
Wireless Sensor Networks:
A New Regime for Time Synchronization

Jeremy Elson
Department of Computer Science

University of California, Los Angeles
Los Angeles, California, USA

jelson@cs.ucla.edu

Kay Römer
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

roemer@inf.ethz.ch

ABSTRACT
Wireless sensor networks (WSNs) consist of large populations of
wirelessly connected nodes, capable of computation, communica-
tion, and sensing. Sensor nodes cooperate in order to merge in-
dividual sensor readings into a high-level sensing result, such as
integrating a time series of position measurements into a velocity
estimate. The physical time of sensor readings is a key element in
this process called data fusion. Hence, time synchronization is a
crucial component of WSNs. We argue that time synchronization
schemes developed for traditional networks such as NTP [23] are
ill-suited for WSNs and suggest more appropriate approaches.

Keywords
time synchronization, wireless sensor network

1. INTRODUCTION
Wireless sensor networks [1] are an increasingly attractive means

to bridge the gap between the physical and virtual world. A WSN
consists of large numbers of cooperating small-scale nodes, each
capable of limited computation, wireless communication, and sens-
ing. In a wide variety of application areas including geophysical
monitoring, precision agriculture, habitat monitoring, transporta-
tion, military systems and business processes, WSNs are envi-
sioned to be used to fulfill complex monitoring tasks. With this
new class of networks also come new challenges in many areas of
the system’s design.

Sensor nodes are small-scale devices; in the near future, low-cost
platforms with volumes approaching several cubic millimeters are
expected to be available [17]. Such small devices are very limited
in the amount of energy they can store or harvest from the envi-
ronment. Thus, energy efficiency is a major concern in a WSN. In
addition, many thousands of sensors may have to be deployed for
a given task—an individual sensor’s small effective range relative
to a large area of interest makes this a requirement, and its small
form factor and low cost makes this possible. Therefore, scalabil-
ity is another critical factor in the design of the system. To achieve

scalability, an important design principle is locality—all but the
smallest networks can not depend on having global state. In [5],
Cerpa reports network saturation when as few as 40 sensor nodes
use global broadcasts.

In contrast to traditional wired networks, a WSN is both highly
dynamic and ad hoc. For example, initial deployment may involve
throwing nodes from an aircraft into an area of interest at random.
Over time, sensors fail due to destruction or battery depletion; new
sensors might be added in higher concentration in areas of interest.
Sensors experience changes in their position, available energy, and
task details. Changes in the environment can dramatically affect
radio propagation, causing frequent network topology changes and
network partitions. At high densities, WSNs also become much
more likely to suffer communication failures due to contention for
their shared communication medium—in [12] Ganesan reports a
message loss of 20% and above between adjacent nodes in a dense
WSN. These factors lead to strong self-configuration and robust-
ness requirements in a WSN. Static configuration is unacceptable;
the system must continuously adapt to make the best use of avail-
able resources.

While individual sensor nodes have only limited functionality,
the global behavior of the WSN can be quite complex. The true
value of the network is in this property of emergent behavior: the
functionality of the whole is greater than the sum of its parts. This is
achieved, in part, through data fusion, the process of transforming
and merging individual sensor readings into a high-level sensing
result. This is where time synchronization enters the stage, as it
plays a key role in many types of data fusion.

Time synchronization in distributed systems is a well-studied
problem. Many solutions exist for traditional networks and dis-
tributed systems. NTP [23], for example, has been widely deployed
and proven effective and robust in the Internet. In this paper, we ex-
plore the question: do the traditional methods apply in sensor net-
works as well? Our answer is no. Many assumptions on which ex-
isting schemes are based no longer hold in this new area of WSNs.
We claim that something new is needed.

The organization of the remainder of this paper is as follows.
In Section 2, we discuss in more detail the applications and re-
quirements of synchronized time in a WSN. We then review exist-
ing time synchronization schemes in Section 3, and examine their
shortcomings when applied in this new context. In Section 4, we
describe general design principles for WSN time synchronization,
based on experiences with a number of prototype systems built by
the authors. Finally, in Section 5, we draw our conclusions and
describe future work.



2. SYNCHRONIZED TIME IN A WSN
Time synchronization is an important feature of almost any dis-

tributed system. A confluence of factors makes flexible and robust
time synchronization particularly important in WSNs, while simul-
taneously making it more difficult to achieve than in traditional net-
works. In this section, we will describe some of these factors: the
tight link between sensors and the physical world; the scarcity of
system energy; the need for large-scale, decentralized topologies;
and unpredictable, intermittent connectivity.

The advent of logical time [19, 22] eliminated the need for phys-
ical time synchronization in situations where only causal relation-
ships of events are of interest to the application. However, logical
time only captures relationships between “in system” events, de-
fined by message exchanges between event-generating processes.
This is not the case for phenomena sensed by the nodes in a WSN;
physical time must be used to relate events in the physical world.
Logical time is not sufficient in the WSN domain. For example,
consider the following applications:

• Object tracking: The size, shape, direction, location, veloc-
ity, or acceleration of objects is determined by fusing prox-
imity detections from sensors at different locations.

• Consistent state updates: The current state of an object is
most accurately determined by the node that has “sighted”
the object most recently.

• Distributed beamforming: beam-forming arrays [33] can
perform “spatial filtering,” receiving only signals arriving
from a certain direction. This depends on the relative time
offsets of the array’s sensors.

• Duplicate detection: The time of an event helps nodes deter-
mine if they are seeing two distinct real-world events, or a
single event seen from two vantage points.

• Temporal order delivery: Many data fusion algorithms must
process events in the order of their occurrence [27]—for ex-
ample, Kalman filters.

Another illustrative example is the formation of a TDMA sched-
ule for low-energy radio operation. This is an important application
because listening and transmitting are both very energy-expensive
operations in a low-power radio. A common technique to conserve
precious energy is to turn the radio off, waking up only briefly to
exchange short messages before going back to sleep [25, 29].

Consider two nodes that have agreed to rendezvous on the radio
channel once every 60 seconds to exchange a short message—say,
8 bits representing the current temperature. Using a 19.2kbit/sec
radio such as our testbed’s RF Monolithics [4], 8 bits can be trans-
mitted in about 0.5ms. However, in practice, the radio must be
awakened early to account for time synchronization error—so an
expectation of a 1ms phase error will triple the total amount of
time the radio is expending energy listening to the channel. In ad-
dition, even assuming perfect synchronization at the start of a sleep
period, a typical quartz oscillator on such a sensor will drift on the
order of 1 part in 10

5 [32], or 0.6ms after 60 seconds. Of course,
sending synchronization packets during the sleep period defeats the
purpose of sleeping, so we must consider frequency estimation as
part of the time synchronization problem.

The examples above demonstrate not only the importance of time
synchronization in a WSN, but also one of its difficulties: any re-
source expended for synchronization reduces the resources avail-
able to perform the network’s fundamental task. Many current data
acquisition systems do not have this constraint, so they often rely

on high-energy solutions to the synchronization problem—frequent
network synchronization, high stability frequency standards, GPS
receivers, and so forth. In a WSN, the impact of such solutions—in
terms of energy, cost, and form-factor—can make them untenable.

Another important aspect of the problem domain illustrated by
our examples is the heterogeneity of the application requirements
over a wide variety of axes. For example:

• Energy utilization. Some synchronization schemes require
extra, energy-hungry equipment (e.g., GPS receivers). Oth-
ers may have virtually no energy impact (e.g., listening to
extant packets already being transmitted for other reasons).

• Precision—either the dispersion among a group of peers, or
maximum error with respect to an external standard. The
precision might be as fine as microseconds (e.g., coherent
signal processing on audio signals) or as coarse as seconds
(e.g., tracking a slow-moving human).

• Lifetime—the duration for which nodes are synchronized.
This might be nearly instantaneous (e.g., to compare views
of a single event from multiple vantage points), as long-lived
as the network (to track the motion of an object through a
sensor field), or persistent forever (e.g., UTC).

• Scope and Availability—the geographic span of nodes that
are synchronized, and completeness of coverage within that
region. The scope might be as small as a pair of nodes ex-
changing data, or as large as the entire network.

• Cost and Size. These factors can make a scheme a non-
starter. It is unreasonable to put a $100 GPS receiver or a
$1000 Rubidium oscillator on a disposable sensor node that
would otherwise cost $10, or on dust-mote sized nodes.

The exact requirements for WSN time synchronization along
these axes can not be characterized in general. The requirements
are highly application-domain specific and vary over time in unpre-
dictable ways, since they are influenced by the sensed phenomenon.

Given these new challenges, are traditional time synchronization
schemes the best choice for this new domain?

3. TRADITIONAL NETWORK TIME SYN-
CHRONIZATION

Over the years, many protocols have been designed for maintain-
ing synchronization of physical clocks over computer networks [7,
15, 23, 30]. These protocols all have basic features in common: a
simple connectionless messaging protocol; exchange of clock in-
formation between clients and one (or a few) servers; methods for
mitigating the effects of nondeterminism in message delivery and
processing; and an algorithm on the client for updating local clocks
based on information received from a server. They do differ in cer-
tain details: whether the network is kept internally consistent or
synchronized to an external standard; whether the server is consid-
ered to be the canonical clock, or merely an arbiter of client clocks,
and so on.

Some wireless standards such as 802.11 [16] have similar time-
synchronization beacons built into the MAC layer. Work by Mock
et al. [24] extends 802.11’s synchronization by taking advantage
of the broadcast property of wireless networks. This technique is
notable because it leverages domain knowledge to increase preci-
sion; we will argue in Section 4.5 that this is an important design
goal. However, these 802.11 methods do not work beyond a single
broadcast domain, a serious limitation.



Mills’ NTP [23] stands out by virtue of its scalability, self-
configuration for creating a global timescale in multihop networks,
robustness to various types of failures, security in the face of delib-
erate sabotage, and ubiquitous deployment. For decades, it has kept
the Internet’s clocks ticking in phase. Many people in the WSN re-
search community often ask: “Why not use NTP here, too?” At
least one research group has moved in this direction, implement-
ing an NTP-like time service over small wireless sensors [11]. But
is this truly the best choice? Many of the assumptions that NTP
makes, while true in the Internet, are not true in sensor networks.
We explore some of these differences below.

3.1 Energy Aware
As explained in Section 1, energy efficiency is a major concern

in a WSN. The energy constraints violate a number of assumptions
routinely made by classical synchronization algorithms:

• Using the CPU in moderation is free.

• Listening to the network is free.

• Occasional transmissions have a negligible impact.

These assumptions are true in traditional networks and conse-
quently have become fundamental to schemes such as NTP. For
example, NTP assumes that the CPU is always available, and per-
forms frequency discipline of the oscillator by adding small but
continuous offsets to the system clock. In addition, NTP makes
no effort to predict the time at which packets will arrive; it simply
listens to the network all the time. And, while it is conservative
in its use of bandwidth, it assumes a continuous ability to transmit
packets. (It can “free-run” without network access, but requires a
significant time with network access restored before it achieves its
original accuracy again.)

[25] describes why most of the above assumptions do not hold
in a WSN. In a low-power radio, listening to, sending to, receiving
from the network all require significant energy compared to the
overall system budget. CPU cycles are also a scarce resource; the
limited energy mandates the use of slow processors which spend
most of their time powered down (awakened by a pre-processor
after an event of interest).

3.2 Single-Hop vs. Multi-Hop
Much of the non-Internet (“LAN”) work in distributed clock

agreement assumes that all nodes in the system can directly ex-
change messages—or, more precisely, that a single latency and jit-
ter bound is common to all messages in the system. Some methods
that exploit the broadcast property of the physical media [24, 31]
do not speak to the problem of federating the clocks of multiple
(overlapping) broadcast domains.

Sensor networks span many hops; the end-to-end latency is much
larger than a single hop. This makes it difficult to apply methods
that assume a fully connected or low-latency topology.

3.3 Infrastructure-Supported vs. Ad Hoc
NTP allows construction of time synchronization hierarchies,

each rooted at one of many canonical sources of external time in
the Internet. The canonical sources (“Stratum 1” servers, in NTP
terminology) are synchronized with each other via a variety of “out
of band” mechanisms—for example, radio receivers for time sig-
nals from the Global Positioning System [18], or the WWVB ra-
dio broadcast [3]. This infrastructure provides a common view of
a global timescale (UTC) to the Stratum 1 servers throughout the
Internet. Consequently, nodes throughout the Internet enjoy be-
ing synchronized to a single, global timescale while rarely finding

A C

B

Master

Stratum 2

Stratum 3

Figure 1: A global timescale can lead to poorly synchronized
neighbors, if the neighbors are far from the master clock and
have uncorrelated loss due to divergent synchronization paths.

themselves more than a few hops away from a local source of this
canonical time.

WSNs, on the other hand, may often consist of large-diameter
networks without an external infrastructure. Often it is not an op-
tion to equip sensor nodes with receivers for “out of band” time
references. GPS, for example, is expensive both in terms of energy
consumption and component cost, since it needs high-performance
digital signal processing capabilities. Moreover, it requires a line of
sight to the GPS satellites—which is not available inside of build-
ings, beneath dense foliage, underwater, on Mars, etc.

In this scenario, NTP-style algorithms must create a hierarchy
rooted at a single node that is designated as the system’s master
clock. Even assuming we have an algorithm that automatically
maintains such a hierarchy in the face of node dynamics and parti-
tions, there is still a fundamental problem: with a single source of
canonical time, most nodes will be far away from it. Nodes that are
far away from the master clock will be poorly synchronized to the
global timescale.

This is a particularly bad situation in a WSN, where nodes clos-
est to each other are often the ones that need the most precise
synchronization—e.g., for distributed acoustic beamforming. Con-
sider the scenario shown in Figure 1. Nodes A, B, and C are close
to one another, but far away from the master clock. In a scheme
such as NTP, B will choose either A or C as its synchronization
source. Either choice will lead to poor synchronization when shar-
ing data with the opposite neighbor. For example, if B synchro-
nizes to C, its synchronization error to A will be quite large; the
synchronization path leads all the way to the master and back. As
we will discuss in Section 4.2, these constraints suggest that WSNs
should have no global timescale. Instead, we propose that each
node in an WSN maintain an undisciplined clock, augmented with
relative frequency and phase information to each of its local peers.

3.4 Static Topology vs. Dynamics
Although the Internet suffers from transient link failures, the

topology remains relatively consistent from month to month, or
year to year. Typically, NTP clients are manually configured with
a list of “upstream” sources of time. Although NTP automatically
uses statistical means to decide on the best of its given options, it
still depends on being configured with some notion of which nodes
are peers and which lie upstream.

The network dynamics in WSN prevent such a simple kind of
static configuration. Moreover, the need for unattended operation
of WSN prevents a manual configuration of individual nodes.



3.5 Connected vs. Disconnected
Node mobility, node failures, and environmental obstructions

cause a high degree of dynamics in a WSN. This includes fre-
quent network topology changes and network partitions. Data may
still flow through the network despite these partitions, as mobile
nodes transport information by physically moving within the net-
work. However, the resulting paths of information flow might have
unbounded delays (depending on the movement of the node relay-
ing the information) and are potentially unidirectional, since there
might not be any nodes moving in the opposite direction.

This kind of message relaying might seem like an unlikely case.
However, in a sparse WSN where sensor nodes are attached to mov-
ing objects or creatures (e.g., humans, animals, vehicles, goods) or
deployed in moving media (e.g., air, water) this is a major mode
of communication [2, 6, 13, 20]. Grossglauser and Tse [14] even
show that the communication capacity of a WSN approaches zero
with increasing node density unless messages are being relayed in
this way.

As we will show below, message relaying is a serious problem
for traditional clock synchronization algorithms, since they rely on
two important assumptions:

1. Nodes are connected before the time they need to be syn-
chronized.

2. The message delay between two (not necessarily adjacent)
nodes to be synchronized can be estimated over time with
high precision.

Consider for example Figure 2, which models a water pollution
monitoring WSN deployed in a river. At real–time t1 device 1 de-
tects an oil stain. At t2 device 2 detects the same oil stain. At t3
device 2 passes by device 3, a communication link is established,
and E2 is sent to device 3. At t4 device 1 passes by device 3, a link
is established, and E1 is sent to device 3.

If device 3 wants to determine direction of movement and size
of the oil stain, it has to determine whether E1 happened after E2

and the time difference between E1 and E2. This scenario presents
a serious problem for classical clock synchronization algorithms
that assume that the device’s clocks will be synchronized a priori
when they sense events E1 and E2. However, as shown in figure
2, there is no way for nodes 1 and 2 to communicate for all t ≤ t3,
which makes clock synchronization of nodes 1 and 2 impossible
before E1 and E2 are sensed. This violates the first of the above
assumption made by classical clock synchronization algorithms.

Even at time t4, where an unidirectional delayed message path
from node 2 to node 1 via node 3 exists, clock synchronization of
nodes 1 and 2 seems almost impossible with traditional algorithms.
The path is unidirectional and arbitrarily delayed—wreaking havoc
with traditional clock synchronization algorithms that assume they
can estimate the message delay over time (or, that assume the delay
is negligible), thus violating the second of the above assumptions.
The highly unreliable communication in WSNs further contributes
to arbitrary delays on multihop paths.

4. DESIGN PRINCIPLES FOR WSN TIME
SYNCHRONIZATION

Having described the shortcomings of traditional time synchro-
nization schemes in the previous section, we can now begin to for-
mulate requirements and new directions for time synchronization
in WSNs. There are not yet any proven solutions for time synchro-
nization in deployed WSNs. However, the authors have developed
techniques which might prove helpful in solving this problem [8, 9,

26]. These techniques aim to build a synchronization service that
conforms to the requirements of WSNs:

• Energy efficiency—the energy spent synchronizing clocks
should be as small as possible, bearing in mind that there
is significant cost to continuous CPU use or radio listening.

• Scalability—large populations of sensor nodes (hundreds or
thousands) must be supported.

• Robustness—the service must continuously adapt to condi-
tions inside the network, despite dynamics that lead to net-
work partitions.

• Ad hoc deployment—time sync must work with no a priori
configuration, and no infrastructure available (e.g., an out-
of-band common view of time).

4.1 Multi-Modal, Tiered, and Tunable
The services provided by various proposals for WSN time syn-

chronization fall into many disparate points in the parameter space
we described in Section 2 (energy, precision, scope, lifetime, and
cost). Each scheme has tradeoffs—no single method is optimal
along all axes. For example:

• Typical GPS receivers can synchronize nodes to a persistent-
lifetime timescale that is Earth-wide in scope to a precision
of 200ns [21]. However, the receivers can require several
minutes of settling time, and may be too large, costly, or
high-power to justify on a small sensor node. In addition,
the GPS infrastructure is not always available (§3.3).

• Römer’s scheme described in [26] achieves 1ms precision,
creates an instantaneous timescale with little overhead, and
works on unidirectional links. However, the synchronization
is localized and rather short-lived.

• Elson’s RBS [9] can achieve 1µs precision and sufficient fre-
quency estimates to extend the timescale for several minutes.
It synchronizes all nodes within a broadcast domain. How-
ever, it requires a bidirectional broadcast medium and several
packet exchanges.

• The multihop extension to RBS described in [9] allows the
timescale to be extended across multiple broadcast domains,
but at the cost of (somewhat) degraded accuracy.

None of these methods can be considered the best; each has ad-
vantages and disadvantages. The details of a particular application
and hardware will dictate the method that should be used in each
situation.

Still more options arise when several methods are composed into
a multi-modal system. For example, we might equip a small por-
tion of nodes with more expensive high-stability oscillators, and
use RBS to allow nearby nodes to estimate their own frequency
with respect to the reference [9]. This type of tiered architecture
is analagous to the memory hierarchy found in modern computers
(registers, memory cache, main memory, disk), where the goal is to
build a system that appears to be as fast as the registers, but as large
and cheap as the disk.

Ideally, we would like to have a large enough palette of meth-
ods available so that we can choose an overall scheme that is both
necessary and sufficient for the application on all axes. Unneces-
sary synchronization wastes resources; insufficient synchronization
leads to poor application performance. To this end, it is also impor-
tant that WSN synchronization be tunable—providing adjustable
parameters that allow a closer match between the type of synchro-
nization needed and that which is provided.



1

2

E 1

3

1

2

E 2

3

1

2

3

E 2

1

2

3

E
1

t 1 t 2 t 3 t 4

Figure 2: A disconnected network leading to time synchronization problems in a WSN

4.2 No Global Timescale
We argued in Section 3.3 that keeping a global timescale for

a large network is only effective when many canonical sources
of that timescale are available throughout the network. In the
infrastructure-free world of an WSN, where we can not rely on
such out-of-band timescale distribution, classical algorithms end
up in the situation we illustrated in Figure 1.

Our claim is that the best solution is for each node to keep its own
timescale. A node never sets its clock or disciplines its frequency,
but rather lets it run at its natural rate. WSN time synchronization
schemes—regardless of the underlying method—should only build
up a table of parameters relating the phase and frequency of the
local clock to other clocks in the system. Local and remote times-
tamps can then be compared to each other using these parameters
for conversion. In fact, time conversion can be built into the packet
forwarding mechanism itself. That is, nodes can perform succes-
sive time conversions on packets as they are forwarded from node
to node—keeping timestamps with respect to the local clock at each
hop.

This technique has a number of advantages. First, the synchro-
nization error between two nodes is proportional to the distance
between them—not their distance to a master clock, which might
be much greater. Second, allowing the local clock to run undisci-
plined means that each node can enjoy a monotonic clock—a criti-
cal feature to many signal processing algorithms. While frequency
drift will occur due to the oscillator’s instability due to temperature,
shock, and voltage variations, there will be no sudden changes in
the frequency or phase due to new information arriving at a disci-
plining algorithm. (Network timesync can produce an estimate of
the oscillator’s frequency relative to an SI second if needed for data
analysis.) Finally, an undisciplined clock requires no continuous
corrections to the clock by the CPU or kernel, as are required by
algorithms such as NTP. This is important for energy conservation,
as we saw in Section 3.1.

4.3 Post-Facto Synchronization
Traditional time synchronization schemes synchronize node

clocks a priori; clocks are pre-synchronized when an event oc-
curs and is timestamped. As we saw earlier, this causes problems
with message relaying and makes it hard to exploit time-variable
and unpredictable application knowledge. In contrast, we advo-
cate post-facto synchronization, where clocks run unsynchronized
at their own natural rates. When timestamps from different clocks
need to be compared, they can be reconciled after the fact [8]. This
removes the need to predict application requirements in advance;
instead, synchronization energy is only expended after an event
of interest has occurred. Also, this approach enables support for

message relaying, since it does not require network connectivity
between event-generating nodes.

Time synchronization is comparable in some sense to routing in
ad hoc networks. There, proactive routing establishes and main-
tains routes between nodes in advance, whereas reactive routing
only establishes routes on-demand between pairs of nodes that want
to communicate.

4.4 Adapt to the Application
In Section 4.1, we argued that scalable and energy-efficient WSN

time synchronization should be achieved by closely matching the
application requirements along axes such as scope, lifetime, and
precision. We have also seen a number of techniques that provide
service in different parts of this space. However, application re-
quirements vary over time and are in general not predictable, since
they depend on the sensed phenomena. Choosing and tuning a nec-
essary and sufficient form of synchronization is a non-trivial prob-
lem. To some degree, the application requirements of time syn-
cronization must be built in at design-time. However, dynamics of
the application and the environment are likely to dictate that auto-
matic adaptation at run-time is also necessary.

In some cases, the application can explicitly describe its require-
ments to the synchronization subsystem: the precision required,
the peers to which synchronization is needed, and so forth. There
are also cases where the synchronization subsystem can deduce ap-
plication requirements implicitly. For example, data flows might
imply the scope and lifetime of needed synchronization.

Once the requirements are known, synchronization should adapt
to them. For example, the number of synchronization packets sent
can be varied, trading energy for precision if dictated by the appli-
cation. This exemplifies a parameterizable or adaptive fidelity al-
gorithm [10]. The synchronization system might even choose from
a set of synchronization algorithms with differing characteristics
depending on the application requirements.

4.5 Exploit Domain Knowledge
Much of the design of the Internet—and, in fact, the Internet

Protocol (IP) itself—is meant to put a consistent interface on top
of a heterogeneous and inconsistent tapestry of underlying trans-
port media and protocols. NTP shares a similar philosophy: it
makes a reasonable set of “lowest common denominator” assump-
tions about the environment in which it expects to operate. In the
Internet, this is the right choice: it has allowed NTP to become
deployed nearly ubiquitously, despite the wide variety of proces-
sors, oscillators, network media, node topologies, and cross-traffic
it encounters.

The disadvantage of such a design is that it precludes the sys-



tem from taking advantage of any special features that might be
available. In a WSN, where we are often trying to squeeze every
possible resource from the system, it may not be feasible to give
up performance for the sake of generality. It often makes sense for
each application to take advantage of whatever special features are
available at every layer of the system.

For example, the inherent properties of a some communica-
tion media can be leveraged for time synchronization. In 802.11
networks, Reference-Broadcast Synchronization (RBS) has been
shown to achieve far better precision than NTP by exploiting the
fact that it has a physical-layer broadcast channel [9]. In time-
division based MAC layers, some form of synchronization already
exists between radios, and can often be accessed by a synchroniza-
tion process on the CPU [28]. Some radio standards such as Blue-
tooth [34] provide a separate synchronous communication channel
with low delay jitter, which can be used for exchanging synchro-
nization pulses.

Time synchronization can also use domain knowledge about the
application. For example, Römer’s scheme [26] piggybacks round
trip time measurements to ordinary data packets sent by other pro-
cesses. This achieves time synchronization without imposing any
additional load on the network. Similarly, RBS can work by ob-
serving extant broadcasts in the system instead of sending its own
special packets.

5. CONCLUSIONS
Physical time synchronization is a crucial component of wireless

sensor networks. In this paper, we described some of the impor-
tant applications of synchronized time in a WSN and their charac-
teristics along axes such as energy use, scope, precision, lifetime,
and cost. We argue that traditional time synchronization schemes
like NTP can not be applied in this new domain, where many as-
sumptions have changed. Unlike in wired networks, energy is fi-
nite; infrastructure is unavailable; topologies are no longer static or
even connected. Based on our experience with the development of
time synchronization schemes for WSNs, we proposed some de-
sign principles: use multiple, tunable modes of synchronization;
do not maintain a global timescale for the entire network; use post-
facto synchronization; adapt to the application, and exploit domain
knowledge.

Sensor networking is still a young field; none of these principles
have yet been proven in the way that NTP has proven itself in the
Internet. However, we believe they provide a useful framework to
guide the design of WSN time synchronization as the field evolves.

6. REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless Sensor

Networks: A Survey. Computer Networks, 38(4):393–422, March 2002.
[2] A. Beaufour, M. Leopold, and P. Bonnet. Smart-Tag Based Data Dissemination.

Submitted for publication, June 2002.
[3] R.E. Beehler. Time/frequency services of the U.S. National Bureau of

Standards and some alternatives for future improvement. Journal of Electronics
and Telecommunications Engineers, 27:389–402, Jan 1981.

[4] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton,
and Jerry Zhao. Habitat monitoring: Application driver for wireless
communications technology. In Proceedings of the 2001 ACM SIGCOMM
Workshop on Data Communications in Latin America and the Caribbean, April
2001. Available at http://www.isi.edu/scadds/papers/CostaRica-oct01-final.ps.

[5] Alberto Cerpa and Deborah Estrin. ASCENT: Adaptive Self-Configuring
Sensor Networks Topologies. In Proceedings of the Twenty First International
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2002), June 23–27 2002. http://lecs.cs.ucla.edu/Publications.

[6] Z. D. Chen, HT Kung, and D. Vlah. Ad Hoc Relay Wireless Networks over
Moving Vehicles on Highways. In MobiHoc 2001, Long Beach, USA, October
2001.

[7] Flaviu Cristian. Probabilistic clock synchronization. Distributed Computing,
3:146–158, 1989.

[8] J. Elson and D. Estrin. Time Synchronization for Wireless Sensor Networks. In
2001 International Parallel and Distributed Processing Symposium (IPDPS),
Workshop on Parallel and Distributed Computing Issues in Wireless Networks
and Mobile Computing, San Francisco, USA, April 2001.

[9] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-Grained Network Time
Synchronization using Reference Broadcasts. In Proceedings of the Fifth
Symposium on Operating Systems Design and Implementation (OSDI 2002),
Boston, MA, December 2002. http://lecs.cs.ucla.edu/Publications.

[10] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Challanges:
Scalable Coordination in Sensor Networks. In MobiCom 99, Seattle, USA,
August 1999.

[11] Saurabh Ganeriwal, Ram Kumar, Sachin Adlakha, and Mani Srivastava.
Network-wide time synchronization in sensor networks. Technical report,
Networked and Embedded Systems Lab, Elec. Eng. Dept., UCLA, April 2002.

[12] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
An Empirical Study of Epidemic Algorithms in Large Scale Multihop Wireless
Networks. Submitted for publication, February 2002.

[13] N. Glance, D. Snowdon, and J.-L. Meunier. Pollen: using people as a
communication medium. Computer Networks, 35(4):429–442, 2001.

[14] M. Grossglauser and D. Tse. Mobility Increases the Capacity of Ad-hoc
Wireless Networks. In INFOCOM 2001, Anchorage, USA, April 2001.

[15] R. Gusell and S. Zatti. The accuracy of clock synchronization achieved by
TEMPO in Berkeley UNIX 4.3 BSD. IEEE Transactions on Software
Engineering, 15:847–853, 1989.

[16] ISO/IEC. IEEE 802.11 Standard. IEEE Standard for Information Technology,
ISO/IEC 8802-11:1999(E), 1999.

[17] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next century challenges: mobile
networking for Smart Dust. In Proceedings of the fifth annual ACM/IEEE Intl.
Conf. on Mobile computing and networking, pages 271–278, 1999.

[18] Elliott D. Kaplan, editor. Understanding GPS: Principles and Applications.
Artech House, 1996.

[19] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(4):558–565, July 1978.

[20] Q. Li and D. Rus. Sending Messages to Mobile Users in Disconnected Ad-Hoc
Wireless Networks. In MobiCom 2000, Boston, USA, August 2000.

[21] J. Mannermaa, K. Kalliomaki, T. Mansten, and S. Turunen. Timing
performance of various GPS receivers. In Proceedings of the 1999 Joint
Meeting of the European Frequency and Time Forum and the IEEE
International Frequency Control Symposium, pages 287–290, April 1999.

[22] F. Mattern. Virtual Time and Global States in Distributed Systems. In Workshop
on Parallel and Distributed Algorithms, Chateau de Bonas, October 1988.

[23] David L. Mills. Internet Time Synchronization: The Network Time Protocol. In
Zhonghua Yang and T. Anthony Marsland, editors, Global States and Time in
Distributed Systems. IEEE Computer Society Press, 1994.

[24] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Continuous clock
synchronization in wireless real-time applications. In The 19th IEEE
Symposium on Reliable Distributed Systems (SRDS’00), pages 125–133,
Washington - Brussels - Tokyo, October 2000. IEEE.

[25] G.J. Pottie and W.J. Kaiser. Wireless integrated network sensors.
Communications of the ACM, 43(5):551–558, 2000.

[26] K. Römer. Time Synchronization in Ad Hoc Networks. In ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 01), Long Beach, CA,
October 2001. www.inf.ethz.ch/vs/publ/papers/mobihoc01-time-sync.pdf.

[27] K. Römer. Robust and Energy-Efficient Temporal-Order Event Delivery in
Wireless Sensor Networks. Submitted for publication, March 2002.

[28] I. Rubin. Message Delays in FDMA and TDMA Communication Channels.
IEEE Trans. Communin., COM27(5):769–777, May 1979.

[29] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. Protocols for self-organization
of a wireless sensor network. IEEE Personal Communications, pages 16–27,
October 2000.

[30] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. J-ACM,
34(3):626–645, July 1987.

[31] Paulo Verissimo, Luis Rodrigues, and Antonio Casimiro. Cesiumspray: a
precise and accurate global time service for large-scale systems. Technical
Report NAV-TR-97-0001, Universidade de Lisboa, 1997.

[32] John R. Vig. Introduction to Quartz Frequency Standards. Technical Report
SLCET-TR-92-1, Army Research Laboratory, Electronics and Power Sources
Directorate, October 1992. Available at
http://www.ieee-uffc.org/freqcontrol/quartz/vig/vigtoc.htm.

[33] H. Wang, L. Yip, D. Maniezzo, J.C. Chen, R.E. Hudson, J.Elson, and K.Yao. A
Wireless Time-Synchronized COTS Sensor Platform Part II–Applications to
Beamforming. In Proceedings of IEEE CAS Workshop on Wireless
Communications and Networking, Pasadena, CA, September 2002.
http://lecs.cs.ucla.edu/Publications.

[34] Bluetooth SIG. www.bluetooth.org.


