
A Robust Architecture for
Distributed Inference in Sensor Networks

Mark Paskin
Stanford University

Computer Science Department
Stanford, California 94305
Email: mark@paskin.org

Carlos Guestrin and Jim McFadden
Carnegie Mellon University
School of Computer Science

Pittsburgh, Pennsylvania 15213
Emails:{guestrin,jmcfadde+}@cs.cmu.edu

Abstract— Many inference problems that arise in sensor networks
require the computation of a global conclusion that is consistent with
local information known to each node. A large class of these problems—
including probabilistic inference, regression, and control problems—can
be solved by message passing on a data structure called ajunction
tree. In this paper, we present a distributed architecture for solving
these problems that is robust to unreliable communication and node
failures. In this architecture, the nodes of the sensor network assemble
themselves into a junction tree and exchange messages between neighbors
to solve the inference problem efficiently and exactly. A key part of
the architecture is an efficient distributed algorithm for optimizing the
choice of junction tree to minimize the communication and computation
required by inference. We present experimental results from a prototype
implementation on a 97-node Mica2 mote network, as well as simulation
results for three applications: distributed sensor calibration, optimal
control, and sensor field modeling. These experiments demonstrate that
our distributed architecture can solve many important inference problems
exactly, efficiently, and robustly.

I. I NTRODUCTION

Sensor networks consist of nodes that can measure characteristics
of their local environment, perform computations, and communi-
cate with each other over a wireless network. In recent years,
advancements in hardware and low-level software have led to viable,
multi-hundred node sensor networks that can instrument unstructured
environments at an unprecedented scale. For example, the Mica2
“mote” can measure temperature, humidity, pressure, visible and
infrared light, sound, magnetic fields, and acceleration. The most
popular application of sensor networks to date has been environmen-
tal monitoring. In these deployments the sensor data is downloaded
from the network for later analysis [1] or the network aggregates
the measurements using simple local operations that compute, for
example, averages, maxima, or histograms [2], [3].

More advanced applications, such as tracking and actuation, require
sensor networks that can solve significantly more complex problems
like sensor fusion, data modeling, prediction, and optimal control.
Solving these inference problems requires combining all of the nodes’
local measurements to generate a globally consistent view of the
environment, or in the case of actuation, coherent controls to change
it. For example, a node with a temperature sensor can measure only
the temperature at its location; if the node’s sensor is biased, it
is impossible to infer the true temperature from the measurement.
However, by combining this local information with the measurements
of the other sensors, the network can solve a global inference problem
that automatically calibrates the temperature sensors at all nodes.

Most existing inference algorithms for sensor networks focus on
solving specific tasks such as computing contour levels of sensor
values [4], distributed sensor calibration [5], or target tracking [6]. In
this paper, we present the first general architecture for inference in
sensor networks that can solve a wide range of problems including

probabilistic inference problems (e.g., sensor calibration and target
tracking), regression (e.g., data modeling and contour finding), and
optimization (e.g., actuator control, decision-making and pattern
classification). At the core of the architecture is a powerful data
structure called ajunction tree, which allows all of these inference
problems to be solved by simple message passing algorithms [7].

Recently, there have been some proposals to use existing central-
ized inference algorithms in sensor networks, e.g., belief propaga-
tion [8], [9] and particle filtering [10]. However, these inference
approaches are not as general as ours, and more importantly, they do
not fully address the practical issues that arise in real deployments:
communication over wireless networks is unreliable due to noise and
packet collisions; the wireless network topology changes over time;
and, nodes can fail for a number of reasons, often because their
batteries die. To address these challenges, we have found that it is
insufficient to implement existing algorithms on the sensor network
architecture; fundamentally new algorithms are required.

To address these robustness issues we propose a novel architecture
consisting of three layers:spanning tree formation, junction tree
formation, and message passing. The nodes of the sensor network
first organize themselves into a spanning tree so that neighbors have
high-quality wireless connections. Using pairwise communication
between neighbors in this tree, the nodes compute the information
necessary to transform the spanning tree into a junction tree for the
inference problem. In addition, these two algorithms jointly optimize
the junction tree to minimize the computation and communication
required by inference. Finally, the inference problem is solved exactly
via message passing on the junction tree. These three algorithms
quickly recover from communication and node failures by reacting
to changes in each others’ states. We demonstrate the viability of
our architecture with experiments on a sensor network of 97 Mica2
motes, and we illustrate its generality with simulation experiments
on three different inference tasks using data from a real sensor
network deployment. An extended version of this paper presents
additional background, details, and experiments [11]. For further
detail on the application of our architecture to probabilistic inference
and regression problems, see [12], [13].

A. Inference problems in sensor networks

Our architecture is useful for solving a wide variety of inference
problems that arise in sensor networks. Below we describe three
examples to give a sense of the range of problems addressed. See
[7] for more examples.

Perhaps the most intuitive example isoptimal control , where the
nodes can control their environment to achieve some end. Consider a
greenhouse deployment where nodes actuate the blinds to achieve
specific desired light levels at different locations. The light level

measured by each node will depend on the states of nearby blinds,
and nearby nodes may have conflicting desires. To achieve the setting
of the blinds that are best for all of the nodes, we can specify
for each node areward functionthat specifies its local utility for
a setting of the blinds given its current light measurement. For
example, if the light location for nodei depends upon blinds 1 and
2 thenQi(a1, a2; mi) is a local reward function that depends upon
its current light measurementmi and the controlsa1, a2 applied to
nearby blinds (e.g., open or close). Because each blind may affect
the light level at several nodes, these reward functions may represent
conflicting interests. To balance the nodes’ competing desires, we
can select the controls that maximize the sum of all nodes’ reward
functions:

a∗ = argmax
a

nX
i=1

Qi(a; mi) (1)

If solved by enumerating the possible control settings, this opti-
mization problem requires exponential time. However, by exploiting
locality structure—each reward function depends upon a small set
of controls—the problem can often be solved efficiently. Consider
a simple example with 3 binary controls,{a1, a2, a3}, where the
reward function isQ(a1, a2) + Q(a2, a3). Using distributivity, we
can rewrite the maximization problem as:

max
a1,a2,a3

Q(a1, a2) + Q(a2, a3) = max
a1,a2

Q(a1, a2) + max
a3

Q(a2, a3).

In this simple example, we can decrease the number of operations
from 16 to 12. More generally, we can exploit distributivity to “push”
the max over each control variable past all terms of the sum that do
not depend upon its value, potentially obtaining exponential decrease
in complexity [14].

Probabilistic inference is a powerful tool for solving problems
where we must reason with partial or noisy information [15].
These problems often arise in sensor networks, where the sensor
measurements give an incomplete view of the environment. The
general task is to compute the posterior distributions of some desired
quantities given a probabilistic model of the environment and a
set of observed measurements. Many challenging problems can be
solved using probabilistic inference; as an example, consider the
distributed sensor calibrationtask [5]. In this problem our nodes
obtain measurements of some field (e.g., temperature), and these
measurements are corrupted by unknown, independent biases. The
task is to automatically remove these biases by exploiting the
correlation between the measurements obtained by nearby nodes.
To accomplish this with probabilistic inference, we require a prior
probabilistic model of the temperature field, the measurements, and
the biases; given the local correlation structure, a natural choice for
this prior is agraphical model, whose distribution is a product of
local terms [15]. Given this model, we can compute the posterior
distribution of the true temperatures by instantiating the observed
measurements, multiplying together the terms of the model, and
marginalizing out nuisance variables. These posterior temperature
estimates automatically “calibrate” the sensors and also account
for measurement noise. As in the control problem, we can exploit
distributivity to push these marginalizations past the multiplications
to obtain an efficient inference algorithm [15]. The application of
our architecture to probabilistic inference problems is considered in
depth in [12].

Another important task that arises in sensor networks isregression,
or function fitting. Many current sensor network deployments are
used for data gathering: all of the network’s measurements are

0
5

10
15

20
25

30
35

0
20

40
60

80
100
18

20

22

24

26

28

30

x
y

T
em

pe
ra

tu
re

 (
C

)

Fig. 1. The temperature measurements from a sensor network deployed in
the Intel Berkeley lab and a regressed function.

1 3

6

2

54
V4,V5

V1,V4,V5 V1,V2,V5 V2,V3

V3,V6V5

Fig. 2. Example of a junction tree.

uploaded to a central location. This is wasteful when the mea-
surements at nearby locations are correlated (as in the temperature
measurements of the previous example). Regression is a powerful and
general framework for maintaining the structure of the sensor field
while significantly decreasing the communication required to access
it [13]. In linear regression, the sensor field is modeled by a weighted

combination of basis functions:̂f(x, y, t)
4
=

Pk
j=1 wjbj(x, y, t)

represents an approximation to the value of the sensor field at
location(x, y) at timet. Thebj(x, y, t) are basis functions which are
chosen in advance, and the weightswj are optimized to minimize
the sum squared error between the observed measurements and
the model f̂ . The optimal weights constitute a low-dimensional
summarization of the original data that can be communicated off the
network with significantly less cost. In the general case, computing
the optimal weights requires solving a dense linear system.Kernel
linear regressionis a specialization of this technique where each
basis function has bounded support (i.e., a local region of influence),
and the optimal weights are the solution to asparselinear system.
Figure 1 shows the result of fitting such a function to sensor network
temperature data. As shown in [13], these regression problems also
have significant locality structure and a distributive property that can
be exploited to yield an efficient inference algorithm.

B. Message passing on junction trees

The inference problems above may seem very different, but they
have a common algebraic structure [11]. Each problem requires us
to first combine local pieces of information about a set of variables
to obtain a global model, and then summarize this model to a subset
of variables; for example, the control problem is specified by a set
of local reward functions which are combined (by addition) to form
a global reward function and then summarized (by maximization) to
determine the optimal actions for a subset of the control variables.
Because these problems share this essential structure, they all can be
solved by algorithms that pass messages on ajunction tree[7]. Below
we describe this important data structure as well as the structure of
the message passing algorithms. The references above describe the

message passing operations used in each type of inference problem.
The problems described above each have a set ofvariables

V1, . . . , Vn, which are the objects of inference: in probabilistic
inference, these are the random variables of the model; in regression,
they are the optimal weights; and in control, they are the control
variables. Aclique tree is an undirected tree where each nodei is
associated with a subset of the variablesCi, called itsclique. In the
clique tree example in Figure 2, we have thatC2 = {V1, V2, V5}.
In the message passing inference algorithms, each node begins with
local information about (a subset of) the variables in its clique;
by passing messages along the edges of the tree, the nodes obtain
“summaries” of the relevant information that is stored by other nodes.
Informally, the message that nodei sends to nodej is computed by
combining nodei’s local information with the information it obtains
in messages from neighbors other thanj, and then “summarizing
away” information about variables that are not inCj . In Figure 2,
when sending a message to node 3, node 2 combines information
from nodes 1 and 5 with its local information, and then summarizes
away variablesV1 andV5 that are not present inC3. (For example,
in the control problem nodei adds together local reward functions it
obtains from neighbors other thanj, and maximizes out all control
variables that are not in nodej’s clique.) These messages may be
scheduled synchronously so each message is computed only once,
or they may be sent asynchronously so that they converge to the
correct values. Once a node’s incoming messages are available, it can
combine them with its local information to obtain the globally correct
result for its clique of variables. For example, in the control problem,
a node can compute optimal settings for its clique of control variables;
in the regression problem, a node can compute an optimal estimate
of the sensor field in a local neighborhood; and, in the probabilistic
inference problem, a node can compute the posterior distribution of
its clique of random variables given the measurements made by all
nodes in the network.

To guarantee the correctness of these message passing algorithms,
the clique tree must satisfy a structural constraint called therunning
intersection property:

If a variable is in cliquesCi andCj , then it must also be
in all cliques on the (unique) path between nodesi and j.

If this property holds, the tree is called ajunction tree. Note that
Figure 2 is a junction tree, e.g.,V5 appears inC4 and C5, thus
it also appears inC1 and C2 to satisfy the running intersection
property. The running intersection property guarantees that the nodes
reasoning about any variableVi form a subtree. Intuitively, this
structure guarantees that by pairwise exchanges of information, all
nodes reasoning aboutVi can reach consensus. Because this structure
holds for all variables simultaneously, complete global consistency is
also reached by this local communication.

C. Overview of the architecture

There are two types of information that are relevant to solving
inference problems in sensor networks: prior information (such as
the reward functions of a control problem or the basis functions of
a regression problem), and measurements that are obtained by the
sensors. For simplicity we assume the prior information has been
distributed to the nodes of the network (perhaps before deployment,
or via dissemination techniques), and each node has obtained its
sensor readings; thus, each nodei begins with local information about
some subset of the variablesDi (which may overlap). Theselocal
variables are not known to the other nodes.

If we were to now organize the nodes of the sensor network into an
undirected tree, then we would have a distributed data structure that

is almost a junction tree; all that would be missing are the cliques
associated with each node. This hints at a three-layer architecture for
distributed inference: (1) thespanning tree layerallows each node
to select a set of neighbors with good communication links such
that the nodes are organized in a spanning tree; (2) thejunction
tree layer allows the nodes to compute their cliques to transform the
spanning tree into a junction tree that is “embedded” in the network;
and (3) theinference layer allows the nodes to asynchronously pass
the inference messages over the edges of the junction tree, each node
eventually converging to the correct result of inference for its clique
of variables. The next three sections describe these layers.

II. SPANNING TREE FORMATION

The goal of the spanning tree layer is for each node to choose
a set of neighbors so that the nodes form a spanning tree where
adjacent nodes have high-quality communication links. In wireless
sensor networks, this problem is very challenging: link qualities are
asymmetric and change over time; and, nodes must discover new
neighbors and estimate their associated link qualities, as well as
detect when neighbors disappear. Fortunately, spanning trees are well
studied in distributed systems and sensor networks (e.g., for multi-
hop routing [16]).

Our application has unique requirements, so we found it necessary
to develop a distributed spanning tree algorithm specifically for
our architecture. In addition to being correct and robust to failure,
we require a spanning tree algorithm that isstable—the tree must
remain fixed whenever possible—andflexible—we would like to
choose between a wide variety of different trees. These properties
are important for routing, but not crucial: the main goal of routing
is to move packets through the network. In our setting, the spanning
tree defines a “logical architecture” for our inference algorithm; thus,
the spanning tree algorithm must be as stable as possible so that
the inference algorithm can make progress. The spanning tree also
determines the computation and communication required to solve the
inference problem, so we must be able to flexibly choose between
different spanning trees to minimize the cost of inference.

To achieve these goals our spanning tree algorithm builds upon
existing algorithms. As in the IEEE 802.1d protocol, the nodes of the
network elect the node with the lowest identifier as the root, and each
node chooses a parent node that offers a path to the root. To ensure
stability under changing network conditions, the nodes compute
robust link quality estimates using exponentially-weighted moving
averages [16] and use them to select edges whose bidirectional link
quality is consistently good. To flexibly choose between multiple
trees, we have developed descendant test strategies that give each
node a larger choice of valid parents. For details on the spanning
tree algorithm see [11].

III. JUNCTION TREE FORMATION

Recall that each nodei in the sensor network starts with local
information about a set of variablesDi. Once a spanning tree has
been built, the nodes have formed a distributed data structure similar
to a junction tree: a tree where each node has local information
about a subset of the variables (see Figure 3). To make this into a
junction tree, we must also specify the cliqueCi for each nodei of
the network. These cliques must satisfy two properties: each node’s
clique must include its local variables (Ci ⊇ Di for all nodesi);
and, we must have the running intersection property: if two cliques
Ci andCj have the same variableV , then all nodes on the unique
path between them must also carryV .

1 3

6

2

54
V4,V5

V1,V4 V1,V2 V2,V3

V3,V6V5

Fig. 3. Example of the initial spanning tree in a six node network; the
dotted lines indicate high-reliability links, the links used in the spanning tree
are shown with arrows. Next to each nodei is the domainDi of its local
factor. Note that the running intersection is not satisfied;D4 andD5 include
V5, but D1 andD2 do not.

1 3

6

2

54
V4,V5

V1,V4,V5 V1,V2,V5 V2,V3

V3,V6V5

V
4,

V
5

V1,V4,V5

V
3,

V
6

V2,V3,V6

V
1 ,V

2 ,V
3 ,

V
4 ,V

5 ,V
6

V1,V2,V3,V5,V6

V1,V2,V4,V5

V
5

V
1 ,V

2 ,V
3 ,

V
4 ,V

5 ,V
6

V
1 ,V

2 ,
V

3 ,V
4 ,V

5

Fig. 4. The reachable variables messages for Figure 3. Each nodei is
now labeled with its cliqueCi. The reachable variables messageR32 =
{V2, V3, V6} is obtained by the union ofR63 = {V3, V6} with the local
variables for node3, D3 = {V2, V3}. The circled variables were added to
satisfy the running intersection property, e.g.,V5 is included inC2 because
it appears inR12 and R52, as shown by the underlined variables in the
messages.

Below we present a robust, distributed algorithm that passes
messages between neighbors in the spanning tree in order to compute
the unique set of minimal cliques that satisfy these two properties.
Because the spanning tree topology determines the cliques of the
junction tree, we also present a robust, distributed algorithm for
optimizing the spanning tree to induce cliques that minimize the
communication and computation required by inference.

A. Ensuring the running intersection

We begin by presenting the algorithm under the assumptions that
there is a stable, valid spanning tree and that communication between
neighbors is reliable. Then we generalize it to the case where these
assumptions do not hold, and we describe optimizations that minimize
communication.

1) Message passing algorithm:Each node learns its clique using
a message passing algorithm in which it sends a message to and
receives a message from each neighbor. Leti be a node andj be a
neighbor ofi; the variables reachable toj from i, Rij , are:

Rij
4
= Di ∪

[
k∈nbr(i)\j

Rki, (2)

These messages are defined recursively; the base case is a message
from a leaf node, which is simply that node’s local variables. An
interior nodei computesRij by collecting the variables that can be
reached through each neighbor butj and adding its local variables
Di; then it sendsRij as a message toj. Figure 4 shows the reachable
variables messages for the example of Figure 3.

If a node receives two reachable variable messages that both
include some variableV , then it knows that it must also carryV to
satisfy the running intersection property. Formally, nodei computes

its cliqueCi using

Ci
4
= Di ∪

[
j,k∈nbr(i)

j 6=k

Rji ∩Rki. (3)

For example, in Figure 4, node 2 receives two reachable variables
messages that containV5, and so its clique must includeV5, as shown.
Using the reachable variables messages, a nodei can also compute

its separator Sij
4
= Ci∩Cj with a neighborj, via Sij = Ci∩Rji;

this is the set of variables common to nodesi andj, and it determines
the size of the inference messages they exchange.

To make this message passing algorithm asynchronous, each node
initializes its incoming reachable variables messages to be empty.
Each time nodei receives a new reachable variables message from
a neighborj, it recomputes its reachable variables messages to all
neighbors butj, and transmits them if they have changed from their
previous values; in addition, it recomputes its clique and separators.
This algorithm is guaranteed to converge to the unique, minimal
set of cliques that preserve the running intersection property for the
underlying spanning tree.

2) Robust, distributed implementation:In the presentation above
we assumed reliable communication between neighbors in the span-
ning tree. While this is not true at the physical layer, it can be im-
plemented at the transport layer using message acknowledgments—
by hypothesis, the spanning tree consists of high-quality wireless
links. We also assumed that the reachable variables messages were
transmitted after the spanning tree algorithm had run to completion.
The algorithm cannot be implemented in this way, though, because
in a sensor network, there is no way to determine when a distributed
algorithm has completed. For example, a node can never rule out the
possibility that a new node will later join the network.

Our algorithms therefore run concurrently on each node, respond-
ing to changes in each others’ states. When the spanning tree layer on
a node adds or removes a neighbor, the junction tree layer is informed
and reacts by updating its reachable variables messages. If nodei
obtains a new neighborj, thenRij is computed and sent toj; if j
is removed fromi’s neighbor set then for all other neighborsk, Rik

is recomputed and retransmitted (if it has changed from its previous
value). This tight interaction between the layers permits the junction
tree to reorganize quickly when changing link qualities, interference,
or node failures cause the spanning tree to change.

3) Minimizing communication:This junction tree algorithm is the
only part of our architecture where nodes must reason about “global”
aspects of the inference problem. In general, the space complexity
of the reachable variables messages is linear in the total number of
variables; for example, ifj is a leaf in the spanning tree, thenRij

must include all variables (except possiblyDj). For large problems,
then, it is important to choose a compact encoding of the reachable
variables, e.g., bit vectors or sets of integer intervals, to minimize
communication cost.

As we have described the algorithm above,Rjk is retransmitted
whenever it changes, which can happen whenj receives a new
reachable variables message from another neighbor. A great deal of
communication can be saved if instead of sending the new value
of Rjk, nodej sends a “patch” that allows nodek to compute the
new value from the old one. In the full version of the paper we
describe an optimized protocol in which nodes transmit anadd set
and adrop setto compactly communicate updates to the reachable
variables messages; we also describe how problem-specific structure
can be exploited to reduce communication [11].

B. Optimizing the junction tree

The algorithm above transforms the spanning tree into a junction
tree by computing the unique set of minimal cliques that satisfy the
running intersection property. Note that different spanning trees can
give rise to junction trees with different clique and separator sizes;
for example, if in Figure 3 node 5 had chosen to connect to node 1
instead of node 2, the node 2’s clique would not need to include the
variableV5. The size of a node’s clique determines the amount of
computation it must perform, and the separator sizes determine the
amount of communication required by neighbors in the tree. These
facts motivate atree optimization algorithmthat chooses a spanning
tree that gives rise to a junction tree with small cliques and separators.

The input to this algorithm is a cost function that decomposes
over the cliques and separators of the junction tree. For example, to
minimize the computation and communication required to solve the
inference problem, we may chooseαi(Ci) to be the (energy) cost
of the inference computations required by nodei if its clique is Ci,
and βij(Sij) to be the communication cost paid by nodei to send
an inference message to nodej, if their separator isSij . The total
cost is:

NX
i=1

24αi(Ci) +
X

j∈nbr(i)

βij(Sij)

35 (4)

These cost functions can take into account the problem-specific costs
of the inference algorithm as well as network characteristics such as
link qualities and (perhaps heterogeneous) processor speeds.

Finding the spanning tree that minimizes this cost function is NP-
hard (by a simple reduction from centralized junction tree optimiza-
tion [15]), but we can define an efficient distributed algorithm for
greedy local search through the space of spanning trees. First we use
the spanning tree algorithm to build up a good spanning tree using
link quality information only. Then the tree optimization algorithm
repeatedly reduces the cost of inference by performing legal edge
swaps; for example, in Figure 3 node 5 can swap its edge to 1 for
an edge to 2 or an edge to 6.

Nodes learn about a legal edge swap, and the change to the
global cost (Eq. (4)) that would occur if it was implemented,
using a distributed dynamic programming algorithm. By starting an
evaluation broadcastalong one of its spanning tree edges, a node
can learn about alternatives for the edge and their relative costs.
For example, in Figure 3, suppose node 5 sends to its neighbor 2
a messageEVAL(5, 2), meaning “find legal alternatives for our edge
5 ↔ 2.” Node 2 then propagatesEVAL(5, 2) to its other neighbors,
nodes 1 and 3. When node 1 receives the message, it sees that the
originator, 5, is a potential neighbor, and propagates the message back
to 5 outside the spanning tree. When node 5 receives theEVAL(5, 2)
message from node 1, it learns of a legal swap: it can trade its edge
to 2 for an edge to 1. Similarly, node 3 propagates the request to node
6, which then propagates it to node 5 outside of the spanning tree;
in this way node 5 learns5 ↔ 6 is another alternative for5 ↔ 2.

In general, swapping spanning tree edges has non-local effects on
the cliques and separators of the induced junction tree, so a node
cannot assess the relative cost of an edge swap locally. However,
the relative cost can be assessed efficiently by an extension of the
evaluation broadcast scheme described above. The key idea is that if
the edge5 ↔ 2 were swapped for the edge5 ↔ 1, only the reachable
variables messages (and cliques) on the cycle5 ↔ 2 ↔ 1 ↔ 5 would
change.This is a direct consequence of the definition of the reachable
variables messages in Eq. (2). Similarly, if the edge5 ↔ 2 were
swapped for the edge5 ↔ 6, only the reachable variables messages

on the cycle5 ↔ 2 ↔ 3 ↔ 6 ↔ 5 would change. Therefore, to
evaluate the relative cost of an edge swap, only the nodes on theswap
cycle, i.e., the cycle closed by the new edge, must participate in the
computation. As the evaluation messages propagate around the swap
cycle, each node adds in its local contribution to the cost estimate;
to do this, it computes the reachable variables messages, clique, and
separators it would have if the swap were implemented, and evaluates
the change to the cost in Eq. (4). The evaluation protocol is described
in detail in [11].

The node that initiated the evaluation broadcast collects responses
and performs the edge swap that minimizes the cost of the tree. If two
nodes undertake edge swaps at the same time and their swap cycles
overlap, then the resulting change in cost may be different than the
individual cost estimates would indicate. To coordinate these updates,
evaluation broadcasts are used only when snooping the broadcast
channel indicates no other evaluations are in progress. When there
are no conflicting edge swaps, this distributed algorithm will converge
to a junction tree that is a local minimum of the cost function.

As we have described it, the communication pattern of the tree
optimization algorithm is expensive: when nodei starts an evaluation
broadcast via a neighborj, the evaluation messages are propagated
to all nodes on thej side of the i ↔ j edge. Fortunately, for
typical cost functions it is possible to prove that once the running
value of change in cost becomes positive, it can never decrease as
the evaluation messages propagate. Because we are not interested
in swaps that increase the tree cost, we can halt propagation of the
evaluation messages whenever the running cost becomes positive.
Another method to reduce the communication cost is to use a hop
count limit to limit the local search.

IV. I NFERENCE BY MESSAGE PASSING

The top layer in our architecture is a robust, distributed imple-
mentation of the message passing algorithm for solving the inference
problem. The details of these algorithms vary across different prob-
lems (e.g., probabilistic inference [12] or regression [13]), but the
structure is the same: the message that nodei sends to nodej depends
upon nodei’s local information, the messages it receives from all

neighbors butj, and the separatorSij
4
= Ci ∩Cj . Thus, whenever

any of these quantities changes, the message is recomputed and
retransmitted. For example, if a nodei receives an updated message
from a neighbor, it recomputes and retransmits its messages to all
other neighbors; if the junction tree layer signals that the separator
Sij to nodej has changed, then nodei recomputes and retransmits
its message to nodej. If the spanning tree eventually stabilizes, then
the junction tree will also stabilize; in this case these rules guarantee
that the inference messages will eventually converge to the correct
values, and the nodes will stop passing inference messages.

In some problems, it is possible to make intelligent decisions about
when retransmitting a message is not worth the communication cost.
For example, if nodej has transmitted a message to nodek and it
then receives a new message from another neighbor, it often happens
that the updated message it would send tok is not that different from
the previous value. In some cases it is possible to obtain error bounds
associated with suppressing message updates; this can be an effective
way to trade communication cost for approximation error [11].

In our architecture we have achieved robustness with a tight
interaction between the layers: each layer responds to changes in
the states of the other two to react to changing network conditions.
But now we have reached the top of our algorithm stack, and we must
consider how an application will use the results of inference when
it cannot be sure that the inference algorithm has run to completion.

Certainly the solution to this problem will be application specific, but
it seems clear that in general it is useful for the inference algorithm
to guarantee that at any point during its execution, each node’s
partial result —i.e., the quantity which is computed when not all
of the final versions of the messages have arrived—is useful. Some
inference algorithms naturally have this property: in the regression
algorithm the partial result represents the optimal estimate given only
the measurements obtained by nodes in communication range [13].
Other inference algorithms do not have this property: the partial
results of the traditional algorithm for probabilistic inference can
be arbitrarily far from the correct results. To make these algorithms
useful for inference in sensor networks, extra work is necessary;
for example, see [12] for a new message passing algorithm for
probabilistic inference that resolves the problem.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our architecture and algorithms on
a real Mica2 sensor network and on a realistic simulator. Here we
present a brief summary of our findings; see the full version of the
paper for more detail [11].

A. Mica2 mote implementation

Our first set of experiments test the spanning tree and junction tree
layers on a real sensor network. We implemented these two layers
in TinyOS and deployed the architecture on a sensor network at the
Intel Berkeley Research Lab; see Figure 5(a). The network has 97
Mica2 motes, each of which is equipped with a 433Mhz radio, a
8MHz microprocessor, 4KB of RAM, and 512KB of flash memory.
Each mote is connected to a power supply and ethernet, which was
used only for instrumentation. For our evaluation of these two layers
we used a kernel regression inference problem [13] with 28 variables
(basis function coefficients) and 84 nodes.

Figure 5(b) shows the communication properties of the junction
tree layer; it plots the total number of bytes of reachable variables
messages (represented using a bit encoding) sent during each second
the algorithm runs. There are no messages sent in the beginning
because the spanning tree layer is estimating link qualities. Once the
spanning tree layer begins establishing links, the number of reachable
variables messages increases. Soon after, the running intersection
property is satisfied and communication ceases. We ran the algorithm
for hours at a time and found that the tree was remarkably stable: on
average it ran for 30 consecutive minutes without sending a single
reachable variables message.

We also tested the robustness of the spanning and junction trees
to both node and communication failures. We simulated node and
link failures by signaling individual motes (using the testbed ethernet
connections) to either die or ignore messages from a given neighbor.
Figure 5(c) shows that our architecture is very robust, recovering
rapidly from failures. Soon after a failure, communication increases
as messages are sent to restore the running intersection property,
but the tree stabilizes rapidly. Note that the communication cost of
repairing an existing tree is much lower than building the initial tree.

To quantify the communication saved when repairing a broken
junction tree, we ran 30 experiments where groups of random nodes
were killed. (In this experiment, we used 78 of the nodes.) Figure 5(d)
shows the average number of bytes of reachable variables messages
necessary to build an initial junction tree and also to recover from
failures of one to five randomly selected nodes. We found that
on average, a node sends only 13 reachable variables messages
to build the initial junction tree; this indicates that building the
initial junction tree requires a modest amount of communication.

In addition, repairing the junction tree after failures requires even
less communication; e.g., recovering from a simultaneous five-node
failure requires about one third the communication of building the
junction tree from scratch.

For simplicity, we did not implement the complete tree optimiza-
tion algorithm in § III-B on the motes. Instead, we used a simple
neighbor selection heuristic that chooses, among the neighbors that
have above average link quality, the one whose initial clique has
highest intersection with this node’s initial clique. We found that
using this heuristic decreased communication cost in the inference
layer by a factor of 33% over considering link quality alone.

In addition to the spanning tree and junction tree layers described
thus far, we have an initial Mica2 implementation of the message
passing layer for the kernel regression problem described in§I-A. We
have performed preliminary experiments using a sensor network with
15 Mica2 motes on a regression problem with 2 kernels and 4 spatial
and temporal basis functions per kernel. In these experiments (see
Figure 5(e)), the nodes converged to the same regression coefficients
as the optimal offline solution after only 20 epochs. Despite the fact
that Mica2s only have software fixed-point arithmetic capabilities,
the matrix operations required by regression were stable and pre-
cise. The messages in this layer used reliable communication with
acknowledgments, requiring between 3 and 7 36-byte packets per
message. The main limiting factor in the Mica2s is the small amount
of RAM (4KB), which did not allow us to hold all of the necessary
matrices in memory at once. We addressed this problem by using
block matrix operations that page unused parts of the matrices to
flash memory.

B. Simulation experiments

To further test our architecture and algorithms, we designed a
network simulator based on data and link qualities from a different
deployment of 53 Mica2 motes. To verify that our simulations are
realistic, we simulated the communication cost experiment described
above. The simulated results in Figure 5(f) are qualitatively similar
to the real results in Figure 5(b); in fact, the real network seems more
stable than the simulated one. This gives us some confidence that the
simulation results will also hold on a real network.

We ran another experiment to test the distributed tree optimization
algorithm. We chose our communication cost function to be pro-
portional to the expected number of transmitted bytes necessary to
successfully communicate the inference messages (for the calibration
problem described below), taking into account retransmissions. The
piecewise constant curve in Figure 6(a) represents the current cost
of the spanning tree when one exists; the horizontal line represents a
hypothesized optimum: it is the cost of the best tree we were able to
find using centralized optimization techniques. Note that the initial
spanning tree, which is selected using only link quality information, is
significantly more expensive than the hypothesized optimum, but that
the distributed optimization algorithm eventually finds trees whose
cost is within a factor of two.

The next set of experiments were performed on the distributed
sensor calibration problem described in§I-A. Using the temperature
data from the real network, we learned a Gaussian graphical model
over the true temperatures, biases, and temperature measurements. To
set up our distributed sensor calibration task we created an artificially
biased set of measurements by sampling a bias for each node and
adding these biases to a held-out test set of measurements. The
inference task is for the nodes to estimate these biases from the
corrupted observations, using the probabilistic model. Each node uses
probabilistic inference to compute its posterior mean bias estimate,

SERVER

LAB

KITCHEN

COPYELEC

PHONEQUIET

STORAGE

CONFERENCE

OFFICEOFFICE

(a) layout of Mica2 network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500

to
ta

l
c
o
m

m
u
n
ic

a
ti
o
n
 (

b
y
te

s
)

time (seconds)
junction

spanning spanning

(b) communication cost of junction tree layer

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700

to
ta

l c
om

m
un

ic
at

io
n

(b
yt

es
)

time (seconds)

node
killed

node
killed

edge
killed

edge
killed

junction
spanning

(c) robustness of junction tree layer

initial

construction repair after n failures

n = 1 n = 2 n = 3 n = 4 n = 5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

to
ta

l
b
y
te

s
 o

f
re

a
c
h
a

b
le

 v
a
ri
a

b
le

s
 m

e
s
s
a

g
e
s

(d) communication required to recover from failure

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 5 10 15 20 25 30 35 40 45

R
M

S
 e

rr
o

r

epochs (10 seconds each)

distributed
global

junction
spanning

(e) preliminary regression results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60

b
y
te

s

time
junction

spanning

(f) communication cost (simulation)

Fig. 5. Experimental results. In figures (b), (c), (e), and (f), thex-axis is time; the bottom bar shows when a valid spanning tree has been constructed, and
the top bar shows when the running intersection property has been enforced.

and the error metric we report is the root mean squared error (RMS)
from these estimates to the biases we sampled.

Figure 6(b) visualizes a trace of the inference architecture when
the robust message passing algorithm of [12] is used to solve the
probabilistic inference problem. The main panel of Figure 6(b) plots
the RMS error of three inference algorithms. The line markedglobal
refers to centralized inference using all of the measurements. In this
case, the posterior mean bias estimates of global inference have 0.61
RMS error. Thus, by solving the global inference problem the nodes
can automatically eliminate 39% of the bias. The line markedlocal
refers to centralized local inference, where each node’s posterior
is computed using only its measurement. Local inference performs
about as well as predicting zero bias, achieving a 0.99 RMS error; this
is expected, since correlated measurements from different nodes are
required for automatic calibration. The third curve,distributed robust,
refers to our architecture. This plot graphically demonstrates the key
properties of the algorithm: before any messages have been passed,
the partial results coincide with the estimates given by local inference;
at convergence, the estimates coincide with those of centralized global
inference; and, before all messages have been passed, the estimates
are informative approximations. Looking closely, we can see that
before the junction tree is valid, and even before a complete spanning
tree is constructed, the estimates of the robust message passing
algorithm quickly approach the exact solution.

To test the algorithms’ robustness to long-term communication
failure, we ran the same experiment, but this time we introduced
a period where interference causes the network to be segmented into
two parts. In Figure 6(c) we can see that the algorithm converges
before and after the inference period, but that interference prevents
a (complete) spanning tree from being formed. In spite of this,
the robust message passing algorithm converges to an excellent
approximation: each half of the network forms its own junction tree
and performs inference with the available information.

We also tested the architecture’s performance under simulated node

failures. Figure 6(d) shows the results of this experiment. As each
node dies, its measurement is lost, so the inference problem to be
solved is changing over time; this explains the changing error values
for global and local inference. Notice that the network can form
a junction tree and solve the inference problem exactly past 500
seconds, when only 26 of the original 53 nodes are still functioning.

Our next experiment evaluates our architecture on the regression
task described in§I-A. Using the distributed regression formulation
described in [13], we defined a regression problem on the temperature
data with 22 basis functions. In our regression task, each node
uses its local estimate of the optimal model parameters to predict
the measurement of its five nearest neighbors, along with its own
measurement. Figure 6(e) shows the resulting root mean squared
error for this task. As with the calibration case, this graph shows
three curves: thelocal curve corresponds to each node using its
own measurement to predict its neighbors’ measurements; theglobal
curve corresponds to fitting the regression parameters offline, and
using the resulting model for prediction; thedistributedline uses our
architecture and the distributed regression messages so that each node
locally predicts its neighbors’ values using its current estimates of the
basis function coefficients. As with the calibration case, we see that
the results obtained by our distributed algorithm quickly converge to
those obtained by the optimal offline solution.

Our third and final inference problem is an instance of the control
problem described in§I-A. We defined an actuation problem where
16 blinds can be moved to change the light conditions; each blind
is controlled by a specific node of the network. Each actuating node
has five possible controls which raise and lower the blinds by varying
amounts. Each node of the network has a desired light value that is 40
lux greater than its current value. The goal is to find positions for all
the blinds that minimize the mean squared deviation from the desired
light values. Our results, shown in Figure 6(f), again compare three
methods: in thelocal curve each actuating node chooses the blind
setting that best fits its own desires; theglobal curve corresponds to

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50 100 150 200 250 300 350 400
time

current tree
hypothesized optimum

junction
spanning spanning

c
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

initial tree

(a) optimizing the spanning tree

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50

R
M

S
 e

rr
o
r

time

distributed robust
global

local

junction
spanning spanning

(b) convergence of the calibration algorithm

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 20 40 60 80 100 120 140 160 180

R
M

S
 e

rr
o
r

time

distributed robust
global

local

junction
spanning spanning

(c) interference (calibration problem)

 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200

number of functioning nodes

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 200 400 600 800 1000 1200

R
M

S
 e

rr
o

r

time

distributed robust (redundant)
global

local

junction
spanning spanning

(d) failing nodes (calibration problem)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 10 20 30 40 50 60

R
M

S
 e

rr
o

r

time

distributed
global

local

junction
spanning

(e) convergence of the regression algorithm

 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 0 10 20 30 40 50 60

C
o

s
t

o
f

p
la

n

time

distributed
global

local

junction
spanning spanning

(f) convergence of the control algorithm

Fig. 6. Experimental results from simulation.

the optimal solution obtained offline; thedistributedcurve uses our
architecture to optimize the setting in a distributed fashion, where
each actuating node chooses the control setting that it currently views
as the best global solution. As with calibration and regression, we
see that the control strategy obtained by our distributed algorithm
quickly converges to that obtained by the optimal offline solution.

VI. CONCLUSIONS

We presented the first general and robust architecture for inference
in sensor networks that can solve a wide range of inference problems
including probabilistic inference, regression, and optimization. In
particular, we have presented distributed algorithms that can construct
stable junction trees, even in the presence of communication and node
failures; we have also presented distributed algorithms to optimize
this junction tree to minimize the cost of inference, and to solve the
inference problem. We demonstrated the viability of the architecture
in a real sensor network deployment, and we demonstrated its gen-
erality with three applications—distributed sensor calibration, sensor
field modeling, and optimal control—using a realistic sensor network
simulation. Our results demonstrate that the architecture is robust to
communication and node failures, and that in all three applications
the inference algorithm quickly converges to the correct answer.

An important feature of our architecture is that it does not rely on
a network layer that provides multi-hop routing (which is difficult or
impossible in sensor networks). This is due in part to the commu-
nication pattern of our algorithms: only neighbors in the tree must
communicate with each other. Another reason is that our architecture
tightly couples the application and networking layers so that both
network-related and application-specific information can be used to
minimize the communication and computation required by inference.
We expect that this tight coupling between the application and
networking layers is useful for other types of in-network computation.

General architectures that address a range of sensor network appli-
cations (and the robustness issues of real systems) will significantly
increase the usefulness of sensor network technology. We believe that
the work presented herein provides a solid step toward this goal.

Acknowledgements: We gratefully thank Phil Buonadonna, David Gay,
Joe Hellerstein, Wei Hong, Sam Madden, Romain Thibaux, and Alec Woo
for helpful discussions and assistance with the sensor network deployments.

REFERENCES

[1] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” Tech. Rep. IRB-TR-
02-006, Intel Research, 2002.

[2] J. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond average:
towards sophisticated sensing with queries,” inIPSN, 2003.

[3] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact
of network density on data aggregation in wireless sensor networks,” in
Int’l. Conf. on Distributed Comp. Systems (ICDCS), 2002.

[4] R. Nowak and U. Mitra, “Boundary estimation in sensor networks:
Theory and methods,” inIPSN, 2003.

[5] V. Byckovskiy, S. Megerian, D. Estrin, and M. Potkonjak, “A collabo-
rative approach to in-place sensor calibration,” inIPSN, 2003.

[6] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, “Collaborative signal and
information processing: An information directed approach,”Proceedings
of the IEEE, vol. 91, no. 8, pp. 1199–1209, 2003.

[7] S. M. Aji and R. J. McEliece, “The generalized distributive law,”IEEE
Trans. on Information Theory, vol. 46, pp. 325–343, 2000.

[8] C. Crick and A. Pfeffer, “Loopy belief propagation as a basis for com-
munication in sensor networks,” inUncertainty in Artificial Intelligence
(UAI), 2003.

[9] K. Plarre and P. R. Kumar, “Extended message passing algorithm for
inference in loopy Gaussian graphical models,”Ad Hoc Networks, vol.
2, pp. 153–169, 2004.

[10] M. Coates, “Distributed particle filtering for sensor networks,” in
Information Processing in Sensor Networks (IPSN), 2004.

[11] M. Paskin and C. Guestrin, “A robust architecture for distributed infer-
ence in sensor networks,” Tech. Rep. IRB-TR-03-039, Intel Research,
2004.

[12] M. Paskin and C. Guestrin, “Robust probabilistic inference in distributed
systems,” inUncertainty in Artif. Intelligence (UAI), 2004.

[13] C. Guestrin, R. Thibaux, P. Bodik, M. Paskin, and S. Madden, “Dis-
tributed regression: an efficient framework for modeling sensor network
data,” in Information Processing in Sensor Networks, 2004.

[14] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
MDPs,” in Neural Information Processing Systems, 2001.

[15] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter,Probabilistic
Networks and Expert Systems, Springer, New York, NY, 1999.

[16] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of
reliable multihop routing in sensor networks,” inInt’l. Conf. on Sensor
Systems (SENSYS), 2003.

