible timing,
sort of a “three T’s of music.” That places us at a
crossroads, to figure out just how to use all of this
newly available control. And we’ll discover that the
three “T’s” are really tied together.

Musical Timbres

In Figs. 1-3 we have spectral plots for three common
types of musical timbre. Figure 1 depicts purely har-
monic partials (the most common, at least in the
West), such as heard on the horn and most wind and
string instruments. The equations of vibration here
are usually quite elementary:

fn » nfl
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Fig. 1. Original: pure har-
monic partials,

Fig. 2. Original: stretched
harmonic partials.

Fig. 3. Original: nonhat-
monic partials.
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which gives the frequency of the nth partial, f,, as
the simple integer n multiples of the “fundamental
frequency,” f,. For a perfectly idealized vibrating
string the expression is:

fa = n(1/Lr)V(T/d)V[1/4x)
where the given (round) string has a length L, a ra-
dius r, a density d, and is under tension T (Benade
1976, p. 313). We can see at once that this is merely
a more complete form of the first equation.

Figure 2 depicts the stretched harmonic partials
heard on most “real world” thicker strings, as the
lowest strings of the ‘cello, but most famously on
the piano. This explains the comment made earlier
about the piano being a less-than-ideal pitch refer-
ence. The equations of motion of such instruments
yield an overtone sequence described by:

fo=nf % (1 + n?)

which is the same as the original equation, except
that the /n? term gradually raises the successive
partial frequencies above the nf, “fundamental.” i
is a small coefficient given by:

J = (r*Y/TL2)(m/2)3

and on a good piano will have a value close to .00016
for “middle-C.” ] increases fairly uniformly by a fac-
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tor of 2.76 for every octave we rise above middle-C,
and similarly decreases by the same factor as we
8o down each octave (Benade 1976, p. 315).

Figure 3 depicts the nonharmonic partials heard
on more complex vibrating bodies, primarily the
ideophones of the percussion family, although a
fascinating world of new timbres is now possible
by combining properties of “blown,” “bowed,” and
“sustained” from strings and winds with the more
complicated partial structure of ideophones. (The
beginnings of this sort of work on timbral hybrids
is discussed in part in [Milano 1986].) For a hinged
bar the partials are described:

fa = 0t/ L2VY/d)w/V2).

Here, as in the previous equation, Y is the modulus
of elasticity, and L and d are the length and density,
just as with a string.

More complex vibrating bodies have fairly in-
volved mathematical descriptions which we will
not go into here. For the interested reader an ex-
cellent treatment can be found in The Theory of
Sound (Rayleigh 1945, pp. 255—432 of Vol. I).

In the case of a rectangular bar (Benade 1976,

p. 51), n varies:

n, = 1.00
n, = 2.68
n,; =~ 3.73
n, =523

which, it will be noted, form a series of partials
further apart than any of the previous timbres. In
the case of a vibrating circular membrane, the se-
quence, here of a well-behaved timpani (Benade
1976, p. 144; also similarly Rayleigh 1945, p. 331),
looks like:
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n,; = 1.000
n, = 1.504
ng;=1.742
n, = 2.000
n; = 2.245
ng = 2.494
n, = 2.800

which, it will be noted, form a series of partials
closer together than any of the previous timbres.
(Note how n,, n,, n,, and n, look when each term
is multiplied by two, implying that the timpani has
a "missing”’ theoretical fundamental. This inspired
me to try synthesizing a “basstimp” in which this
implied partial was added, with a very agreeable
result!)

A Confluence of Partials

When two (or more) musical timbres are sounded
at the same time, at any random interval between
their perceived pitches, there is a high probability
that at least some of the various partials from each
will overlap. Figure 4 depicts a “Fusion Chart,” as
two such partials approach, begin to beat with one
another, merge into one, and then repeat the se-
quence in reverse order as they separate and con-
tinue to move apart. A graphical representation of
the related critical bandwidth function has been
described by Pierce (1983, pp. 74—81) and Winckel
(1967, pp. 134—148), and has its origins in Helm-
holtz’s outstanding work (1954, chapter VIII) of a
century ago. Helmholtz produced a chart of harmo-
niousness of consonances (1967, p. 193) that also
forms the basis for Partch’s similar representation
which he whimsically termed the one-footed bride
(1979, p. 155), and a simpler plot of consonance by
Pierce (1983, p. 79). Our representation here takes
on a bell-shaped curve which “objectifies” the
normally subjective quality of dissonance into the
more quantifiable phenomenon of beats and their
frequency. (In certain unusual conditions that will
not concern us here this simplification may need
(qualification.)

Surprisingly, our ears associate sound oscillations
having a frequency of more than approximately 30

Fig. 4. Superimposed inter-
val: Just major third (har-
monic partials).

Fig. 5. Fusion chart: prox-
imity of intervals versus
roughness, with examples
of enlarged bar graphs.
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Hz with musical pitch, while those somewhat
below are heard instead as loudness fluctuations.
Oscillations of about 0—6 Hz are usually described
as chorusing or tremolo, and those around 6—16 as
roughness. The remaining range, 16—30 Hz, can be
quite subsonic and barely audible if soft, or at loud
levels perceived as a sort of “unpitched rumbling,”
unless several (higher frequency) harmonics are
present to give a genuine sense of pitch. Figure 4
indicates the straightforward graphic conventions
we will be using for the rest of this paper.

Let’s now play two simultaneous tones, both
having the spectrum of Fig. 1 and tuned a Just
major third (of 386.313714 . . . cents) apart, The
resulting combination spectrum looks like Fig. 4.
Both tones are shown with a grey cross-hatching so
that where there is any overlapping it will appear as
black, with beating shown as in Fig. 5, by graphi-
cally descriptive alternating bands or stripes. In this
case the Just major third on harmonic partials is
smooth, with no audible beating.

If the interval is now retuned to an equal-
tempered major third (of 400.00 cents) as in Fig. 6,
there is only a modest change in the relative loca-
tions of the lower partials. But between the fifth
harmonic (here the term “harmonic” is accurate)
of the lower tone and the fourth harmonic of the
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Fig. 7. Superimposed inter-
val: pure octave (harmonic
partials).

Fig. 6. Superimposed inter-
val: equal-tempered major
third (harmonic partials).

Fig. 9. Musical examples.
(a) Very wide octave (1220
cents). (b) Very wide oc-
taves (1212 cents each).

(c) Chord and cluster
(equal temperament ver-
sus Just). (d) The harmonic

Fig. 8. Superimposed inter-
val: pure octave (stretched
harmonic partials).

scale on C.
100 dB a (F=1220c) (V=1200¢c) (9= 1220c) (x=1200¢)
SOME ROUGH| - 9 . e .
- o et HI oo ol s
S : = —— e e s e
% 8 I I i nf
5 % 5 P:mtimn-n: et _jtg Notwi b= 13c flat, 4 = 12c. sharp
L % G === =EEs ]
E , O n‘I{m: he e fe Note: b = 12 c flat, # = 12 ¢ sharp
08 H = %‘5.3."{:’.5.-"E§ |
200Hz 400 800 1600 3200 Hz = }d} f = > Tr =
C_ Homs: strings: b
Fig. 7 i '
100 4B b ﬂﬂ_ﬂ
[ smoomh | 53 = 4 -
: : . [NO BEATS |- : =
w I B i U i d Msrmonic Scals: 1s 17 18 1 2 13 LS () rii EL] 38 i
= B = : ; - i ] i
E i =
= E m
E | leads directly to the stretched octaves mentioned
i - ' earlier. There are many instruments that have even
200Hz 400 800 greater stretching of their partials than the piano,
Fio 8 and the effect on octaves is more audible. One
8 such instrument, which I call the “metimba,” is a
100 d8 - : BT T metal version of the (wooden| marimba, and like the
; : : BEATS | “basstimp’’ alluded to earlier, arose in my timbre-
® : ol e synthesizing work from one of those usually im-
S 2% 2 M oul pertinent “what if?”” questions. Sound Example 2
2 : 3 “ on the soundsheet compares the metimba with
= £ L R L a clarinet performing the same figuration (Fig.
£ : l T 9b): stretched-pure-stretched on the (stretched-
048 $ - SRS F S harmonic) metimba, the last being a chord, and
200 He 400 800 600 3200 He

upper one, some rough beating of 8 Hz occurs,
this for the 200-Hz range we are using. Just a little
higher the rate increases into the roughest area
around 12 Hz, and above that the rate can even
climb up into the audio band.

Now let’s try a pure octave (of 1200.00 cents) and
the same harmonic wave, as in Fig. 7. The result
has, not unexpectedly, even more distinct “fusion”
than the Just major third, with all harmonics lined
up and no beats.

If we retain the same interval of an octave, but
now substitute the stretched harmonic spectrum of
Fig. 2, the result is as Fig. 8. Notice that there now
appear many fairly strong beats between partials
that had been “fused together” in Fig. 6. This is ex-
actly the situation that exists with a piano, and
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then pure-stretched-pure on the (harmonic) clari-
net, again the last being a chord. Since the metimba
has also the added complication of several non-
harmonic partials (which we'll look at next), the
smoothness of the somewhat wide octave is slightly
disguised by them, but, then, this is a much wider
octave than is found on a piano. In any event, the
metimba is better served by a 6—12-cent stretched
octave as in Fig. 10, while the clarinet sounds
smoother with pure octaves, as in Fig. 7.

The more extreme case of nonharmonic partials
is shown in Figs. 11 and 12, and heard as Sound Ex-
ample 1 (see the soundsheet with this issue). Figure
11 plots the result of one particular nonharmonic
timbre, that of Fig. 3, while Sound Example 1 com-
pares a more typical nonharmonic timbre, gam (a
replica of the tuned-kettles in a gamelan orchestra),
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Fig. 10. Superimposed in- Fig. 11. Superimposed in-

terval: stretched octave terval: pure octave (non-
(stretched harmonic harmonic partials).
partials).
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with the same passage played on the French horn,
and notated in Fig. 9a. As Fig. 11 indicates, a pure
octave sounds fairly “rough’” on most such instru-
ments. We can imagine a nonharmonic timbre that
would instead work better the other way around,
with smaller-than-pure, <[2:1], octave, but most
historically derived instrumental timbres have “ac-
cidently” been like the present example.

On Sound Example 1 you will hear that the low-
est pitch, C4, is the reference lower note of the oc-
tave, and the upper three notes, all nominally C5
(they are closer together in pitch than the sharps
and double-sharps in Fig. 9a visually suggest), are
the tones of:

1. A 1220-cent “properly” wide octave
2. A pure octave of 1200 cents

3. The 1220-cent wide version again
4. A 1240-cent extremely wide octave

The differences are subtle, but gam does sound
smoother on the 1220-cent wide version (like Fig.
12), while the horn is best at the pure 2: 1 ratio oc-
tave. The horn has very audible beats when heard
on the very wide octave, as in Fig. 13.

Clearly the timbre of an instrument strongly
affects what tuning and scale sound best on that in-

Fig. 12. Superimposed in- Fig. 13. Superimposed in-
terval: very wide octave terval: very wide octave
(nonharmonic partials). (harmonic partials).
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strument, and exactly vice versa. I say scale because
even though the graphs are of two simultaneous
notes (and melodic intervals are much less critical),
the soundsheet examples are first played melodi-
cally, and some of the same properties are repre-
sented musically here as well, if only for the octave.

Pierce (1983, pp. 192—193) discusses a corre-
sponding example conceived of from a very dif-
ferent direction. He includes a recorded example
(Ex. 4.4, and also listen to 2.1-2.5, and see p. 86),
which demonstrates the aural illusion of a stretched-
harmonic tone that sounds flatter when all of its
partials are exactly doubled! If instead we were to
move up by a properly stretched octave, as in our
Sound Example 1, it would then sound like a “real”
octave.

Triadic Confluence

Let’s now add a third tone to the other two, to form
a triad. In Fig. 14 we have the simplest case of a Just
major triad played on a timbre that has harmonic
partials. The result is smooth, as we would expect,
because there are quite a few partials that merge
and “fuse.”
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Fig. 14. Superimposed in-
terval: Just triad (har-
monic partials).

Fig. 15. Superimposed in-
terval: Just triad (nonhar-
monic partials).
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If we try the same triad on three tones with the
nonharmonic spectrum of Fig. 3, the result is not
nearly so smooth. In fact, it’s barely recognizable as
the same fundamental harmonic building block of
Western music! Figure 15 shows what happens, and
you can listen to the effect on Sound Example 3.
First we hear the triad with a traditional timbre
ill-equipped to handle harmonies, odd as it might
seem: the xylophone. You can judge the results for
yourself, but while the xylophone has fewer con-
flicting partials than our Fig. 15’s nonharmonic
timbre, the “fusion” we normally expect to hear on
a Just triad simply doesn’t occur. You really can’t
even hear much difference, never mind choose one
over the other, between the Just and equal-tempered
versions!

By switching to another of my “whatifs,” this
time a metal version of the xylophone (metal-xylo),
which has somewhat greater amplitudes of the
higher partials, and all have a much longer decay-
time than on a regular xylophone (metal soaks up
higher frequencies more slowly than wood), the
triad is slightly better defined. But the nonhar-
monic partials still allow us little preference be-
tween Just and equal-tempered versions, although
some difference is at least audible. The last of
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Fig. 16. Superimposed in-
terval: nonharmonic
“triad” (nonharmonic
partials).
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Sound Example 3 finally plays the triad on the
horn, and at last there’s an audible difference: you
can clearly hear that the Just version is a smoother,
more stable, clearly more “consonant” triad, even
though the equal-tempered version is acceptable if
the chord is not long sustained (see the comment
on Bach later).

Although I have not included a sound example for
it, Fig. 16 shows a type of harmony worth inves-
tigating. Here we have a totally foreign and quite
nonharmonic “triad,” played with the same nonhar-
monic partials as in Fig. 15, where the Just triad
sounds so diffuse. But the results here are surprising
to an extreme: the peculiar “triad” is consonant,
fused and well focused, with very little roughness,
and many matches of partials in all their nonhar-
monic glory.

This is the kind of harmony we find in the
gamelan music of Bali and Java, where the scales are
pelog and slendro, and the instruments are tuned
gongs, kettles, and metalphones. On my latest re-
cording, Beauty In The Beast, is the composition
(in homage to that magical island) I call: Poem for
Bali. In it these timbres and scales are combined
with good effect, to produce a music that is neither
Western nor Indonesian but is from both traditions.
Near the end a Concerto for Gamelan and (Sym-
phony) Orchestra occurs. In order to get the two
groups (both actually synthesized “replicas,” of
course) to be able to “play” together, it was neces-
sary to “cheat” the pelog scale slightly toward Just
intervals so that the (mostly) harmonic symphonic
timbres would not sound cacophonous when play-
ing it, and yet not so far that the gamelan ensemble
would suffer. The original pelog and modified “har-
monic’’ versions are (in cents):

Computer Music Journal

Rl




ORIGINAL:
0 123 530 683 814 1226 (= octave)
MODIFIED:
122 519 (600 81l . 1216 (= octave)

The final piece with its “cheat” works very well.

Partch’s Folly

A last thought on the examples thus far is the real-
ization of one of life’s funny ironies. I only under-
stood it recently while researching this paper. It’s
both tragic and touching to think that Harry Partch,
who almost single-handedly kept alive the spark

of Just intonation for half a century, happened to
choose to build instruments most of which had
rapid decays and/or nonharmonic partials. As we've
been finding out, these are about the worst choices
that can be made to best show off the wonders of
Just tuning. J. S. Bach demonstrated, and Benade al-
ludes to it in the quote earlier on, when you must
use slightly defective tunings, like 12V/2, it sounds
a lot less rough if you keep everything in motion:
don’t linger on the imperfections. . . . Tempo is very
much tied up with tuning. Both evolve together and
given a better tuning than 122, we might expect
slower or at least more sustained tempi to evolve
than we now use. But Partch tended to compose
music that generally moved right along, as we must
do in much equal-tempered music—which only
further “hid” the beauty of his commendable 43-
note-per-octave scale. Life plays tricks on us all.

The Harmonic Scale

Sound Example 4 of the soundsheet allows us to
compare a chord played alternately on 12V2 equal
temperament, and on a sort of “super-Just” tuning
I've been using called the harmonic scale. First I
had to write a series of programs which access the
tuning tables of the Synergy-Plus and GDS Digi-
tal Synthesizers (Kaplan 1981) which I use, once
Stoney Stockell (who developed the final software
and much of the hardware for both these systems)
found a way to open these up to my curious bum-

blings. Now I can use all of the power for timbre
generation of the Alles card (Alles 1979), while
working with total tuning flexibility and precision,
a far cry from the compromises necessary only a
few years ago (Blackwood 1982|, where the choice,
“scales-or-sounds,” had to be made. I'm grateful

to all the pioneers who have made this possible at
long last.

After working for a while within the bounds of
traditional Just intonation, I became frustrated with
both the “plainness” (to ears brought up on Stravin-
sky, Ligeti, and Bartok, at least) of the diatonic Just
scale (Blackwood 1985), and the often-described
one-comma “problems” of relegating one group of
notes gotten from a series of 3/2 fifths with an-
other gotten from a series of 5/4 major thirds (Bar-
bour 1953; Helmholtz 1954; Olson 1967; Lloyd and
Boyle 1979; Balzano 1980). That the “twain never
meet’’ has been an indelible source of frustration
(see Partch 1979, pp. 190—194 especially) for Just-
tempted musician and theoretician alike.

But if we are willing to give up the ability to
modulate, and solve that with the computer hard-
ware, we can tune all 12 steps of our Synergy key-
boards or whatever to a series of pitches from the
overtone series of one particular tonic, as I have
done with the harmonic scale (see Fig. 9(d]). Any
selection of pitches, and indeed all of these pitches
when sounded together fuse as consonantly as does
the triad of Fig. 14 (at least for harmonically par-
tialed timbres). The particular choice of 12 pitches
in Fig. 9(d) maintains the greatest continuity of suc-
cessive prime partials, up to number 19, in fact.
(Note that number 21 is a 7/4 above number 12, G
an octave lower, and that number 27 is a 3/2 above
number 18, i.e., they are not musically “prime.”)
These are shown in Table 1.

Figure 9(c) shows the notes played on Sound Ex-
ample 4 and 5, both of which alternate 122 and
harmonic-scale tuning, and give you a good com-
parison of the two. There’s little doubt that the
equal-tempered versions are inferior. You can hear
especially well in the high string-cluster example
the very low difference-tone fundamental, a natural
effect of everything being all in tune at last.

And by calculating the same sequence of harmon-
ics for each of the 12 basic starting pitches, trans-
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Table 1. Harmonic scale on C table

Note Ratio Cents
Ch 1/1 0.000
Db 17/16 104.955
Dj 9/8 203.910
DYEb 19/16 297.513
E4 5/4 386.314
Fy 21/16 470.781
H 11/8 551.318
Gh 3/2 701.955
Ab 13/8 840.528
Al 27/16 905.865
B 7/4 968.826
Bl 15/8 1088.269

posing it up and down by 100-cent increments, we
arrive at 144 distinct pitches to the octave for our
new “modulating” version of the harmonic scale.
These are loaded into the Synergy frequency tables
(in groups of 12) via an outboard Hewlett-Packard
computer and a single-octave keyboard which I've
built (Milano 1986) to trigger the computer each
time I key a change to a new chord fundamental.
The result (which had classically been called im-
possible) is that we can now modulate completely
around a “circle of fifths” while at all times retain-
ing not only the few “classic” Just intervals, but
all the other perfectly tuned pitches of the har-
monic scale. And that’s precisely what happens
twice in my recent composition, Just Imaginings
(on Beauty In The Beast, Aud 200). An excerpt of
the first “circle” is heard in Sound Example 6.

The Best and Worst

Earlier I suggested about meantone that we have ex-
cellent reasons to believe that were it not for modu-
lation problems of “wolf tones” (when instruments
were tuned to only 12 meantone pitches), this form
of temperament would likely be in use right through
to the present. In Sound Example 7 you can get
some small sense of the frustrations that must have
occurred for musicians of J. S. Bach’s day as the in-
evitable “pollution” of their triads first occurred, in
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deference to the instrument manufacturers who
drew the line at 12 notes per octave. You can hear
the actual derivation of the still-in-use approxima-
tion: two octaves down and four (slightly flat) per-
fect fifths up (or in the opposite order) = a major
third, first as it sounded in meantone, and then as
it sounded in the then-new equal temperament.
There’s little doubt that ears accustomed to the
smoothness of the former would have detected the
falsity in the latter more acutely than we can today,
although the difference is plain enough if you listen
attentively.

What is actually occurring is that we are trying to
force (3/2)41/2)2 to be = 5/4. The left terms total
81/64, or 81/80 higher than 5/4. In cents, the left
side is (4 * 701.9950) — (2 * 1200.0) = 407.8200,
and that is greater than 386.3137 by the syntonic
comma of 21.5063. But musicians for centuries
have notated the major triad on C to be: C—-E-G,
not: C—E-flattened-by-one-comma-G, that is:

C-E _,—G (Barbour 1953, chapter III; Blackwood
1985, pp. 154—162; Helmholtz 1954, pp. 430—439).
Something had to give, and the best-sounding way
was meantone. There are four fifths to absorb the
excess comma, so let’s give each a quarter of it:
701.9950 — (21.5063/4) = 696.5784 for the mean-
tone fifth. (Two of these up [and down an octave]
form a “tone” which is exactly in between the “ma-
jor tone” of 9/8 and the “minor tone” of 10/9,
hence the name, meantone. . . .) Since low partials
are involved, the resulting flat fifths beat much
slower than if some higher ratio were mistuned by
the same 5.3766 cents—if you will, the fifth can
“stand it” better. The major third that results from
four of these fifths is, as you can hear on the first
half of Sound Example 7, perfect: 386.3137 cents.

To round out this capsule explanation, what oc-
curs in the equal-tempered version is easily shown.
By definition the size of an equal-tempered fifth is:
207712) = 1.49830708, which is certainly close to 3/2
(and why we can get away with it as the only devia-
tion, always melodically, in the 144 notes per oc-
tave modulating harmonic scale). In cents we have
the familiar fifth, 700.0. Now, go up four of these
and down two octaves: (4 # 700.0) — (2 * 1200.0) =
400.0. And this is 400.0000 — 386.3137 = 13.6863
cents sharp for a major third. A 5/4 involves har-
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monics double those for a 3/2, so the beats of this
sharp third are worse than only four times the mean-
tone fifth’s error, as you can hear on the second part
of Sound Example 7.

By the way, to get a feel for the ratio form of de-
scribing Just intervals, think of them as naming
which two partials of the overtone series form the
interval—for example, if it were the seventh and
the fourth (like B-flat,,,, and C) the ratio would
be 7/4.

The next brief Sound Example 8 places the
smooth quality of meantone into a more musical
context. By employing the same suggested tech-
nique as the harmonic scale above, retuning as
needed via an external computer control, we can
maintain this tuning’s benefits to most of the exist-
ing repertoire, while avoiding both “wolf tones” and
any restrictions on modulation. I expect to see such
an evolutionary version of meantone become more
common as digital synthesizing equipment of this
kind becomes readily available.

But for traditional Western music the worst pos-
sible way to tune is probably the scale of 13 equal
steps in an octave (13V/2), which is heard in the
Sound Example 9 (with the same music as the last
to aid in comparisons). As we will next see in equal
divisions of the octave, right beside each decent one
is a region of pretty awful ones. And the lower the
number of steps, in general the less good the results.
Since 12V/2 is the lowest decent division, right be-
side it somewhere there ought to be a “dilly,” and
this one’s it! (Yes, a new tool’s strength works both
ways. . . .|

Symmetric Equal Divisions

This could eventually be one of the most fruitful
methods of scale development for our new musical
technologies. The notion of dividing the octave into
steps of equal size also happens to have gotten a
great deal of attention over the past few hundred
years, so there’s really a good deal of information
already available about it (Barbour 1953; Helmholtz
1954; Yasser 1975; Partch 1979; Yunik and Swift
1980; Blackwood 1982, 1985). As an idea, multiple

division seems to have arisen independently with
several musical theorists, as early as the sixteenth
century in Italy. (Zarlino and Salinas both suggested
a division of 19 parts, although it’s doubtful that
their derivations were exactly equal [Barbour 1953,
p. 115}

In 1555 Nicola Vicentino described what we now
recognize as the 31-note division. It was redis-
covered mathematically in Holland by Christian
Huygens in 1724, who gave an exact description
of his “harmonic cycle” and how extremely close
it comes to standard quarter-comma meantone
intonation. As such it has all the merits of mean-
tone for performing most Western music far more
smoothly than 122, while also permitting un-
limited modulations to an unprecedented degree
(to the nearest 1200/31 = 38.7097 cents!).

But the distinction of “oldest” genuinely equal-
stepped division probably goes to the excellent
53-note division. A student of Pythagorus named
Philolaus wrote a description of a method for con-
structing intervals which leads directly to a measur-
ing scale of 53 comma-sized steps, in which form
it is known as Mercator’s cycle (Helmholtz 1954,
p. 436). Just over a century ago this division was
championed by R. H. M. Bosanquet, who devel-
oped the ideal keyboard with which all possible
regular divisions become really playable by human
hands, the generalized keyboard (Helmholtz 1954,
pp. 479—-481; Yunik and Swift 1980, Fig. 1). Even
Partch (1979, pp. 393 and 438), who had little love
for any equal division, has kind words for Bosan-
quet’s generalized keyboard.

There is scarcely a more worthwhile venture to
pursue as soon as possible than adopting a standard
for and then manufacturing at least a “limited edi-
tion” of these keyboards for all of us now becoming
involved with this field. The present author con-
structed a generalized keyboard (which has subse-
quently been lost) back in the presynthesizer days
of 1957 and would love to hear of any serious work
now being done in this direction. I have several
long-thought-out ideas and proposals (see Fig. 17),
which I will gladly share towards the goal of “get-
ting the standard right,” that we may avoid the fate
of digital tape recording. Obviously it ought be some
variant of a MIDI general-purpose unit.
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Fig. 17. “Multiphonic” gen-
eralized keyboard. One oc-
tave, C to circa 31V2 note
names. This is a perspec-

tive drawing of one octave
from a proposed standard

of generalized keyboard by

a standard keyboard, ap-
prox. 1/2" wide and 1/2"
high, but only 1-3/4" long.
They are colored in five
shades along the blue-
vellow axis of the CIE
Chromaticity Diagram, to

Wendy Carlos. The indi-
vidual notes are shaped
like the sharps and flats of

facilitate proper use by the
color-blind. The suggested
shades are: white (for natu-

Which equal divisions look most useful? Figure
18 is a computer plot I recently made to help nar-
row down the decision. The inspiration came from
a simpler version by Yunik and Swift (1980, p. 63)
in Computer Music Journal 4(4). But [ was curious
about what happened as one went continually and
gradually from integer step to integer step, and also
wanted to reflect the fact that with a computerized
frequency-table driver, there’s little need to “penal-
ize” what may be a fine division that requires more
than two dozen notes (although more than 60 could
get unwieldy|. The computer certainly doesn’t care,
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number of digits per oc-
tave here, although it may
be extended as necessary.
This design is a modern
updated treatment of the
original, conceived and
built in 1875 by R. H. M.
Bosanquet.

rals), black (for sharps),
dark brown (for flats), light
greyish-blue (for double-
sharps), and golden tan
(for double flats). The notes
are named here for the
31\/2 Division, but the key-
board is suitable for all
regular divisions of the oc-
tave, up to 55 notes, the

and if the task can be somewhat automated by such,
why should we care?

Since harmonies from the natural seventh of 7/4
[septimal), and perhaps from the natural eleventh
of 11/8 (unidecimal) may play a good role in any
newly developing harmonies, I've added these onto
the more common “classic-Just” ratios as two op-
tions to be additionally calculated and plotted.

My algorithm ended up being quite different from
Yunik and Swift's:

1. Calculate and store the cents for each prime
ratio of interest. (I chose: 3/2, 4/3, 5/4, 6/5,
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Fig. 18. Equal divisions of
the octave. Z(deviations
from pure)®.
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5/3, 8/5, plus 7/4 and 11/8. The rest can be
derived from these and are not prime.)

2. Set up a loop with some small increment on
division size.

3. For each new division size, calculate the size
of one step, and set up and clear the proper
registers.

4. Find the nearest step to each given ratio and
calculate its error.

5. Add the square of this error to the “sum-of-
the-squares’ register.

6. Plot that value, increment the division size,
and loop to 3.

The plot is carried out three times: once for the
“classic-Just’ ratios, once with the additional re-
strictions of satisfying the septimal ratio (7/4), and
a third time adding also the unidecimal ratio (11/8).
The resulting Fig. 18 fits very well my own and
all other examined descriptions of the audible har-
monic “‘merit”’ of particular equal divisions. Note
the peaks singled out at several of the most impor-
tant divisions: 12, 19, 31, 53, 65, and the one that is
a mean between 53 and 65, 118 (= 53 + 65, and is
“mearly perfect” by all published reports and by our
diagram). Also notice that we are not searching in
particular for diatonic scales (Blackwood 1985), an-
other reason for omitting 9/8 and 10/9 from the list
in step 1 of the previously mentioned algorithm. A
much closer view over the range of 10 through 60
stepped divisions is given in Fig. 19. I think we will
want initially to experience those divisions with less

Fig. 19. Symmetric equal-
step divisions from 10 to
60 notes per octave.

than 60 steps before heading for the really elaborate
alternatives.

The solid line is of the “classic-Just” deviations
only. The dotted line is that for septimal harmo-
nies added, and it obviously never goes above the
former, although at times it can get quite close, as
at the otherwise so-so 15 division, or at the remark-
able 31 harmonic cycle of Huygens. Similarly the
dashed line adds the harmonies from the 11th par-
tial, and again fits well at those same two divisions,
15 and 31.

The most thorough investigation of cycles 13—24
was likely that recently done by Blackwood (1982
and 1985). He also took the extra step and com-
posed a series of etudes, one in each cycle. It’s very
important that we do not fall into the trap (Lloyd
and Boyle) of remaining only theorists. We have to
compose real music of many kinds within all and
any of our new tuning schemes, if this work is to
have any lasting value at all, or be taken seriously
by the music community (and by the public at large,
if it is to survive). More importantly, just as “Papa
Bach” did with his generation’s new scale, this is
the only way we're going to learn how to control
and use wisely these new gifts from the age of the
computer to us!

Asymmetric Divisions

I've saved the most surprising tuning concept for
last. The previous divisions all made the same tacit
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Fig. 20. Asymmetric equal-
step divisions, locations of
alpha, beta, and gamma.

assumption: that each target ratio be available as

an interval in all inversions. They were symmetric:
there was the prime ratio of the perfect fifth, 3/2,
but also the perfect fourth, 4/3 (given 2/1 and 3/2 it
follows directly, so is not really “prime” in the sense
we've been using that idea). Similarly, there was the
major third, 5/4, but also its inversion, the minor
sixth, 8/5. Bath 6/5 and 5/3 appeared. Only for the
newer optional ratios is a nonredundant form ap-
plied: we have 7/4 but not 8/7, 11/8 but not 16/11.

Since each of the redundant pairs is symmetric
with respect to the octave, the net result is sort of
an “over-representation’ of this interval. Little won-
der that every one of the peaks to the plots in Fig.
18 and 19 occurs at exact integer divisions of the
octave! But the octave is the ratio most common to
the “strategies” of most digital synthesizer architec-
tures, such as in the 16/, 8/, 4’ octaving borrowed
from the pipe organ. Most timbre/instrument files
include the similar designation of transpositions up
or down by octaves. In my current Synergies the
frequency of each note is stored in the previously
mentioned frequency-table, but only 12 main 16-bit
words control the middle-most octave, the other oc-
taves duplicating these frequencies by exact factors
of two, a very common method of assuring all the
octaves can be made “beat-free.” We have octave
possibilities all over the place.

So why not, as an experiment, omit the octave-
redundant ratios from the first step of our algo-
rithm? That will lose all octave symmetry, but if we
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can handle the octaving later, say even with an ex-
ternal control computer as the modulating har-
monic scale already requires, that may free up the
compromise-screening functions of our intensive-
search program to find some really interesting equal-
step specimens. This asymmetric division search
program uses the ratios: 3/2, 5/4, 6/5, 7/4, and
11/8. The results are given in Fig. 20.

There are three main peaks for the region between
120-30 cents per step, the reciprocal to 10—40 equal
steps per octave. I call them alpha (a), beta (8], and
gamma (y). There occur “echo peaks’ at each doub-
ling of the number of steps from a past peak, some-
thing difficult to see in the symmetric division
plots. The two in Fig. 20, o' and ', fall equally to
either side of the essentially perfect(!) y (on the
classic-Just curve—for septimal harmonies the first
“echo,” a' is excellent). These happy discoveries oc-
cur at: a = 78.0 cents/step = 15.385 steps/octave,
B = 63.8 cents/step = 18.809 steps/octave, y = 35.1
cents/step = 34,188 steps/octave. The deviation
axis’s arbitrary units are incompatible on this figure
with those on the last two, but a quick comparison
will show just how different (and also similar) the
asymmetric and symmetric divisions are.

Sound Example 10 plays a “nearly” one-octave
scale of alpha on the horn. Notice how there are
four steps to the minor third, five steps to the major
third, and nine steps to the (this time no kidding)
perfect fifth, but, of course, no octave (the final “at-
tempt’’ at this is an awful 1170-cent version, the
next step to 1248 cents being even further away!).
But that’s the trade-off we’ve requested: there’s no
free lunch! Sound Example 11 is a brief chordal pas-
sage in alpha. The harmonies are amazingly pure;
the melodic motion amazingly exotic.

I've not included a similar example of beta or
gamma on the soundsheet but have experimented
with both (gamma really requires a “multiphonic”
generalized keyboard, like most <24 divisions).
Beta is very like alpha in its harmonies, but with
five steps to the minor third, six to the major third,
and eleven to the perfect fifth, melodic motions are
different, rather more diatonic in effect than alpha.
Gamma (nine steps, eleven steps, twenty steps) is
slightly smoother than these, having no palpable
difference from Just tuning in harmonies. But the
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scale is yet a “third flavor,” sort of intermediate to
« and B, although a diatonic scale is melodically
available. I have searched but can find no previous
description of a, B, or y nor their asymmetric scale
family in any of the literature.

Alpha has a musically interesting property not
found in Western music: it splits the minor third
exactly in half (also into quarters). This is what ini-
tially led me to look for it, and I merely called it
my “split minor-third scale of 78-cent steps. Beta,
like the symmetric 19 division it is near, does the
same thing to the perfect fourth. This whole formal
discovery came a few weeks after I had completed
the album, Beauty In The Beast, which is wholly
in new tunings and timbres. The title cut from
the album contains an extended study of some g,
but mostly a. An excerpt highlighting the proper-
ties we've been discussing is the final Sound Ex-
ample 12.

Conclusion

I don’t pretend to be either a writer or theorist, so
thank you for putting up with my attempts at both
in this lengthy report. But I have been fascinated by
scales and tuning for about thirty years, well before
discovering electronic music, with the single excep-
tion of Olson’s (1967, chapter 10) demonstration
record of the RCA Synthesizer in 1953. Although
my name is indelibly connected with the Moog
Synthesizer since that unexpected accident of some
18 years ago, it seems to me that only now is our
fledgling art starting to show healthy signs of grow-
ing up. I'm passionately excited by the promise of:
any possible timbre, any possible tuning. That’s the
reason for the work that went into this paper. It’s
also a way to return the favor to Computer Music
Journal for a decade of ideas and inspiration that led
directly to my “very nearly” attaining this double-
headed ability. For all those who helped and those
on whose shoulders I am lucky to stand, deepest
thanks. We've been treading water much too long,
and I'm delighted that the real work now can begin.
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