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GLOSSARY

assignment problem Finding the best one-to-one matching between sets of
equal size.

attractor ring A set of points fixed in a ring around the hand, one per finger
and palm heel, which are used to associate nearby unidentified
contacts with particular fingers.

bimanual manipulation Using two hands simultaneously to navigate, move,
or stretch onscreen objects.

carpal tunnel syndrome Compression of the median nerve caused by inflam-
mation of the tendons which pass through the carpal tunnel at
the underside of the wrist. Causes numbness, tingling, sharp
wrist pains at night, and eventual degradation of hand motor
control if untreated. Though one of the most widely feared
repetitive strain injuries, it appears in only about 20 percent of
RSI cases [117].

chord A combination of fingers on one hand which contact a surface
simultaneously. Some combinations are easier for the user to
perform or the system to recognize than others.

chordic manipulation 4-DOF control of onscreen graphical objects with slides
of two or more fingers across a surface.

channel selection Choosing and touching a particular combination of fingers
to select between pointing, dragging, scrolling, etc., in analogy
to pressing a subset of mouse buttons.

contact (noun) A general term for signals produced when a grounded con-
ductive object such as a finger approaches a capacitance-sensing
surface. The groups, paths, and fingers of Chapters 3 and 4 are
each contacts at different stages of processing.

cumulative trauma disorders (CTD) Slightly more general term than repet-
itive strain injury which includes occupational back injuries.
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cubital tunnel syndrome Same as carpal tunnel syndrome except compresses
ulnar nerve at the elbow (near the funny bone).

degrees of freedom (DOF) The number of independent directions a solid
object or joint can move. Three-dimensional free space has six-
DOF, three for translation along the x, y, and z axes, and three
for rotation in the xy, yz, and xz planes. The joints of the wrist
and fingers have over 20-DOF total.

DeQuervain’s Syndrome Entrapment of the tendons which extend and raise
the thumb where they pass through tendon sheaths at the wrist.
Can be caused by holding thumbs too high when typing or
pulling thumb backwards on thumb-operated trackballs.

Dvorak key layout An alternative key layout designed by August Dvorak in
the 1930’s. Its primary advantage is that the most frequently
typed characters are placed on home row, so finger excursions
to the front and back rows are greatly reduced.

electrode A thin conductive plate, thousands of which form the sensor ar-
ray of the MTS. The sensed parameter is the change in electrode
capacitance caused by approach of another conductive object
such as fingertip flesh. Precise contact locations are obtained
by grouping and interpolating neighboring electrode measure-
ments.

finger Any of the thumb, index, middle, ring or pinky.

finger identification Determining which fingertip, palm heel or thumb on a
given hand is causing a particular surface contact.

fingertip The tip of any of the index, middle, ring or pinky fingers, but
not the tip of the thumb.

frame rate The frequency with which the electrode scanning hardware scans
the whole proximity sensing array. Also known as the array
scanning rate.

hand identification Determining which of the left or right hands is causing
a particular surface contact or cluster of contacts.

floating finger A finger which is in detection range (less than 3 mm from the
surface) but is not actually touching the surface.

forearm pronation Rotation of the forearm so that the palm faces down.
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forearm supination Rotation of the forearm so that the palm faces up.

forepalms The mounds of often callused flesh protecting the underside
of the joint between the metacarpals and proximal phalanges,
where the distal palm branches into the fingers.

graphical manipulation Direct control of continuous software parameters
whose state changes are usually indicated by movement of some-
thing on the screen.

graphical user interface (GUI) A modern software interface like the Win-
dows 95 desktop which has icons, menus, windows, buttons, and
dialogue boxes operated principally by the mouse, as opposed to
older command line interfaces which only required a keyboard.
GUIs rely heavily on the mouse pointer location to determine
context and mode.

group In the context of Chapter 3, a set of electrodes which all appear
to be affected by the same distinguishable part of the hand.

hunt and peck typing Novice typists typically strike keys with the index fin-
gers only, visually searching the keyboard for each key. Trained
typists use this method sporadically for unfamiliar or hard-to-
reach key sequences.

integral Control devices or tasks in which it is possible to move along
all axes or in all degrees of freedom simultaneously, e.g. moving
diagonally in a plane.

inner Towards the thumb of a given hand, known more formally as
medial.

mouse cursor Usually denoted by an arrow pointer moving across the screen,
this cursor has traditionally been controlled by a mouse.

multi-touch surface (MTS) A surface with a proximity sensor array un-
derneath capable of unambiguously measuring the positions of
multiple finger contacts.

one-shot A command or key sequence which cannot easily be undone or
reversed and which is normally not repeated. One-shot com-
mands are therefore only issued once per hand slide across the
surface.

outer Towards the pinky of the given hand.
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path In context of Chapters 3-5, the trajectory of a surface contact
which is persistently tracked across successive proximity images.
If it cannot be associated with an electrode group from the most
recent array scan, it is deactivated, representing finger liftoff.

palm heels The pair of fleshy mounds at the base of the palm near the wrist.

pen grip A hand posture or configuration in which the middle, ring, and
pinky fingers are curled under the palms and the thumb and
index finger are pinched together as if holding a pen.

puck A mouse-like device often used with electromagnetic drawing
tablets [149]. The primary differences from the conventional
mouse are that the puck can report its absolute position rather
than just relative changes in position, and pucks often have 4-
16 buttons rather than just 1-3. Pucks and drawing tablets are
used most often by professional draftsmen for computer-aided-
design (CAD). These same tablets usually support styli as well.

QWERTY key layout The alphabet key layout which has long been stan-
dard on most English typewriters and computer keyboards. Char-
acter placement seems random, but speed is fairly good because
typing of consecutive characters often alternates between hands.

repetitive strain injury (RSI) Long-term damage to tendons, muscles, and
nerves caused by highly repetitive and forceful body motions.
Tends to affect smaller muscle groups such as those in the arm
and hand.

separable Control devices or tasks in which movement is only possible
along one axis or degree of freedom at a time, e.g. driving in
Manhattan geometry, or using orthogonal cursor mode in CAD
programs.

slide Coupled lateral motion of all fingers in a chord across the sur-
face.

sliding tap A brief chord contact with the surface including fast lateral fin-
ger motion.

stylus A special pen whose motion, pressure, and tilt can be sensed
electromagnetically by drawing tablets (e.g. [149]). Most recent
models are light and cordless, though older versions were encum-
bered with cords or heavy batteries. Styli and drawing tablets

XxXVil



are used most often by artists and graphics designers but can
also be used with handwriting recognition software. Many of
these tablets support pucks as well.

tap A quick press and release of the finger to the surface with min-
imal lateral motion.

tendonitis  Inflammation of the tendons, the collagenous tissues which con-
nect muscle to bone, due to overuse.

tenosynivitis Swelling of the sheath which surrounds a tendon where the ten-
don passes over bones or curves.

text cursor The cursor, usually denoted by a flashing bar or highlight block,
at which typed characters are inserted. Can be moved incremen-
tally by arrow and page keys.

touch typing Skilled typing in which all ten fingers are used, finger motions
are quick and ballistic, and the typist does not look for the keys.

touchpad A credit-card-sized finger-sensing surface popular in notebook
computers. Because touchpads contains long row and column
electrodes rather than electrode arrays, they may detect two or
three fingers but can only report a global position averaged over
all finger contacts.

ulnar deviation Rotated posture of the wrist in which the pinky points out-
ward away from the sides of the body.
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ABSTRACT

This research introduces methods for tracking and identifying multiple finger
and palm contacts as hands approach, touch, and slide across a proximity-sensing
multi-touch surface (MTS). Though MTS proximity images exhibit special topo-
logical characteristics such as absence of background clutter, techniques such as
bootstrapping from hand-position estimates are necessary to overcome the invisi-
bility of structures linking fingertips to palms. Context-dependent segmentation of
each proximity image constructs and parameterizes pixel groups corresponding to
each distinguishable surface contact. Path-tracking links across successive images
those groups which correspond to the same hand part, reliably detecting touchdown
and liftoff of individual fingers. Combinatorial optimization algorithms use biome-
chanical constraints and anatomical features to associate each contact’s path with
a particular fingertip, thumb, or palm of either hand. Assignment of contacts to a
ring of hand part attractor points using a squared-distance cost metric effectively
sorts the contact identities with respect to the ring structure.

Despite the ascension of the mouse into everyday computing, more advanced
devices for bimanual and high degree-of-freedom (DOF) manipulation have failed
to enter the mainstream due to awkward integration with text entry devices. This
work introduces a novel input integration technique which reserves synchronized
motions of multiple fingers on the MTS for multi-DOF gestures and hand resting,
leaving asynchronous single finger taps on the MTS to be recognized as typing on
a QWERTY key layout. The operator can then switch instantaneously between

typing and several 4-DOF graphical manipulation channels with a simple change in
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hand configuration. This integration technique depends upon reliable detection of
synchronized finger touches, extraction of independent hand translation, scaling, and
rotational velocities, and the aforementioned finger and hand identifications. The
MTS optimizes ergonomics by eliminating redundant pointing and homing motions,
minimizing device activation force without removing support for resting hands, and
distributing tasks evenly over muscles in both hands. Based upon my daily use of a
prototype to prepare this document, I have found that the MTS system as a whole
is nearly as reliable, much more efficient, and much less fatiguing than the typical

mouse-keyboard combination.
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Chapter 1

INTRODUCTION

1.1 The State of Hand-Computer Interaction in 1998
In the first paper to formally demonstrate the advantages of two-handed
graphical manipulation, e.g. scrolling with one hand while pointing with the other,

Buxton and Myers [23] lament:

To date, very few computer systems easily lend themselves to experi-
mentation with the types of interaction described in this paper.

Twelve years later, further research [62,86,171] has verified the efficiency and in-
tuitiveness of simultaneous two-handed manipulation and high degree-of-freedom
(DOF) controls. Manually demanding tasks such as web browsing and computer-
aided- design (CAD) have also become ubiquitous, but the requisite input devices
have yet to appear on the personal computer market. As Leganchuk et al. [90] point

out,

One reason for this may be the difficulty in equipping systems with
inexpensive and available input devices capable of capturing bimanual
input.
Enthusiastic investigation of gesture recognition via alternative input devices has
also lulled since pen computing, data gloves, and ergonomic keyboards failed to
blossom in the early 1990s. Hope for improvement in human-computer interaction
has shifted to speech recognition, but speech is clearly inappropriate for precise

manipulation of graphics. Computer manufacturers seem to have concluded that



the combination of a keyboard and a two-dimensional pointing device, e.g. mouse
or touchpad, cannot be outdone in terms of overall practicality. This dissertation
will challenge the status quo with an ergonomic, economical, manual input device
which achieves the anticipated performance gains of two-handed gestural interaction,
yet is practical enough to replace mice and keyboards in general computer use.

In currently popular graphical user interfaces, most computer users rely heav-
ily upon the mouse to avoid memorizing keyboard commands or non-sensical hot-
key sequences. These interfaces are very easy to learn because all possible actions
are clearly displayed as buttons or other visual controls and accessible with sim-
ple mouse clicks, but this likeable reduction in cognitive load amplifies demands on
the hand and breaks the train of thought in other ways. Even the simple task of
web browsing may involve a cumbersome sequence of clicking on page links, moving
the mouse pointer to distant scrollbar controls, clumsily manipulating the scrollbar,
then moving the pointer back to newly uncovered links. The homing distance be-
tween keyboard and mouse may also discourage users from moving hands back to
the keys for highly efficient keyboard methods. Once at the keyboard, however, the
hands face further danger. Unless the keyboard is a truly ergonomic model, stiff
keys, ulnar deviation and forearm pronation exacerbate the risk of carpal tunnel
syndrome and other painful repetitive strain injuries (RSI).

In the past few years, the growth of the Internet has accelerated the pene-
tration of computers into our daily work and lifestyles. The shear amount of time
students spend browsing the web, writing papers, sending e-mail, and playing com-
puter games turns the annoying inefficiencies and poor ergonomic habits cited above
into a rash of crippling illnesses [132]. In 1997, over 100 students at Harvard Uni-
versity requested assistance because of RSI, compared to 1 in 1991. Over 200 cases
were diagnosed at the MIT Student Health Center, up 44% from 1995. This author,
too, has struggled throughout graduate school with tendonitis brought on by the



volume of computer programming for this and other projects. RSI disproportion-
ately affects high achievers because of the intensity with which they work. Nature is
imposing a strange limitation on the best minds of the Internet Generation, which
says, “the harder you work on glorious new technology, the longer it will take your
bodies to recover from the pain.”

The inadequacies of the mouse-keyboard interface may also hinder the qual-
ity of artistic projects in which computers are the primary tool. Granting that
computers enable amazing new audio and visual effects, clumsy interfaces also en-
sure the artist remains engrossed in the workings of the computer rather than in
the artistic vision. Pianos and paintbrushes do not contain artificial intelligences to
anticipate the intentions of the artist, yet they provide a subtlety and richness of
control which allow nuance to flow from the artist effortlessly. Once a pianist has
technically mastered a piece, he or she concentrates during performance on perfect-
ing the musical phrasing, which the hands can modulate subconsciously. I easily
experiences such oneness with the piano, but never with the computer, because I
cannot sustain subconscious mastery of the interface.

My academic advisor, Prof. John Elias, and I began the present work when
we realized that the conventional mechanical keyboard, for all of its strengths, is
physically incompatible with the rich graphical manipulation demands of modern
software. Single or dual-finger devices such as pointing sticks and touchpads embed-
ded in the keyboard overuse one finger and cannot match the versatility of whole
hand manipulation. Most operators will not adopt a drawing tablet with stylus or
puck [90] or other bimanual manipulation methods as long as frequent movements
back to the keyboard are necessary. Speech recognition reduces dependence on the
keyboard in some situations, but total reliance on speech for text and command
input can strain the voice and annoy co-workers. Progress appears to be stymied

by a Catch 22 in which typing cannot be eliminated, yet gesture capable devices



cannot thrive in the same physical space as the keyboard.

This dissertation attempts a compromise by developing touch typing and
whole hand manipulations for a keyless, multi-touch-sensitive, smooth surface. The
compromise hinges upon the hypothesis that since typing movements are essentially
ballistic and do not carry the subtlety of musical keyboarding, the lack of tactile
reference from mechanical keys can be compensated by other means. Though per-
fection of these means will be left to future work, they can include depressions of the
surface around home row, forming a raised dot at the center of each key, tracking
hand drift over the key layout using the redundancy of English, and issuing sounds
to indicate when a surface tap has been recognized as a keypress. Giving up me-
chanical keys provides clear ergonomic and economic benefits, as well as allowing
detection of all fingers as they slide smoothly across the surface.

By replacing the keyboard with a multi-touch-sensitive surface (MTS) and
recognizing hand motions as described in this dissertation, hand-computer interac-
tion can be dramatically transfigured. Scrolling and panning need no longer inter-
rupt the primary task, but can be accomplished with a slide of the fingers on the
non-dominant hand akin to flipping the corner of a page. Browser back and forward
no longer require a trip to the buttonbar, but become a speedier version of the
scrolling gesture. Cut, copy, and paste become quick pinch gestures. Object sizing
and rotation in drawing programs no longer requires menu access, but becomes in-
tegral with dragging by a simple contraction of the fingers or rotation of the wrist.
Handwriting mode can be indicated by forming a pen grip with or without stylus, so
the operator does not have to constantly pick up and put down the stylus to type.
Because nearly all activity can be distinguished by relative position or velocity, a
skilled operator seldom need look at the surface.

Though operators may need a couple days to get used to the different “feel”

of interacting with a smooth surface, just as drivers must get used to the different



responsiveness of the controls on a new car, basic typing and pointing skills transfer
from conventional keyboards and touchpads to the surface. Novices can hunt and
peck on the warped QWERTY key layout printed on the sensing surface. For touch
typing, users must learn to hold the hands fairly steady over the key layout and rest
them on the surface during lulls in typing. They also must try not to grossly over-
shoot key rows. To attain the performance gains of instantaneous mode switching,
a few sensible finger chord gestures must be memorized, but this is not nearly as
difficult as learning a chord keyboard typing scheme. And while the elimination of
key activation force makes the ergonomics of the surface exceptional, users should
still take rest breaks and vary their posture to prevent minute inflammations from

accumulating into long-term injuries.

1.2 Summary of Final Device Operation

Obtaining basic keyboard and mouse functionality from the MTS should be
easier than operating a keyboard and mouse, but is necessarily somewhat differ-
ent. Only the more advanced functionality such as text cursor manipulation and
command gestures, which conventional pointing devices cannot support, requires
substantial learning or adaption on the user’s part. Therefore it is assumed in the
following that only the functionality necessary for an application and on par with

the user’s skill level will be enabled at a given time.

1.2.1 Typing
Though development of typing recognition software is not yet complete, the

MTS strives to support both touch and hunt and peck styles of typing.

1.2.1.1 Default Key Layout
A default QWERTY key layout (Figure 1.1) is printed on the MTS with

key columns morphed to fit an average hand. The layout is pre-morphed because
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without indentations to force the fingers onto a straight home row, the fingertips will
naturally fall along an arc. Future versions of the M'TS may include indentations
or depressions for the home row keys and raised dots at the centers of other keys.
The alphabetic number and shift keys are all in their standard relative locations.
However, function and editing keys are rearranged (as is often done in laptops) to
reduce long-distance hand excursions. Space is placed under the right thumb and
backspace under the left, so people who are used to spacing with either thumb will
need to adjust. Enter and delete are accessed by extending the right and left thumbs,
respectively, as on the Kinesis [29] key layout. The function keys are arranged in
a pie [67,85,135,145] at the center of the board where they can be reached easily
and invoked with properly angled finger flicks. Arrow and page keys can also be

arranged in pies if they are not assigned to chord gestures.

1.2.1.2 Key Activation

The keys are not mechanical in the sense that they do not give when pressed.
They are simply areas of the hard surface which are sensitive to quick, light taps
by the finger. Thus a key is activated only when a finger touches the surface near
a symbol and lifts back off the surface within half a second. If the finger arrives
synchronously with other fingers from the same hand or slides around on the surface
too much, then the keypress signal will not be generated. This allows the whole hand
to rest on the surface and lift off without invoking any action. An auto-repeat or
typematic mode for sending identical keypresses is invoked by holding a single finger
on a symbol for at least one second while all other fingers are lifted. The repeat

rate can be controlled by finger pressure to prevent overshoot at high rates.

1.2.2 Chordic Manipulations
For editing commands and manipulation of graphics the MTS recognizes a

variety of chordic manipulations. Chordic manipulations are performed by placing a



combination of fingers on the surface at the same time and then sliding these fingers
across the surface. The thumb-fingertip combination selects one of the manipulation
or command channels shown in Table 1.1. Within each channel, the operator can

perform:

e a chord tap by quickly lifting all the fingers off the surface after they touch.

e a hand translation, sliding all the touching fingers in the same direction across

the surface at the same speed.

e a hand rotation as if turning a jar lid or screw between the thumb and finger-

tips.

e a hand scaling which pinches the thumb and fingertips together or flicks them

apart.

Table 1.2 describes icons for all these chord motions that the MTS recognizes. Ta-
bles 6.1 and 1.4 show the most basic mappings between motion channels and com-
mand events. Additional mappings for the left hand are shown in Tables 6.2 and 6.4
of Chapter 6. An operator would start learning the mappings from a quick-reference
card fashioned after these tables. These simple chord motions should quickly become

automatic with use.

1.2.2.1 Pointing

Moving the mouse pointer on the MTS is just like moving it on a touchpad
except two adjacent figures excluding the thumb must initially contact the surface,
rather than a single finger. After the two-finger chord is initialized, i.e., after half
a second, all but one finger can be lifted or the rest can drop to the surface while
cursor positioning continues. Once all five fingers are on the surface the hand can
be contracted to move in a third axis. Since the finger movements are averaged,

stopping all but one finger can cut the sensitivity to one fifth for very fine positioning.



Table 1.1: Legend for finger combination/channel icons.
‘ Channel Icon ‘ Finger Combination ‘

°* Any 2 fingertips (ex-
cluding thumb).
°°* Any 3 fingertips (ex-
cluding thumb).
ot All 4 fingertips (ex-
cluding thumb).
’ Thumb and any finger-
\ tip.
°* Thumb and any 2 fin-
A gertips.
°°t Thumb and any 3 fin-
\ gertips.
oot Thumb and all 4 fin-
A gertips.




Table 1.2: Legend for chord motion icons.

‘ Motion Icon ‘ Type of Chord Motion

.

Brief tap on surface (one-
shot).

+

Translation (slide) in any
direction.

Reversible translation up
or down.

Reversible translation left
or right.

Reversible up or down
translation, irreversible
right translation.

Translation in a particu-
lar direction (one-shot).

AN

Contractive hand scaling
(one-shot).

A 2

AN

Expansive hand scaling
(one-shot).

Clockwise hand rotation
(one-shot).

O

Counter-clockwise hand
rotation (one-shot).
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Tapping these two fingers simultaneously on the surface produces a primary mouse

click.

1.2.2.2 Dragging

On touchpads, tap-drag and double-tapping are rather clumsy operations.
On the MTS, primary double-clicks can be sent by tapping a three fingertip chord
just once. Primary dragging is invoked by sliding a three finger chord without the
awkward preceding tap of touchpads. Objects can also be resized or rotated during
drags by dropping the remaining thumb and finger to the surface and contracting or
rotating the hand. On computers which utilize a secondary mouse button, secondary

button clicks and drags can be generated from the thumb+two-fingertip channel.

1.2.2.3 Scrolling

Scrolling is initiated by a 4-finger chord, preferably on the hand opposite
the pointing hand. Again, by dropping the thumb to the surface, scrolling can be
expanded into zooming or rotating the window background. Autoscroll (scrolling
momentum) is easily invoked by sliding the four fingers and lifting off the surface in
a continuous motion, without decelerating. Browser back and forward is a further
variation of the four finger chord consisting of very quick, sliding taps to the left
or right. In a graphical user interface (GUI) with a three-dimensional desktop, the
thumb—+three-fingertip channel could be used to pan and zoom the entire desktop

or screen area, rather than a single window background.

1.2.2.4 Text Editing

In text editing or word processing contexts, the chord assignments are split
among hands such that the right hand chord controls a mouse cursor operation while
the left hand chord controls the corresponding text cursor operation. For example,

the right hand two finger chord would move the mouse cursor while the left hand
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Table 1.3: Mappings for right hand manipulation channels.

Right
Hand Chord GUI
Channel | Motion Action
@ Primary mouse button
click.
°o®
+ Mouse cursor manipula-
tion.
P X
@ Primary mouse button
double-click.
P X
ﬁvt» Dragging/Selection  via
primary mouse button.
000
@ No mapping to avoid ac-
cidents.
0o e Continuous
+ scrolling /panning of
current window.
000
@, |
ey layout homing.
oo No mapping to tolerate
\ + shifts in resting hand pos-
ture.

12



two finger chord moves the text cursor with the arrow keys. Similarly, the right
three fingers would select with the mouse, and the left three with the text cursor
via <shift> arrow keys. The left four finger chord would control the scrollbar while

the right four finger chord emulated the page keys.

1.2.2.5 Menu Commands such as Cut, Copy and Paste

Even after all this, some room remains in the chord space for common menu
commands. Setting the thumb and forefinger down apart and then pinching them
together intuitively invokes cut. Copy becomes a simple, simultaneous tap of the
thumb and a fingertip. Setting thumb and forefinger down together and flicking them
apart invokes paste. A clockwise rotation as if turning a screw saves the current
file, and a counter-clockwise rotation pops up the open file dialog. Additional menu

commands could be invoked on future systems with handwriting gestures.

1.3 Hardware Summary
All experiments in this dissertation are conducted on a MTS prototype con-

sisting of separate processor and sensor circuit boards.

1.3.1 Sensing Hardware

The MTS prototype has approximately the same footprint as an enhanced
IBM PC AT keyboard. Thus it is the first multi-touch device with a sensing area
wide enough (20 cm x 40 cm) for simultaneous use by both hands. An ergonomic
arch across the middle of the surface tilts the hands sideways about 15°, reducing
forearm pronation and ensuring whole hand resting is comfortable. The active
sensing area is divided into 1600 electrode plates (see Figure 2.4 on Page 41). For
electrical insulation and low friction, the electrodes are typically covered by a .1 mm

thick polymer sheet.
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Table 1.4: Mappings for right hand command gesture channels.

Right
Hand Chord GUI
Channel | Motion Action
‘ |
\ 7 ™ | Cut (to clipboard).
\ @ Copy (to clipboard).
. }

\ # X\ | Paste (from clipboard).

°* Secondary mouse button
\ @ click (popup menu).

°* + Dragging/Selection  via
\ secondary mouse button.
\ @ Popup application win-

dow list.

‘ Browser Back.

o r—
. | New file.

ot '
A o Open file dialog.

o060 +
. 7N Save the current file.
\ /*\ Close the current file or

subwindow.
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The proximity sensors measure the electrode self-capacitance, or capacitance
from electrode to ground. This self-capacitance changes when a grounded con-
ductive object approaches the electrode and concentrates electric field lines. Note
that some touchpads sense mutual-capacitance between electrodes, rather than self-
capacitance, by measuring how a synchronous frequency couples from a drive elec-
trode to an overlapping sense electrode. The processor scans all electrodes every 20
ms, producing a 50 frames per second (fps) stream of prozimity images.

With suitable array segmentation and interpolation as described in Chap-
ter 3, the centroid resolution for finger-sized objects contacting the surface is about
.2 mm in the x direction (width), and .5 mm in the y direction (height). Objects
separated by as little as 6 mm in the x direction and 12 mm in the y direction can
be distinguished. As objects rise off the surface, position accuracy and distinguisha-
bility degrade until 2 millimeters above the surface, whence small objects become
undetectable.

Note that the MTS’s novel sensor technology is uniquely immune to parasitic
capacitances and can therefore be scaled to very large dimensions without degrading
the signal-to-noise ratio. The sensor technology is also compatible with very low cost
thin-film manufacturing techniques. This means that in high production volumes,
MTSs could become as cheap as conventional keyboards. If applied to a flexible
substrate, the sensor technology would also be suitable for handheld, portable, and

wearable computers.

1.3.2 Signal Processing Hardware

The processor boards contains a digital signal processor (DSP), static RAM
and FLASH memory, scanning state machine, and communication ports. A 60 MHz
Texas Instruments TMS320C32 floating point DSP is responsible for all scanning,
filtering, recognition, and communication algorithms. With 60 MFLOPS peak float-

ing point performance, this DSP is well-matched to the computational demands of
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the algorithms developed in this dissertation. By 1999 standards, 60 MFLOPS is
moderate performance available in quantities for less than $10 per processor. The

DSP is responsible for:

controlling the sensor array scan.
e forming and filtering the scanned proximity images.

e segmenting the proximity images into groups of pixels distinguishable as flesh

contacts.
e tracking motion of each flesh contact across the stream of images.

e identifying which part of which hand, i.e., fingertip, thumb, or palm, causes

each flesh contact.
e extracting hand motions from the contacts identified as fingers.

e generating keyboard and mouse events for the host computer in response to

motions of particular finger combinations.

These steps are also summarized by the MTS block diagram in Figure 1.2.

One megabyte of lash EEPROM stores the program and multiple user con-
figurations on board. Two 10 kbps PS/2 ports are available for emulating IBM PC
keyboards and mice. With PS/2 converter boxes available from Kinesis Corp. [29],
mouse and keyboard emulation for Sun workstations and Macintosh computers is
also supported. A 1.2kbps RS-232C serial mouse port is included for interfacing to
older PCs. A 115kbps RS-232C serial port can exchange configuration and finger
tracking information with any host computer capable of running a Java 1.1 MTS

monitor application.
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Figure 1.2: Overall block diagram of the MTS hardware and software modules.
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1.4 Summary of Contributions

The work described in this dissertation breaks ground in the following areas:
e segmentation of surface contacts in proximity images.

e identification of thumb, fingertip, and palm contacts tracked across successive

images.

e translation-invariant sorting of contact points with respect to the inter-attractor

angles of an attractor point template.
e partitioning of contacts into left and right hand clusters.

e extraction of independent, 4-DOF velocity parameters from multiple finger

paths.

e integration of typing and pointing on the same surface via the distinction

between simultaneous and asynchronous finger touchdown.

While this is not the first implementation of a multi-touch device [15,17,88,89,107],
it is the first to fully develop the unique integration potential of such a system. I
have encountered and overcome many problems unique to proximity sensing along
the way.

Though proximity image segmentation is simplified by the fact that proxim-
ity images lack the background clutter and lighting variations which plague optical
images, the topology of proximity images also presents special challenges which
have not been addressed in previous image processing research. The most difficult
of these is the invisibility of hand parts which float above the surface. Also, the
low resolution of the proximity sensing array compared to video cameras obscures
boundaries between adjacent contacts. The conflicting segmentation needs of fin-

gertips, thumbs, and palms are effectively resolved via feedback of bootstrapped
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hand position estimates. Though the segmentation rules developed for the MTS
are somewhat ad hoc, any segmentation system will need to utilize the anatomical
constraints identified here to overcome proximity image ambiguities.

Correct identification of hand parts from proximity sensing information alone
has not been attempted before, apparently because previous researchers of multi-
touch devices [130] did not consider it possible. Nevertheless, distinguishing palm
contacts from finger contacts on a large M'TS is imperative for the motion recognition
algorithms to ignore palm motions and allow palms to rest on the surface. While
distinguishing fingers from one another is not always necessary or entirely feasible,
reliably distinguishing the thumb contact from the other fingers on a hand doubles
the number of finger chords which can be recognized compared to just counting those
fingers which touch the surface. Identifying the thumb and maintaining a consistent
order for other finger contacts also aids extraction of hand motion parameters.

Finding the minimum cost one-to-one assignment of surface contacts to a
ring of attractor points is shown to be an elegant solution to the finger identifica-
tion problem. Each attractor point represents the identity of one hand part such as
fingertip, thumb or palm. The attractor points are placed in a ring at default finger
locations to capture the shape of a relaxed hand. Translating each hand’s attractor
ring by a conservative hand position estimate helps stabilize identifications of hand
parts which temporarily lift off the surface. An illuminating property of such attrac-
tor rings is also proved. If the assignment cost is composed of the sum of squared
distances between contacts and their assigned attractor points, the identities of any
pair of contacts will not be erroneously swapped unless the vector angle between
the two contacts differs from the angle between the pair of attractor points by more
than 90°, regardless of whether the attractor ring is properly centered on the hand.
This property specifies for a given set of inter-attractor angles exactly how much

finger pair rotation will be tolerated before identities are erroneously swapped, and
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it also captures in a manner independent of hand translation and size the biome-
chanical constraint that fingers tend not to cross over one another. When extended
to more than two contacts, this property causes the assignment algorithm to sort
the contacts with respect to the attractor ring angles and orderings, again regardless
of whether the attractor ring is aligned with the hand. A fuzzy thumb classification
routine verifies thumb presence with tests of inter-contact angles, separations, and
velocities which are not easily incorporated into the attractor framework.

Determining which hand causes each surface contact is also a challenge on
surfaces which do not prevent hands from sliding across the middle to the opposite
side of the surface. Again, a combinatorial optimization approach is employed which
relies on independent attractor rings for each hand. Since the number of hand
partition hypotheses to be considered is carefully limited to about a dozen, the
evaluation of each hypothesis can be quite extensive, incorporating the consistency
of finger identifications for each hand as well as several hand separation and velocity
constraints.

Even when position measurements are independent and unbiased, simultane-
ous placement of an object using more than two degrees of freedom can be difficult
for users [152]. As the user approaches the final position along the x and y axes,
spurious arm motions can disrupt the final z position, and vice versa. This prob-
lem is exacerbated on the MTS by finger motions during hand scaling, translation,
and rotation which do not cancel properly. When all five fingers flex on a surface
in a hand scaling manipulation, the sum of their velocities gives a net translation
toward the elbow. If hand scaling is to modulate a z-axis parameter at the same
time as hand translation controls x and y axes, the extracted scaling and transla-
tion parameters must somehow be made independent. Biomechanical observations
suggests that the thumb and pinky translations during finger flexion cancel. Fin-

ger velocity weightings carefully based on this and other considerations attempt to
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extract independent translation, scaling, and rotation components from sums and
differences of finger velocities. Dead zone filtering with dead zone widths dependent
on the distribution of motion component speeds removes the remaining interference
between motion components.

This research converges upon what is arguably the best possible way for
mouse functionality to coexist with typing on a surface. Asynchronous single finger
activity and the 5-finger chord are reserved for typing-related activities, requiring
graphical manipulation modes to begin with 2- to 4-finger chords. This is necessary
to prevent glancing keystrokes or resting hands from spuriously nudging the mouse
cursor. But as an enormous fringe benefit, switching between keyboard and mouse
only need involve lifting the fingers and putting them back down in a new chord
configuration, rather than hitting an explicit mode-switch button or moving between
specialized areas of the surface. To encourage operators to rest the weight of their
hands on the surface as much as possible, the chord selection state machine allows
all five fingers to drop onto the surface at any time during manipulation after a
finger subset has initially chosen the desired chord. New chord channels can also
be selected by synchronously raising and touching a subset of the fingers while the

others remain resting on the surface.

1.5 What is Not Covered

The proximity sensing and scanning hardware of the MTS was invented by
Prof. John Elias and will not be analyzed in this dissertation. However, some spec-
ifications for the MTS prototype used in this work (designed by Elias with sugges-
tions from myself), have been given in Section 1.3. Section 2.1.8 includes additional
explanation of the interleaved parallelogram electrodes composing the sensing ar-
ray. Further details of the proximity sensing and array scanning technologies are

disclosed in pending patents [159,162].
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The chordic manipulation gestures to be recognized in this work consist of
simple linear slides, rotations, and scalings involving multiple fingers. Much previ-
ous research has investigated recognition of complex paths or handwriting. With
suitable preprocessing, one of the finger chord or pen grip channels could easily
be output to an existing handwriting recognition engine such as IBM’s Pen for
0OS/2 [142]. Thus no attempt will be made to recognize complex paths in this work.
Though the pen grip hand configuration is briefly introduced, vertical smearing
by the prototype electrode array prevents the pinched fingers of this configuration
from being segmented reliably. Therefore the preprocessing of the pen grip images
necessary to feed them to a handwriting recognizer is not investigated here either.

This research bucks the trend toward machine learning in pattern recogni-
tion systems. This is justified by the fact that hand tracking and identification from
proximity images involve previously unexplored patterns, yet these problems easily
lend themselves to experimentation through the author’s own hands. Throughout
the development of the MTS, incorporation of additional biomechanical or anatomi-
cal observations into the algorithms has always been much more effective at reducing
recognition errors than parameter tweaking. Now that this research has identified
the constraints crucial to robust performance, future work can attempt to fit them
into a machine learning architecture for statistical optimization over a wide popu-
lation of MTS users. Since the attractor-based identification algorithm is by design
very tolerant of variations in hand size, only marginal performance gains are ex-
pected from optimizing or adapting it to various hand sizes. A more fruitful line of
inquiry would be extension of Rubine’s automated gesture recognition work [130] to
tolerate idiosyncrasies in hand motion patterns during chordic manipulation.

Though the MTS utilizes sophisticated typing recognition algorithms to find
the most likely character sequences in response to typing motions [158], these algo-

rithms have not yet been perfected and are not included in this dissertation. Only
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the finger synchronization detector which distinguishes typing motions from chordic
manipulations is covered.

Since the MTS prototype was only completed recently, there has not been
time to conduct formal user studies. However, I do include my testimonial and de-
tailed observations from using the M'TS as my primary graphics, text and command
entry device during preparation of this document. While this may not stand as a
formal scientific evaluation, anyone who has written a dissertation will appreciate
that it is remarkable for such a radical new input device to meet all the diverse and

intense interaction demands of dissertation editing by one who already suffers from

RSIL

1.6 On the Design of Ergonomic Input Devices

Repetitive strain injury (RSI) causes loss of tendon and muscle strength in
severe cases, but more universally it causes painful loss of endurance [117]. Strength
can usually be recovered in a few weeks with proper stretching and mild exercise, but
endurance can take months or years to recover [117]. Doctors tend to downplay the
impact of device design on these injuries, placing most of the blame on improper
use of devices, poor posture, and working continuously to meet deadlines. As in
any engineering field, radical new device designs can have unforeseen consequences.
One major source of unforeseen consequence in device design is shifting too much

workload to previously dormant muscles [117].

1.6.1 What is the Role of Ergonomic Device Design?

While I agree with Pascarelli [117] that poor user habits play a large role in
most RSI cases, I have found that after my bad habits were corrected, I could still
tolerate minimal activation force devices several times longer than medium or high-
force devices. This relationship has held for rollerball pens, optical mouse buttons,

capacitive touchpads, free-wheeling finger rollers, and low-force keyswitches. What

23



these minimal force devices have in common is that they allow my hand to remain
essentially relaxed during use. Note that unlike isometric pointing sticks [131], which
actually seem to cause me tension buildup, these minimal force devices do not try
to eliminate motion. Note also that endurance problems are often so severe that not
even zero-force devices allow work to continue indefinitely without painful relapse.
While my anecdotal evidence does not prove that minimal force devices similarly
benefit all users, it is certainly consistent with the RSI causation theories cited in
Appendix A.

In defense of those users with poor habits, the poor ergonomic design of
standard devices encourages people to compensate via awkward postures or excess
effort. For instance, to hold their hands on home row of a standard keyboard, people
often rotate their hands outward and hold their elbows away from the body, straining
their wrists and shoulders. Or when faced with a mouse button which is hard to
press, people will clench the mouse and apply several times the necessary force
to ensure that the button clicks. Conscientious users can learn proper techniques
which limit the risk of injury on plain keyboards and mice, but this takes a lot of
self-discipline [117].

Devices can be designed so that even the most recalcitrant users gravitate
toward proper postures and usage habits. For example, most people correct their
wrist posture instantaneously when they adopt a split keyboard [65,114]. As a
hypothetical example, a compliant touchpad surface might soften fingertip impact
but allow combative people to keep banging on the surface. If presented with a hard
touchpad surface, the painful jarring of hard taps would force the same people to
adopt a lighter, and ultimately healthier, touch. The problem shifts from getting
people to consciously learn and apply proper technique to simply getting them to
adopt and use a more ergonomic device.

Unfortunately, moderating work intensity and taking frequent rest breaks are
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very important preventive measures which the device designer can do little to en-
courage. Users may remain crouched all day at their terminals because of their own
compulsion, their bosses’ whips, Internet addiction, or other psychosocial factors.
Once injured, the RSI patients who cope best are those who have the most control
over their work schedules, so they can slow down whenever pain reappears [117].
The tendency for computers to suck up all allotted time also limits the actual ben-
efits of efficient devices. Clever devices may boost productivity or allow prolonged
activity, but if the effective amount of hand usage remains the same, RSI patients

will remain at the edge of their bodies’ tolerances.

1.6.2 Ergonomic Design Objectives

The following ergonomic design objectives have been formulated based upon
the ergonomics research reviewed in Appendix A, recommendations gathered from
doctors, and my own experience using many competing input devices and meth-
ods. Though typical methods for meeting these objectives are given here, their

justification is left for Appendix A.

1.6.2.1 Minimize device activation force

Muscular effort is believed to be a major factor in RSI, but most input device
designs do not try to minimize it. Though low-force mechanical mouse buttons and
keyswitches reduce tension and fatigue somewhat, the most dramatic benefits come

from zero-force capacitive or optical sensors.

1.6.2.2 Minimize repetitive action of the same muscles
Otherwise known as the art of distributing workload across body and time.

I have encountered four general ways to avoid overuse of any particular muscle:

customize software to automate redundant tasks Effective methods in-
clude aliases for long text commands, command-line histories,
word completion, clever GUI design, writing scripts for frequent
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batch tasks, and macro recording and playback of repetitive
mouse sequences.

reduce homing motions If excessive, motions between devices or surface re-
gions become annoying and discourage the user from switching
to the most appropriate device for a task. Modes can be more
efficiently indicated with hand or finger configuration.

support high-level gestures A complex sequence of low-level device actions
can often be expressed in one continuous motion if a device has
alternative manipulation channels available.

alternate muscle or limb usage At the hand level this entails employing
various fingers or finger combinations alternately, rather than
the same finger all the time. At the body level, the feet are
appropriate for mode-switching, the vocal cords for text input,
and the eyes for indicating the focus of attention. A worthy de-
vice must be either highly compatible with fellow devices which
employ complementary muscle groups, or it must be a universal
device which draws upon most limb muscles evenly.

1.6.2.3 Encourage neutral postures

The design space for comfortable keyboard, mouse, and trackball shapes
has been explored aggressively. At the truly beneficial end of the spectrum, split
keyboards offer quick relief for mild wrist pain, while thumb-operated trackballs can
quickly cause DeQuervain’s syndrome [117] if used for heavy mouse work such as
drafting. Devices should not discriminate against left-handed users. Flat surfaces
are literally the most neutral because they make no assumptions about hand size or

shape.

1.6.2.4 Allow variation of posture

Not even neutral postures should be held forever, as fancy device shapes en-
courage. Changes in posture rejuvenate blood flow and shift loads to different mus-
cles. Plain surfaces have the advantage here because they can be flexible, portable,

and operated from a variety of hand positions.
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1.6.2.5 Minimize user anticipation

Rather than taking healthy micro-breaks, users may remain tense while ex-
pecting a response from the computer. Lags in visual feedback as small as 75 ms
during direct manipulation can reduce pointing performance [64,99]. Open-loop,
high-level control gestures make the user less dependent on intermediate computer

responses.

1.6.2.6 Do not discourage rest breaks

Software is available to remind people to take a break after a certain amount
of time or a certain number of keystrokes. All the device designer can do is avoid
wires or gloves attached to the body which might discourage people from regularly

leaving their workstations.

1.6.3 Can so many ergonomic objectives be met at once?

The healthiest existing devices address these criteria only piecemeal. For
example, the concave-keywell keyboard from Kinesis Corp. [44] encourages neutral
postures and distributes workload according to finger strength, but it does not elim-
inate key activation force or allow posture variability. Touchpads from Cirque [51]
and Synaptics [143] eliminate device activation force but overuse one or two fingers
with inefficient, low-level mouse operations. Tablets with styli support high-level
gestures and handwriting, but the stylus can also be an encumbrance which is in-
compatible with simultaneous keyboard use.

With a zero-activation-force surface at the foundation and abundant finger
chords to distribute effort and support gestures, this dissertation aims to demon-

strate that all of these ergonomic objectives can be addressed simultaneously.
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1.7 Outline

Organization of the dissertation roughly follows the MTS block diagram of
Figure 1.2 on Page 17, with the exception that the typing recognizer and pen grip
detector will not be covered in full, nor will implementation details of the electrode
scanning hardware or host computer interface.

Chapter 2, Proximity Image Formation and Topology, begins with a review
of related hand motion sensing technologies such as data gloves, video cameras, and
touchpads. It then describes calibration of the proximity sensors for the MTS and
proximity image formation. Chapter 2 concludes with examples of several important
hand configurations captured by the prototype sensor array and points out the
topological characteristics unique to such proximity images.

Chapter 3, Hand Contact Segmentation and Path Tracking, presents the
anatomical constraints and segmentation rules necessary to separate different parts
of the hand in proximity images. The discussion also covers feature extraction for
segmented contacts. After explaining segmentation results for a variety of hand
configurations, methods for tracking contacts across successive proximity images
are discussed, including techniques to reliably detect finger touchdown and liftoff.

Chapter 4, Finger Identification and Hand Position Estimation, begins with
a review of hand gesture recognition techniques. The chapter then introduces com-
binatorial optimization algorithms which successfully identify the hand and finger
which cause each surface contact. A conservative hand position estimation algorithm
helps to stabilize the identifications.

Chapter 5, Chordic Manipulation, reviews the advantages of bimanual and
high-DOF manipulation and explains how they are achieved on the MTS. A finger
synchronization detector distinguishes asynchronous taps intended as typing from
synchronous finger chord motions intended as pointing or gesture commands. Care-

fully weighting the velocities of particular fingers ensures that velocity components
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extracted from hand translations, rotations, and scalings remain independent.

Chapter 6, Future Directions and Conclusions, presents the author’s personal
testimonial after using the first fully functioning M'TS prototype for three months
to prepare this document. This testimonial underscores issues which deserve formal
evaluation by user studies and offers suggestions for future MTS enhancements.
Chapter 6 concludes with an outline of how software applications and operating
systems should be modified to take full advantage of bimanual, 4-DOF input such
as the MTS provides.

Appendix A, Ergonomics for Engineers, reviews physiological and epidemio-
logical evidence of how poor or fixed posture, activation force magnitude, repetition,
and lack of rest periods conspire to cause RSI. It includes issues which have pre-
viously arisen in the design of ergonomic keyboards, and is intended for engineers
faced with input device design who wish to understand the reasoning behind the
ergonomic principles of Section 1.6.

Appendix B contains non-linear interpolation techniques for diminishing the
vertical biases from interleaved parallelogram electrodes.

Appendix C explains the convergence problems encountered when applying

bubble sort to the attractor ring assignment problem.

29



Chapter 2

PROXIMITY IMAGE FORMATION AND TOPOLOGY

Limited hand and finger tracking experiments have previously been con-
ducted with a variety of sensing technologies. This chapter begins with a review of
these sensing technologies and explains why proximity sensing arrays are particularly
well-suited for everyday applications of hand tracking. Then the chapter discusses
proximity image pre-processing such as background object removal, sensor offset
adaptation, and electrical noise filtering. The chapter concludes with a sampling
of proximity images which illustrate the typical features and arrangements of hand
contacts. This hand topology section is particularly important to the understand-
ing of the contact segmentation and identification algorithms in Chapters 3 and 4,

which rely heavily on relative contact shape and position constraints.

2.1 Related Methods for Hand Motion Sensing

Hand position and motion can conceivably be detected with mechanical or
electromagnetic sensors attached to the hand, with remote optical or acoustical
sensors, or with proximity or pressure sensors mounted on an object in the user’s
environment. At first glance the attached sensor methods seem advantageous be-
cause they can capture three-dimensional hand activity in free space, unconstrained
by the physical form factor of an interfacing object. Data gloves and computer vi-
sion systems have been popular in virtual reality experiments for this reason. Such

systems are clearly appropriate for capturing the free-space hand gestures and sign
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language as they appear in communication between humans, but several factors

make them impractical for everyday human-computer interaction.

2.1.1 Free-Space Gestures

The first problem lies with holding or slowly adjusting hand position in free
space. The quick, relative motions of sign language may be easy to perform, but
holding the unsupported hands out in front of the body for extended periods is very
tiring [152,153]. In such postures fingertip positions are also somewhat unstable, so
considerably less precision is possible than when some part of the hand or arm rests
against a firm object. Also, it is very difficult for a computer to distinguish motions
intended to be instructions for the computer from postural adjustments or gestures
to co-workers. This is known as the gesture saliency problem. To appreciate the
difficulty of this problem, consider how often we humans mistakenly think someone
is gesturing at us when the gesture is actually intended for someone behind us or
no one at all. If the direction of gaze of the sender is not known, determining the

intended recipient of gestures is even more troublesome.

2.1.2 Data Gloves

Free-space motion sensing technologies have limitations as well. Though
DataGloves [148] can potentially capture the entire range of finger flexion and ex-
tension, in practice the flexion sensors are imprecise yet expensive and cumbersome
to wear. Furthermore, as a bodily attachment, gloves must often be removed when
the user resumes non-computer tasks. This is both a practical disadvantage and
an ergonomic disadvantage because it discourages users from taking rest breaks
and mixing in non-computer tasks which rely on other muscle groups. FakeSpace,
Inc. [36] markets pinch or chord gloves for virtual reality systems which detect con-
tact between electrically conducting fingertip pads rather than general flexion and

extension of the fingers. The lack of flexion sensors reduces cost, and consistent with
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the design philosophy of this dissertation, such physical fingertip contact turns out

to be more reliable and easier to learn than free-space finger motion gestures [60].

2.1.3 Video Gesture Recognition

Computer vision technologies avoid the encumbrance of wearing gloves but
cannot always infer fingertip location. Assuming decent lighting is available, much
of the luminosity information that a video camera supplies is unnecessary for finger
tracking, and must be filtered out with computationally intensive algorithms [115].
The body of the hand can occlude the fingertips at some camera and hand angles.
Occlusion and limited camera resolution also make it very difficult to determine

exactly when the fingers touch a surface.

2.1.4 Benefits of Surface Contact

Most importantly, the emphasis on hand tracking in three-dimensional free
space ignores the long history of manipulating hand tools and musical instruments
which provide rich haptic feedback as the tool is acquired. While economics may
preclude customizing the shapes of general-purpose input devices as much as hand
tools are customized, detection of contact with a physical surface provides, at the
bare minimum, a clear demarcation between motions on the surface that the com-
puter is intended to recognize and motions away from the surface that the computer
should ignore. Though individual finger activity on a surface is constrained to two-
and-a-half dimensions, Chapter 5 will demonstrate that extra degrees of freedom
can be extracted from rotational and scaling motions of multiple fingers on a sur-
face. For many applications the improved clarity of user intent and tactile feedback
that surface contact imparts will more than make up for the slight reduction in

movement freedom.
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2.1.5 Sensing Finger Presence

Technologies which have been applied to detecting finger or stylus contact
include resistive membranes, surface acoustic wave, active optics and finger capaci-
tance sensing (see Lee’s 1984 Master’s Thesis [88] for an early review). Most imple-
mentations are limited to unambiguous location of a single finger because they rely
on what Lee calls “projective” sensor matrices. In a projective matrix (Figure 2.1a),

one sensor element is allocated to each row and column at the edge of the active

a) b)

Figure 2.1: The two basic multi-touch proximity sensor arrangements. In a), “pro-
jective” row and column spanning sensors integrate across each row
and column electrode and only need connections at the edges of the
matrix. Touching fingertips can be counted by counting the maxima in
the column signals assuming the fingertips lie in a roughly horizontal
row unobstructed by thumb or palms. The square sensors in b) only
integrate over the local square. The exact locations of any number
of fingertip-sized contacts can be interpolated from the 2D array of
square sensors, but a connection matrix must be run underneath the
sensor array to connect the sensors to signal processing circuitry.

area. Finger presence anywhere along a row will register on that row’s sensor, so

that a finger affects roughly one row and one column sensor. While the total number
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of sensors needed is related to only the square root of the active area, multiple finger
contacts can confuse these systems [88]. As was true in 1984, the surface acoustic
wave and infrared touchscreens as well as capacitive touchpads on the market still
suffer from this limitation.

Some devices on the market partially utilize multiple fingers despite the am-
biguities of projective sensing. For example, touchpads manufactured by Logitech,
Inc. [15, 78] for laptop computers are able to detect the presence of up to three fin-
gertips. The patent to Bisset and Kasser [15] explains that this is done by assuming
the fingers lie in a row and counting the number of maxima in the column projec-
tion. However, as will be seen in Figures 2.2 and 2.3 below, this projection maxima
counting method becomes ambiguous for larger touch surfaces in which one hand
part can intersect the same column as another, such as when both fingers and palms
touch the sensing area or the hand rotates so fingers lie diagonally or in a column.

Figures 2.2 and 2.3 demonstrate the limitations of this projection approach
compared to the two-dimensional arrays of sensors (Figure 2.1b) to be discussed
in Section 2.1.7. Fingertip, thumb, and palm heel surface contacts are simulated
with two-dimensional Gaussians of varying widths on the 2D square grid. The grid
samples the Gaussians at 2.5 mm intervals such as would occur in a capacitive
sensing array with moderate spatial resolution. The darkness of the squares is
proportional to the finger capacitance or proximity sampled at the square. The
projective signals which would be measured from the row and column spanning
electrodes of Bisset and Kasser [15] are simulated by integrating over each row of
the 2D array to obtain the horizontal bar plots to the left of each grid and by
integrating over each column to obtain the vertical bar plots under each grid.

Figure 2.2 shows the projection sensing ambiguities which can occur when

the fingertip row is not horizontal, but lies diagonally instead due to various hand
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Figure 2.2: Projection sensor ambiguities for various diagonal arrangements of
fingertips. The different fingertip contact arrangements shown on the
square sensor grid in a)-c) all produce the same row and column pro-
jections (horizontal and vertical bar plots), preventing the projection
method from determining the hand rotation, though it can still count
the fingertip maxima. In d) the fingertips are so close together that
the projection minima between fingertips disappear, preventing fin-
gertip counting, though the diagonal minima are still discernable in
the square sensor grid.
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rotations. In Figure 2.2a-c four maxima appear in both the row and column pro-
jections (bar plots), indicating at least four objects are touching the surface, but
the projections are the same in each case even though the fingertip arrangements
(grid) differ. The same projections could be obtained from a 4 x 4 array of 16
fingertips also, though most human operators will not have that many fingertips. In
Figure 2.2d the fingertips are so close together in their diagonal row that the pro-
jection maxima merge, though local maxima are still clearly separated by diagonal
partial minima in the sampled 2D array.

Figure 2.3 shows how fingertip counting from projection sensors is occluded
by the presence of thumb and palms in a neutral hand position. In Figure 2.3a
four fingertips lie in a slight arc, producing four maxima in the column projections
and one in the row projection. Figure 2.3b includes the thumb in nearly the same
column as the index fingertip, causing an additional maximum in the row projection
(horizontal bars) only. The index fingertip is removed in Figure 2.3c; because the
thumb is still in the same columns, the number of projection maxima does not
change, though the amplitudes change somewhat. Because the amplitudes also
depend on how lightly each finger touches the surface, the change in projection
amplitudes cannot reliably resolve this ambiguity; the amplitude changes could also
be a result of a lightening in hand pressure. In Figure 2.3d the palms touch as
well, leaving three maxima in the row projection but causing the column projection
maxima to merge into just two. Therefore from the row projection one could surmise
that some palms, the thumb, and some fingertips are touching, but one can no
longer tell how many fingertips are touching because the palm column projections
get integrated with and obscure the fingertip column signals.

As Lee points out, measuring projections from additional angles such as di-

agonals can help disambiguate multiple contacts, as is done in tomography systems,
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Figure 2.3: Ambiguities in projective sensing caused by presence of the thumb and
palms in the same columns as fingertips. a) simply contains a slightly
arched row of fingertips producing four column projection maxima
(vertical bars at bottom) and one row projection maximum in the
horizontal bars. Adding a thumb contact in b) adds a row maximum
but not a column maximum because the thumb intersects nearly the
same columns as the index fingertip. Removing the index fingertip
in ¢) does not chance the number of projection maxima, meaning
fingertips cannot be counted reliably in the presence of the thumb.
Adding the palms in d) further obscures the fingertip row projection
maxima, which get merged with those of the palms.
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but details inside concave contacts will still be undetectable [88]. The number of un-
ambiguously locatable contacts is generally one less than the number of projection
angles utilized [88]. McAvinney’s “Sensor Frame” [107,108,129], an attachment to
the screen of a computer monitor which senses intersection of fingers with infrared
beams from four directions, utilizes this tomography approach to unambiguously

locate up to three fingers.

2.1.6 Tactile Imaging

This complex tomography approach can be avoided with a regular two-
dimensional array of individually addressable sensors (Figure 2.1b), in which each
sensor corresponds to a pixel in a “tactile image.” Layered resistive-membrane
pressure sensors can be constructed economically in this configuration, but their
substantial activation force is ergonomically inferior to zero-activation-force prox-
imity sensing. Another approach is to place a camera under a translucent tabletop
and image the shadow of the hands [81,110]. Unfortunately the bulky optics under
the table will limit portability and leg room, and such systems cannot differentiate
finger pressure [88]. Active optical imaging with an array of infrared transmitters
and receivers on the surface could easily detect finger proximity, but would be pro-

hibitively expensive and power consumptive.

2.1.7 Capacitance-Sensing Electrode Arrays

The remaining option is to measure the capacitance between the fingers and
an insulated array of metal electrodes. The presence of a finger effectively increases
the electrode capacitance to ground since the capacitance between the conductive
fingertip flesh and an electrode plate is typically a few pF but the capacitance of
the human body with respect to earth ground is relatively large (about 100pF) [88].
Since the capacitance between parallel plates drops quickly in inverse proportion

to the distance between the plates, this technique can only detect fingers within a
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few millimeters of the electrodes. Spatial resolution increases dramatically as the
fingers approach the electrodes. Precision of .2 mm can easily be obtained with 4
mm electrode spacings by computing a finger centroid, i.e., interpolating between
neighboring electrodes. The capacitive technique also indicates finger force up to a
couple Newtons because the effective capacitor area increases as the fingertip pulp
flattens against the surface [134]. While the limited proximity sensing range of
electrode arrays ensures fingertip proximity information is clear and uncluttered,
it also prevents detection of the finger joints and palms unless the whole hand is
flattened against the surface.

Lee built the first such array in 1984 with 7mm by 4mm metal electrodes
arranged in 32 rows and 64 columns. The “Fast Multiple-Touch-Sensitive Input
Device (FMTSID)” total active area measured 12”7 by 16”, with a .075mm Mylar
dielectric to insulate fingers from electrodes. Each electrode had one diode con-
nected to a row charging line and a second diode connected to a column discharging
line. Electrode capacitance changes were measured singly or in rectangular groups
by raising the voltage on one or more row lines, selectively charging the electrodes
in those rows, and then timing the discharge of selected columns to ground through
a discharge resistor. The principal disadvantage of Lee’s design was that the column
diode reverse bias capacitances allowed interference between electrodes in the same
column. Even with 2048 electrodes and suitable interpolation between electrodes,
the electrode spacing was probably too coarse to reproduce the fine mouse posi-
tioning achieved with current single-finger touchpads [46-48,50,51,111]. Though
its scanning rate depended irregularly on the number of and positions of surface
contacts, for ten fingers it would have only been able to achieve 1-5 fps, which is
much too slow for either typing or gesture applications.

Rubine [129, 130] reports seeing another multi-touch tablet demonstrated at
AT&T in 1988 by Robert Boie which could detect all ten fingers. It boasted a 30
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fps frame rate and resolution of 1 mil (.025 mm) in lateral position and 10 bits in
pressure. Possibly it measured sensor capacitance with the synchronous detection
technology in a 1995 patent by Boie et al. [17] that briefly mentions multi-touch

tablets as an application.

2.1.8 The MTS’s Parallelogram Electrode Array

The MTS contains a 16 x 96 electrode array (Figure 2.4) much like those
in the above multi-touch tablets. It employs a special wedge electrode geometry to
reduce the number of rows necessary by a factor of three without causing serious
non-uniformities in vertical position interpolation. This reduction in electrode count
speeds fabrication of research prototype arrays by lowering the discrete part count,
but would not necessarily be beneficial for volume manufacturing techniques.

Rectangular electrodes (Figure 2.5) like those used by Lee [88] are more
sensitive to vertical position changes near the top and bottom of the electrodes,
where it is possible to interpolate between two electrodes, than in the middle of an
electrode. If a finger is in the middle, the electrode is so tall that the electrodes
above and below do not register enough signal to get a reliable interpolation.

In contrast, the vertically interleaved parallelogram electrodes interpolate via
their physical geometry. The ratio of the horizontal cross-sections between electrodes
in a column varies continuously with vertical location of an object (Figure 2.6a-d)).
Though this improves uniformity of vertical interpolation compared to rectangular
electrodes of the similar height, it also has the effect of vertically smearing signals,
making it difficult to distinguish objects which appear in the same electrode column
less than one row spacing apart. For research prototyping purposes this is tolerable
because the fingers tend to lie in a row, no more than one per column. However,
once in awhile the thumb or pinky pass behind and intersect columns of the other
fingertips, becoming indistinguishable from the fingertip in front of them (see Sec-

tion 2.3.3). Also, as is discussed in Appendix B, vertical interpolation biases do arise
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a) b) C) d) e)

Figure 2.5: A 3 Xx 3 section a) of rectangular electrode array. Vertical interpolation
between top and bottom electrodes works in b)-c) but not in d)-e).

for small contacts which are not centered on or between columns of the parallelo-
gram electrode array. Thus a commercial product, especially one which attempts to
recognize a handwriting grip or stylus, would have to abandon the electrode count

savings of this scheme for traditional square electrodes and a smaller row spacing.

a b o d

Figure 2.6: Vertical interpolation on the parallelogram electrode array is uniform
in a)-d) since ratio of hatched cross sections on top and bottom elec-
trodes changes gradually.
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2.1.9 No Motion Blur on MTS

Another important characteristic of the MTS is that the sensing array multi-
plexes much of the integration, buffering and quantization circuitry. Therefore the
capacitance of each electrode is measured over a relatively short period of a few
hundred microseconds compared to the total array scanning period of ten to twenty
milliseconds. This contrasts with the CCD arrays typically used in video cameras
which integrate incoming photons at each pixel over most of the period between
readouts. An advantage of the MTS’s relatively short integration time is that M'T'S
proximity images do not exhibit motion blur. However, if the scanning rate is not
fast enough, quick finger taps over an electrode can occur entirely between mea-
surements of that electrode and be completely missed. When tapping key regions
during touch typing, fingers usually remain on the surface for at least 50 ms, but
the scan period must be somewhat smaller than this for reliable detection. During
the experiments conducted for this dissertation, the array scan frequency or frame
rate has been set to 50 fps (corresponding to a period of 20 ms), which ensures
that each finger tap shows up in at least one scan. However, at this rate the peak
finger pressure as the fingertip bottoms out onto the surface in the middle of the
tap cannot be measured accurately because the single scan detecting the tap might
occur near the beginning or end of the tap cycle when the finger is barely touching
the surface. Minor changes to the scanning hardware can easily push the frame rate
to 100 fps, which will allow peak finger pressure to be measured fairly accurately

even for extremely quick taps.

2.2 Tactile Image Formation and Background Removal
While designing a tactile sensor array for robotic fingertips nearly 20 years
ago, Danny Hillis [59] realized how much easier touch imaging is than computer

vision:
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. analyzing a tactile image is like analyzing a visual image with con-
trolled background, illumination, and point of view ... the properties
that we actually measure are very close, in kind, to the properties that
we wish to infer.

Comparing background segmentation techniques in vision-based and tactile hand

imaging systems will verify his insight.

2.2.1 Optical Image Segmentation

Ahmad’s real-time 3D hand tracker [3] segments the background by matching
image patches to known skin color histograms, but to keep up with frame rates (30
frames per second) it must limit the skin search region and adaptively subsample
the image. Finger positions are obtained by fitting ellipses to the segmented hand
patches. The total hand patch area weighted with a centered Gaussian roughly
indicates the distance between hand and camera. Ahmad also tries to recover finger
joint angles, information which data gloves give directly, by finding fingertips and
learning an inverse mapping from fingertip and palm position to intermediate joint
angle. This feature of the tracker becomes unstable due to fingertip detection failure
if the hand is not roughly normal to the camera.

The Digital Desk [154-157] is a system pioneered at Xerox for combining
interaction with paper and digital documents. The system contains both a computer
screen projector and zoomable cameras mounted high above the user’s desk. The
cameras both track hands and recognize text from paper documents lying on the
desk. Since the vision system cannot determine exactly when fingers actually touch
the desk surface, a microphone is placed under the desk to “hear” finger taps and
thus emulate mouse clicks. Crowley and Coutaz [30] consider color, correlation
tracking, principal components and active contours for following a pointing object
on a digital desk. In the correlation method, a previous image of a fingertip is

used as a reference template for correlations with the next image. The new finger
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position is indicated by the amount of template image shift which minimizes the
sum of squared differences between template and image. Again, the computational
costs of the correlation limit the template search region and thus the maximum

trackable finger speed.

2.2.2 Methods for Proximity Image Formation

Background segmentation of proximity images from electrode arrays is much
easier because extraneous objects are not expected to be visible in the background.
Paper or plastic left over the electrodes do not register on capacitive proximity
sensors, nor do small metal objects unless they are deliberately grounded. However,
spatial non-uniformities in the parasitic capacitances of discrete components and
signal lines may cause background measurements at each electrode to differ. Unlike
background signals caused by extraneous external objects, such background non-
uniformities are not expected to change over time. A local offset calibration or
adaptive thresholding scheme can cancel these fixed sensor disparities. Once these
sensor offsets are taken into account and electrical noise is filtered, the proximity
image can simply be thresholded to identify regions of fleshy contact. Note that
single-finger projective touchpads do utilize offset adaptation but do not have to
segment the image into fleshy contact regions; they simply compute a global centroid

from measurements of all row and column electrodes.

2.2.2.1 Binary Tree Scanning

Lee’s binary tree scanning algorithm [88] combines noise filtering and thresh-
olding in hardware by analog grouping and summation of electrode capacitance mea-
surements. The array is recursively subdivided into rectangular electrode groups of
decreasing size via bisection starting with the whole array. Thresholds are calibrated
during device initialization for each electrode group at each size, or level, in the re-

cursion. During subsequent scanning, subrectangles are scanned only if the parent
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rectangle’s threshold is exceeded. Once the recursion reaches a measurement which
passes threshold at the single electrode level, a finger position is computed as the
centroid of the recursed electrode capacitance and its eight neighboring electrode
capacitances. Advantages of Lee’s scheme are: not every electrode in the array need
be separately scanned each pass, and grouping of many electrodes at the beginning
of the scan tends to average out noise. The disadvantage is that small, light con-
tacts can be lost among the large electrode groups if the large group thresholds are

marginally too high.

2.2.2.2 Brute Array Scanning

Both digital and analog processing speeds have increased enough since Lee’s
prototype was built that the scanning overhead concerns have become negligible,
especially in light of the additional finger tracking and gesture recognition algorithms
which the MTS must execute. Keep in mind that though the number of discrete
components necessary for an electrode array may make it seem large, the number of
“pixels” is still small compared to even a low-resolution digital camera image. For
this reason, and to ensure even brief, light finger contacts are captured, the MTS
employs a brute force electrode scan to form a complete proximity image before

applying standard digital filtering techniques.

2.2.2.3 Sensor Offset Adaptation

Sensor offset calibration will fail during device initialization if the user’s hands
are already on the board. Since there may not be a time when the fingers are known
to be absent, the M'TS continuously updates each electrode offset with the minimum
of readings from that electrode. Suppose A;;[n] is the raw tactile proximity measured
from the electrode at row 7, column j during scan cycle n. Then the local offsets

O;; can be updated as:
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The offset-corrected image E is then:
Elj[n] = Az][n] - Oz][n] VZ,] t0<=1< Ewwsa 0 <:j < Ecolumns (22)

Since capacitance measurements always return to baseline when fingers are removed,
the offsets will correct themselves by decreasing as soon as fingers are lifted. The
danger of this method is that negative electrical noise spikes can cause inadvertent
lowering of the offsets. Local offsets which are too low lead to false positive proximity
indications, just as offsets which are too high cause finger contacts to be missed. The
MTS compromises by decreasing offsets only when at least three low proximities are
read consecutively and by allowing very slow recovery, over about a minute, should

an offset get lowered too far:
Oijln] = min(max(A;[n], Aij[n — 1], Aijln — 2]), (Oy[n — 1] + 5)) (2.3)

where the max operation provides immunity to single negative noise spikes and a
tiny 3 gives a slow recovery rate. Even with a tiny 3, hands which are left resting on
the board a few minutes will appear to fade. To prevent this, 3 is further decreased
for those electrodes which the system confidently identifies as underlying a fleshy
contact. These offsets quickly adapt to the minimum baseline capacitance so any
readings above the offsets can be modeled as the flesh proximity magnitude plus

minor Gaussian background noise.

2.2.2.4 Proximity Image Filtering

While Lee [88] electrically averaged the capacitances of entire rectangular
groups of electrodes to combat noise before threshold testing, the M'TS electrode
array is much less noisy than Lee’s device. Furthermore, to take full advantage of the
electrode array resolution, groups should conform to finger contact shape electrode
by electrode rather than be constrained to rectangular groups which poorly fit the

oval shape of most hand contacts. Therefore, the MTS only employs slight spatial
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diffusion of each offset-corrected image to combat electrical noise. Then it applies
significance threshold and local maximum tests to each diffused pixel to detect the

center of each hand contact, as further described in Chapter 3.

2.3 Topology of Hand Proximity Images

To illustrate typical properties of hand contacts as they appear in proximity
images, Figures 2.7-2.10 contain sample images captured by the prototype array
of parallelogram-shaped electrodes. Shading of each electrode darkens to indicate
heightened proximity signals as flesh gets closer to the surface, compresses against
the surface due to hand pressure, and overlaps the parallelogram more completely.
Notice that the proximity images are totally uncluttered by background objects;
unlike optical images, only conductive objects within a couple millimeters of the
surface show up at all. Background sensor offsets have already been removed from
each image, and background electrical noise levels are so low as to not be visible
with the given grayscale intensity map. Certain applications such as handwriting
recognition will clearly require finer electrode arrays than indicated by the electrode
size in these sample images. In the discussion that follows, the proximity data
measured at one electrode during a particular scan cycle constitutes one “pixel” of
the proximity image captured in that scan cycle.

In this section and the rest of this dissertation, the term “proximity” will
only be used in reference to the distance or pressure between a hand part and the
surface, not in reference to the distance between adjacent fingers. “Horizontal” and
“vertical” refer to x and y directional axes within the surface plane. Proximity
measurements are then interpreted as pressure in a z axis normal to the surface.
The direction “inner” means toward the thumb of a given hand, and the direction
“outer” means towards the pinky finger of a given hand. For the purposes of this
description, the thumb is considered a finger unless otherwise noted, but it does not

count as a fingertip. “Contact” is used as a general term for a hand part when it
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touches the surface and appears in the current proximity image, and for the group

and path data structures which will represent it in Chapter 3.

2.3.1 Flattened Hand Image Properties

Figure 2.7 shows a right hand flattened against the surface with fingers out-
stretched. This flattened hand image includes all of the hand parts which can touch
the surface from the bottom of one hand, but in many instances only a few of these
parts will be touching the surface, and the fingertips may roam widely in relation
to the palms as fingers are flexed and extended. At the far left is the oblong thumb
which tends to slant at about 120°.

The columnar blobs arranged in an arc across the top of the image are the
index finger, middle finger, ring finger and pinky finger. Since the fingers are fully
extended, the creases at finger joints cause slight undulations in proximity along
each column, though smearing by the parallelogram electrodes obscures this effect
somewhat. Flesh from the proximal finger joints, or proximal phalanges, appears as
the particularly intense undulations at the bottom of the index, middle, and ring
finger columns. Since the fingers are fully flattened, flesh from the forepalm calluses
is also visible as small clusters below the proximal phalanges, near the vertical level
of the thumb.

The inner and outer palm heels cause the pair of very large contacts across
the bottom of the image. These palm heels tend to be quite large, mildly oblong, and
oriented diagonally. Unless the center of the palm is intentionally pushed against the
surface, a large crease or proximity valley clearly separates the inner and outer palm
heels. Even though image resolution is fairly low, it is clear that the fleshy contacts
from different parts of the hand have subtly contrasting geometric properties. All the
hand contacts are roughly oval-shaped, but they differ in pressure, size, orientation,

eccentricity and spacing relative to one another.
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Figure 2.7: Offset-corrected proximity image of right hand flattened onto the sur-
face with fingers outstretched and all hand parts labeled.



2.3.2 Properties of Hands in the Neutral Posture

Figure 2.8 shows a proximity image for all fingers and palms of both hands
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Figure 2.8: Proximity image of both hands resting on the surface in their respective
neutral or default postures.

resting in what will be known hereafter as their default positions. Since these posi-
tions correspond to the most neutral hand and finger postures, with wrist straight
and fingers curled so fingernails are normal to the surface, gestures are most likely
to start from this hand configuration. Note that since fingers are curled, the proxi-
mal phalanges and forepalms are far above the surface and not visible. Because the
fingers are slightly spread in this neutral posture, all fleshy contacts are clearly sepa-
rated by at least one electrode at the background or zero proximity level. Since only
the tips rather than the lengths of the fingers are visible, the fingers appear much
shorter than in Figure 2.7, and would appear circular if not for vertical smearing

by the parallelogram electrodes. However, the finger widths remain fairly constant
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regardless of contact elongation. Also, the electrodes at the center of each finger-
tip do not appear as dark as the central thumb and palm heel electrodes because,
in this case, the fingertips contacts are not tall enough to fully overlap any of the
parallelograms, limiting the proximity signal regardless of their distance from the
surface. The palm heels appear somewhat shorter than in Figure 2.7 since only the
rear of the palm can touch the surface when fingers are flexed, but the separation
between the palm heels is unchanged.

The fact that the intermediate finger joints connecting fingertips to palms,
i.e., the lengths of the fingers, do not appear in this commonly occurring proximity
image has further consequences. While such lack of intermediate hand structure
simplifies determination of the fingertip centroid, it is also the main shortcoming of
capacitive proximity sensing in terms of hand gesture recognition. Reliably estab-
lishing finger or even hand identity when intervening hand structure is missing from
the proximity images poses the most challenging problem of the work described in

this dissertation. This challenge is the subject of Chapter 4.

2.3.3 Partially Closed Hand Image Properties

For a tracking system to support a wide range of hand gestures, it must
tolerate contact shapes and juxtapositions which vary from the default. The two
extremes to be considered in this work are the previously discussed flattened hand
and the partially closed hand shown in Figure 2.9. Here the thumb is pushed
directly behind the index finger, but vertical smearing by the wedge electrodes may
cause thumb and index finger to appear as a single unseparable contact. Unlike the
default hand posture in Figure 2.8, adjacent fingertips are so close together as to be
distinguishable only by slight proximity valleys or saddle points between them. At
the given horizontal electrode spacing, the saddle points between adjacent fingertips
may only be separated by a single column wide. Any segmentation algorithm must

use the partial minima in the horizontal direction to distinguish these fingertips. In
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Figure 2.9: Proximity image of a partially closed hand with fingertips squished
together.
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case the fingertip row is rotated, partial minima in diagonal directions must also be
detected. This conflicts with the segmentation needs of palms, which may contain
spurious partial minima due to minor variations in sensor gain or flesh proximity
across their large areas. All partial minima within palm contacts should be ignored

except the large crease between the palm heels.

2.3.4 Pen Grip Image Properties

Figure 2.10 is a proximity image of a right hand in a pen grip configuration,
which is particularly comfortable and dexterous for handwriting or freehand draw-
ing. The thumb and index fingertip are pinched together as if they were holding a
pen, but in this case they are touching the surface instead. Actually the thumb and
index finger appear the same here as in Figure 2.9. However, the middle, ring, and
pinky fingers are curled under as if making a fist, so the knuckles from the top of
the fingers actually touch the surface instead of the finger tips. The curling under
of the knuckles actually places them behind the pinched thumb and index finger-
tip, very close to the palm heels. The knuckles also appear larger than the curled
fingertips of Figure 2.9 but the same size as the flattened fingertips in Figure 2.7.
These differences in size and arrangement are sufficient to distinguish the pen grip
configuration from the closed and flattened hand configurations. Though the con-
tact segmentation and identification methods presented in this dissertation extend
to the pen grip configuration with minimal modification, a higher resolution sensor
array without vertically smearing parallelogram electrodes is needed to accurately

discern the pinched fingers.

2.3.5 Comfortable Ranges of Hand Motion
Given that the MTS prototype has the form factor of a standard computer
keyboard and is similarly placed on a desk, lap or workbench to operate from a

sitting or standing posture, the ranges of hand position and rotation expected during
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Figure 2.10: Proximity image of a hand with inner fingers pinched and outer
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fingers curled under towards the palm heels as if gripping a pen.
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normal operation are fairly limited. When only one hand is on the surface, its
maximum inward rotation can occur when it crosses to the opposite side of the
surface, as shown in Figure 2.11. This situation maximizes the inward rotation of

both the forearm about the elbow and the hand about the wrist. The maximum
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Figure 2.11: Proximity image of right hand at far left of sensing surface and
rotated counter-clockwise to its biomechanical limit.

clockwise or outward rotation occurs from the default hand position with forearm
parallel to the vertical surface axis, as shown for the right hand in Figure 2.12.
Further rotations are only possible through contortions of the whole body or if the
operator’s torso is not facing the apparatus.

When both hands are on the surface, hand position is even further limited by
the fact that operators are not expected to let the hands cross over or overlap one
another. Figure 2.13 shows the maximum leftward position of the right hand when
the left hand is in its default position. For some operations only part of a hand may

remain in the active sensing area, as shown for the row of right hand fingertips at
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the bottom middle of the surface in Figure 2.14. Though it is hard to imagine how
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Figure 2.14: Proximity image of left hand in default position and right hand moved
down so only fingertips remain in active sensing area.

this would be useful, the fingertips can also lie over the top of the active sensing

area as in Figure 2.15, so only the thumb and palms remain visible.

2.4 Conclusion

Capacitance-based proximity sensing has many advantages over other hand
motion sensing techniques. These advantages include precise detection of flesh con-
tact with a surface, zero-force activation, avoidance of mechanical encumbrances,
prevention of fingertip occlusion, and absence of background scene clutter. An ar-
ray of a few thousand electrodes is sufficient to detect and uniquely determine the
positions of any number of contacts from the undersides of both hands. Though
each electrode has a constant sensor offset which must be removed, a large M'TS

can have signal-to-noise ratios as high as its tiny touchpad cousins.
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Figure 2.15: Proximity image of left hand in default position and right hand moved
up so only thumb and palms remain in active sensing area.

The MTS offers a previously unexplored compromise between the rich tactile
and force feedback of a mechanical keyboard or joystick and the feedback void of
free space hand gestures. The proximity signals measured by the MTS correspond
almost exactly to the operator’s own sensations of engaging and sliding the hand
across the surface. Even though hand proximity images contain ambiguities due
to the lack of sharp edges between flesh contacts and the absence of intervening
hand structure, the results of Chapters 3 and 4 will show that these ambiguities
are surmountable. Ultimately such a unique, close correspondence between the
sensations of the operator and the proximity imaging system can support much

faster and more accurate gesture recognition than video-based systems.
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Chapter 3

HAND CONTACT SEGMENTATION AND PATH
TRACKING

This chapter and the following chapter describe the finger tracking and iden-
tification system of the MTS. In order to support resting or simultaneous chordic
manipulation by both hands, the tracking system must be quite sophisticated. As
the system diagram in Figure 3.1 shows, the overall system architecture resembles
that of most computer vision systems, including stages such as image segmenta-
tion, feature extraction, path tracking across images, and object recognition, or
in this case contact identification. However, the algorithms presented here have
been carefully chosen and adapted to meet the unique anatomical, biomechanical,
and topological constraints available at each stage. The modules are highly inter-
dependent: the accuracy of path tracking and identification hinges upon consistent,
carefully defined segmentations, and ambiguities which cannot be resolved within a
module can often be bootstrapped with the help of feedback from other modules. As
the feedback paths in Figure 3.1 indicate, the hand position estimates described in
Section 4.3 of the following chapter constitute the primary feedback between mod-
ules. Thus while this chapter will concentrate on the contact segmentation and path
tracking modules, the functioning of the system as a whole can only be understood
by study of both chapters.

The segmentation module is responsible for breaking up each proximity im-

age into groups of electrodes underlying identifiable portions of hand flesh. It then
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Figure 3.1: System-level diagram for hand and finger tracking and identification
modules.
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extracts geometric features from each group. The path tracking module links into
trajectories the groups from successive proximity images which correspond to the
same hand contact. It then computes the velocity along each hand contact tra-
jectory. Though path tracking is a well-known problem and not terribly difficult
for finger movements imaged at reasonable frame rates, the path tracking module
has the important responsibility of detecting when individual fingers touch down on
or lift off the surface. The hand identification module decides which hand causes
each surface contact, and the finger identification module assigns a unique thumb,
fingertip, or palm heel identity to each contact within a hand. Finally, the hand po-
sition estimator maintains a conservative estimate of overall hand and finger position

offsets relative to the default finger positions of Figure 2.8.

3.1 Notation and Major Variable Types

The mathematical notation is designed to consistently describe both the con-
ventional arrays which arise in low-level proximity image processing and the complex
data types and instantiations needed to organize a variety of high-level hand and fin-
ger parameters. Global scaling constants and thresholds are specified in subscripts
of K. There are four high-level object data types denoted by G for groups of elec-
trodes, P for contact paths or trajectories, F' for parts of the hand such as thumb,
fingers, or palms, and H for a hand as a whole. Particular parameters of these
structures are specified by names in subscripts, e.g., G, for a group’s x centroid
position. Parameters which are updated every scan cycle can include a bracketed
time index, such as P;[n], Py[n] for the time-filtered path centroid at scan cycle n.
Particular group or path object instantiations are distinguished by a numerical in-
dex immediately following the capital letter; e.g., Pl,;[n| < P2,.[n| compares the
horizontal velocities of two distinct paths. The index 0, e.g. GO, PO, F0 is reserved
for a null or default object instantiation with all measurement parameters set to

zero and feature parameters at their defaults of 0 or 1 as appropriate.
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3.2 Contact Segmentation

The objective of contact segmentation is to group those electrodes or pixels
which underly the same distinguishable hand part, i.e., the same finger or palm
heel, and then to represent each group to higher levels of the tracking system via
a compact parameterization. Though removing background objects from proximity
images is trivial because none are expected, accurately segmenting fleshy contacts

which are variously shaped and separated from one another remains challenging.

3.2.1 Introduction to the Contact Segmentation Problem

For proper functioning of the hand and finger identification methods of Chap-
ter 4, it is imperative that segmentations be flawless for the entire range of hand
configurations which operators are expected to perform. The combinatorial opti-
mization algorithms of the finger identification process assume that the correct map-
ping between segmentation groups and hand part identities is a one-to-one mapping,
and the algorithms attempt to find the optimal one-to-one mapping. If the segmen-
tation process erroneously merges the contacts of two distinguishable hand parts
or splits the contact from one hand part into multiple groups, the correct identity
mapping will no longer be a one-to-one mapping, and at least some of the contact
identifications will be wrong. Designing the identification process to be highly tol-
erant of erroneous merging or splitting of groups would weaken the constraints on
the combinatorial optimization and add undue complexity to identification. Luckily,
this is not necessary. The segmentation techniques presented here will demonstrate
that with sufficient tuning of segmentation rules, hand contact segmentation can be
nearly flawless, even for low-resolution parallelogram electrode arrays. The failures
that do occur are usually mild enough that feedback from partially correct identifica-
tions is sufficient to adjust the segmentation rules, producing correct segmentations

for subsequent images.
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Since the electrodes at the center of each hand contact invariably possess
locally maximum proximity, an efficient approach to proximity image segmentation
is to search outward from local maximum electrodes for contact edges, marking the
edges as group boundary pixels. Algorithms which start at a seed pixel and search
outward for similar pixels are generally known in computer vision as region growing
segmentation methods [13,68,70,172]. Local maxima are the obvious candidates
for seed pixels. The primary challenge of proximity image segmentation is then to
decide exactly what qualifies as an edge between contacts. For reliable segmentation
of a wide range of hand configurations, this decision must depend on some sort of
contextual feedback about the types of contacts being segmented.

Even if edge detection decisions are complex, this region growing process
incurs surprisingly little computational overhead because searching outward from
local maxima confines the edge detection computations to relatively small portions
of the image containing about a dozen pixels per contact. Furthermore, since edges
of convex contacts tend to be oriented perpendicularly to the vector passing from
an edge pixel to the center of the contact, partial spatial derivatives only need be
computed along the direction of search relative to the contact center, not in all
directions. Thus while the MTS segmentation methods are related to watershed
merging methods [42,57,151], the MTS does not have to compute the gradient of
the whole image, and its merging is simply based upon region overlap. Likewise,
proximity image segmentation is not nearly as computationally expensive as prior
segmentation methods for optical images of hands. These prior methods compute
complicated quantities such as spatiotemporal derivatives for optical flow [121], color

histograms [3], or Gabor filters [115,146] across most of each image.

3.2.2 Overview of the Segmentation Process
The data flow diagram in Figure 3.2 provides an overview of the image

segmentation process. To avoid spurious extrema, a spatially smoothed copy of
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the current proximity image is utilized in the search for local maximum pixels and
in computation of spatial derivatives. Any pixel whose smoothed proximity exceeds
a significance threshold and the smoothed proximities of all eight nearest neighbor
pixels is considered a local maximum pixel. The system constructs around each
significant local maximum a semi-convex group of neighboring electrodes G which
corresponds to a unit fleshy contact. Edges are always indicated at pixels where
the undiffused proximity falls to background levels; but in case fingertips are only
separated by a slight proximity valley, a partial minimum or saddle point between
adjacent fingers is also considered an edge. Large palm heel contacts, on the other
hand, may exhibit partial minima due to minor non-uniformities in flesh proximity
or electrode sensitivity across the contact, so it is not sufficient to have the same
edge detection rules across the whole image.

To resolve the conflicting edge detection needs of different types of hand
contacts, the segmentation system bootstraps off of high-level analyses of previous
images. These high-level analyses are supplied in the form of hand position esti-
mates and finger contact height measurements. Given a hand position estimate, the
segmentation system applies strict edge detection rules in regions of the image where
fingertips and thumb are expected to appear, but it applies sloppy edge detection
rules in regions of the image where palms are expected to appear. This ensures that
adjacent fingertips are not joined into a single group and that each palm heel is not
broken into multiple groups. In case smoothing fails to produce just one local max-
imum in each palm heel or flattened finger, a merging stage combines overlapping
groups which contain the local maxima of other groups.

The last stage of the segmentation process is to extract shape, size, and
position parameters from each electrode group. If properly segmented, most groups
will roughly resemble ovals, so each group can be meaningfully represented at higher

system levels by a few fitted-ellipse parameters: group centroid (G5, Gy), total
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proximity signal GG,, orientation (G, and eccentricity G..

3.2.3 Proximity Image Smoothing

After the MTS fully scans a new proximity image and subtracts off back-
ground sensor offsets, the segmentation process begins by making a smoothed copy
of the image via one or more passes with a nearest neighbor diffusion operator, also
known as a Gaussian kernel. One pass of the 2-D diffusion operator performs the

following computation:

Sij [’I’L] = (1 — 2Dz — 2Dy)Em[n]
+Dy(E;i-1,4[n] + Eiy14(n])

+D,(Eij-1[n] + Eiji1[n]) (3.1)

where D, and D, are the diffusion rates in the x and y directions. For stability, the
rates must satisfy D, + D, <= .5 [112]. The MTS actually sets D, + D, <= .25
so that the contribution of the four neighbors is never more than the contribution
of the center electrode. Since the electrode row spacing dy ~ 1.2 cm is much more
than the column spacing dz =~ .4 cm and the wedge electrodes already smear a lot
between rows, the proportion of vertical to horizontal diffusion is set so (D,/D,) ~
(0x/dy) ~ .33.

The smoothed image S;;[n| is then searched for significant local maxima, i.e.,
pixels whose proximities are greater than or equal to a global significance thresh-
old, Kiazima_significance; and the proximities of all eight nearest neighbor pixels.
K azima_significance Can either be fixed or adapted to the mean and standard de-
viation of the background electrical noise. The smoothing thus has two benefits:
to reduce the chance that an isolated noise spike on a single electrode will result
in a local maximum which exceeds the significance threshold, and to consolidate
local maxima to about one per distinguishable fleshy contact. Because of the high

signal-to-noise ratio of the proximity sensors, only slight smoothing is necessary, as
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indicated in Figure 3.6. Too much smoothing obscures the proximity valleys between
adjacent fingertips. Nevertheless, because smoothing is the only operation besides
the search for local maxima which is applied to the whole image, it incurs more com-
putational cost than all other stages of the segmentation process combined, taking

2-3ms on the 60 MHz TSM320C32 DSP.

3.2.4 Segmentation Strictness Regions

As hinted in Section 2.3.3, segmentation needs are not uniform across the
entire image or across all hand configurations. Regions of the image containing
fingertips require strict segmentation, i.e., establishment of contact edges at all hor-
izontal partial minima. This conflicts with the segmentation needs in palm regions.
Palms should be segmented sloppily; in other words, only large creases between palm
heels or electrodes with background-level proximity should register as palm contact
edges. How can the system decide where segmentation should be strict versus sloppy
when contextual features such as relative contact shape and position can only be
measured after segmentation has completed? A cumbersome and computationally
expensive approach would be to form multiple segmentation hypotheses and try to
construct an evaluation procedure to pick the most likely segmentation.

A simpler but effective approach is to utilize contact juxtaposition constraints
and expected hand position. The critical observation is that for comfortable ranges
of hand rotation, the fingertips always lie above the palms and usually appear above
the thumb. If fingers, palm and thumb were all guaranteed to be touching the sur-
face, the system could assume the local proximity maximum nearest the top of the
board was a fingertip and the one nearest the bottom was a palm. A horizontal
dividing line could be envisioned in between, above which strict fingertip segmen-
tation rules would apply and below which sloppy palm segmentation would apply.
In practice the palms may not be touching the board, or in rare cases the palms

may touchdown before the fingers, so the placement of this dividing line has to be
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guessed at. Since strict segmentation should also apply to the thumbs to prevent
thumb contacts from merging with fingertips or palms, the sloppy regions should be
further confined by vertical dividers to exclude regions where thumbs are expected.
In case the hands are not positioned symmetrically, the sloppy region dividers should
be placed independently for each hand.

Position estimates are available as top-level feedback from the hand position
estimation module (Figure 3.1) in the form of offsets from the default hand positions
(Figure 2.8). Section 4.3 describes in detail how the hand position estimation module
derives conservative estimates using contact positions and identities from previous
images. Basically each hand position estimate is initialized to the default hand
position, tracks the average positions of identified finger contacts relative to their
default finger positions, and decays back toward the default hand position when all
fingers lift off the surface.

Figure 3.3 illustrates how the segmentation regions translate with the esti-
mated hand offsets. In Figure 3.3a the hands are in their default positions, zeroing
the estimated offsets for both hands. Plus signs in the diagram indicate the esti-
mated position of each finger and palm heel in each hand. Rectangular outlines in
the lower corners represent the left and right sloppy segmentation regions, where
partial minima are largely ignored. The T-shaped region remaining is the strict
segmentation region, where proximity saddle points must serve as contact edges.
The best positions of the vertical dividing lines has been found empirically to be
just inside of the sensor array columns where the index fingers are expected to lie,
and the horizontal dividing lines are placed near the estimated vertical positions of
their respective thumbs. The outside edges of the surface form the outer and lower
boundaries of the sloppy regions. Due to the decay in estimated offsets after hands
leave the surface, the sloppy segmentation regions return to the positions shown in

Figure 3.3a after the hands have stayed off the surface a few seconds, regardless of
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left side of the board, pushing the left sloppy region out of the way
since the left hand is off the board.
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hand position at liftoff.

As the hands move away from the default positions, the dividing lines of
the left sloppy region are translated by the left hand offset estimate (LHeoz[n —
1], LHeoy[n — 1]), and the dividing lines of the right sloppy region are translated
by the right hand offset estimate (RHcoz[n — 1|, RHeoy[n — 1]). Figure 3.3b shows
how the sloppy regions follow the estimated hand positions as the right hand moves
toward the upper left and the left hand moves toward the lower left. This ensures
that the palms and only the palms fall in the sloppy regions as long as the hand
position estimates are correct.

Figure 3.3c shows that the left sloppy region and hand position estimate
move off the surface entirely when the left hand remains off the surface and the
right hand slides to the left side of the surface. This prevents the fingers of one
hand from entering the sloppy segmentation region of the opposite hand. This
effect is implemented by imposing a minimum horizontal separation between the
hand position estimates and, should the left and right regions get too close to one
another, letting the hand with the most surface contacts override the estimated
position of the hand with fewer contacts.

Though the hand position estimator is generally very good at keeping the
sloppy regions under the palms as the hands moves around the board, errors are
possible if parts of the hand unexpectedly touch down too far above or below their
estimated positions. If only a palm heel touches down in the strict segmentation
region at the top of the board, it can be segmented into multiple groups which will
be misidentified as a row of overlapping fingertips. However, if the size and shape
of these groups becomes so large as to be inconsistent with their identification as
fingertips, the finger identification module will reidentify them as palms and even-
tually correct the hand position estimate. Likewise, if squished together fingertips

touch down in the sloppy segmentation region at the bottom of the board, they
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can be joined into one contact and misidentified as a palm heel. Section 3.2.9 will
further examine the segmentation errors which can occur if the sloppy segmentation

regions get out of place.

3.2.5 Segmentation Search Pattern

Once the local maxima pixels have been found and the sloppy segmentation
regions defined, the segmentation process searches around each local maximum pixel
for pixels which register significant proximity. Figure 3.4 depicts typical outward
search patterns which start from a group’s local maximum pixel and proceed in four
directions testing for the contact boundary. For a given group G, let Giocaimaz,,,, and
Glocalmaz,,, be the row and column indices of group G’s local maximum. Searching
for contact boundaries starts at these indices (filled circles in Figure 3.4) and ini-
tially proceeds along the Giocaimaz,., TOW toward the right and left until one of the
applicable horizontal or diagonal boundary tests comes up positive. Each electrode
encountered before reaching the boundary is added to the local maximum’s group.
While searching to the right, the additional indices jprey = j — 1 and jpese = j + 1
are maintained for use referring to neighboring electrodes in horizontal minimum
tests. When searching toward the left, jpye, = j + 1 and jpeqe = j — 1. The indices
of the columns just inside the left and right columns where boundary tests turn
positive are stored in G fisicoii] and Giastcorfi); Where in this case i = Giocaimazron-
The electrode within the row with maximum smoothed reading,

G mazcolli] = argmax Sij (3.2)
G firsteol[i] <=I <=Glastcol[i]

is also recorded. In this case Gazcori) should equal Giocaimas.,,, Put when searching
subsequent rows where ¢ # Giocaimaz,o., the column Gropcqp;) may differ from the
column of the local maximum.

Next the search automatically advances to the rows i = Giocatmaz,,,, + 1 and

t = Glocalmaz,., — 1 directly above and below Giocaimaz,.,, SO electrodes from at
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Figure 3.4: Typical search patterns starting at the group’s local maximum (filled
circle) and proceeding along successive rows towards the contact edge,
represented here as the curved, closed boundary. Each arrowhead
represents a pixel which is added to the group as the search encounters
it. Notice that the search does not proceed outside the boundary.
Because the search can only advance into the next row from the pixel
with maximum proximity in the current row, it will advance past
concavities into multiple horizontal offshoots a) but can only find one
of the vertical offshoots b).
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least three rows will be available in each group for vertical centroid interpolation.
Before advancing rows the index of the previously searched row must be recorded as
iprev t0 aid in vertical and diagonal partial minimum tests. For these rows directly
above or below the row of the local maximum, 7p.cy, = Giocaimazron- Lhe index of
future rows to be searched i,.,; may also be needed, and will in this case be either
Glocatmaz,o, + 2 0T Grocatmaz,..,, — 2- The horizontal search within subsequent rows
always starts at the previous row’s maximum column, i.e., j = Gazcolfipr..], and
proceeds horizontally outward in both directions as it does for the row of the local
maximum. Thus subsequent rows tend to be entered along the vertical or diagonal
ridge of the contact. Advancement of the search to additional rows occurs recursively
as long as vertical boundary tests are negative. These tests are only applied in
the column Gzcqi to electrodes directly above or below. The rows immediately
previous to those in which vertical boundary tests first come up positive are recorded
as Gtoprow and Gpotrow-

Note that partial minima electrodes at the bottom of proximity valleys are
never included in any group because it is not known in what proportion the two
adjacent contacts contributed their signals. Assuming an equal, 50-50 split in contri-
butions from each contact was found to cause more instabilities in contact centroids
as the partial minima shift from one electrode to another than leaving partial minima
electrodes out of both adjacent groups altogether.

Let e be an electrode of the electrode set £ with row index e; and column
index e;. When boundaries have been encountered in all directions, the resulting

semi-convex group of electrodes can be described as:
Gg = {6 € & : Grotrow <= €; <= Gtoprowa sz'rstcol[ei] <=e; <= Glastcol[ei]} (33)

The groups are called semi-convex because all of the electrodes within a group’s row

must be connected, i.e., there can not be multiple runs of electrodes within a row
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with excluded electrodes in between (Figure 3.4b). On the other hand, multiple, un-
connected column segments are allowed within a group (Figure 3.4a) since G firstcor
and Gegico are arrays whose elements can differ across rows, whereas Gyotrow and
Gioprow are scalar. The semi-convexity constraint on the search pattern has minor
consequences such as tolerating undulations in finger width. The semi-convexity
constraint also discourages multiple vertical offshoots (such as fingers) of wide elec-
trode clusters (such as palms) from being combined into one group. The key point is
that since electrode groups need not be rectangular, they can closely fit the typical
oval shape of flesh contacts without leaving electrodes out or including those from

adjacent contacts.

3.2.6 Segmentation Boundary Tests

The contact edge tests consist of two rule classes: directional minimum tests
which differ for sloppy versus strict segmentation regions and the proximity signifi-
cance test which is applied the same to both strict and sloppy segmentation regions.
Positive results on any applicable test cause a pixel to be marked as a group bound-
ary and the search to resume in another direction, as indicated by the flow chart
in Figure 3.5. Naturally, the edge of the electrode array always establishes a group
boundary.

3.2.6.1 Proximity Significance Tests

The significance threshold test is true for an electrode at row 7, column j if the

unsmoothed pixel proximity is less than a significance threshold, Kpizer significance:

Eij [n] < Kpiwel_sigm'ficance (34)

This generic pixel significance threshold is set to three or four standard deviations

of the measured background noise, or about half of the local maxima significance
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threshold K,qzima_significance- Using the unsmoothed rather than smoothed proxim-
ity in this test ensures that diffusion of proximity outside of the true contact area
(see Figure 3.6b) does not cause pixels outside the contact edge to be included in
the group.

Using the unsmoothed proximity in the significance test also prevents merging
of adjacent fingertips (Figure 2.9) which unexpectedly touch down in a sloppy seg-
mentation region yet still have at least one electrode at background proximity level
in the proximity valley between them. Though such valleys are not totally obscured
by smoothing, diffusion from the contact centers causes the smoothed proximity of
such electrodes to remain above any reasonably low significance threshold. Since
sloppy region tests ignore the horizontal partial minima of such valleys, only this
thresholding of the unsmoothed proximity image can keep fingertips which wander
into sloppy segmentation regions reliably separated. If the adjacent fingertips can
be kept segmented into separate groups for a few images, proper identification of
them will eventually cause corrections in the hand position estimates to move the

sloppy segmentation regions away from the fingertips.

3.2.6.2 Strict Segmentation Region Partial Minima Tests

Strict-segmentation-region partial-minima tests apply to horizontal, vertical
and diagonal neighbors depending on the current direction of search. Since the
search always proceeds away from a local maximum (Figure 3.4), a partial minimum
or saddle point is generally indicated whenever proximity starts increasing in the
direction of search. The tests have evolved empirically to detect diagonal minima
and segment diagonally adjacent fingertips on the parallelogram electrode array.
Therefore they may appear somewhat ad hoc; no doubt they could be simplified for
a higher resolution array of square electrodes.

As a horizontal search begins in a row at the column of the previous row’s

maximum pixel G,azcolfi,.,], the current row’s maximum pixel is expected to occur

iprev
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in the same column or a column immediately adjacent to Gpazcolf For these

iprev}'

columns j such that Grazco -1 <= j <= Gragca] + 1, a full partial

Z.p'rev] iprev]

minimum test of both next and previous pixels is applied instead of just checking
for an increase in the next pixel in the direction of search, 7.e., a horizontal boundary
is only indicated if S; ;. .,[n] > Si;[n] < Sij....[n]. This tolerates tall contacts which
are oriented at a slant and therefore have proximity ridges which are not perfectly

vertical. If S, .

i.iprer ] Was not checked and the search started from a column which

did not have maximum proximity in the current row, diagonal ridges would be
erroneously rejected.

For columns farther away from the previous row’s maximum pixel, the hor-
izontal test is slackened to include general increases in proximity in the horizontal,
diagonal, and vertical directions of search. The horizontal boundary test simply

becomes S; j[n] < Sjj....[n], and a test S; j[n] < S;,....;[n] of the vertical neighbor in

sJnext
the next row to be searched indicates presence of a diagonal proximity valley caused
by a contact diagonally adjacent to the contact being searched. Either test can stop
the horizontal search in the current direction, establishing a horizontal boundary for
the current row. By only testing that the proximity of the next pixel is greater than
the current pixel without testing that the previous pixel is also greater than or equal
to the current pixel, a search which starts in a sloppy region and meanders into a
strict region will be forced to stop if proximities in the strict region are increasing in
the direction of search, even if the actual saddle point occurred in the sloppy region
and was ignored. This helps prevent palms from being joined to thumbs or flattened
fingers if the sloppy segmentation regions get too close to the fingers.

When deciding whether to advance to the next row i,..:, vertical partial
minimum tests are applied at the column j = G4zc0) 0f the pixel in the current row

found to have the maximum proximity. These tests also have a diagonal component,

positively indicating a vertical boundary if S; ;[n] < S;,....;[nl, Sij[n] < Si.....i—1[7]
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or Sijn] < Si,.enjt1(n]

3.2.6.3 Flattened Finger Segmentation

To allow fingertip groups to merge reliably with the finger’s proximal pha-
lange contacts (Figure 2.7) without allowing thumbs, forepalms, or palm heels to
merge with fingertips, the system ignores vertical partial minima in the strict seg-
mentation region under a long series of conditions. First, such merging must be
enabled by identification system feedback (Figure 3.2) indicating that most of the
contacts identified as fingers are flattening onto the surface. This feedback takes the
form of a flag which is set when in the previous image the geometric mean of the
contact heights of all fingers but the innermost surpasses a threshold. This feedback
distinguishes proximal phalanges of flattened fingers (Figure 2.7) from a thumb be-
hind a curled fingertip (Figure 2.9) using the fact that it is biomechanically difficult
to flatten one long finger without flattening the other long fingers. The geometric
mean of multiple finger sizes and exclusion of the innermost finger ensures that pha-
lange merging is not enabled by a misidentified, long thumb contact. If phalange
merging were to be enabled without this multiple finger size requirement, any thumb
contact traveling within a few centimeters behind a row of curled fingertips would
merge with one of them.

Once the system has established from previous images that the fingers are
at least beginning to flatten, several more measurements are made to ensure the
fingertips are merged with only the proximal phalanges and not the forepalms or
palm heels which could be flattening as well. First, the direction of search must be
downward from the current group’s local maximum. This helps to ensure that the
search is coming from a fingertip, not the local maximum of the proximal phalange or
forepalm. Additionally, the vertical location of the partial minimum being ignored
must not be more than about 5 cm below the current group’s local maximum,

which corresponds to the maximum anatomical distance from the center of the distal
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phalange (fingertip) to the center of the proximal phalange. The vertical location
of the partial minimum must also be a couple centimeters above the horizontal
dividing line of the hand’s sloppy segmentation region, and only the first vertical
partial minimum encountered will be ignored. These conditions all differentiate the
proximal phalanges from the forepalms. Finally, the vertical partial minima should
be in the same column or a column adjacent to the fingertip local maximum. If
all of these conditions are met, search from a fingertip will continue past a vertical

partial minimum to engulf a proximal phalange.

3.2.6.4 Contact Height Limitation Test

Despite all of the above precautions to prevent merging of fingers and palms,
when the hand is flattened against the board very hard, images occasionally arise
in which the only vertical minimum between a fingertip and palm heel is either in
the sloppy segmentation region or between the fingertip and proximal phalange. In
either case it will be ignored, merging a fingertip and palm heel into one group.
The simplest way to prevent this is to observe that no hand part, finger, thumb or
palm on the average adult hand is longer than about 8 cm. Therefore regardless of
strict or sloppy segmentation region, search should stop and a vertical boundary be
established whenever the next row to be searched is farther than about 8 cm from
the row of the local maximum, Gioeaimaz, ..., Where search started. This completely
fills the chinks in the armor of the vertical contact boundary tests, preventing search
from a palm heel local maximum from ever reaching an outstretched fingertip and

vice versa.

3.2.6.5 Sloppy Segmentation Region Palm Heel Crease Test
The goal of sloppy region segmentation is to get as many of the electrodes
influenced by the palms as possible into precisely two palm heels. This maximizes

palm heel size and guarantees that the relatively fixed separation of about 5 cm
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between palm heels can be measured. The relatively large palm heel sizes and the
relatively large separations between palm heel centers help the identification sys-
tem reliably distinguish fingers from palms. As long as the identification system
has clear indication of two palm heels it cannot erroneously assign one of the palm
heel identities to a thumb or pinky finger; i.e., the combinatorial optimization con-
straints are stronger if the palm is consistently segmented into two parts. The palm
heel separation is particularly critical in distinguishing a pair of adjacent fingertips
starting a finger chord from a pair of palm heels when the fingertips are in the lower
regions of the surface where palms are also expected. The identification system has
means for identifying separate forepalms if necessary, but when possible they should
be merged with one of the palm heels. Therefore, all partial minima in sloppy seg-
mentation regions are ignored to maximize palm heel size except the large proximity
valley or crease between the palm heels.

When the palm heels only touch the surface lightly, the proximity significance
test will detect this crease and keep the two palm heel electrode groups separate. But
as more pressure is applied, no electrode between them will remain at the background
proximity level, and they will be separated only by a tall proximity valley with partial
minima electrodes above the significance threshold. Fairly stringent tests are needed
to detect this crease and not any other partial minima. First, anatomical constraints
place the crease at least 2 cm from the center of either palm heel, so qualifying partial
minima must be at a column j at least 2 cm from the column of the local maximum
electrode where the search originated. Second, the proximity of the partial minimum
electrode should be less than about half that of the local maximum, which requires
that the proximity valley be fairly deep. Finally, the proximity valley must be fairly
wide, so the partial minimum must extend past electrodes in next nearest neighbor
columns, S;;_o[n] > S;j_1[n] > S;j[n] < Sijt1[n] < Sijte[n]. These conditions

allow horizontal boundaries between palm heels to be established in all rows which
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the crease crosses. The only time the crease is not detected is when the entire center
of the palm is pushed hard onto the surface, but when this is done the palm contacts

are so large that the palm heel separation measurement is unimportant.

3.2.7 Combining Overlapping Groups

In sloppy segmentation regions it is possible for groups to overlap significantly
because partial minima between local maxima do not act as boundaries. Typically
when this happens the overlapping groups are part of a large fleshy contact such
as a palm which, even after smoothing, has multiple local maxima. However, it is
also necessary to get rid of the separate group around the local maxima of proximal
phalanges when these are subsumed by fingertip groups. In the interest of presenting
only one group per distinguishable fleshy contact to the rest of the system, the group
combination stage of Figure 3.2 combines overlapping groups into single supergroups
before parameter extraction.

Two groups are defined to be overlapping if the search originating local max-
imum electrode of one group is also an element of the other group. Two groups are
connected if there is a sequence of overlapping groups between and including them;
i.e., overlap is transitive. A set of connected groups {G1..GN} is combined into a

supergroup G'S by forming the semi-convex hull of the connected groups:

GStoprow = mlz{ix GKtoprow (3-5)
G Shotrow = mKi’n G Kpotrow (3.6)
G'Sfirsteol]i] = min G K firsteoli] V1 : G Spotrow <=1 <= G Stoprow (3.7)
G Slasteolli] = max G Kiastcotfi) Vi : GShotrow <=1 <= G Stoprow (3.8)

The semi-convex hull can include electrodes which are not part of any of the con-
nected groups if a horizontal concavity lies between two of the connected groups,
as occurs in Figure 3.19a). After consolidation into the supergroup is finished, the

original connected set of groups {G1..GN} is deleted.
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3.2.8 Extracting Group Parameters

The last stage of the segmentation process extracts shape, size, and posi-
tion parameters from each electrode group. Group centroid reflects hand contact
position, and changes in contact position between successive images reflect finger
velocity. The identification system utilizes geometric features of contacts such as
total group proximity, eccentricity, and orientation to help distinguish finger, palm,
and thumb contacts.

Though image smoothing does not affect the center of mass of a contact’s
proximity signal as measured over the whole image, it can diffuse some of the con-
tact’s signal outside of a group boundary into adjacent contacts or the image back-
ground. Diffusion can also increase the apparent radius or fitted ellipse axis lengths
of a group. Therefore, to prevent biases during extraction, the parameterization
process utilizes the undiffused image proximities F;j[n] instead of the smoothed

proximities S;;[n] for all computations.

3.2.8.1 Centroid Computation

Given that Gg is the set of electrodes in group G, let e, = E, [n] be
the unsmoothed proximity of an electrode or pixel e, and let e, and e, be the
coordinates on the surface of the electrode center in centimeters. To give a basic
indicator of group position, the proximity-weighted center, or centroid, is computed

from positions and proximities of the group’s electrodes:

ecGg
€,€,
G, = > % (3.10)
e€cGE z
G, = 3 eGﬁ (3.11)
eeGp z

Note that since the total group proximity GG, integrates proximity over each pixel

in the group, it depends upon both the size of a hand part, since large hand parts
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tend to cause groups with more pixels, and upon the proximity to or pressure on
the surface of a hand part.
Appendix B contains nonlinear interpolation methods used to ameliorate

vertical interpolation biases and oscillations caused by the parallelogram electrodes.

3.2.8.2 Ellipse Fitting

While the user typically will not vary contact shape or orientation intention-
ally, such parameters will assist finger and hand identification in Chapter 4. Since
most groups are convex, their shape is well approximated by ellipse parameters. The
ellipse fitting procedure requires a unitary transformation of the group covariance

matrix Gy of second moments Gy, Gay, Gyy:

G:c:c Gwy
Geow = (3.12)
Gye Gy
Gow = Y €,(Gy —e;)? (3.13)
ecGEg
Gyo = Goy = Y €,(Gy — €3)(Gy — &) (3.14)
ecGg
Gy = Y e:(Gy — ) (3.15)
ecGg

The eigenvalues A\g and \; of the covariance matrix G.,, determine the ellipse axis

lengths and orientation Gjy:
Gmajor = \/)‘70 (316)
Gminor = \/)Tl (317)
Ao — T
Gy = arctan (i> (3.18)
Gy
where Gy is uniquely wrapped into the range [0, 180°).
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For convenience while distinguishing fingertips from palms at higher system
levels, the major and minor axis lengths are converted via their ratio into an eccen-
tricity G:

G, = Gmajor (3.19)

Gminor

Note that since the major axis length is always greater than or equal to the minor
axis length, the eccentricity will always be greater than or equal to one. Finally, the
total group proximity is empirically renormalized so that the typical curled fingertip

will have a total proximity around one:

Gz = Gz/ZaverageFinge'rtip (320)

On low resolution parallelogram electrode arrays, the total group proximity G, is a
more reliable indicator of contact size as well as finger pressure than the fitted ellipse
parameters. Therefore, if proximity images have low resolution, the orientation and
eccentricity of small contacts are set to default values rather than their measured
values, and total group proximity G, is used as the primary measure of contact size

instead of major and minor axis lengths.

3.2.9 Performance of the Segmentation Methods

Daily typing and chordic manipulation on the MTS by the author has verified
that segmentations are flawless for the most commonly utilized hand configurations,
at least as performed by a skilled operator. Any quantitative evaluation of segmenta-
tion performance would depend highly on the relative frequency of easily segmented
versus difficult to segment hand configurations which arise in the application being
studied. Rather than attempt an application and operator-dependent quantitative
evaluation, this section presents a sampling of hand configurations which illustrate
the importance of the more complex segmentation rules and the rare cases in which

segmentation fails.
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A flattened hand with fingers squeezed together includes most of the contact
juxtapositions which require proper alignment of the sloppy segmentation regions

for correct segmentation. Figure 3.6 includes both the unsmoothed and diffused

"
M,
Y

il
it
Ml

f

!

I
i

i Yy
W W
’”W’ Ly "'!!”’” W

f

Figure 3.6: Unsmoothed a) and diffused b) proximity images of a flattened hand
with the fingers squeezed against one another rather than spread out.
Note that smoothed proximities of pixels near the center of each con-
tact are more even but proximity has also bled outward around contact
edges, as is especially noticeable for the thumb contact.

images of a flattened, squeezed hand. Note that the fingers are very close together,
the proximal phalanges are touching the surface, and the outer palm heel causes two
local maxima (darkest electrodes at lower left and upper right of contact) which are
not merged by smoothing. Only the center of the palm and the forepalms remain

suspended above the surface.
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Note that usually each palm heel will only cause one local maximum, espe-
cially in the smoothed image. Multiple maxima which are distinct enough to remain
separate during diffusion only appear sporadically due to odd distributions of hand
pressure. Several images which only had one local maximum per palm heel were
discarded before a hand posture was found which produced the dual maxima of Fig-
ure 3.6. Nevertheless, multiple maxima appear often enough that it is worthwhile to
combine overlapping groups whenever possible. This avoids confusing the identifi-
cation system with more than two palm heel groups per hand and avoids additional
smoothing which could jeopardize segmentation of adjacent fingertips.

To demonstrate the types of segmentation failures which can occur when the
hand position estimate is incorrect, the image of Figure 3.6 was segmented once with
the strict segmentation region covering the whole image and again with the sloppy
segmentation region covering the whole image. The former case will show what can
happen when the palms unexpectedly touch down in the strict segmentation region,
and the latter case will show what happens when fingertips unexpectedly touch
down in the sloppy segmentation region, contradicting the last known hand position
retained by the hand position estimator. Figure 3.7 displays segmentation maps in
which electrodes numbered the same are members of the same segmentation group;
the ordering of the numbers is arbitrary. Note that these segmentation maps and all
that follow include only the final combined supergroups, not individual overlapping
groups before they are combined.

Figure 3.7a shows the segmentation map obtained when the whole hand is
processed with strict segmentation rules, ¢.e., when the sloppy segmentation region
is moved off the palms down to the lower right corner of the image. Since strict
segmentation rules establish boundaries along the proximity valley between the dual
outer palm heel local maxima, preventing each local maximum’s group from over-

lapping the other, the outer palm heel contact remains erroneously broken into two
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a) b)

Figure 3.7: Segmentation results for the flattened hand using either a) strict seg-
mentation rules for both fingers and palm heels or b) using sloppy
segmentation rules for the whole hand. In a) the outer palm heel con-
tact erroneously maintains two separate groups corresponding to the
dual local maxima, and some of the electrodes at the edge of the palm
heel contacts are excluded from all groups. Tolerance of flattened fin-
ger vertical minima is also disabled, causing splits in the segmentation
between proximal and distal portions of the middle and ring fingers.
In b) the lack of horizontal partial minimum detection causes the in-
dex, middle, and ring fingertips to erroneously merge into one group.
Electrodes influenced by the thumb or pinky are grouped correctly in
both a) and b).
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groups. Comparing the size of the palm contacts of the original image (Figure 3.6a)
to the segmentation map suggests that the strict segmentation rules have caused a
few palm contact electrodes to be entirely left out of all the palm groups. Though
not many electrodes have been excluded for this example image, sometimes this can
cause the extracted group size and total proximity parameters to be erroneously
low, making it harder for the identification system to distinguish fingertips from
palms when the palms unexpectedly escape the sloppy segmentation region. The
improper alignment of the sloppy segmentation region also disables tolerance of flat-
tened finger vertical minima. This in turn causes proximal phalanges with distinct
local maxima (those from the middle and ring fingers in this case) to fail to merge
with their respective fingertip groups.

Figure 3.7b shows the opposite extreme in which the whole hand lies within
the sloppy segmentation region and is segmented with sloppy segmentation rules. In
this case the palm is properly segmented into two large heel groups which contain
all palm contact electrodes. This occurs because sloppy segmentation rules allow
the groups from each of the outer palm heel dual local maxima to overlap and
thus be combined via their semi-convex hull. However, since sloppy segmentation
rules do not include horizontal partial minima tests, the horizontally adjacent index,
middle, and ring fingertips merge. Such incorrect fingertip merging can occur any
time the fingertips touch down squeezed-together in a sloppy segmentation region.
The proximal phalanges of the index and middle fingers remain separate from the
merged fingertip group not because of the vertical minima between fingertips and
proximal phalanges but because the semi-convex search pattern can only follow one
vertical offshoot from each row, and in this case the search always traversed the
proximal phalange of the ring finger.

Figure 3.8 shows the segmentation map when the sloppy segmentation region

is properly aligned on the palm contacts. This segmentation region alignment or
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Figure 3.8: The correct segmentation for the flattened hand obtained by applying
sloppy segmentation rules in the box around the palm heels and strict
segmentation rules for the fingers. All electrodes proximal to the palm
heels are included in their groups, yet the palm groups are split by the
crease halfway between the palm heels. The whole of each finger, i.e.,
both the distal tip and proximal phalange, combines into one group
separate from the adjacent fingers.
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any alignment within a couple centimeters of it achieves the correct segmentation
for both fingers and palm heels. By the time the whole hand has flattened onto the
surface, finger identifications and thus the hand position estimate will surely have
stabilized to their correct values, invariably producing this correct segmentation
under actual operating conditions.

In contrast to the squeezed, flattened hand which requires proper alignment
of the sloppy region for correct segmentation, the default or neutral hand posture
of Figure 2.8 is segmented correctly regardless of where strict or sloppy rules are
applied. The segmentation map for the whole hand in the sloppy region is shown in
Figure 3.9, but the same map is obtained with the sloppy region over palms only or
with strict segmentation everywhere, with the exception that with strict segmenta-
tion of the palm heels a few of the electrodes on the periphery of the palm contacts
can be excluded from the palm heel groups. The image can be segmented correctly
regardless of segmentation region alignment because each distinguishable contact
has only one local maximum and the contacts are all separated from one another
by electrodes at background proximity levels. Thus the proximity significance test
common to both strict and sloppy segmentation regions is sufficient to establish
group boundaries. Note also that this easily segmented hand posture and variations
upon it comprise the most commonly performed hand configurations.

A rotated variation (Figure 3.10) of this neutral hand configuration demon-
strates the need for diagonal partial minima detection. Sloppy segmentation (Fig-
ure 3.11a) of the diagonally adjacent fingertips causes them to be merged into two
groups. Strict segmentation of them (Figure 3.11b) detects the diagonal partial
minima between them and keeps them in four separate groups. As will be shown in
Figure 3.12, any further rotation causes fingertips to merge despite strict segmenta-
tion.

In Figure 3.12 the hand is rotated a full 90° from the neutral or default pos-
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Figure 3.9: This correct segmentation of the neutral hand posture (Figure 2.8) is
obtained regardless of where strict a) or sloppy b) segmentation rules
are applied since contacts are relatively small and well-separated.
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Figure 3 .10: Unsmoothed a ) and diffused b ) proximity images of a partially closed
right hand rotated clockwise 45°.
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Figure 3.11: Sloppy segmentation a) of fingertips in a slanted row causes some
of them to be merged. However, the diagonal minima tests of strict
segmentation b) keep fingertip groups properly separated even when
the row of fingertips is slanted as much as 45°.
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Figure 3.12: Unsmoothed a ) and diffused b ) proximity images of a partially closed
right hand rotated clockwise 90°, fully sideways.



ture. As the segmentation map with properly aligned sloppy regions in Figure 3.13
indicates, vertical smearing by the parallelogram electrodes hides the proximity val-
leys between the fingertips, causing unavoidable merging even with strict segmenta-

tion rules. Note that performing this sideways hand configuration from the normal

111
111 22
111 22
3 22
333333 STRICT SEGMENTATION RI%CZ;?ION
3333333 222
3333333 222
33333 222
6666666666 2

6666666666666
66666666666666
6666666666666

SLOPPY SEGMENTATION REGION

Figure 3.13: All segmentation rules fail to segment the column of fingertips be-
cause the vertical smearing by vertically interleaved parallelogram
electrodes obscures the local proximity maxima normally caused by
each fingertip.

sitting posture requires awkward contortions of the body, so the configuration would
only be encountered regularly if the M'TS was mounted on a pedestal so it could be
approached from all sides.

The parallelogram electrode smearing also causes segmentation errors when

the thumb passes just behind a fingertip. Figure 3.14a shows the thumb as close as
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it can get to the index fingertip and still be segmented correctly with strict rules
(Figure 3.14b). Figure 3.15a is an image of a closed hand with the thumb tip fully
pushed up against the back of the fingertip. In this case the thumb tip and finger-
tip are so close that parallelogram electrode smearing obscures the vertical partial
minima between them, causing them to be merged into one group (Figure 3.15b).
Since the pen grip hand configuration (Section 2.3.4) contains this same juxtapo-
sition of the thumb and index fingertip, it cannot be segmented properly with the
current parallelogram electrode row spacing either. Note that if proximal phalange
merging for flattened finger segmentation (Section 3.2.6.3) was erroneously enabled
during segmentation of Figure 3.14a, the vertical partial minimum would have been
ignored, causing thumb and fingertip to be merged as in Figure 3.15b.

Figure 3.17 is the correct segmentation map for the flattened hand with
outstretched fingers of Figure 3.16. This map illustrates that a forepalm contact
gets its own group if it has a separate local maximum and cannot be combined with
the palm heels through mutual overlap. This is not considered an error because the
identification system can reliable identify forepalms when the rest of the hand is
flattened onto the surface. Note also that even though the proximity images show
that the index finger is connected to the inner palm heel and the pinky finger is
connected to the outer palm heel, the segmentation groups for fingers and palms
remain separate.

Figure 3.18 exposes the shortcomings of flattened finger segmentation when
the fingers are not oriented near vertical. If the fingers lie at a slant of more than
about 25° off vertical, each finger begins breaking into multiple groups due to de-
tection of diagonal partial minima instead of vertical partial minima. Figure 3.19b
shows the resulting segmentation map with fingertip groups separated from proxi-
mal phalange groups even when the sloppy segmentation region is aligned properly.

This failure is a consequence of the assumption that proximity ridges will always be
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Figure 3.14: Unsmoothed proximity image and properly aligned segmentation
map of a thumb passing about a centimeter behind the index fin-
gertip.
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Figure 3.15: Unsmoothed proximity image and properly aligned segmentation
map of a thumb touching the back of the index fingertip.
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3.17: All sloppy segmentation a) of the flattened right hand of Figure 3.16,
and the correct segmentation using properly aligned sloppy regions
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Figure 3.19: Segmentation maps for the rotated, flattened hand. Sloppy segmenta-
tion everywhere a) causes all groups to overlap. A single supergroup
forms from the semi-convex hull around these groups and encloses
the whole hand. With sloppy segmentation only over the palms b),
the diagonal partial minima detection of strict segmentation keeps
the fingertip and proximal phalange groups erroneously split.

103



connected through nearest diagonal neighbors. Sufficiently oblique ridges such as
these which cause maxima in every other column are broken up by diagonal minima
tests. Occasionally this type of failure splits a diagonally-oriented thumb pressed
hard onto the surface into two groups. This failure would be less likely with a smaller
row spacing which increases the angle between nearest diagonal neighbors to 45°.
Combination via semi-convex hull of the entire flattened palm into a single group
(Figure 3.19b) can be handled by the identification system and is not considered an
error as long as the merging remains stable across successive proximity images.

Another measure of segmentation performance is the consistency of group
membership across successive proximity images of a stationary hand. Segmentation
consistency has a major impact on the path tracking to be discussed in section 3.3. If
segmentations of a hand contact are not consistent across images, the measured hand
contact centroid can erroneously shift between images and cause jitter in the contact
velocity computed by the path tracking module. If large contacts suddenly merge or
break apart in a new image the centroids may move so much that the path tracker
concludes a hand part has lifted off or newly touched down. As long as these unstable
hand parts are identified as forepalms or palm heels such spurious touchdowns will
have no deleterious effects, but if the unstable hand parts are identified as fingers
whose centroids are near keys of the key layout, the system can falsely interpret
them as keypresses.

The segmentation of most unflattened hand postures is perfectly consistent,
but when palms are fully flattened, forepalm-influenced electrodes can unstably shift
between finger, palm heel, and independent forepalm groups, or the palm heels can
unstably merge together for one image and break up in the next due to subtle
changes in palm contact topology. Though such instabilities have been observed
to perturb finger centroids enough to cause spurious key activations during hand

flattening tests, full hand flattening does not occur during normal MTS operation
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or hand resting. Therefore, like the other rare cases of segmentation failure, this
problem will not be investigated further until it is known whether lower noise, higher

resolution sensor arrays will make it disappear entirely.

3.3 Persistent Path Tracking
3.3.1 Introduction to the Path Tracking Problem

Electrode groups are transitory in the sense that the segmentation algorithm
reconstructs them from scratch for each proximity image. It is then the responsibility
of the path tracking process to chain together those groups from successive proximity
images which correspond to the same physical hand contact. To determine where
each hand part has moved since the last proximity image, the tracking algorithm
must decide which current groups should be matched with which existing contact
paths. As a general rule, a group and path arising from the same contact will
be closer to one another than to other groups and paths. Also, biomechanical
constraints on lateral finger velocity and acceleration limit how far a finger can
travel between images. Therefore a group and path should not be matched unless
they are within a distance known as the tracking radius of one another. Tracking
performance can be improved by incorporating velocities measured along existing
paths in previous images into the prediction of current surface contact location.

The path tracking process must also determine when a physical hand contact
newly touches down or lifts off the surface. Since the typical lateral separation
between fingers is greater than the tracking radius for reasonable image scan rates,
finger touchdown and liftoff are easily detected by the fact that touchdown usually
causes a new group to appear outside the tracking radii of existing paths, and liftoff
will leave an active path without a group within its tracking radius. To prevent
improper breaking of paths at high finger speeds, each path’s tracking radius P4 qck

is made dependent on its existing speed and contact size.
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Rubine [130] addressed the path tracking problem for up to three fingers
detected by a “Sensor Frame” [107,108]. He did not find it necessary to predict
current contact locations from past path velocity or acceleration. He simply used
the last known path position as the predicted position. Since Rubine only dealt with
3 fingers, i.e., six possible one-to-one assignments of groups to paths, he simply
evaluated all possible pairings and picked the one which minimized the sum of
the distances between each path and its assigned group. However, counting all
fingers, thumbs, and palm heel and forepalm contacts from both hands, up to 20
groups can be present at any one time on the MTS. Clearly the MTS cannot do a
brute force enumeration of all 20! possible assignments, but the same assignment
optimization algorithms invoked for finger identification in Section 4.4 could be
utilized to efficiently minimize the assignment sum.

Any group-path pairing method must perform a global optimization in the
sense that it must handle both the case that several groups are clustered around a
single path, wherein only the closest group in the cluster should be assigned to the
path, and the case that several paths are clustered around a single group, wherein
only the closest path in the cluster should be assigned to the group. Thus the
decision to pair a group and path cannot be made based solely upon the distance
between them without considering the pairing distances of other groups or paths
nearby. The pairing method presented here utilizes a rule related to the shared
near neighbors clustering technique introduced by Jarvis and Patrick [72] instead
of explicitly minimizing the sum of pairing distances. This rule only accepts as-
signments between groups and paths that are closest to one another. The nearest
neighbor clustering rule and assignment sum minimization may produce slightly
different pairings for very tight clusters of groups and paths, but given reasonable
frame rates, adult finger spacings, and velocity-based path prediction, groups re-

main so much closer to their actual paths than other paths that the behavior of the
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pairing method for marginal cases does not matter.
Consult Figure 3.20 for a summary of the steps in the path tracking process

described below.

3.3.2 Prediction of Contact Location

Whether the prediction of path contact locations needs to include past path
velocity depends on the minimum possible finger separation, maximum expected
finger speed and acceleration, and the array scan or frame rate. If segmented prop-
erly, group centroids are usually separated by at least 1.5 cm. The MTS frame rate
is currently 50 fps, but can easily be raised to 100 fps. Because hand and finger
motions tend to be smooth, acceleration is quite low except at the beginning and
end of slides. At typical mouse manipulation speeds a finger will travel less than 1
mm between frames. However, consideration of Fitts’ Law [25] suggests hand point-
ing speeds can reach 180 cm/s. The fastest hand slides observed across the MTS
have only reached 100 ¢cm/s, but these still cause each finger to travel up to 2 cm
between frames, a value comparable to the nominal fingertip separation. If a row of
fingers quickly slides horizontally, one fingertip can thus appear right over the last
known location of an adjacent fingertip unless this last known location is updated
with past finger velocities.

Including previously measured velocity in the location prediction improves
the prediction except when a finger suddenly starts or stops or changes direction.
Since such high acceleration events occur less often than zero acceleration events, the
benefits of velocity-based prediction outweigh the potentially bad predictions during
finger acceleration. Let P,[n— 1], Py[n—1] be the position of path P from time step
n—1 and P,;[n— 1], Pyy[n — 1] the last known velocity. The velocity-predicted path

continuation is then:

Pyeasln] = Pu[n— 1]+ AtPyn — 1] (3.21)
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PREDICT CURRENT POSITIONS
OF EXISTING PATHS

A
FOR EACH GROUP
FIND CLOSEST PATH

A

FOR EACH PATH, FIND
CLOSEST GROUP WITHIN
TRACKING RADIUS

A

FORM GROUP-PATH PAIRS IF
GROUP & ACTIVE PATH ARE
CLOSEST TO ONE ANOTHER

v
ATTEMPT TO PAIR REMAINING
GROUPS WITH RECENTLY
DEACTIVATED PATHS

A

ALLOCATE NEW PATHS FOR ANY
REMAINING UNPAIRED GROUPS

'

DEACTIVATE ANY
REMAINING
UNPAIRED PATHS

'

UPDATE PATH
PARAMETERS

END

Figure 3.20: Flow chart summarizing the contact path tracking algorithm.
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Ppreayn] = Pyn—1]+ AtP,[n —1] (3.22)

Possibly the reason Rubine found velocity-based predictions unnecessary was
that the Sensor Frame had a higher frame rate or that he was only tracking finger
motion with the hand in a relatively fixed position over a small area. The MTS is
large enough for lateral slides of the whole hand and forearm. These easily reach

speeds several times higher than individual finger motions from a stationary hand.

3.3.3 Mutually Closest Pairing Rule
Let the set of paths active in the previous image be P.A, and let the set of
electrode groups constructed in the current image be G. For each active group Gk,

find the closest active path and record the distance to it:

Gkeosestp = argmind®(Gk,Pl) VYV Gk € G (3.23)
PlePA
Ghctosestpaise> = Jin, d*(Gk,Pl) YGkeg (3.24)

where the squared Euclidean distance is an easily computed distance metric:
d*(Gk, Pl) = (Gk, — Plpre,m)2 + (Gk, — Plpmdy)2 (3.25)

Then for each active path P, find the closest active group and record the

distance to it:

Ploosesic = argmind*(Gk, Pl) YV Pl e PA (3.26)
Gkeg
PlclosestGd’ist2 = é%le% dQ(Gk: Pl) VPlePA (327)

A group Gk and path Pl are only paired with one another if they are closest
to one another, i.e., Gk.osestp and Pl sesic Tefer to one another, and the distance
between them is less than the tracking radius. The nominal tracking radius is about

1 cm. All of the following conditions must hold:

chlosestP = Pi (328)
PlclosestG = Gk (329)
PlclosestG’dist2 < Plftmck (330)
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Any active group which cannot be paired with an active path under these constraints
is allocated a new path, representing touchdown of a new finger onto the surface.
Any active path which cannot be so paired with an active group is deactivated,
representing hand part liftoff from the surface.

To aid finger tap debouncing and detection of repetitive finger taps, it is
useful to preserve continuity of path assignment between taps over the same location.
When a new path needs to be allocated for an isolated group, i.e., the group cannot
be assigned to any active path, priority is given to any recently deactivated paths
within the tracking radius of the group. The closest path which has been deactivated
within the last second or so is reactivated, assigned to the group, and specially
marked as reactivated. It’s release time is stored in Py, cpiousreiease t0 aid in detection
of double-click timing. If no recently deactivated paths exist nearby, a totally new

path is started.

3.3.4 Path Parameters

The final step of path tracking is to incorporate the extracted parameters
of each group into its assigned path via standard filtering techniques. The MTS
applies the simple autoregressive filter equations shown below to update the path
position (Py[n], Py[n], P,[n]), velocity (P,z[n], P,y[n]), and shape Py[n|, P/[n| param-
eters from corresponding group parameters. If a path P has just been started by
group G at time step n, i.e., a hand part has just touched down, its parameters are

initialized as follows:

Poresss = t (3.31)
presss = G (3.32)
Poress, = Gy (3.33)
Pn] = G, (3.34)
Pn] = G, (3.35)



Pn] = G, (3.36)
Pyn] = Gy (3.37)
P[n] = G. (3.38)
Pyn] = 0 (3.39)
Pyln] = 0 (3.40)
P,.ln] = G,/At (3.41)

else if group G is a continuation of active path P[n — 1] to time step n:
Pin] = GoGs+ (1 — Go)(Proredic,[n — 1]) (3.42)
= GoGo+ (1 —G)(Py[n — 1] + AtPy[n —1]) (3.43)
= GoGy+ (1= Ga)(2P;n — 1] — Py[n —2]) (3.44)
Pyn] = GoGy+ (1 = Go)(Bpredict,[n — 1) (3.45)
= GoGy+ (1 = Go)(Py[n — 1] + AtPy[n — 1)) (3.46)
= GGy + (1 —Ga)(2Py[n—1] = Py[n — 2)) (3.47)
Pln] = GaGy+ (1 — Ga)(Bpredsn — 1]) (3.48)
P,n] = GoGy+ (1 —Ga)(Ppreayln — 1)) (3.49)
P.n] = GoG,+ (1 —=Gg)P,n—1] (3.50)
Pyn] = GaGo+ (1 —Go)Ps[n —1] (3.51)
Pln] = GuoGe+ (1—Go)Pn —1] (3.52)
Puln] = (Puln] = Poln —1])/At (3.53)
P,n] = (Pyn]— Pyn—1])/At (3.54)
Py[n] = (P[n] — Pln —1])/At (3.55)

It is also useful to compute the magnitude Pj,ecq[n] and angle Py, [n] from the veloc-
ity vector (Py;[n], Pyz[n]). The filters are first or second order autoregressive where

the amount of filter memory increases with (1 — G,). The second-order position
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filter has zero tracking delay during constant velocity motion, but position filter
output can lag behind actual finger position during accelerations or slightly over-
shoot during decelerations. Since the reliability of position measurements increases
considerably with total proximity P,, the low-pass filter pole GG, is decreased for

groups with total proximities lower than normal:

.8 if P, > 1
G, &~ (3.56)
A4 4P, elseif P, <=1

Thus when signals are weak, the system relies heavily on the previously established
path velocity, but when the finger firmly touches the surface causing a strong, reliable
signal, the system relies entirely on the current group centroid measurement.

Since the MTS does not yet recognize complex path gestures or handwrit-
ing, it does not need to store all past points of each finger trajectory. However,
to aid detection of finger chords and taps, the MTS does retain temporal markers
with finger position and size parameters from important stages of the path life cycle
such as finger touch down (Ppess,, Ppress,: Ppress, ), stabilizations in finger proximity
(Ppeaks> Ppeaka > Ppeak, s Ppeak, ), and finger 1iftoff (Peease, s Pretcases s Pretease, ). As a fin-
ger taps the surface, proximity quickly rises and then plateaus until the finger lifts
off. To ensure the peak proximity marker is available fairly soon after touchdown, its
parameters are actually captured when the rate of change of proximity P,,[n] falls
below a very small positive threshold, indicating the beginning but not necessarily
the peak of a proximity plateau. These important finger activity markers would be-

come inconsistent if a faulty path tracking algorithm inadvertently reshuffled paths.

3.3.5 Path Tracking Results
The path tracking process described above performs flawlessly for normal
operating hand speeds and a frame rate of 50 fps. It will chain groups caused by

the same hand contacts indefinitely as they slide across the surface, starting new
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paths only due to extreme deceleration or finger touch down. Figure 3.21 gives a
representative example of tracking for four sliding fingers. The only case in which
paths are known to get reshuffled or erroneously broken is when forepalm contact

segmentations for fully flattened hands become unstable.

3.4 Summary

The centers of hand contacts invariably cause local maxima in smoothed
proximity images, so proximity image segmentation algorithms can be very efficient
by starting segmentation group growth at significant local maxima. Since most
contacts are convex, semi-convex group search patterns and data structures can
efficiently encapsulate each contact’s electrodes without including electrodes from
neighboring contacts. Though in the most commonly used hand configurations
contacts are well-separated and easy to segment, other important configurations
contain contacts separated only by ambiguous partial minima. Contextual feedback
of past hand position and flattened finger status is necessary to decide which of
these partial minima should be treated as contact edges. Careful tuning of the edge
detection rules and segmentation regions so that electrode groups reliably correspond
to functionally distinct hand parts such as fingertips, thumbs, or palm heels allows
the contact identification system of the following chapter to be relatively simple yet
robust. Vertical smearing by interleaved parallelogram electrodes causes most of the
rare segmentation failures, so these failures can be best addressed by improvements
in vertical sensor density which phase out parallelogram electrodes, rather than by
improvements in the segmentation algorithms.

Path tracking is not terribly difficult given typical finger spacings and frame
rates above 50 fps, especially if velocity-based prediction is utilized. Nevertheless,
its flawlessness also simplifies the jobs of the identification system in the following
chapter and the synchronization system in Chapter 5. Once the finger and hand

identification system has correctly assigned an identity to a contact, continuation
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of that contact’s path by the path tracking system will be sufficient to retain the
identity until the contact lifts off, thus avoiding computationally expensive and
potentially destabilizing reidentification in every successive proximity image. Accu-
rate contact tracking also ensures the validity of the path life cycle markers used
to debounce key presses and detect synchronous touchdowns or liftoffs of multiple

fingers.
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Chapter 4

FINGER IDENTIFICATION AND HAND POSITION
ESTIMATION

This chapter will tackle the main shortcoming of capacitive proximity sens-
ing, establishing fingertip and palm heel identities for surface contacts when most
of the intervening hand structure is missing from the proximity images. Finger
identification has not been necessary for interactions with commercial touchpads or
touchscreens because most cannot track more than one finger at a time, and those
that can detect two or three fingers only utilize the contact count. If the MTS was
only to be used for typing, trying to identify each surface contact might not be
worthwhile because key taps should be distinguished by their spatial location, not
which finger strikes the key. But recognition of the rich, bimanual chordic manipula-
tions demonstrated in Chapter 5 demands reliable clustering of surface contacts with
their originating hand as well as reliable finger ordering and thumb identification
within each hand. Also, palm contacts must be properly identified so that operators
can safely rest the entire hand anywhere on the surface without palm motion being
misinterpreted as typing or chordic manipulation.

This chapter begins with a discussion of how the identification problem for
the MTS relates to previous research on recognition of hand gestures captured by
optical sensing systems. Then the chapter presents the algorithms and biomechan-
ical constraints which the MTS utilizes for hand position estimation, finger iden-

tification, and hand identification. Finger identification is posed as an assignment

116



problem which must optimally match finger contacts to a ring of finger attractor
points. The identification of single, isolated contacts is solely determined from the
weighted Voronoi diagram formed by the attractor points. It is shown that with a
contact-attractor distance-squared cost metric, the assignment algorithm effectively
sorts multiple hand contacts around the ring with respect to the attractor orderings
and inter-attractor angles, regardless of whether the attractor ring is at all centered
on the contact cluster. Results will illustrate how intricate feedback between track-
ing system modules over successive scanning cycles causes quick convergence upon
correct identifications for the comfortable range of hand motions.

Remember during the following discussions that the term “fingertip” can refer
to any finger except the thumb. Thus the thumb never counts as a “fingertip,” though
the thumb is considered one of the five fingers. Also, palm heels never count as

fingertips or fingers.

4.1 Hand Gesture Recognition

Techniques as diverse as rule-based inference [121], elastic graph match-
ing [146], and Kohonen Feature Maps [16] have been utilized to recognize the free-
space hand postures of various sign languages. Because the objective of these sys-
tems has been to recognize an alphabet of communicative gestures, most of the
systems have only been designed to recognize representative static hand postures,
though Wexelblat [163] and Boehm et al. [16] have concentrated on recognition of

dynamic, continuous gestures sensed by DataGloves [148].

4.1.1 Communicative Gestures versus Manipulative Gestures

In contrast to these communicative gesture recognizers, the primary objec-
tive of the MTS is to recognize a variety of simple control gestures for manipulating
graphical objects in two or three dimensions. The recognition task can then be

separated into three parts: recognizing which graphical manipulation channel the
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operator is selecting, tracking the manipulative hand and finger motions, and con-
tinuously extracting multiple degree-of-freedom (DOF) object control signals from
the tracked motions. Compared to a mouse, recognizing the channel selection cor-
responds to checking which buttons are being held down, tracking hand motions
corresponds to measuring the rotation of the mouse ball, and extracting indepen-
dent motion components has no analogue since measurements from orthogonal ball
rotation sensors are already independent. This chapter will tackle the channel selec-
tion and tracking problems in the context of proximity imaging devices by reliably
attaching finger and hand identities to the contact paths constructed in the previous
chapter. Multi-DOF extraction will not be addressed until Chapter 5.

The graphical manipulation objective places very different requirements on
the recognition algorithm than the symbolic communication objective. A central
tenet of this dissertation is that operator efficiency in rich graphical environments
can increase tremendously by having several manipulation channels which the oper-
ator can switch between instantaneously with simple changes in hand configuration.
However, not nearly as many channels or distinct hand configurations are necessary
for improved graphical manipulation as are necessary to support a symbolic ges-
ture language containing dozens of distinct signs. Operators may only be willing
to memorize the hand configurations which select a few different graphical manip-
ulation channels, and it may be hard to memorize mappings for or even imagine
uses for more than a dozen channels. Fundamental manipulations such as mouse
cursor pointing, mouse cursor dragging, text cursor pointing, text cursor selection,
and window scrolling only demand five channels. A few more hand configurations
might be utilized to select particular paintbrush, stylus, or eraser tools in drawing
programs, avoiding frequent excursions to the drawing tool palette to select differ-

ent tools. Any remaining hand configurations not needed for graphical manipulation

118



channels can still be reserved for symbol or command gestures. The MTS can rec-
ognize up to eight distinct symbol or command gestures per channel by mapping
opposing motions in the rotational, scaling, and two translational DOFs to different

symbols or commands.

4.1.2 Locating Fingers within Remote Optical Images

Another important difference between recognition of manipulation versus
symbolic gestures is that symbol recognizers only need to discern the pattern of
each hand configuration as a whole, while manipulation recognizers must also be
able to precisely extract hand motion in several dimensions. To do this, manip-
ulation recognizers must locate and track specific points on the hand such as the
fingertips. In the context of passive optical sensing, several researchers have adapted
their systems to recognize index finger pointing gestures and track the center of a
fingertip. Crowley and Coutaz [30] track a finger on a digital desk by finding the
peak in cross-correlation between each video image and a reference fingertip tem-
plate image.

Ahmad [3] first locates the palm by assuming the palm center is the center of
mass of the video image. Then he fits a circle around the palm, finds the center of
the wrist from overall hand orientation and the palm-enclosing circle, and applies a
Hough transform [9] to the angles with respect to wrist center of pixel groups outside
the palm circle. The peaks of the Hough transform histogram then represent the
finger angles, and the pixel groups farthest from the palm along these angles are
assumed to represent the fingertip locations. Clearly this approach only works for
an outstretched hand which approximately faces the camera.

Nolker and Ritter [115] successfully train a local linear mapping network to
locate all five fingertips in a wide variety of hand configurations, including when the

fingers are curled in touching the palms so that the background of the fingertips
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consists of low contrast palm flesh. Nolker and Ritter also successfully extract the

pointing direction of an index finger.

4.1.3 The Feasibility of Identification from Proximity Images

The problem of locating and identifying fingertips from proximity image infor-
mation is substantially different than fingertip location from remote optical images.
As described in the previous chapter, accurately measuring contact centroids and
tracking contacts across proximity images are relatively easy once the contacts are
properly segmented. However, determining which contact comes from which fin-
gertip is greatly complicated by the invisibility of the intermediate finger structure

which connects fingertips to the center of the hand.

4.1.3.1 Rubine’s Encounter with Finger Identification

The only researcher known to have encountered the finger identification prob-
lem for proximity sensing systems is Rubine [130], who was trying to recognize
complex multi-path gestures on the Sensor Frame. As an active optical system
which sensed obstruction of light beams, the Sensor Frame (see further description
on Page 38) [107,108,129] suffered the same limitations in detecting intermediate
finger structure as finger capacitance sensing systems. Rubine’s objective was to
recognize complex gestures involving two or three fingers by feeding each finger’s
path into his path classifier and identifying the gestures by the resulting combination
of path classifications. He considered general finger identification infeasible:

For multi-path input devices which are actually attached to the hand
or body, such as the DataGlove, there is no problem determining which
path corresponds to which finger. Thus, it would be possible to build
one classifier for thumb paths, another for forefinger paths, etc. The
characteristics of the device are such that the question of path sorting
does not arise.

However, the Sensor Frame (and multifinger tablets) cannot tell which
of the fingers is the thumb, which is the forefinger, and so on. Thus there
is no a prior: solution to the path sorting. The solution adopted here was
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to impose an ordering relation between paths. The consistency property
is required of this ordering relation: the ordering of corresponding paths
in similar gestures must be the same. Rubine [130], Page 81.

Rubine resorted to simple sorting of paths according to the temporal and spatial
coordinates of their starting points. He claimed this was sufficient for most of the
multi-path gestures he was trying to recognize, though it could be confused by
similar gestures whose path starting points did not always have the same ordering.

Rubine went on to develop a path clustering technique for complex multi-
path gesture recognition which avoided path sorting [130]. This clustering technique
computed global features from the sums and differences of all combinations of path
pairs. Instead of training a different path classifier for each sorted path, a single
classifier was applied to all the global features. During training of the classifier,
hierarchical cluster analysis grouped similar feature vectors, irrespective of path

sorting.

4.1.3.2 Summary of Constraints on Contact Identity

Upon closer examination, there actually turn out to be quite a few anatom-
ical and biomechanical constraints on the relative features and positions of hand
contacts. Many have already been discussed in Section 2.3 on proximity image
topology. The challenge will be that sometimes very few constraints are available
in the current proximity image or system tracking state. Since some constraints are
weak and ambiguous, they can only make up for the invisibility of hand structure
when several are combined.

For example, the sizes and orientations of thumb and palm contacts are
usually but not always unique and distinguishable from the fingertips. Sometimes
the thumb and palm heels are not touching the surface at all and therefore do not
appear in the proximity image. Though thumb and palm heels are usually larger

than fingertips normal to the surface, they do not become larger instantaneously.

121



Unless they impact the surface impulsively, the thumb and palm heels can be just
as small as normal fingertips for the first few images after touchdown, until their
flesh compresses and flattens out. Likewise, if the operator intentionally touches the
thumb or palm heel on the surface only lightly, actively suspending their weight,
the contacts will never reach a large size. Thumb and palm contact orientations, in
turn, cannot be measured reliably until a contact is as big or bigger than a normal
fingertip, and these orientations will not always differ from fingertip orientation.

The rest of the constraints apply to inter-contact relationships and cannot
simply be measured from geometric features of individual contacts. The interaction
of finger joint kinematics and a surface greatly constrains the locations of fingers
relative to one another. As is apparent in most of the sample images of Section 2.3,
the fingertips tend to settle into a horizontal arc whose radius varies as fingers are
flexed and extended (Figures 2.7-2.10). Although it is possible to make some of
the fingers flex while the others remain extended, concurrent, uniform flexion as
when gripping a foam ball is more natural. Most people can only cross their fingers
when the fingers are fully extended, so finger crossover should not occur during
typing and chordic manipulation because these activities are normally performed
with the fingers partially flexed. The only possibility of partial crossover occurs
under extreme rotation of the whole hand in the surface plane. Thus the ordering
of fingertip identities within their arc should coincide with the ordering of their
horizontal coordinates.

However, the thumb and palm heels can be interspersed nearly anywhere in
this horizontal ordering. When considered all together, the thumb, fingertips, and
palm heels from one hand tend to be arranged in a circular cluster with a limited
radius. As more hand parts touch the surface, more inter-contact relationships
become available to evaluate. By the time the whole hand, i.e., five fingers and two

palm heels, touches the surface, the inter-contact constraints alone are enough to
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reliably identify all of a hand’s contacts.

As discussed in Section 2.3.5, the position and rotation of each hand as a
whole are also fairly well constrained. Although hand crossover occurs during ad-
vanced piano performance, it is hard to imagine how it would be of use in MTS
gestures. Therefore hands are not expected to cross over one another, though they
may slide to the other side of the surface. A split key layout and a slight arch in
the surface about the vertical axis encourage operators to keep the hands well sepa-
rated. Assuming the operator’s torso faces the MTS at a fixed angle, the maximum
expected range of hand rotation is about 90°.

A final important observation is that when not actively engaged in graphical
manipulation, both hands tend to return to neutral postures with wrists straight and
fingers slightly flexed. Thus the variation in posture or deviation from neutral tends
to be less at the start of a manipulation than towards the end. A system which can
extend throughout a gesture the correct identifications of the initial, neutral posture
may get by without needing to identify the extreme, confusing finger arrangements
which occur at the end of the gesture.

In summary, the following constraints are sometimes available for identifica-

tion:
e diagonal orientation of thumb and inner palm heel.

e moderate size of flattened thumb contact and large size of flattened palm heels

relative to fingertips.

e expected angles and separations between multiple contacts depend on identity

of involved hand parts.
e cach identifiable hand part can only cause one surface contact.

e crossover or overlap of fingers or hands unlikely.
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e range of comfortable hand rotations fairly limited.

e gestures usually start from neutral postures rather than extreme postures.

4.1.3.3 Underconstrained Cases

As this chapter will show, the identification problem is not insurmountable,
at least not with the help of the constraints noted above. However, there will still
be instances in which the system will not be able to tell fingertips apart, usually
because only some parts of a hand are touching the surface, limiting the efficacy of
inter-contact constraints. For example, unless the hand is assumed to be hovering
over home row, i.e., the default hand position, there is no sure way to tell which
fingertip caused an isolated tap on the surface when no other hand parts are touch-
ing the surface. However, as long as isolated finger taps are only interpreted as
keystrokes on a conventionally distributed key layout, there is no real need to know
the finger identity. The intended key symbol should be indicated by the position
of the finger tap relative to the key regions in the layout, not by finger identity.
Indeed, it would be unnecessarily restrictive to activate keys only if the operator
struck them with a particular finger. Only chord typing schemes make rigid asso-
ciations between single finger identities and key symbols, but in such schemes the
hand remains in a relatively static position over the home row keys. Given the rea-
sonable assumption that overall hand positions are fairly fixed during chord typing,
the finger identification methods presented in this chapter are accurate enough to
support chord typing on the MTS.

Since the actual purpose of finger identification on the MTS is to support
chordic manipulation, not chord typing, the contrasting demands each places on an
identification system should be further emphasized. Since chordic manipulations
will involve slides over the entire surface, chordic manipulations cannot be assumed

to start from any one hand position, though they will often start from the neutral
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or default hand position. While contact size, orientation, and relative velocity fea-
tures will be sufficient to distinguish the thumb from fingertips even in the face of
such initial hand displacements, these features tend not to differ between fingertips.
Therefore, unless all fingertips on a hand are touching the surface, the MTS will
have no sure way to tell exactly which fingertips are touching if the fingertips de-
viate more than a centimeter from the horizontal locations predicted by the hand
position estimate. Such deviations occur often enough that the MTS will not be
able to reliably distinguish those chordic manipulations consisting of the same num-
ber of fingertips but different combinations of them, such as the index and middle

fingertips versus ring and pinky fingertips.

4.1.4 Pooling of Fingertip Combinations

Careful design of the chord gesture set in Chapter 5 will pool potentially
ambiguous finger combinations so that minor identification failures do not affect
the MTS operator. As already discussed, far fewer chords are necessary to cover
all conceivable graphical manipulation channels than to cover an entire symbolic
alphabet. While the identification system will do its best to identify fingers correctly
in all cases, the chordic manipulation recognizer will only depend upon correct
detection of thumb presence and proper ordering and counting of the other fingertips.
This will support selection of seven different chordic manipulation channels (see
Table 5.1 on Page 246) on each hand by multiple-finger chords, as opposed to 26
which would be available on each hand if all combinations of two or more fingers
were distinguished.

This pooling of performable fingertip combinations should not be considered
an unhappy compromise; consideration of human factors also argues for it. Memo-
rization and control of particular combinations of fingertips rather than particular
numbers of fingertips may be just as cognitively and biomechanically demanding for

the operator as identification is for the MTS. Given the freedom to choose and vary
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which fingertips are used in chords composed of only one, two or three fingertips,
operators naturally prefer to pick combinations in which all touching fingertips are
adjacent rather than combinations in which a finger such as the ring finger is lifted
but the surrounding fingers such as the middle and pinky must touch. In a chord
typing study, Fukumoto and Tonomura [41] found that users can tap these finger
chords in which all touching fingertips are adjacent twice as fast as other chords.
Trained pianists could perform all chords about twice as fast as normal subjects,
but awkward chords still took twice as long as chords composed of a contiguous
group of fingertips.

Allowing the MTS operator to interchange fingertip combinations when ac-
cessing common manipulation channels such as pointing also helps avoid overuse of
the finger muscles which press or suspend a particular set of fingers. The uniquely
opposable motion of the thumb and relatively large region of sensory-motor cor-
tex devoted to the thumb also suggest that the thumb may be cognitively distinct
from the fingertips. The gesture set will abide by this distinction: chords including
the thumb will be reserved for selection of command gesture channels, and chords
initially composed solely of fingertips will select graphical manipulation channels,
though the thumb can be added to these chords after the initial channel selection

to capture its unique opposable motions.

4.2 Overview of the Hand Tracking and Identification System

For the reader’s convenience, the tracking system flow diagram of Figure 3.1
is repeated in Figure 4.1. The image segmentation module described in Chapter 3
segments the current proximity image into groups of electrodes corresponding to
the distinguishable hand parts. The path tracking module, also described in the
previous chapter, links the groups from successive proximity images corresponding

to the same hand part into persistent contact paths. It also computes parameters
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Figure 4.1: System-level diagram for hand and finger tracking and identification
modules.
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Table 4.1: Finger identity notation for identified path data structures.
‘ Notation ‘ Common Hand Part Name ‘
FoO The Null/Dummy Hand Part
F1 Thumb Finger (not a fingertip)
F2 Index Finger
F3 Middle Finger
F4 Ring Finger
F5 Pinky Finger
F6 Outer (lateral) Palm Heel
F7 Inner (medial) Palm Heel
F8...F11 | Forepalm Calluses/Overflow Contacts

related to the contact trajectories such as the instantaneous lateral velocity along
each path.

The finger identification, hand identification, and hand position estimation
modules are the focus of this chapter. The hand identification module will determine
which hand causes each contact, and the finger identification module will establish
a unique finger or palm heel identity for each contact within a hand. The finger and
hand identification modules are hierarchically related, and both will employ combi-
natorial optimization methods to find the most biomechanically and anatomically
consistent set of contact identifications. The output of the identification modules
will be non-zero hand and finger indices attached to all contact paths. The identified
contact paths will be referred to with the notation of Table 4.1. To denote a par-
ticular hand identity this notation can be prefixed with an L for left hand or R for
right hand; for example, RF2 denotes the right index finger path. When referring
to a particular hand as a whole, LH denotes the left hand and RH denotes the right
hand.

The hand position estimator will use contact positions as well as the assigned

contact identities to maintain a conservative estimate of overall hand position even
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when a hand is not touching the surface. Feedback of the estimated hand positions
to the finger identification process will help identify contacts when so few contacts
appear in the image that the hand’s contact cluster has no apparent structure. To
aid hand identification, the estimated hand position will temporarily retain the last
measured hand and finger positions after a hand completely lifts off the surface.
Then, if the fingers quickly touch back down in the same region, they will more
likely regain their previous identifications. Because this estimated hand position
feedback is essential to the accurate functioning of the hand and finger identification
algorithms, the hand position estimation algorithm will be described first.

Again, this overall system architecture grossly resembles that of most com-
puter vision systems, with the hand and finger identification modules corresponding
to the object recognition stage. In this case, the object recognition stage is more con-
strained than in most computer vision applications because upper limits are known
on the number and type of objects which can appear in the image, i.e., thumb,
fingertip, or palm contacts from a left or right hand. Rather than picking the best
match from a library of object templates, the object recognition problem reduces to
an assignment problem of finding the optimal one-to-one mapping between surface
contacts and finger identities. When fewer contacts are present on the surface than
possible identities, dummy contacts will be created to keep the mapping one-to-one.
Fingers whose identities end up mapped to a dummy contact are assumed to be
lifted off the surface.

Unlike the path tracker, which is expected to create and maintain perfect
continuity of each finger path from the first image frame in which the finger ap-
pears, the identifications are not required to be correct in the first frame. As a
hand touches down, its individual parts may gradually appear over several image

frames, gradually increasing the constraints available for identification. Given that
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the segmentation, identification, and hand position estimation modules may be un-
derconstrained without the feedback between them, they can only be expected to
converge on a coherent solution over a few iterations of feedback between one an-
other. Reshuffling of identifications early in a hand gesture is allowed so the system
does not commit to an assignment before hand configuration clues have accumu-
lated.

However, reshuffling back and forth during ambiguous cases is still undesir-
able, so the system must also have some assignment hysteresis. For images which
contain no new information pertinent to identification, the identities of existing
contacts are simply extended via path continuation. The identification algorithm
need not even execute for such images, avoiding the risk that identities will get
reshuffled. As soon as a proximity image appears with new constraints such as an
additional contact or clearer features, the identification algorithm executes again.
As will become apparent, the hand position estimates provide a weaker, analog form

of hysteresis while fingers are temporarily lifted off the surface.

4.3 Hand Position Estimation

As indicated in Figure 4.1, the hand position estimator provides important
biasing feedback to the identification and segmentation processes. The hand position
estimates are intended to be a conservative guess of lateral hand position under
all conditions, including when a hand is floating above the surface with no flesh
visible in the proximity images. In case a hand is not touching the surface, its
position estimate represents a best guess of where it will touch down again. When
a hand partially touches the surface, the estimate combines current hand position
measurements based upon the centroids and identities of its contacts with previous
hand position estimates based upon earlier identifications which may have been

more or less reliable than the current measurements.
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4.3.1 Measuring Current Hand Position

Figure 4.2 shows the individual steps of the hand position estimation process,
which must be repeated for each hand separately. First, an overall hand position
must be measured from the contact positions in the current proximity image. The
simplest method of obtaining a hand position measurement would be to average the
positions of all the hand’s contacts regardless of identity. If all hand parts were
always touching the surface, as in the flattened hand of Figure 2.7, the resulting
centroid would be a decent estimate, lying somewhere under the center of the palm
since the fingers and palm heels typically form a ring around the center of the palm.
However, consider when only one hand contact is available for the average. The
measurement, would wrongly assume the hand center is at the position of this lone
contact. A lone hand contact is very unlikely to be from the hand center because
the hand center usually does not even touch the surface until the rest of the hand
is flattened onto the surface. If the lone contact is actually from the right thumb,
the true hand center would be 4-8 cm to the right, or if the contact is actually from
a palm heel, the true hand center would be 4-6 cm higher, or if the lone contact is
from the middle finger, the true hand center would be 4-6 cm lower.

Instead of assuming each contact comes from the center of the hand when
computing the average, the MTS’s hand position measurement utilizes the within-
hand identifications to compute for each contact an offset between its measured
position, (Fiz[n], Fiiy[n]), and the default position (Figery, Fligesy) of the particular
finger or palm heel with its identity . These default positions correspond to finger
and palm positions when the hand is in a neutral posture with fingers partially
closed (see Figure 2.8), as when resting on home row of the key layout. With this
tdentity-dependent offset computation, the position of a single, properly identified
surface contact will be sufficient to sustain a fairly accurate hand position estimate.

The next step averages the individual contact offsets to obtain the measured
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Figure 4.2: Flow chart of hand position estimation process.
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hand offset (Hpo5(1], Hmoy[n]):

EEI Fiyow[n](Fiz[n] — Fidefm)
ST Flimow(n]

EEI Fzmow[n](Fly[n] - FidEfy)
EI Fimow[n]

H mox [n] =

(4.1)

Hpoyln] = (4.2)

Preferably the weighting F'i,,.,[n] of each finger and palm heel is approximately
its measured total proximity, i.e., Fipou[n| &~ Fi,[n]. This ensures that lifted
fingers, whose proximity is zero, have no influence on the average, and that contacts
with lower than normal proximity, whose measured positions and identities are less
accurate, have low influence. Furthermore, if palm heels are touching, their large
total proximities will dominate the average. This is beneficial because the palm
heels, being immobile relative to the hand center compared to the highly flexible
fingers, supply a more reliable indication of overall hand position.

When a hand is not touching the surface, i.e., when all proximities are zero,
the measured offsets are set to zero. This will cause the filtered hand position

estimate below to decay toward the default hand position.

4.3.2 Identification Confidence and Filter Delay

As long as the contact identifications are correct, this identification-dependent
method for hand position measurement eliminates the large errors caused by assum-
ing lone contacts originate from the center of the hand. Flexing of fingers from their
default positions will not perturb the measurement more than a couple centime-
ters. However, this method is susceptible to contact misidentification. It assumes
identifications are always correct, which is not always the case, especially if the
identification system only has a couple of contacts to optimize over. For example,
if only one hand part is touching the surface and it is assigned the wrong finger or
palm identity, the hand position measurement can be off by as much as 8 cm. If

the lone contact is attributed to the wrong hand, it can easily cause H,,,;[n] to be
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in error by 20cm. Therefore the current measured offsets are not used directly, but
are averaged with previous offset estimates (Heoz[n — 1], Heoy[n — 1]) using a simple
first-order autoregressive filter, forming current offset estimates (Heoz[n], Heoy[n])-
The filter pole H,,[n] should be adjusted according to confidence in the cur-
rent contact identifications. Since finger identifications accumulate reliability as
more parts of the hand contact the surface, one simple measure of identification
confidence is the number of fingers which have touched down from the hand since
the hand last left the surface. Contacts with large total proximities also improve
identification reliability because they have strong disambiguating features such as
size and orientation. Therefore H,[n] is set roughly proportional to the sum of

contact proximities for the hand:
1 =7
Hy[n] = min(1,8+ o X > Fi,[n]) (4.3)
i=1

H,,[n] must of course be normalized to be between zero and one or the filter will
be unstable. Thus when confidence in contact identifications is high, 7.e., when
many parts of the hand firmly touch the surface, the autoregressive filter favors
the current offset measurements. However, when only one or two contacts have
reappeared since hand liftoff, the filter emphasizes previous offset estimates in the
hope that they were based upon more reliable identifications.

To encourage correct segmentation and identification upon touchdown for a
hand which has temporarily lifted off the surface, the filtered offsets must hold a
conservative estimate of hand position while the hand is floating above the surface.
If a hand lifts off the surface in the middle of a complex sequence of operations and
must quickly touch down again, it will probably touch down close to where it lifted
off. However, if the operation sequence has ended, the hand is likely to eventually
return to the neutral posture, or default position, to rest. Therefore, the 3 term in
Equation 4.3 is made small enough that while a hand is not touching the surface,

the estimated offsets gradually decay to zero at about the same rate as a hand lazily
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returns to default position. Alternatively, the estimated hand offsets can be made

to decay toward zero at a constant speed rather than exponentially.

4.3.3 The Filter Equations
When H,,[n] is small due to low identification confidence, the filter tracking
delay becomes large enough to lag behind a pair of quickly moving fingers by several
centimeters. The purpose of the filter is to react slowly to questionable changes in
contact identity, not to smooth contact motion. Measurement of the current contact
velocities (F'iyg[n], Fiyy[n]) occurs in the path tracking process (3.3.4) independent
of finger identity. Therefore this motion tracking delay can be safely eliminated
by adding the contact motion measured between images to the old offset estimate.
Again the hand motion (Hypz[n], Hmey[n]) is averaged over the individual contact
velocities:
St Fimow([n] Five[n]
i1 Fimou|n]

EEI Fimow [n]FZvy [n]
S =T Flimow (]

Hpyz[n] (4.4)

H 1] (4.5)

The estimated hand offsets (Heoz[n], Heoy[n]) can now be computed using the com-
plete filter equations:
Heox[n] = Hoa[n|Hmoz[n] + (1 — Hoa[n])(Heoz[n — 1] + Hppe[n]AL)  (4.6)
Heoy[n] = Hoa[n]Hmoy[n] + (1 — Hoa[n]) (Heoy[n — 1] + Hpoy[n]AL)  (4.7)

The overall filter structure captured by these equations is also illustrated in Fig-

ure 4.3.

4.3.4 Enforcing Hand Separation
While the offset computations for each hand have been independent as de-

scribed so far, it is advantageous to impose a minimum horizontal separation between
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the estimated left hand position and estimated right hand position such that when
a hand such as the right hand slides to the opposite side of the board while the
other hand is lifted, the estimated position of the other hand is displaced. In this
case the estimated position of the lifted left hand would be forced from default to
the far left of the surface, possibly off the surface completely. If the right hand is
lifted and the left is not, an equation like the following can be applied to force the

estimated right hand position out of the way:
RH.,,;[n] := min(RHoy[n], (LF1gefy — RF1gefs) + LHop[n] +min_hand_sep) (4.8)

where (LF 145 — RF14¢55) is the default separation between left and right thumbs,
min_hand_sep is the minimum horizontal separation to be imposed, and LH,,.[n]

is the current estimated offset of the left hand.

4.3.5 Interactions with Segmentation and Identification Modules

The updated hand position estimates (Heoq[n], Heoy[n]) are fed back to the
segmentation and identification processes during analysis of the next proximity im-
age. If the other processes need the estimate in absolute coordinates, they can
simply add the supplied offsets to the default finger positions, but in many cases
the relative offset representation is actually more convenient.

The updated hand position estimates tend to move so as to reinforce the
current contact identifications. Assuming the current identifications are correct, this
tends to stabilize them, to move the attractor ring so that the contacts line up better
with their assigned attractors. But it can also reinforce incorrect identifications,
which is why it is so important to limit the rate of change in estimated hand position
with the filter pole H,,[n] when the confidence in identifications is low. On the other
hand, when confidence in identifications is high but the position estimate contradicts
them, the position estimate should be allowed to change quickly to become consistent

with the identifications.
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4.4 Finger Identification

On surfaces large enough for multiple hands, the contacts of each hand tend
to form a circular cluster, and the clusters tend to remain separate because oper-
ators like to avoid entangling the fingers of opposite hands. Because the arrange-
ment of fingers within a hand cluster is usually independent of the location of and
arrangement within the other hand’s cluster, the contact identification system is
hierarchically split. The hand identification process first decides to which cluster
each contact belongs. Then a within-cluster identification process analyzes the ar-
rangement of contacts within each hand’s cluster, independent of the other hand’s
cluster. Because within-cluster or finger identification works the same for each hand
regardless of how many hands can fit on the surface, it will be described first. The
description below is for identification within the right hand; mirror symmetry must

be applied to some parameters before identifying left hand contacts.

4.4.1 The Basic Attractor Ring

For the contacts assigned to each hand, the finger identification process (Fig-
ure 4.4) attempts to match contacts to a template of hand part attractor points, each
attractor point having an identity which corresponds to a particular finger or palm
heel. This matching between contact paths and attractors should be one-to-one,
but in the case that some hand parts are not touching the surface, some attractors
will be left unfilled, i.e., assigned to dummy paths.

The relative locations of the attractor points are set to the approximate
positions of their corresponding fingers and palms when the hand is in the default
posture with fingers partially curled (Figure 2.8). These should be the same default
finger and palm locations (Figefs, Fligesy) employed in hand position estimation.
The default fingertip positions should also match the centers of the home row keys
in the key layout. Setting the distances and angles between attractor points from

the half-closed hand posture causes the attractors to lie in a ring with a radius

138



DEFINE IDENTITY
ATTRACTORS AT DEFAULT
CONTACT POSITIONS

v

TRANSLATE ATTRACTOR
TEMPLATE BY ESTIMATED
HAND OFFSET

v

COMPUTE MATRIX OF
DISTANCES FROM EACH PATH
TO EACH ATTRACTOR

'

COMPUTE ATTRACTOR
WEIGHTING FACTORS FROM
FEATURES OF EACH PATH

v

FIND ASSIGNMENT BETWEEN
PATHS AND ATTRACTORS
WHICH MINIMIZES SUM OF

WEIGHTED DISTANCES

# FINGER
HAND
ASSIGNMENTS AA;;FGANCETDofsl
2
ENTATIVE 3 OR <52
A\ A
Y N VERIFY THUMB
ASSIGNMENT
UPDATE FINGER
COUNTS AND |«
SUBSETS

A 4

( END )

Figure 4.4: Flow chart of the finger and palm (within-hand) identification algo-
rithm.
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about halfway between that of an outstretched, flattened hand and a fist. This will
allow the matching algorithm to perform well for a wide variety of finger flexions
and extensions.

For optimal accuracy of contact-attractor matching, the ring should be kept
roughly centered on the hand cluster. Therefore, the attractor ring for a given hand
is translated as a whole by the hand’s estimated position offset. The final attractor

positions (Aj;[n], Ajy[n]) are then:

A]w[n] = Heoac[n] + Fjdef:c (49)

Ajyln] = Heoy[n] + Fjaeyy (4.10)

4.4.2 Voronoi Diagram for Single Contact Identification

Figure 4.5 displays both the ring-like structure formed by the attractor points
for the right hand and the Voronoi polygon or cell around each attractor. If the
given hand is a left hand, the attractor ring must be mirrored about the vertical
axis from that shown. Every geometric point within an attractor’s Voronoi cell is
closer to that attractor than any other attractor in the ring [116]. When there is
only one contact in the hand cluster and its features are not distinguishing, i.e.,
when only a single small part of a hand is touching the surface, the identification
algorithm can simply determine which Voronoi cell the contact lies within and assign
the contact to that cell’s attractor. Thus the size and shape of each Voronoi cell
indicates the range over which a particular hand part can touch down with respect
to estimated hand center and still be identified correctly. Given that the Voronoi
cells for fingertips are rather tall and narrow, one can conclude that the Voronoi
cells will tolerate a high degree of finger flexion and extension but not so much hand
rotation or unexpected horizontal displacement.

In the unweighted Voronoi diagram of Figure 4.5, the palm attractors are

actually a couple centimeters lower than the measured default palm heel positions.
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Figure 4.5: Voronoi cell diagram constructed around ring of hand part attractor
points (x’s labeled with finger identity indices). In this figure, the esti-
mated right hand position offsets are zero, so the ring is not translated
from the default finger positions.
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Moving these attractors forward to their proper vertical positions of -4 ¢cm would
have enlarged the palm heel Voronoi cells too much at the cost of thumb and pinky
Voronoi cell size. The palm heel Voronoi cells are so large that an abducted thumb
or flexed pinky is occasionally misidentified as a palm heel. This can actually cause
typing errors when hitting pinky keys in the lowest row such as < Ctrl > or < Alt >
(see Figure 1.1 on Page 6) because the tapping finger can be misidentified as a palm
and therefore ignored. Section 4.4.6.2 will introduce palm heel weightings which
shrink the palm heel Voronoi cells, allowing the true default palm heel positions to

be used.

4.4.3 Multiple Contacts Compete for Voronoi Cells

When multiple parts of a hard touch the surface, more than one may lie
within the same Voronoi cell. Since only one of the contacts can be assigned to
any Voronoi cell’s attractor at one time, the contacts lying in the same cell must
compete for the cell’s attractor and neighboring attractors. A global optimization is
necessary to determine which of the contacts goes to the attractor of the occupied
Voronoi cell and which goes to neighboring attractors.

This global optimization finds the one-to-one assignment between attractors
and contacts which minimizes the sum of weighted, squared distances between each
attractor and its assigned contact. When there are fewer surface contacts than
attractors, ¢.e., when any hand parts are floating above the surface, the null path PO,
which has zero distance to each attractor, acts as a dummy contact in place of any
missing contacts. This ensures a one-to-one mapping can be found by making the
total number of surface plus dummy contacts the same as the number of attractors.
Let the squared distances in the surface plane between each contact path Pi and

each translated attractor point Aj form a square matrix [d};]:

dj; = (Ajs[n] — Pis[n])* + (Ajy[n] — Piy[n])” (4.11)
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The optimization can then be stated as finding the permutation {mq,...,7m7} of

integer hand part identities {1, ..., 7} which minimizes:

Z dir, (4.12)

where contact ¢ and attractor j are considered assigned to one another when 7; = j.
This combinatorial optimization problem, known more specifically in mathematics
as an assignment problem, can be efficiently solved by a variety of well-known math-
ematical techniques. The following sections will review the solution techniques for
the assignment problem, the reason the squared Euclidean distance is preferred
over other distance metrics for finger identification, and how feature-dependent
weightings of particular contact-attractor distances sustains correct identification

over wider ranges of finger motion.

4.4.4 The Assignment Problem
The assignment problem is a special case from the classes of linear program-
ming problems and integer programming problems. Its more general formulation as

a linear programming problem [35] is to minimize over the parameters z;; the sum:

DD it (4.13)

i=1j=1
subject to the constraints:
M
ozy=1 Vi=1,.M (4.14)
j=1
M
oxy=1 Vj=1,.M (4.15)
i=1
zij=0 or 1 Vi,j=1,.M (4.16)

where ¢;; is an arbitrary cost of assigning contact 7 to attractor j, and contact 7 is
considered assigned to attractor j only when z;; = 1. Since there are M! possible

solution matrices z;;, brute force enumeration is inappropriate unless M is very
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small. Since this is a linear programming problem, it also has a dual formulation
as a maximization problem, and specialized versions of the primal and dual simplex
method can find the optimal solution [8,10,109]. However, the specially constrained
structure of the solution matrix z;; supports other efficient solution techniques.

Kuhn [83] was the first to develop the Hungarian Method for solving the
assignment problem. This method was based on special matrix properties dis-
covered by Egervary [34] and Konig [80] which guide manipulations of matrix
rows and columns similar to Gaussian elimination. Its worst case performance is
O(M?), though performance varies widely for large M depending on implementation
tricks [27,102]. The Hungarian Method and improvements upon it have been the
preferred solution method in the field of operations research, where the assignment
problem often arises when trying to match workers’ various skills to a variety of
tasks or machines requiring different skills. In most of these applications the cost
matrix is not derived from the distances between points in a plane. However, some
operations research problems do construct a cost matrix from a set of matching
distances. An example would be trying to assign M taxis to M passengers given the
location where each passenger is to be picked up, the starting location of each taxi,
and the assumption that the overhead for each taxi increases in proportion to the
distance from last drop off (starting location) to next pick up. In these real-world
operations research problems the unsquared rather than squared distance is usually
the more relevant cost parameter.

As an integer programming problem, the assignment problem can be solved
with the branch and bound heuristic [58], relaxation [11,12] or network flow min-
imization techniques based upon the Shortest Augmenting Path Method [7, 31, 33,
75]. As a combinatorial optimization problem, localized [1] combinatorial search
heuristics can be applied, though these do not guarantee the global minimum will

be found. For the relatively small size of the finger assignment problem, any of these

144



solution techniques should be efficient enough for real-time finger identification.
Localized combinatorial search was the first technique implemented in the
MTS software, and once methods to avoid convergence failures for it were understood
(see Appendix C), there seemed to be no need to try an alternate implementation
with any of the other well-known techniques. Moreover, localized combinatorial
search has a couple advantages within the context of real-time finger identification.
First, it can verify very quickly that a previous set of identifications is still at least
locally optimum. Though its worst case performance will turn out to be O(M?) as
well, it finds the global minimum fairly fast given an initialization near the global
minimum. Second, it offers important insights into the design and analysis of the
attractor ring when assignments costs are proportional to contact-attractor distances

squared.

4.4.4.1 Localized Combinatorial Search

Combinatorial problems such as the assignment problem can be incrementally
optimized using k-exchange neighborhoods [1]. In the case of the finger identification
problem, a k-exchange neighborhood is a subset of attractors from the attractor ring.
If k is 2, the subset will usually be a pair of adjacent attractors. Minimizing the
sum of assignment distances within this subset by conditionally swapping the two
contact-attractor assignments will always improve the total assignment sum. This is
a consequence of the fact that the total cost, 7.e., the assignment sum, is a monotonic
increasing function of the individual costs, i.e., contact-attractor distances. Picking
a sequence of k-exchange neighborhoods, i.e., successive adjacent attractor pairs,
and optimizing them with conditional swapping causes the total assignment sum to
decrease toward a local minimum. Whether the local minimum found is actually the
global minimum depends on the initial assignments and the ordering of the exchange

neighborhood sequence.
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4.4.4.2 Choosing Initial Assignments

After each sensor array scan, the paths of hand parts which have newly
touched down are assigned to the closest available attractors in the ring. This
operation is equivalent to picking a new path, constructing a Voronoi diagram from
only the unfilled attractors, and assigning the path to the unfilled attractor whose
Voronoi cell the contact lies within. This does not ensure that the initialization puts
the new contact with the best attractor since the best attractor might be one that
is already filled with a pre-existing path, but this usually puts the new path close

to its correct attractor and therefore close to the global minimum.

4.4.4.3 The Swapping Condition

Let Aa and Ab be adjacent attractors in the ring, i.e., a = b+ 1, and
let Pg and Ph, correspondingly, be their currently assigned contact paths. The
one-to-one nature of the matching assignments is enforced with the double-links
Abqssignedpath = Passignedfinger a0d Abgssignedpath <= Phassignedfinger- These as-
signments are swapped, making Ac,ssignedpath <= Phassignedfinger a0d Abgssociated =

P gqssignedfinger, if swapping reduces the sum of the contact-attractor distances:
?
dh, + d2y < djy + d2, (4.17)

In the method of simulated annealing, a noise term is added to the right side of
inequality 4.17 so that some swaps are taken even when they do not decrease the
assignment sum. In large problems this allows the optimization search to jump back
out of local minima. The noise variance or annealing temperature is decreased over
time to lock in the global minimum. As Appendix C shows, there are simpler ways

than simulated annealing to avoid non-global minima in finger identification.
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4.4.4.4 The k-exchange Sequence

The exchange neighborhood sequences utilized by localized combinatorial
search heuristics are often application specific [1]. For finger identification, the
roughly circular structure of the attractor ring supports a simple nearest neighbor
traversal around the ring, as would a linear structure. The sequence simply proceeds
around the attractor ring in either clockwise or counter-clockwise order, pausing for
a conditional swap at each attractor encountered. Each swap test is applied between
the current attractor and the next adjacent attractor around the ring. Travel around
the ring repeats until one complete traversal is made without accepting any swaps.

This basically amounts to a bubble sort on the ring, utilizing the swapping
condition for the current attractor pair as the bubble sort ordering relation. Notice
that though a bubble sort has O(M?) performance [79], i.e., M traversals of the
ring are required in the worst case, a single traversal of the ring can verify that the
sorting of contacts based on their positions in previous proximity images is still the
correct sorting for their current positions. Also, the initialization of new contacts
assignments as described in Section 4.4.4.2 tends to put contacts within a couple
attractors of their proper attractor, so usually not more than two or three traversals
of the ring are necessary. Worst case performance can be improved by utilizing a
bidirectional bubble sort [79], i.e., reversing the direction of the exchange sequence
after each complete traversal of the ring.

Because transitivity of the ordering relations described in the next section
will not always extend between opposite sides of the ring, contacts can get stuck in
attractors on the opposite side of the ring. Such convergence failures are explained
further in Appendix C. They can be avoided and the global minimum reached
by expanding the exchange neighborhoods to include contact pair swaps between
attractors on opposite sides of the ring instead of only between adjacent attrac-

tors on the ring. This expansion of the exchange neighborhood reduces worst case
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performance to O(M?).

4.4.5 Geometric Interpretations of the Swapping Condition
This section explores geometric interpretations of the pair swapping condition
of Equation 4.17 which aid in design of the attractor ring and understanding of its

assignments.

4.4.5.1 Geometric Interpretation of Single Contact Swapping

The simplest case is when one of the contacts, say Ph, is a dummy or null
contact. By definition of dummy contact, dn, = 0 and dj, = 0. Then the swapping
inequality reduces to:

&2, < &2, (4.18)

which is equivalent to:

dgy < dye (4.19)

since all distances are non-negative. Asshown in Figure 4.6, the geometric interpretation
of this swapping condition is that after the conditional swap, real contact Pg will be
assigned to the closest attractor, i.e., the attractor which is on the same side of the
perpendicular bisector between the attractors as Pg is. The walls of Voronoi cells
are actually composed of such perpendicular bisectors between various attractors,
Figure 4.6 being the special case of a Voronoi diagram of only two attractors. The
fact that Equation 4.18 is equivalent to Equation 4.19 simply means that squaring
the distances has no impact on the swapping condition a dummy contact is involved;
Voronoi diagrams constructed for a Euclidean distance squared metric are the same
as Euclidean distance metric diagrams [116].

Another interpretation will be useful for comparison to the case when the
attractors compete for two contacts. By projecting the contact g onto the line ab

between the attractors, one can see that the swapping condition depends on the
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Figure 4.6: Geometric construction showing possible assignments (heavy arrows)
when two attractors (crosses) compete for one real surface contact
(circle). The losing attractor is always assigned a dummy contact (D)
which has zero distance to every attractor. The swapping condition
prefers case b) in which the assignment link does not cross the per-
pendicular bisector (dotted arrows) of the attractors.
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horizontal position of the projection ¢' relative to the center point between the

attractors:
? (az+0b
g, < % (4.20)
The comparison of the contact projection with absolute attractor pair position in
Equation 4.20 should be contrasted to the ordering relation which will arise for
contact pairs in Equation 4.35. Note Equation 4.35 does not depend upon absolute

horizontal alignment of the attractor pair.

4.4.5.2 Geometric Interpretation of Contact Pair Swapping

Though Figure 4.6 and its generalization to Voronoi diagrams explain swap-
ping behavior when two or more attractors are only competing for one real surface
contact, the case when two attractors are competing for two contacts, as when the
attractor ring is full of contacts, is not as straightforward unless a Euclidean distance
squared metric is used. With the distance-squared metric, the swapping decision
depends only on the ordering of the contacts as projected onto the line connecting
the attractor pair.

This interesting property of the distance-squared metric can be proved with
the help of the geometric constructions in Figure 4.7. Without loss of generality,
assume attractors a and b lie along a horizontally oriented line. Now, form perpen-
diculars from each contact g and h to the line ab and mark the projected intersections
¢’ and A, respectively. The swapping Inequality 4.17 can be restated in terms of

the lengths of the vectors connecting pairs of these points:
[lah||* + [[bg|[* < |lagl[* + [[bh]* (4.21)

where the left side of the inequality represents the sum of the squared assignment
lengths (heavy arrows) of Figure 4.7a, and the right side of the inequality represents
the sum of the squared lengths for the opposite assignments in Figure 4.7b. By the
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Geometric construction for comparing the costs of the two possible
assignments (heavy arrows) between a pair of contacts (circles) and a
pair of attractors (crosses). If squared-distance is the assignment cost
metric, the swapping decision reduces to comparing the ordering of
the contacts’ projections (dotted perpendiculars) onto the (solid) line
between the attractors. For the relative contact positions shown, the
assignments of b) have lower cost than those of a) under the distance-
squared metric.
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Pythagorean theorem, these potentially diagonal vector lengths can be restated in

terms of purely horizontal or vertical vector components:

lagll* = g'ai+4d'g, (4.22)
|bh||* = Kb+ I'h? (4.23)
lah|> = Wa+ WA (4.24)
lbg||* = g'b7 +4'g; (4.25)
and substituted into the inequality to obtain:
WG+ Why + '+ g'gy < g'ag + g'gy + Wb, + W'l (4.26)

The vertical distances on each side cancel, leaving an expression that depends only

on the horizontal separations of the contacts relative to the attractors:
T2 2
h'aZ + g'b2 < g'a’ + W'b2 (4.27)

Since g'a? and h'a? can be rewritten in terms of h'b,, ¢'b,, and ab,:
T T

ga2 = (ab, — g'b,)? (4.28)
= ab? — 2ab,g'b, + ¢'b> (4.29)
Ra2 = (aby — h'by)? (4.30)
= ab? — 2abyh'b, + h'b? (4.31)
substituting these expansions into Equation 4.27 and simplifying produces:
—2ab,h'b, < —2abyg'b, (4.32)

Assuming attractor a is to the left of attractor b so that ab, is negative, and substi-
tuting h'b, = hl, — b, and ¢'b, = g, — b,, the swap condition reduces to an ordering

relation of the contact coordinates as projected onto the line between the attractors:

a <H (4.33)



This simple condition ensures that regardless of the contacts’ orthogonal displace-
ment from the line connecting attractors a and b, if contact g as projected onto line
ab is to the left of the projection A’ of contact h, contact g gets assigned to the left
attractor a, and contact h gets assigned to the right attractor b. For the relative
positions of h and g shown in Figure 4.7, Equation 4.33 is not true, and the swap
to the assignments of Figure 4.7a is not taken because the existing assignments of
Figure 4.7b already minimize the total distance.

Note that though the simplification to Equation 4.33 depends on the as-
sumptions that the attractors lie on a horizontal line and attractor a is to the left
of attractor b, the ordering relation is independent of the horizontal alignment of
the attractor pair or the separation between the attractors. Rotation of the coordi-
nate space trivially extends the result to attractor pairs lying on a non-horizontal
line. This ordering relation can therefore provide translation and scale invariance
to identification of multiple finger contacts.

For comparison to the case when the attractor pair competed for only one real
contact, Figure 4.8 contains examples of two contact arrangements with the relevant
bisectors shown. In Figure 4.8a and b, both contacts are between the attractors,
but in Figure 4.8c and d one contact is to the left of the leftmost attractor. In
addition to the perpendicular bisector By 4 of ab, a bisector Bgh 1 qb of the segment
gh between the contacts is constructed perpendicular to ab in each case. Again,
the distance-squared swapping criterion (Equation 4.17) ensures that if the contact-
attractor links cross the contact bisector as in Figure 4.8a or c, the assignments will
be swapped so that the contact to the right of the contact bisector By, q always
ends up assigned (Figure 4.8b or d) to the attractor to the right of the attractor
bisector Bgp 4, and the contact to the left of the contact bisector By 4 always

ends up assigned to the attractor which is left of the attractor bisector By ap-
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Figure 4.8: Visual comparison of distance-squared assignments via contact pair
and attractor pair bisectors (dotted arrows) which are both perpen-
dicular to the segment between the attractor (solid line). The assign-
ments (heavy arrows) in b) and d) have lower distance-squared cost
because they preserve the projected ordering. In other words, the con-
tact to the left of the contact bisector, By 14, goes with the attractor
to the left of the attractor bisector, Bgyiqp, and vice versa, regardless
of the contact pair’s displacement relative to the attractor pair.
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4.4.5.3 Summary of Swapping Behavior using Distance-Squared Metrics
In summary, swapping behavior under distance-squared cost is quite different

depending on whether the two attractors compete for one or two surface contacts.

e In the one surface contact case, the real contact simply goes to the closest

attractor according to the absolute position of the bisector between attractors:

2 (az + bs)

4.34
Iz 5 (4.34)

A dummy contact is assigned to the farther attractor.

e With two competing surface contacts, the contacts are ordered with respect to
the inter-attractor angle, but the absolute position of the attractor pair does
not matter:

9o < hy (4.35)

4.4.5.4 Contact Pair Swapping Behavior with Other Metrics

For metric spaces in which the Euclidean distance between each contact and
attractor is taken to some power other than 2, the swapping condition does not
simplify so nicely. For example, if the distance power is one, the inequality corre-

sponding to Equation 4.27 includes length product terms:
ag? + bh2 + 2| ag]| ||Bh] < ah + bg? + 2||ahl] | bg]| (4.36)
which persist through the simplification:
(6| [Bh]| — llahl] |1B9]] < abs(g'bs — 1'b,) (4.37)

This suggests that the swap decision depends on the difference in the products of
the link distances as well as the contact ordering as projected onto ab.
Nevertheless, a couple special cases can illustrate the substantially different

swapping behavior which arises with distance powers other than two. Consider
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a) )

Figure 4.9: Special case when one contact (g) is perfectly aligned on an attractor
(b) so that the attractor pair (crosses) and contact pair (circles) form
a right triangle. Note the b?} link in a) is invisible and has zero cost.
Under the unsquared-Euclidean metric, a) has a lower total assignment
cost than b). With the distance-squared metric, the assignment costs
of a) and b) are the same, and with the distance-quadrupled metric,
b) has the lower total cost.

Figure 4.9, in which one contact g is right on top of one attractor b, and the other h
lies on the perpendicular passing through the same attractor b. Thus the contacts
and attractors form a right triangle with both contact g and attractor b at the
perpendicular corner, making ||bg|| = 0. The triangle inequality ensures that for
the unsquared-Euclidean distance metric, the hypotenuse ||ah|| is shorter than the
sum of the lengths of the sides ||ag|| + ||bk]|, so the assignments will be g <= b and
a <= h as in Figure 4.9a.

For the distance-squared case, the Pythagorean theorem ensures that ||ah||? =
||@g| |2+ ||bh||2. Therefore neither Figure 4.9a nor Figure 4.9b is preferred since they
both produce the same total assignment costs. In other words, both contacts project
onto ab at the same point, so their order must be chosen arbitrarily.

For the Euclidean-distance-quadrupled metric, the Pythagorean theorem can

be invoked again to prove that Figure 4.9b has the lower assignment cost:
lahl[* = (||ag|[* + [|bh[|*)* (4.38)
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= [|dy|[* + 2[|ay||[bh|[* + |[bh]|* (4.39)

< lag|[* + ||bh)|* (4.40)
Note that in this case contact g gets assigned to attractor a even though its distance
to attractor b is zero!

Another important case occurs when all attractors and contacts are collinear

yet the contact pair is shifted away from the attractor pair as in Figure 4.10. Under

\I< AV FaY >f\ \L \I< O >f\
a b 9 h a - b >g h

a) b)

Figure 4.10: Special case when the attractor pair (crosses) and contact pair (cir-
cles) are collinear illustrates that unlike the L2 metric, the L1 metric
does not preserve the contact ordering under lateral translation of
the contact pair. Under the unsquared-Euclidean metric, the sum of
the lengths of the assignment arrows is the same in a) and b) even
though the assignments (heavy arrows) of a) reverse the horizontal
ordering of the contacts with respect to their assigned attractors.
The distance-squared metric produces a lower total cost for more
uniform arrow lengths as in b). This causes the horizontal ordering
of the contacts to be consistent with that of the attractors under
arbitrary horizontal translation of the contact pair.

the unsquared-Euclidean metric, the total of the assignment arrow lengths is the
same in Figure 4.10a as in Figure 4.10b even though the lengths within Figure 4.10a
are disparate and reverse the horizontal ordering of the contacts with respect to the
attractors. The sum of squared lengths favors the more uniform arrow lengths of
Figure 4.10b because the long assignment in Figure 4.10a between contact a and
attractor h produces a disproportionately large cost.

This preference for more uniform combinations of lengths or costs is one

reason squared error is chosen as an error metric for a wide variety of optimization
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problems. This section has shown that in the context of an assignment problem,
the preference for uniform lengths has the additional consequence of picking the
permutation which preserves ordering even when the cluster of contacts is translated
with respect to the attractors. This is particularly beneficial for finger identification
because the hand position estimates will sometimes be very wrong, causing total

misalignment of the attractor ring with the cluster of hand contacts.

4.4.5.5 Distance-Squared Assignment as Sorting

In analogy to Figure 4.10, consider the case when a row of four fingertip
contacts is horizontally misaligned with a row of four collinear fingertip attractors.
Since the distance-squared swapping condition for any contact pair and attractor
pair reduces to an ordering relation (Equation 4.35) on the contact horizontal co-
ordinates, an appropriate exchange neighborhood sequence will sort the contacts
with respect to the attractor ordering, producing the same result as a conventional
sorting algorithm [79] applied only to the horizontal coordinates of the fingertips.
Sorting under distance-squared assignment also tolerates scaling of fingertip spacings
as easily as straight horizontal coordinate sorting.

However, assignment to the attractor ring using the distance-squared metric
is more general than either horizontal coordinate sorting or assignment using the
unsquared Euclidean metric. Recall that with the distance-squared contact pair
swapping condition, the contacts are ordered according to their projection onto a
line whose angle matches the angle between two given attractors. Thus when three
or more attractors are not collinear, the ordering relation changes to fit the angle
of the local attractor pair, providing sorting along arbitrary arcs or around a ring.
Technically, the pairwise ordering relations will cease to be transitive when the
attractors are not collinear, i.e. f < g and g < h no longer implies f < h. Though
this creates the possibility of sorting failures as discussed in Appendix C, the sorting

effect still works as long as the change in adjacent attractor angles along the arc is
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fairly gradual. Though the unsquared-Euclidean metric can also sort along arcs or
around the ring when the ring is perfectly aligned with the contacts, the example
of Figure 4.10 shows that the unsquared-Euclidean metric has no preference for the
proper fingertip ordering once the attractor ring becomes misaligned by more than
one attractor spacing.

Unfortunately, these translation-invariant sorting properties of distance-squared
assignment are only effective when the attractor ring is full or nearly full of contacts,
i.e., when most of the hand parts are touching the surface. On the edges of a cluster
of only two to four finger contacts, empty attractors will compete for real contacts,
potentially giving up dummy contacts. As was shown in Section 4.4.5.1, when two
attractors compete for one real contact, the swapping condition is equivalent for both
squared- and unsquared- distance metrics and offers no special protection against
attractor ring misalignment. The absolute position comparison of Equation 4.34
causes dummy contacts to propagate toward those attractors which are farthest
from the real contacts, leaving erroneous shifts in fingertip assignment, but the con-
tact pair ordering relation still holds within groups of adjacent attractors retaining

real surface contacts, ensuring that the fingertips are at least ordered correctly.

4.4.5.6 Analyzing Swaps on the Attractor Ring

When applied to an attractor ring which is full of fingertips, the geometric
interpretations of the contact pair swapping conditions indicate exactly how much
local deviation in finger arrangement will be tolerated before finger identities are
erroneously swapped. For example, consider the attractor ring and five fingers in
Figure 4.11. The fingers are arranged with the same relative angles as the attractors
except the whole hand is translated about three centimeters toward the upper right
with respect to the attractor ring. Since the contact pair swapping condition for

the distance-squared metric is invariant to translation, and since the contact pairs
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Figure 4.11: Tolerance of hand translation and finger pair deviation in assign-
ment of five fingers to an attractor ring. Under the distance-squared
metric, the correct assignments (heavy arrows) of five fingers will be
produced for any translation. Furthermore, up to 90° of rotation of
the pinky (F5) about the ring finger (F4) from the default angle is
guaranteed to be tolerated. Erroneous identity swapping commences
when the angle of the perpendicular bisector (long dotted arrow)
between A4 and A5 is reached. Even though the palm heels are
not touching, the open (or dummy-filled) palm attractors are too far
down to receive any finger contacts.
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constrain one another within the arc of finger attractors, the exchange sequence will
find the correctly ordered finger assignments as shown.

Now suppose the pinky finger (F5) contact begins to rotate clockwise around
the ring finger (F4). The pinky’s identity will be maintained correctly for a rotation
of up to 90° from the default ring-pinky angle. After a rotation of 90° both the
ring (F4) and pinky (F5) contacts will be aligned on their bisector, perpendicular
to the segment joining the ring (A4) and pinky (A5) attractors and parallel to the
Voronoi cell wall (perpendicular bisector of (A4-A5) segment) between the ring and
pinky attractors. In other words, the ring (F4) and pinky (F5) contact projections
onto the ring-pinky attractor segment will be the same point, and their identities
may swap unstably. Any rotation past 90° would definitely cause the ring fingertip
(F4) to be assigned to the pinky attractor (A5) and the pinky fingertip (F5) to be
assigned to the ring attractor (A4).

Thus even in the face of attractor ring misalignment, the tolerance for finger
pair crossover can be determined precisely. Basically, the identifications are most
stable when the inter-contact angles match the inter-attractor angles. Identities of
two fingers will begin to be swapped erroneously as the angle between them ap-
proaches the angle of the perpendicular bisector between their attractors, which is
usually available from the Voronoi diagram. With the unsquared-Euclidean met-
ric, this rule would only hold when the contacts were roughly centered between
their attractor pair on the attractor bisector. Given the amount of translation in
Figure 4.11, the Euclidean metric probably would not produce the proper finger
ordering even without finger pair rotation.

To understand the identifications which will result when only two to four
fingers are touching the surface, leaving some finger attractors open, one must com-
bine the geometric interpretation of assignment of one contact to an attractor pair

(Section 4.4.5.1, Figure 4.6, Equation 4.20) with that of contact pair assignment
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(Section 4.4.5.2, Figure 4.8, Equation 4.35). Since the single contact swapping con-
dition is not as tolerant of translation as the contact pair swapping condition, the
identifications will become more and more vulnerable to corrupting translations as
more attractors are left unfilled. In general, finger identifications can be erroneously
shifted to the right or left by as many attractors as the number of open finger
attractors (5 - number of touching fingers) under sufficient horizontal translation.
Finger contacts are rarely shifted into open palm attractors (Figure 4.11) because
the palm attractors are so far below, meaning erroneous identification would require
a vertical misalignment of more than five centimeters. Also, palm heels have fairly
unique features which will be used to discriminately weight assignment to them in
Section 4.4.6.

Suppose the pinky finger contact (F5) is removed from Figure 4.11 and a
dummy contact (D) is assigned to the pinky attractor (A5) in its place. This situ-
ation is shown in Figure 4.12. As soon as the swapping test is applied to the ring
(A4) and pinky (A5) attractor pair, the ring finger (F4) will be assigned to the pinky
attractor (A5) since it is closer to the pinky attractor, i.e., on the right side of the
perpendicular bisector of the attractor pair. The ring attractor (A4) will receive
the dummy contact (D). When swap testing proceeds to the A3-A4 attractor pair,
A3 will receive the dummy contact (D) and A4 will receive F3 for similar reasons.
After swap testing of the A2-A3 pair, the dummy contact (D) will arrive at A2, the
index finger attractor, and stay there as shown in Figure 4.13. It will stay because
for the given amount of hand translation, the thumb (F1) is still closer to the thumb
attractor (A1) than the index finger attractor (A2). In other words, no real contacts
lie in the index finger Voronoi cell, so the dummy contact remains there.

Notice that though the assignments of the three remaining fingertips have
been erroneously shifted to the right, the distance-squared contact pair swapping

condition will still maintain their proper ordering. The ordering is still governed by
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Figure 4.12: Identity swaps which occurs after the pinky finger contact is removed
and replaced with a dummy contact (D). The assignments of the re-
maining fingertip contacts will shift right due to the hand translation
as the dummy contact propagates toward the index finger attractor.
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Figure 4.13: The dummy contact (D) propagates to the index finger attractor
when the pinky finger is removed. It remains there because no real
surface contacts lie in the index finger Voronoi cell.
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inter-contact angles in the same way as in Figure 4.11, except that in this case the
middle (F3) and ring (F4) finger identities will be swapped if the ring finger rotates
more than 90° past the angle between the ring (A4) and pinky (A5) attractors.

4.4.6 Tuning the Attractor Ring with Weighted Voronoi Diagrams

As presented so far the attractors have been unweighted, which causes the
Voronoi cells formed from perpendicular bisectors to be shaped like polygons. Mul-
tiplicatively weighting the distances to particular attractors causes the equidistant
bisectors between contacts with different weightings to be circles instead of straight
lines [116]. The center of these Apollonius circles lies along the line between the two
attractors but to the outside of the attractor with the smaller weight [116]. Weighted
Voronoi cells can therefore be composed of arcs as well as straight lines, and the
Apollonius circles of attractors with large weights can contain “holes” caused by
attractors with tiny weights [116]. By convention, the distances are divided by the
weightings w;;, e.g. ¢ = dfj/wij, so that as the weighting of an attractor gets
smaller, the attractor’s Voronoi cell does too, and vice versa.

Static weightings of particular attractors can warp and resize the Voronoi
cells to better match the range of motion of each hand part. For instance, since the
thumb and pinky have a much wider range of motion than the palm heels, it will
be advantageous to shrink the palm heel Voronoi cells and expand the thumb and
pinky Voronoi cells into space vacated by the palm cells.

Dynamic weightings of particular attractors in proportion to the strengths
of distinguishing contact features will also enlarge or shrink certain Voronoi cells
in relation to those of neighboring attractors. Attractor points whose Voronoi cells
appear dynamically enlarged to contacts with appropriate features are more likely to
be assigned those contacts even in the face of large attractor ring alignment errors.

While individual attractors can be weighted independently and the attractor ring as
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a whole can be translated from the default hand position, note that the positions of

individual attractors with respect to the rest of the ring never need to be changed.

4.4.6.1 Constant Additive Weighting to the Distance Matrix

Before applying any multiplicative weights to the contact-attractor distances,
a constant additive weight of about 2 cm? is added to each distance matrix entry,
dfj. Since this offset is applied uniformly to every distance, it has no effect when
assignments are unweighted except adding 2M to all assignment sums. Thus it does
not affect the structure of the unweighted Voronoi diagram. Its purpose will be
to ensure dynamic contact feature weightings are effective even when a contact is
precisely on top of an attractor, that is when dfj ~ (0. This effectiveness depends
on the fact that in such “compound-weighted” Voronoi diagrams, the combination
of the constant offset and a tiny weighting can cause a Voronoi cell to disappear
entirely [116]. Likewise, the combination of the constant offset and a huge weighting
can cause the Voronoi cell of one attractor to take over the entire surface.

To illustrate this, suppose a contact’s features are inconsistent with an at-
tractor, causing its feature weighting w;; for that attractor to be small, yet the
contact lies right on top of the attractor. Without the constant distance offset, the
weighted distance will still approach zero, i.e., d?j Jwi; =~ 0, not reflecting the feature
mismatch. With the constant offset, the weighted distance (df; 4 2)/wy; ~ 2/wy;
will always reflect the weighting somewhat, even as the Euclidean distance goes to
zero. The choice of 2 cm? reflects both empirical testing and the argument that since
attractor ring alignment errors average a centimeter or two and fingers have ranges
of motion of several centimeters from their default positions, precise alignment of a
contact over an attractor is more happenstance than a strong indicator of contact
identity.

What does it mean for a Voronoi cell to shrink and vanish? If the Voronoi

cell is from the diagram of the entire attractor ring, it simply means that a sole
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hand contact will not be assigned to the vanished cell’s attractor, regardless of the
contact’s position on the surface. However, when multiple contacts are competing
for attractors, an attractor whose cell has vanished from the Voronoi diagram can
still receive a contact simply because all other nearby attractors may already be

assigned to other contacts.

4.4.6.2 Static Palm Heel Weightings

In the unweighted attractor ring of Figure 4.5 on Page 141, the palm attrac-
tors had to be placed a couple centimeters lower than the measured default palm
heel positions. Moving these attractors forward to their proper vertical positions
of -4 cm would have enlarged the palm heel Voronoi cells too much at the cost of
thumb and pinky Voronoi cell sizes. Since the thumb and pinky have much wider
ranges of motion with respect to hand center than the palm heels, it would make
much more sense for the palm heel Voronoi cells to be more compact than the thumb
and pinky cells.

The MTS achieves compact palm heel Voronoi cells by including a small
weighting on all squared distances between contacts and palm heel attractors. This
weighting has been empirically chosen to be .25, i.e., w;g = w7 = .25. Since the
weights modify the squared distance, this effectively doubles the unsquared Eu-
clidean distance to a palm heel attractor compared to distances to other attractors.
As shown in Figure 4.14, this causes the bisectors between the inner palm heel and
thumb and between the outer palm heel and pinky to contract into circles around
the palm heels. Since the relative weightings between the palm heels are the same,
the bisector between inner and outer palm heels continues to be a perpendicular
line. Because the weightings limit the lateral and upward extent of the palm heel
Voronoi cells, with the weightings it is safe to move the palm heel attractors forward

to their actual measured default positions, as is done in Figure 4.14.
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Figure 4.14: Voronoi diagram with distances from contacts anywhere in the plane
to palm heels weighted to be twice as far as normal.
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With these weighted palm heel attractors, the weighted Voronoi cells match
the range of motion of each finger quite well. This is shown by the finger motion tra-
jectories superimposed on the weighted Voronoi diagram in Figures 4.15 and 4.16.
Figure 4.15 contains the entire range of finger flexion and extension, from out-
stretched hand to fist, for the author’s hand. At the end of the trajectories the
fingertips are actually curled under so the knuckles begin to touch the surface. The
palms remain fixed on the surface throughout the flexing.

Note that each finger remains within its Voronoi cell over the entire motion
range. This demonstrates that the isolated touchdown of any finger anywhere along
its flexion range will result in correct identification as long as the horizontal align-
ment of the attractor ring is correct. The horizontal alignment as determined by the
hand offset estimates will generally be perfect as shown when the hand is centered
on its default position or if both palm heels are resting anywhere on the surface.
If some other fingers are or were recently touching the surface and were properly
identified, the horizontal offset estimate will still be within a couple centimeters of
the correct alignment but probably will not be quite as good as shown. When all
four fingertips are touching the surface, the global assignment optimization will find
their correct identities by exclusion from the thumb and palm attractors, regardless
of attractor ring alignment.

Figure 4.16 demonstrates the superb fit of the weighted Voronoi diagram
when one finger at a time sweeps out its circular range of motion while all oth-
ers remain resting in their default positions. Note how the circular sweeps of the
thumb, index, and pinky fingers are closely circumscribed by their Voronoi cells.
Though the hand started in default position, the author did not look at the Voronoi
diagram while sweeping out the circles, so it is surprising that the finger sweeps so
closely match a Voronoi diagram constructed only from default finger positions and

empirically determined palm heel weightings.
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Figure 4.15: Weighted Voronoi diagram with flexing finger trajectories (tiny ar-
rows) superimposed. The fingers of the author’s hand started fully
extended and outstretched and then flexed simultaneously into a fist.
Note that the palm heels remain stationary over their attractors and
each finger remains within its Voronoi cell over the entire motion
range.
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Figure 4.16: Weighted Voronoi diagram with rotating finger trajectories (tiny ar-
rows) superimposed. All fingers of the author’s hand started in their
default positions right over the attractors. One at a time, the thumb,
index and pinky fingers were picked up and made to sweep out their
range of motion while the other fingers remained resting in their
default positions. Note that the palms were allowed to lift off the
surface and shift laterally to capture the full thumb range, but the
palms remained on the surface at all other times. Because the middle
and ring fingers have little room to move laterally while their adjacent
fingers are resting, they were left out of the sweeping experiment.
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4.4.6.3 Dynamic Feature Weightings

The dynamic contact-attractor distance weightings depend on whether the
geometric features of the given contact match those expected from the hand part
that the attractor represents. Since the thumb and palm heels exhibit the most
distinguishing geometric features, weighting functions are computed for the thumb
and palm heel attractors, and distances to fingertip attractors are unchanged. Each
weighting function is the product of several factor versus feature relationships. Each
weighting factor is designed to take on a default value of 1 when its feature measure-
ment provides no distinguishing information, take on larger values if the measured
contact feature uniquely resembles the given thumb or palm heel, and take on smaller
values if the measured feature is inconsistent with the given attractor’s hand part.
Thus the larger a particular feature factor for a particular contact-attractor pair,
the larger the attractor’s Voronoi cell will appear to the contact, and the more likely
the contact will fall within that cell and be assigned to its attractor.

Since each contact can have a different feature weighting for matching to the
same attractor, each contact can encounter a differently warped Voronoi diagram.
For example, a sufficiently large thumb weighting for a contact could make the
thumb attractor so powerful that the Voronoi diagram encountered by the contact
could contain only one Voronoi cell, a thumb Voronoi cell covering the whole sur-
face. In actuality, thumb contact features are never unambiguous enough to warrant
weightings this large.

The weighting functions were arrived at by trial and error. Since each weight-
ing function can move the boundaries of one Voronoi cell, the experimenter typically
decides from finger motion ranges where each boundary should be. The current
boundary positions can be determined by repeatedly lifting and touching a finger
over different spots until a surface position is found where finger identity becomes

unstable, alternating between two Voronoi cells each time the finger touches. The
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experimenter then adjusts the amplitude of the weighting function until the bound-
ary moves to the desired location. Care must be taken to balance the thumb and
palm weightings or the boundary between thumb and inner palm heel Voronoi cells

may shift unintentionally.

4.4.6.4 Thumb and Inner Palm Orientation Factor

Figure 4.17 shows the right thumb and right inner palm heel orientation

Right Orientation Factor

0 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Contact Orientation (degrees)

Figure 4.17: Right thumb and inner palm heel orientation factor, Piyerient|n],
versus orientation of the contact’s fitted ellipse, Pig[n].

factor versus orientation of a contact’s fitted ellipse. Orientation of these hand parts
tends to be about 120°, whereas fingertip and outer palm heel contacts are usually
very close to vertical (90°), and orientation of the left thumb and left inner palm
heel averages 60°. The right orientation factor therefore approaches a maximum at
120°. It approaches the default value of 1 at 0°, 90°, and 180° where orientation is

inconclusive of identity, and reaches a minimum at 60°, the favored orientation of
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the opposite thumb or palm heel. The corresponding relationship for the left thumb

and inner palm heel orientation factor is flipped about 90°.

4.4.6.5 Thumb Size Factor

Figure 4.18 approximately plots the thumb size factor. Since thumb size as

Thumb Size Factor

0 1 1 1 1 1
0 1 2 3 4 5 6

Contact Size (Normalized Total Proximity)

Figure 4.18: Thumb size factor, Piyhums_size[nt] Versus a contact’s total proximity,
Pi,[n].

indicated by total proximity tends to peak at two or three times the size of the
typical curled fingertip, the thumb size factor peaks at these sizes. Unlike palm
heels, thumb contacts cannot be much larger than two or three times the default
fingertip size, so the thumb factor drops back down for larger sizes. Since any hand
part can appear small when touching the surface very lightly or just starting to
touchdown, small size is not distinguishing, so the size factor defaults to 1 for very

small contacts.
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4.4.6.6 Palm Heel Size Factor

Figure 4.19 approximately plots the palm heel size factor. As more pressure

Palm Heel Size Factor

0 1 1 1 1 1
0 1 2 3 4 5 6

Total Proximity Divided by Eccentricity

Figure 4.19: Palm heel size factor, Piypam_size Versus the ratio of a contact’s total
proximity to its eccentricity, P,[n]|/P:[n].

is applied to the palms, the palm heel contacts can grow quite large, remaining fairly
round as they do so. Thus the palm heel size factor is much like the thumb size
factor except the palm factor is free to increase indefinitely. For palm heels larger
than the maximum expected thumb size, the palm heel size factor becomes so large
that the palm heel Voronoi cells engulf the entire surface. Thus if the full weight
of the hands rests on the palm heels and fully flattens them, they will be correctly
identified anywhere on the surface, regardless of attractor ring alignment.
However, fingertip contacts can grow by becoming taller as the fingers are
flattened. But since finger width is constant, the eccentricity of an ellipse fitted to a
growing fingertip contact increases in proportion to the height. To prevent flattened
fingers from having a large palm factor, the size measure is modified to be the ratio

of total contact proximity to contact eccentricity. This has little effect for palms,
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whose eccentricity remains near 1, but cancels the high proximities of flattened
fingertips. Though directly using the width from the contact’s fitted ellipse would
be less accurate for low resolution electrode arrays, the proximity to eccentricity

ratio basically indicates contact width.

4.4.6.7 Palm Heel Separation Factor

Another important distinguishing feature of the palm heels is that wrist
anatomy keeps the centroids of their contacts separated from one other and from
the fingers by several centimeters. This is not true of the thumb and fingertips,
which can be moved within a centimeter of one another via flexible joints. Min-
imum contact separation can be measured without knowing contact identities by
searching all contacts for the nearest neighbor contact of a given contact and mea-

suring the distance to that neighbor. As plotted approximately in Figure 4.20, the

Palm Separation Factor
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Distance to Nearest Neighbor Contact (cm)

Figure 4.20: Palm heel separation factor, Piypaim_sep[n| versus the Euclidean dis-
tance between contact P7 and its nearest neighbor contact.
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palm separation factor quickly decreases as the separation between the contact and
its nearest neighbor falls below a few centimeters, indicating that the given contact
(and its nearest neighbor) are not palm heels.

Unlike the size and orientation factors, which only become reliable as the
weight of the hands fully compresses the palms, the palm separation factor is espe-
cially helpful in distinguishing pairs of adjacent fingertips from palm heels because
it applies equally well to light, small contacts. For small separations, this weighting
factor becomes so small that the palm heel Voronoi cells vanish. Therefore, a pair of
contacts which are within about 3 cm of one another will not be identified as palm
heels, regardless of their position on the surface or the alignment of the attractor
ring. However, the palm separation factor should only be made this influential if the
segmentation system always either merges the two palm heels into one huge palm
contact or divides the palm across its central vertical crease into exactly two heel
contacts. If the segmentation system erroneously splits one of the palm heels into
two contacts which are less than 3 cm apart, the small separation factor which re-
sults can cause both contacts to be identified erroneously as fingers, again regardless

of the alignment of the attractor ring.

4.4.6.8 Forepalm Attractors and Weightings

The MTS includes four additional attractors near the center of the attractor
ring to handle forepalms contacts and other extra groups from segmentation of
flattened palms. This increases the size of the contact attractor distance matrix
to 11 x 11. Since the forepalms typically do not touch the surface unless the rest
of the hand is flattened onto the surface as well, the forepalm attractors must be
weighted such that contacts near hand center are assigned to them only when the
hand is flattened. When the hand is not flattened, contacts near hand center might
be fingers accessing keys on the bottom row of the key layout and should not be

identified as forepalms.
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The easiest way to determine if the hand or palm is flattening is to measure
the total proximity of all contacts assigned to the hand, Hiyq,[n]- A forepalm
weighting function is devised to be so small when the hand is not flattened that the

forepalm Voronoi cells totally vanish:

1
max (2, (8 — Hyotarz[1]))

Ounly when the total hand proximity Hieq,[n] becomes large due to finger or palm

(4.41)

W;g—11 =

flattening will the forepalm weightings be large enough that their Voronoi cells
appear near the center of the hand. To discourage fingers or palms away from hand
center from being assigned to forepalm attractors, forepalm entries in the contact-
attractor distance matrix are squared again, making forepalm assignment costs vary
with the fourth power of Euclidean distance. The final forepalm assignment costs

[cis—11] can then be written:

Cig—11 = Max (2, (8 — melz[n])) X (dz?,Sfll + 2)2 (442)

4.4.6.9 The Fully Weighted Assignment Cost Matrix
All of the static and dynamic weightings are combined to form a fully weighted

assignment cost matrix [c;;], where:

’

(d3; + 2)/ (Piwthumb_size[n] Piworient[n]) if j ==
(df; +2) if2<=j<=5
cij =\ 4(d}; + 2)/(Piwpaim_sizel ) Pluwpaim_sep[n]) if j==6
4(dZ; + 2) [ (Piwpatm_size[n) Piworient ) Plwpaim_sep[n]) if j ==17
| max (2, (8 — Hiotaiz[n])) x (d3; +2)° if 8 <=j <=11
(4.43)
The basic assignment optimization of Equation 4.12 is then restated as finding the
permutation {my,...,m1} of integer hand part identities {1,...,11} which mini-
mizes:

11
> Cin, (4.44)
i=1
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where ¢;; is the weighted distance from contact 7 to attractor j, and contact ¢ and
attractor j are considered assigned to one another when 7; = 5. Though the various
weightings can warp the Voronoi cells in complex ways which were not anticipated
in the design of the combinatorial search exchange sequence (Section 4.4.4.4), no
convergence failures have been noticed as long as palm attractors are allowed to
swap with any other attractor on the ring. Making the exchange neighborhoods of
palm attractors include all other attractors ensures that when a palm Voronoi cell
vanishes it can give up its contact to any finger attractor, or when a palm Voronoi

cell engulfs the surface it can accept a contact from any finger attractor.

4.4.6.10 Tolerance of Different Hand Sizes

Though the default finger positions and thus the attractor positions were
determined from the author’s medium-sized male hand, anthropomorphic data sug-
gests that the given attractor ring will perform well for most adult hands. Wagner’s
study [150] of anthopometry and biomechanics in the pianist’s hand found less than
a 10% standard deviation in all hand shape parameters except the prominences (rel-
ative lengths with hand flattened) of the thumb and pinky. While male hands are
on average nearly 10% larger than female hands, the range of adult hand sizes for a
given hand posture is much narrower than the range of finger flexion and extension
tolerated in Figure 4.15. Thus the only people for which the attractor ring might
need to be resized or reshaped would be very small children.

The feature weighting functions are more sensitive to hand size variation than
the attractor ring itself. For example, the palm heel separation factor cuts off sharply
at 4 cm and might become erroneously small for smaller hands whose palm heels
are as close as 3 cm to one another. Luckily, palm heel separation would actually
be much easier to measure and adapt to for individual operators than finger lengths
since the palm heels are immobile relative to one another. The system could power

up assuming a small palm heel separation to accomodate operators with small hands.
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Then, the actual palm heel separation could be measured upon the first confirmed
touchdown of both palm heels, and this measured palm heel separation could then
be used to calibrate the inflection points of the palm heel separation function of
Figure 4.20.

Fatter fingers cause larger total proximities for all contacts and thus cause
the proximity inflection points of the thumb and palm heel size factors to become
misaligned. Modifications to the thickness of the surface dielectric can also scale all
proximities and thus disrupt the calibration of the proximity inflection points. Such
variations in proximity scaling can potentially be dealt with by adapting the average
fingertip proximity, Zayerageringertip i Equation 3.20, to peak fingertip proximities

when the fingertips are normal to the surface.

4.4.7 Thumb Verification

The identifications produced by this attractor assignment method are highly
reliable when all five fingers are touching the surface or when thumb and palm
features are unambiguous. Checking that the horizontal coordinates for identified
fingertip contacts are in increasing order easily verifies that fingertip identities are
not erroneously swapped. However, when only two to four fingers are touching,
yet no finger strongly exhibits thumb size or orientation features, the assignment
of the innermost finger contact may wrongly indicate whether this contact is the
thumb because distance-squared assignment is sometimes too lenient about thumb-
fingertip angles and separations. In this case, the M'TS employs a thumb verification
process to take further measurements between the innermost finger contact and the
other fingers. If these further measurements strongly suggest the innermost finger
contact identity is wrong, the thumb verification process changes the assignment
of the innermost finger contact. Once the finger assignments are verified, statistics

about the assignments within each hand such as the number of touching fingertips
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are compiled. These statistics provide convenient summaries of identification results
for other modules.

Figure 4.21 shows the steps within the thumb verification process. The first
is to compute several velocity, separation, and angle factors for the innermost con-
tact identified as a finger relative to the other contacts identified as fingers. Since
these inter-path measurements presuppose a contact identity ordering, they could
not have easily been included as attractor distance weightings because contact iden-
tities are not known until the attractor distance minimization is complete. For the
descriptions below, let F'I be the innermost contact tentatively identified as a finger,

F'N be the next innermost finger contact, and F'O be the outermost finger contact.

4.4.7.1 Inner Finger Separation Factor

The separation between thumb and index finger is often larger than the sep-
arations between fingertips, but all separations tend to grow as the fingers are out-
stretched. Therefore an inner separation factor inner_separation_fact is defined
as the ratio of the distance between the innermost and next innermost finger con-
tacts to the average of the distances between other adjacent fingertip contacts,

avg_separation:

V(FI, — FN,)? + (FI, — FN,)?

avg_separation

inner_separation_fact = min (1, ) (4.45)

The factor is clipped to be greater than one since an innermost separation less than
the average can occur regardless of whether thumb or index finger is the innermost
finger touching the surface. In case there are only two finger contacts, a default
average separation of 2-3 cm is used. This factor tends to become larger than one if
the innermost contact is actually the thumb but remains near one if the innermost

contact is a fingertip.
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Figure 4.21: Flow chart of the thumb presence verification algorithm.
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4.4.7.2 TInner Finger Angle Factor

Since the thumb rarely moves further forward than the fingertips except when
the fingers are curled into a fist, the angle between the innermost and next innermost
finger contacts can help indicate whether the innermost finger contact is the thumb.
For the right hand the angle of the vector from the thumb to the index finger is
most often 60°, though it ranges to 0° as the thumb moves forward and to 120° as
the thumb adducts under the palm. This is reflected in the approximate plot of the

inner angle factor in Figure 4.22, which peaks at 60° and approaches 0 toward 0°

[EnN
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Figure 4.22: Right inner angle factor, angle_fact, versus the vector angle between
the two innermost contacts identified as fingers.

and 120°. If the innermost finger contact is actually from the index fingertip, the
measured angle between innermost and next innermost contact would probably be
between 30° and minus 60°, producing a very small angle factor.

The inner separation and angle factors are highly discriminating of neutral
thumb postures, but users often exceed the above cited separation and angle ranges
when performing hand scaling or rotation gestures. For instance, during an anti-

pinch gesture, the thumb may start pinched against the index or middle fingertip,
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but then the thumb and fingertip slide away from one another. This causes the
inner separation factor to be relatively small at the start of the gesture. Similarly,
the thumb-index angle can also exceed the range expected by the inner angle factor
at the beginning or end of hand rotation gestures, wherein the fingers rotate as if
turning a screw. To compensate, the inner separation and angle factors are fuzzy
OR’ed with expansion and rotation factors which are selective for symmetric finger

scalings or rotations centered on a point between the thumb and fingertips.

4.4.7.3 Thumb-Fingertip Expansion Factor
When defined by the following approximate equation, the expansion factor
peaks as the innermost and outermost finger contacts slide at approximately the

same speed and in opposite directions, parallel to the vector between them:

expansion_factor[n] = —\/ FIgpeea[n] X FOspeea[n]
x cos (Flgy[n] — /(FI[n], FOIn)))
X cos (FOgir[n] — /(FI[n], FO[n])) (4.46)

clipped_expansion_factln] = max (0, expansion_factor[n]) (4.47)

where /(FI[n], FO[n]) is the angle between the fingers:

(4.48)

/(FI[n], FO[n]) = arctan (FIy[n] _ FOy[”])

FIy[n] — FOqln]
Translational motions of both fingers in the same direction produce negative factor
values which are clipped to zero by the max operation. Computing the geometric
rather than arithmetic mean of the innermost and outermost speeds aids selectivity

by producing a large expansion factor only when speeds of both contacts are high.

4.4.7.4 Thumb-Fingertip Rotation Factor
The rotation factor must also be very selective. If the rotation factor was

simply proportional to changes in the angle between innermost and outermost finger,
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it would erroneously grow in response to asymmetries in finger motion such as when
the innermost finger starts translating downward while the outermost contact is
stationary. To be more selective, the rotation factor must favor symmetric rotation
about an imaginary pivot between the thumb and fingertips. The approximate
rotation factor equation below peaks as the innermost and outermost finger move
in opposite directions, but in this case the contacts should move perpendicularly to

the vector between them:

rotation_factor[n| = —\/ FIspecaln] X FOgpeealn]
x sin (Flg.[n] — £(FI|n], FO[n]))
x sin (FOgy[n] — Z(FI[n], FO[n]))  (4.49)

clipped_rotation_fact[n] = max (0, rotation_factor|n]) (4.50)

Since motions which maximize this rotation factor are easy to perform between the
opposable thumb and another finger but difficult to perform between two fingertips,

the rotation factor is a robust indicator of thumb presence.

4.4.7.5 Combining and Testing the Thumb Factors
The following expression essentially ORs these inter-contact factors with the

innermost and next innermost contacts’ thumb features:

combined_thumb_factor[n] = clipped_expansion_fact[n]
+clipped_rotation_fact|n]
“inner_separation_factor[n] x angle_factor|n]
X (FLuorient/ F Nuworient)

X (Fthhumb_size/FNwthumb_size) (451)

The feature weighting ratios of this expression attempt to compare the features of

the innermost contact to current features of the next innermost contact, which is

185



already known to be a fingertip. If the innermost contact is also a fingertip its
features should be similar to the next innermost, causing the ratios to remain near
one. However, thumb-like features on the innermost contact will cause the ratios to
be large.

The action taken by the thumb verification module (Figure 4.21) depends on

tests of combined_thumb_factor|n| against two thresholds, producing three cases:

1. If combined_thumb_factor[n| exceeds the high threshold, the innermost con-
tact is definitely a thumb. If the assignment algorithm has not already put the
innermost contact with the thumb attractor, the assignment algorithm must
be overridden. Thumb verification shifts the innermost contact’s assignment

inward on the attractor ring to the thumb attractor.

2. If combined_thumb_factor[n] is between the low and high thresholds, the
thumb verification test is ambiguous. The identification of the innermost con-
tact made by the assignment algorithm is left unchanged since the assignment
algorithm takes into account hand position estimate clues, but thumb verifi-

cation does not.

3. If combined_thumb_factor[n] is less than the low threshold, the innermost
contact is definitely not the thumb. For this conclusion to be reached, the
expansion and rotation velocity factors must essentially be zero, the innermost
and next innermost contact sizes and orientations must match, and either
the inner angle must be near horizontal or the inner separation must be less
than 2.5 cm. If the assignment algorithm has put the innermost contact with
the thumb, thumb verification overrides it by shifting the innermost contact
outward to the index finger attractor. Non-innermost contacts may need to

be shifted outward as well to make the index finger attractor available.
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Like the Voronoi cells of the assignment algorithm, the thumb verification
expression (Equation 4.51) and thresholds establish clear cutoffs for thumb identity.
Instead of utilizing hand position estimates, thumb verification imposes stricter
tests on inter-contact velocity, angles, and separations. Since Equation 4.51 adds
or essentially ORs the various feature measurements, thumb verification is most
difficult when only one of the features is discriminating. Figure 4.23 plots the inner
separation and angle cutoffs when the velocity factors are zero and the size and
orientation ratios are one, providing no discriminating information. Likewise, for
the expansion or rotation factors acting alone to surpass the high threshold and
trigger identification of the innermost contact as the thumb, thumb-finger motions
must be properly symmetric and exceed speeds of 1.5 cm/sec. For size ratios alone
to trigger identification of the innermost as the thumb, the innermost contact must
be at least twice as large as the next innermost. When several features act in
combination, they need not be as strong as cited here to force identification of the

innermost as the thumb.

4.4.8 Ratcheting Identification Accuracy

The quality of the constraints available for finger identification fluctuates as
palm pressures change, fingers lift off, or more hand parts touch down on the sur-
face. Running the assignment algorithm from scratch after segmenting each image
could discard accurate assignments made when the hands started in a neutral pos-
ture or when more hand parts were touching the surface. Therefore the assignment
and thumb verification algorithms for a hand are only executed for images in which
the total hand proximity is increasing or when a touchdown has recently been at-
tributed to the hand. Reassignment is not triggered by finger liftoff. This prevents
degradation of identifications upon finger liftoff such as the dummy contact propa-

gation upon pinky liftoff in Figure sequence 4.11-4.13. This also prevents erroneous
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Figure 4.23: Thumb verification cutoffs for right hand versus inner separation
and angle when other inter-contact features are not discriminating.
This is a polar plot of the decision regions relative to the position of
the next innermost finger contact (circle at center). If the innermost
contact lies to the lower left of the solid diagonal line, it is definitely a
thumb. If the innermost contact lies to the upper right of the dashed
line, it is most likely not a thumb. If the innermost contact lies in
the band between the solid and dashed lines, the thumb verification
test is inconclusive. In this case, the innermost identification based
upon assignment to the attractor ring is left unchanged to retain
weak clues from the hand position estimate.
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shifting of assignments for hands which touchdown in a neutral orientation but then
undergo extreme rotation, past the hand rotation tolerances of the attractor ring.
Persistent path tracking extends previous identifications of existing contacts
to images for which the assignment algorithm will not be executed. The hand
position estimates then only need be relied upon to ensure accurate reidentification
of fingers which lift off the surface temporarily. Such a system which only reassigns
fingers when image information increases substantially, such as when another finger

touches down, produces much more stable and reliable identifications.

4.4.9 Finger Identification Results

Since the finger identification system is deterministic in the sense that it
usually provides repeatable results for motion patterns having roughly the same ge-
ometry, identification convergence will be demonstrated upon a variety of extreme
conditions, each of which reveals the importance of a particular identification mech-
anism. The trivial cases of isolated finger touchdown and touchdown of the whole
hand in default position are note shown since they can be predicted entirely from
the weighted, static Voronoi diagram of Figure 4.14.

Figures 4.24-4.34 plot finger trajectories (blue arrowheads) which are se-
lectively labeled with the finger and palm identities (F#) which the identification
system has assigned to the paths at each time step (in each proximity image). The
identity labels, shown as an ’F’ followed by the hand part number (see Table 4.1 on
Page 4.1 for hand part number list), are printed upon hand part touchdown, hand
part liftoff, and any time step in between that the identification system changes
the hand part identity. Thus arrows without identity labels retain the identity last
shown along the given trajectory. Usually when a trajectory has the same label at
its beginning and end and no labels in between, it was identified correctly in the
image in which it first touched down, possibly while the hand position estimate was

still at default, so its identity never had to be changed.
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Except for rotations and scalings in thumb verification, finger velocity has
little or no effect on the results, but the hand will be moved in some cases to spread
out the labels and make changes in identity easily visible. To indicate relative
timing of the trajectories, blue dotted lines connect all finger contacts at selected
time steps, especially when any hand part touches down or lifts off. Ellipses (cyan)
are also centered on each hand part at selected time steps to indicate orientation,
eccentricity, and relative size of the contacts.

Figures 4.24, 4.26, 4.31, 4.32 also include the motions of selected hand part
attractors as caused by changes in the estimated hand position. Since all attractors
in the ring translate together, only those attractors relevant to the hand parts being
identified or the involved region of the surface are shown. Attractors are labeled
with an "A’ followed by their associated hand part number at the first time step
only. Attractor arrows are plotted in red and have a diamond at their head.

The right hand is used on the right half of the multi-touch surface in every
experiment, avoiding hand identification issues. For every plot, the right hand
position estimate is allowed to drift back to the default hand position before starting
the experiment. Then the hand touches down in the indicated region of the surface
and identification attempts begin immediately. Trajectory capture is halted before
or immediately after liftoff, so the drift of the hand position estimates back to the
default is never shown, but this typically takes just a second or two.

The results of Figures 4.24-4.34 can be summarized as follows. Single, iso-
lated fingers are only identified correctly if hand position estimates are consistent
with actual hand position, i.e., the attractor ring is aligned horizontally within a
centimeter and vertically within about 5 cm. Isolated palm heels, on the other hand,
will be properly identified regardless of their position or that of the attractor ring
if their contacts reach a uniquely large size. Multiple fingers are always ordered

properly around the ring and never misidentified as palms unless they are separated
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Figure 4.24: The hand starts at the top left with pinky touching down first and
the other fingers rolling onto the surface at regular time intervals as
the hand as a whole slides down. Since the original pinky touchdown
occurs in the index finger Voronoi cell while there are no feature or
inter-contact constraints, the pinky is initially misidentified as the
index finger (F2), and the index finger attractor (A2) starts moving
up to meet it. The sorting behavior of distance-squared assignment
forces identifications of the pinky to shift as fingers touch down to
the left of it, with all identifications corrected once all four finger-
tips touch. As identities are corrected, the hand position estimate
corrects left and follows the hand down so the A2 attractor ends up
near the actual index finger.
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Figure 4.25: Row of four fingertips is placed successively at the four corners with
attractors always starting at their defaults (red x’s). Correct identi-
fication throughout every placement shows that four fingertips in a
roughly horizontal row are sufficient for perfect, instantaneous identi-
fication anywhere; from this it follows that five fingers or four finger-
tips plus palm heels will be identified perfectly anywhere. All cases
rely on the translation-invariant sorting behavior of distance-squared
assignment. At the bottom corners the palm heel separation factor
comes into play. At the left corners, the assignment algorithm may
attribute the leftmost contact to the thumb, but thumb verification
finds the inner angle and separation not indicative of the thumb (see
Figure 4.23) and shifts all identities to the right, correctly attributing
F2 to the leftmost contact.
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Figure 4.26: A claw hand with the pinky crossed under the ring finger verifies
the finger rotation tolerances postulated for the attractor ring in
Figure 4.11 on Page 160. The pinky contact (bottom right) is always
identified correctly, regardless of attractor translation, since the angle
between ring and pinky does not quite become perpendicular to the
A4-Ab attractor angle (red dotted-segments). Simple sorting of the
horizontal contact coordinates would fail in this case, swapping the
F4 and F5 identities. Further cross-under of the pinky would pass
the perpendicular and also cause swapping, but the hand twisted as
shown is already at the maximum range of ulnar deviation (wrist
rotation).
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Figure 4.27:

Horizontal Position on Surface (X axis cm)

Fingers in a hand rotated fully clockwise to the limits of ulnar devia-
tion at the wrist are always identified perfectly. Presence of the palm
heels is not needed for this correct result. However, the fingertips are
kept well spread to avoid parallelogram-electrode-induced segmenta-
tion merging as occurred for the sideways hand in Figure 3.13 on
Page 96 of Chapter 3.
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Figure 4.28: Fingers in a hand rotated fully counter-clockwise to the limits of
radial deviation are identified correctly in this experiment, but not
always. As will be seen in the next figure, absence or merging of both
palm heels will open up the inner palm heel attractor (A7) which can
then grab the thumb contact which is at the lower left.
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Figure 4.29: Absence or merging of both palm heels can cause thumb misidenti-
fication when right hand is rotated fully counter-clockwise. In this
case, all identifications are initially correct, but as the palm heels
press onto the surface they merge into one huge contact, leaving the
inner palm heel attractor (A7) unfilled. This causes the identity at-
tributed to the thumb contact at lower left to change temporarily
to F7 until pressure is released from the palms and they split back
into two heels. Identities of the fingertips are unaffected. This sort
of failure can also occur if the palm heels never touch down because,
under this much rotation, the position of the thumb relative to the
index finger is the position normally expected for the inner palm heel
when the hand is not rotated.
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Figure 4.30: Fingers in a pen grip configuration are always identified correctly
anywhere on the surface as long as they are segmented properly. In
this experiment the fingers were kept a little looser than they would
be in practice to prevent the thumb contact from merging with the
index fingertip or the other fingers from merging with the palms.
Note that the outer finger contacts labeled F3-F5 are actually caused
by the knuckles of fingers curled under the palm, not the tips of the
fingers.
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Figure 4.31: Palm heels alone are identified correctly anywhere on surface when
they bottom out and reach full size. In this experiment the palms
touch down gradually on the middle left and slide toward the top
of the surface. Initially they are misidentified as fingertips and the
palm attractors (A6,A7) begin moving left. But by the third image
they grow enough that the palm heel size factor kicks in to expand
their Voronoi cells over the whole surface. The identifications are cor-
rected to F6 and F7 and the hand position estimate shoots upward,
bringing the sloppy segmentation regions (Section 3.2.6.5, Page 80
and Figure 3.3 Page 70) with it to ensure the two enlarging palm
heel contacts do not get split into three or four contacts.

198



5¢ 5¢ 5¢
F7
2 Of or or ¥
S F2 o4 R
& ' A i K % 1o
> t \ t i %A @
Q v AT b6 7 i &6
8 rw \ ’t ‘AG ! ! \ /
> [ i
2! !
s g E5 I = gl _F7 F6
o
c
S
o
o
S
5 |4 é
-10r & & -10r E E -10r
-15 1 1 1 ) -15 1 1 1 ) -15 1 1 1 J
10 12 14 16 10 12 14 16 10 12 14 16
a) b) Horizontal Position (X axis cm) c)
Figure 4.32: Dependency of fingertip pair identification in palm regions on finger-

tip separation. In each case, middle and ring fingers touch down and
slide upward between the palm heel attractors near the bottom edge
(horizontal black line) of the sensing area. In a) the adjacent finger-
tips are about 2 cm apart like normal. This causes a low palm heel
separation factor which causes the palm heel Voronoi cells to vanish
and the contacts to be identified as fingertips (but not adjacent ones)
upon touchdown. The hand position estimate, palm heel attractors
(A6,A7), and sloppy segmentation region all shoot downward to sta-
bilize these identifications. In b) the fingertips remain separated by
3 cm but do not touch down synchronously. The first down is ini-
tially misidentified as a palm heel (F7) because the separation factor
cannot be computed until both are touching. However, the identi-
fications are soon corrected, and the hand position estimate again
shoots downward only to follow the fingertips back up somewhat.
In c¢) the fingertips are separated by 4 c¢m, the nominal palm heel
separation, the separation factor is ineffective, the fingertips remain
misidentified as palm heels, and the palm heel attractors (A6,A7)
stay with them.
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Figure 4.33: Correct thumb identification for a thumb-middle fingertip chord in
the fingertip regions. Note how the thumb and fingertip attractors
jump to the upper right to align with the finger contacts. The thumb
verification module is able to distinguish a thumb and a fingertip
from two fingertips anywhere on the surface as long as the inter-
contact separation is more than about 4 cm and the inter-contact
angle is not near horizontal. Without it, the assignment algorithm
probably would have left these contacts identified as two fingertips.
Note that because of identification ratcheting (Section 4.4.8), the
fingertip identity never gets corrected from F4 to F3 even though
the A3 attractor ends up nearest the fingertip.
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Figure 4.34: Identifications of a thumb and middle finger which do not start
uniquely separated but perform unique motions. In a) at the top,
the thumb is initially misidentified as F2, but the expansion factor
(Section 4.4.7.3) quickly responds to the anti-pinch scaling motion
between the thumb and fingertip, correcting the thumb identity to
F1. In b) the thumb identification is corrected as the thumb flattens
out and its contact becomes much taller than that of the fingertip. In
c) only the tip of the thumb touches lightly, giving it a small contact,
and it does not move, so it remains misidentified as F2. In d) the
contacts are initially identified as F4 and F5, but when the thumb
and pinky rotate counter-clockwise as if loosening a screw, the ro-
tation factor (Section 4.4.7.4) detects this and corrects the thumb
contact identity to F1.
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by more than 4 cm, but if there are less than four fingertips touching, the fingertip
identifications may be shifted improperly. Even with less than four fingertips touch-
ing, the thumb will always be identified properly as long as it is well-separated from
the fingertips, flattens onto the surface when they do not, or is involved in expansive
hand scaling or rotational motions about a point centered between it and the finger-
tips. With four fingertips plus any combination of thumb and palm heels touching,

all identifications are perfect except possibly under extreme hand rotations.

4.5 Hand Identification

Hand identification is needed for multi-touch surfaces which are large enough
to accomodate both hands simultaneously and which have the left and right halves
of the surface joined such that a hand can roam freely across the middle to either
half of the surface. The simplest method of hand identification would be to assign
hand identity to each contact according to whether the contact initially touched
down in the left or right half of the surface. However, if a hand touched down in
the middle, straddling the left and right halves, some of the hand’s contacts would
end up assigned to the left hand and others to the right hand. Therefore, more
sophisticated methods which take into account the clustering properties of hand
contacts must be applied to ensure all contacts from the same hand get the same
identity. Once all surface contacts are initially identified, the path tracking module
can reliably retain existing identifications as a hand slides from one side of the
surface to the other.

The thumb and inner palm contact orientations and the relative thumb place-
ment are the only contact features independent of cluster position which distinguish
a lone cluster of right hand contacts from a cluster of left hand contacts. If the thumb
is lifted off the surface, a right hand contact cluster appears indistinguishable from
a left hand cluster. In this case cluster identification must still depend heavily on

which side of the board the cluster starts on, but the identity of contacts which
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recently lifted off nearby also proves helpful. For example, if the right hand moves
from the right side to the middle of the surface and lifts off, the next contacts which
appear in the middle will most likely be from the right hand touching back down,
not from the left hand moving to the middle and displacing the right hand. The
division between left and right halves of the surface should therefore be dynamic,
shifting toward the right or left according to which hand was most recently near
the middle. Since the hand offset estimates temporarily retain the last known hand
positions after liftoff, such a dynamic division is implemented by tying the positions
of left hand and right hand attractor templates to the estimated hand positions.
Though cases remain in which the operator can fool the hand identification
system with sudden placements of a hand in unexpected locations, the operator
may actually wish to fool the system in these cases. For example, operators with
only one hand free to use the surface may intentionally place that hand far onto
the opposite half of the surface to access the chord input operations of the opposite
hand. Therefore, when a hand cluster suddenly touches down well into the opposite
half of the surface, it can safely be given the opposite half’s identity, regardless of its
true identity. Arching the surface across the middle can also discourage users from
sliding a hand to the opposite side by causing awkward forearm pronation should

users do so.

4.5.1 Checking for Contact Stabilization

Figure 4.35 shows process details within the hand identification module. The
MTS first determines whether the hand identification algorithm actually needs to
be executed for the current sensor array scan cycle by checking whether all path
proximities have stabilized. To maximize stability of the identifications, hand and
finger identities need only be reevaluated when a new hand part touches down
or disambiguating features of existing contacts become stronger. The contact size

and orientation features are unreliable until the flesh fully compresses against the
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Figure 4.35: Flow chart of the hand identification algorithm.
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surface a few dozen milliseconds after initial surface contact. Therefore, the hand
identification algorithm executes for each proximity image in which a new contact
appears and for subsequent proximity images in which the total proximity of any new
contacts continues to increase. For images in which proximities of existing contacts
have stabilized and no new contacts appear, path continuation as performed by the
path tracking process (Section 3.3) is sufficient to retain and extend the contact

identifications computed from previous images.

4.5.2 Placing Left and Right Attractor Rings

Should the hand identification algorithm be invoked for the current image,
the first step is to define and position left and right hand attractor templates. These
should be basically the same as the attractor templates (Figure 4.5) used for finger
identification, except that both left and right rings must now be utilized at once.
The default placement of the rings relative to one another should correspond to
the default left and right hand contact positions shown in Figure 3.3a. Each ring
translates to follow the estimated position of its hand, just like the sloppy segmenta-
tion regions follow the hands in Figure 3.3b. Individual attractor points can safely
be translated by their corresponding estimated finger offsets. Therefore the final

attractor positions (Aj;[n], Ajy[n]) for the left hand L and right hand R attractor

rings are:
LAjg[n] = LHeo[n] + LF jeoz[n] + LF jaess (4.52)
LAjy ] = LHoayln] + LF el + LFjucg, (453
RAjz[n] = RHeog[n] + RF jeoz[n] + RF jueso (4.54)
RAjy[n] = RHeoyn| + RFjeoy[n] + RF jge sy (4.55)

Basically the hand identification algorithm will compare the cost of assigning con-
tacts to attractors in one ring versus the other, the cost depending on the sum of

weighted distances between each contact and its assigned attractor. Adjusting the
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attractor ring with the estimated hand and finger offsets lowers the relative costs for
assignment hypotheses which resemble recent hand assignments, helping to stabilize
identifications across successive proximity images even when hands temporarily lift

off.

4.5.3 Generating Plausible Partition Hypotheses

Next a set of assignment hypotheses must be generated and compared. The
most efficient way to generate sensible hypotheses is to define a set of roughly ver-
tical contour lines, one between each horizontally adjacent contact. This is done
by ordering all surface contacts by their horizontal coordinates and establishing a
vertical contour halfway between each pair of adjacent horizontal coordinates. Fig-
ures 4.36a—c show examples of three different contours and their associated assign-
ment hypotheses for a fixed set of contacts. Each contour corresponds to a separate
hypothesis, known also as a partition, in which all contacts to the left of the contour
are from the left hand, and all contacts to the right of the contour are from the right
hand. Contours are also necessary at the left and right ends of the surface to handle
the hypotheses that all contacts on the surface are from the same hand. Contours
which hypothesize more contacts on a given hand than can be caused by a single
hand are immediately eliminated.

Generating partitions via vertical contours avoids all hypotheses in which
contacts of one hand horizontally overlap or cross over contacts of the opposite
hand. Considering that each hand can cause seven or more distinct contacts, this
reduces the number of hand identity permutations to examine from thousands to at
most a dozen. With fewer hypotheses to examine, the evaluation of each partition

can be much more sophisticated, and if necessary, computationally costly.
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Figure 4.36:

¢) Horizontal Surface Position (cm)

Vertical contours (dividing lines) creating three different partitioning
hypotheses. Contours are always placed halfway between horizon-
tally adjacent contacts (circles). The partitioning of b) is probably
the correct partitioning for this arrangement of contacts, meaning
that the two contacts in the middle of the surface are from the right
hand, and the rest are from the left hand.
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4.5.4 The Optimization Search Loop

The goal of the optimization search is to determine which of the contours
partitions the contacts into left hand and right hand clusters such that the cluster
positions and contact arrangements within clusters best satisfy known anatomical
and biomechanical constraints. The optimization begins by picking a first contour
divider such as the leftmost and tentatively assigning any contacts to the left of the
contour to the left hand and the rest to the right hand. The finger identification
algorithm (Figure 4.4) then attempts to assign finger and palm identities to contacts
within each hand.

Returning to Figure 4.35, the next step is to compute a cost for the parti-
tion. This cost is meant to evaluate how well the tentatively identified contacts fit
their assigned attractor ring and how well the partition meets between-hand sepa-
ration constraints. This is done by computing for each hand the sum of weighted
distances from each tentatively identified contact to its assigned attractor point as
in Equation 4.44 of finger identification, including size and orientation feature fac-
tors for thumb and palm attractors. This sum represents the basic template fitting
cost for a hand. Each hand cost is then weighted as a whole with the reciprocals
of its clutching velocity, handedness, and palm cohesion factors. These factors, to
be described below, represent additional constraints which are underemphasized by
the weighted attractor distances. Finally, the weighted left and right hand costs are
added together and scaled by the reciprocal of a hand separation factor to obtain a
total cost for the partition.

This process is repeated for each partitioning contour until the costs of all
hypothesized partitions have been evaluated. The partition which has the lowest
cost overall is chosen as the actual hand partitioning, and the hand identities of all
contact paths are updated accordingly. The within-hand or finger identification al-

gorithm is invoked once more so that the thumb verification and statistics gathering
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processes can execute using the actual hand assignments.

4.5.5 Partition Cost Modifiers
4.5.5.1 Clutching Direction Factor

Users often perform clutching motions in which the right hand, for example,
lifts off from a slide at the right side of the surface, touches back down in the
middle of the surface, and resumes sliding toward the right. Therefore when a
hand is detected touching down in the middle of the surface and sliding toward one
side, it probably came from that side. A hand clutching direction factor, plotted

approximately in Figure 4.37, captures this phenomenon by slightly increasing in

Clutching Direction Factor
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Figure 4.37: Hand clutching direction factor versus the average of the right hand’s
horizontal contact velocities.

value when a hand cluster’s contacts are moving toward the cluster’s assigned side
of the board, thus decreasing the basic cost of the hand. The factor is a function of
the average of the contacts’ horizontal velocities and the side of the surface the given
cluster is assigned. Since high speeds do not necessarily give a stronger indication

of user intent, the factor saturates at moderate speeds.
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4.5.5.2 Handedness Factor

Though the thumb orientation factors help identify which hand a thumb is
from when the thumb lies in the ambiguous middle region of the surface, the vertical
position of the thumb relative to other fingers in the same hand also gives a strong
indication of handedness. The thumb tends to be positioned much lower than the
fingertips, but the pinky tends to be only slightly lower than the other fingertips.
The handedness factor, plotted approximately in Figure 4.38, takes advantage of this

Handedness Factor
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Vertical Position of Outermost Finoer Relative to Next Outermost (cm)

Figure 4.38: Handedness factor versus the vertical separation between outermost
and next outermost finger contacts.

constraint by boosting the hand cost when the contact identified as the outermost
fingertip is more than a couple centimeters lower than the next outermost fingertip
contact. In such cases the tentative hand assignment for all contacts in the cluster
is probably wrong. Since this causes the within-hand identification algorithm to
fit the contacts to the wrong attractor ring, finger identities become reversed such
that the supposedly lowered pinky is truly a lowered thumb of the opposite hand.
Unfortunately, limited confidence can be placed in the handedness factor. Though

the pinky should not appear lowered as much as the thumb, the outer palm heel
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can, creating an ambiguity in which the thumb and fingertips of one hand have the
same contact arrangement as the fingertips and outer palm heel of the opposite hand
(Figure 4.45). This ambiguity can cause the handedness factor to be erroneously
low for an accurately identified hand cluster, so the handedness factor is only used

on clusters in the middle of the surface where hand position is ambiguous.

4.5.5.3 Palm Cohesion Factor

Distinguishing contact clusters is challenging because a cluster can become
quite sparse and large when the fingers are outstretched, with the pinky and thumb
of the same hand spanning up to 20cm. However, the palm can stretch very little
in comparison, placing useful constraints on how far apart palm heel contacts and
forepalms from the same hand can be. The entire palm region of an outstretched
adult hand is about 10 cm square, so palm contact centroids should not be scattered
over a region larger than about 8 cm. When a partition wrongly includes fingers from
the opposite hand in a cluster, the within-cluster identification algorithm tends to
assign the extra fingers from the opposite hand to palm heel and forepalm attractors.
This usually causes the contacts assigned to the cluster’s palm attractors to be
scattered across the surface wider than is plausible for true palm contacts from
a single hand. To punish such partitions, the palm cohesion factor quickly drops
below one for a tentative hand cluster in which the supposed palm contacts are
scattered over a region larger than 8 cm. Therefore its reciprocal will greatly increase
the hand’s basic cost. Figure 4.39 shows the value of the palm cohesion factor
versus horizontal separation between palm contacts. The horizontal spread can be
efficiently measured by finding the maximum and minimum horizontal coordinates
of all contacts identified as palm heels or forepalms and taking the difference between
the maximum and minimum. The measurement and factor value lookup are repeated
for the vertical separation, and the horizontal and vertical factors are multiplicatively

combined to obtain the final palm cohesion factor.
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Figure 4.39: Palm cohesion factor versus the horizontal separation between the
innermost and outermost contacts identified as palms.

4.5.5.4 Inter-Hand Separation Factor

Figure 4.40 is an approximate plot of the inter-hand separation factor. This
factor increases the total costs of partitions in which the estimated or actual hori-
zontal positions of the thumbs from each hand approach or overlap. It is measured
by finding the minimum of the horizontal offsets of right hand contacts with re-
spect to their corresponding default finger positions. Similarly the maximum of the
horizontal offsets of the left hand contacts with respect to their corresponding de-
fault finger positions is found. If the difference between these hand offset extrema is
small enough to suggest the thumbs are overlapping the same columnar region of the
surface while either touching the surface or floating above it, the separation factor
becomes very small. Such overlap corresponds to a negative thumb separation in
the plot. To encourage assignment of contacts which are within a couple centime-
ters of one another to the same cluster, the separation factor gradually begins to
drop starting with positive separations of a few centimeters or less. The inter-hand

separation factor is not applicable to partitions in which all surface contacts are
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Figure 4.40: Inter-hand separation factor versus the estimated distance between
the left and right thumbs.

assigned to the same hand, and takes on the default value of one in this case.

4.5.6 Hand Identification Results

Hand identification results (Figures 4.41-4.48) are presented the same way
as finger identification results (Section 4.4.9) except both halves of the surface and
both hands are shown. To distinguish fingers and attractors from left and right
hands, finger and attractor labels are preceded with an 'L’ or an ’R.” As in the
finger identification experiments, each experiment starts with the estimated hand
positions in their default positions on opposite sides of the board.

The hand identification results can be summarized as follows. Parts from a
hand which slides to the opposite side of the board and lifts off will be identified
correctly if the hand touches back down within a couple seconds (Figure 4.41).
Parts of a hand which touch down in the middle of the surface will always be
clustered together properly and will be attributed to the correct hand if the thumb

is present or if the cluster slides quickly to the correct hand’s side of the board
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(Figures 4.43, 4.44).

Since thumb orientation, handedness, and clutching velocity features are
fairly ambiguous even when the thumb is present, they are only used in the middle
of the surface where hand position is often not distinguishing, not at the far sides
of the surface, where false positive reversals could cause, for example, a left hand
on the left side of the surface to be misidentified as a right hand. Therefore any
sudden touchdown well to the left side of the surface which was not preceded by
a hand sliding over from the right side will always be attributed to the left hand
(Figure 4.45).

The contacts of two hands which touch down uncrossed yet close together will
be partitioned correctly if palm heels are touching (Figures 4.46, 4.47). However,
the inter-hand separation factor needed for clustering a hand which straddles the
middle also tends to cause fingers from two adjacent, partially touching hands to
be clustered into one hand, often erroneously filling the one hand’s available palm
attractors (Figure 4.48). Though the palm cohesion factor addresses this in some
cases, additional methods of detecting nonsensical finger-palm arrangements will be

needed to cover all combinations of finger /palm presence.

4.6 Conclusions

Though individual proximity images are often under-constrained, the iden-
tification system employs somewhat redundant stabilization mechanisms to achieve
robust performance [161]. Ratcheting of identification accuracy upon the very de-
pendable path tracking system stabilizes the discrete system state, i.e., the finger
and hand identities. Basing hand position estimates upon these identities rather
than just a centroid of hand contacts also ensures that the continuous system state
held in the estimates has a stabilizing effect on new identifications. When at least
the four fingertips of a hand touch the surface, distance-squared assignment is con-

strained well enough that attractor ring alignment is irrelevant, making the hand
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position estimates redundant in this case as well. Similarly, while the various at-
tractor and hand partition weighting factors are designed to improve identification
accuracy when contact arrangements or hand position is ambiguous, the weighting
factors become redundant when the surface is fully populated with contacts from
both hands.

The most surprising aspect of the architecture is that so many identifica-
tion mechanisms coexist so peacefully, rarely contradicting one another. Manual
tuning of system parameters is practical because each identification mechanism or
weighting factor tends to dominate disambiguation of a specific hand configuration.
Though balance with other mechanisms must be kept in mind, the selected mecha-
nism’s parameters can be tuned for its specific hand configuration without causing
unmanageably complex side effects.

Though slight improvements could be made to thumb verification for the case
that a thumb and fingertip are close together or to hand partitioning for the case
when fingers from both hands are close together, the system distinguishes fingertips
from palm heels and thumbs almost perfectly under operating conditions. Since
the chordic manipulation system of the next chapter will be susceptible to human
performance errors as well as recognition errors in segmentation, identification, and
motion extraction, such identification flawlessness is crucial to keeping the overall

error rate tolerable.
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Chapter 5

CHORDIC MANIPULATION

This chapter will demonstrate how the tracking and identification capabilities
developed in previous chapters are applied to integrate typing and chordic manipu-
lation on the MTS. This integration of techniques for entry of text, commands, and
graphics is founded upon a novel concept: synchronous touchdown of multiple fingers
should initiate pointing, command gestures, or hand resting, while asynchronous ac-
tivity of individual fingers should be reserved for typing on a conventional key layout.
This concept and its implementation as described in this chapter enable the MTS
operator to switch instantaneously between typing, pointing, and gesturing with a
simple change in hand configuration, avoiding heavyweight mode switches such as
reaching for another device, a mode-switch button, or a certain region of the surface.

Surprisingly, no one is known to have derived more than 2-DOF of control
from hand or finger motion on a proximity-sensing surface such as a touchpad or
touchscreen. This can probably be attributed to the small form factor of touchpads
and to the scarcity of multi-touch sensing technologies for independently tracking
motions of multiple fingers. This chapter will present techniques for weighting and
filtering motions of particular fingers to integrally extract rotation and scaling de-
grees of freedom from unbalanced finger motions.

The chapter starts with a review of input devices which offer high-DOF ma-
nipulation or integration of typing and pointing. This review also explains the
human-computer interaction principles and design criteria which influenced the de-

velopment of chordic manipulation on the MTS. Next, the four modules of the
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integration system are introduced: the finger subset synchronization detector, the
typing detector, the hand motion extractor, and the chord motion recognizer.

The finger subset synchronization detector feeds the typing detector and
chord motion recognizers with signals necessary to distinguish chordic manipula-
tion from typing. The typing recognizer initially registers all finger touchdowns
as keypresses but cancels those which are later found to be synchronized, sliding,
or resting. The hand motion extractor filters four independent yet simultaneously
accessible degrees of freedom from finger motion on each hand. The chord motion
recognizer detects motion of particular finger chords in particular directions and
generates the appropriate command or manipulation signals. Finger subset syn-
chronization signals also gate selection of chordic manipulation channels within the
chord motion recognizer. This gating improves ergonomics and mapping flexibility
by allowing operators to drop all fingers to the surface after selecting a channel. Op-
erators can also select a new channel from the hand resting posture by momentarily

lifting a new finger subset instead of lifting the whole hand.

5.1 Related Input Devices
5.1.1 Fitts’ Law and Pointing Performance

The basic targeting speeds of pointing devices are usually compared within
the framework of Fitts’ law [140]. Fitts’ law states that the movement time M7 for
a targeting task is proportional to the index of difficulty I D for the task divided
by the index of performance I P for a particular appendage operating a particular
pointing device:

MT =ID/IP (5.1)

Normally the movement time is measured in seconds, the index of difficulty in bits

of position information, and the index of performance in bits per second. For the
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task of moving the hand sideways toward a tall, columnar target area, Fitts [38]

originally found that the index of difficulty could be expressed as:

2A
ID =logy(— 5.2
o8a(:) (52)
where A is the horizontal distance from the starting hand or finger position to the
target, and W is the horizontal width of the target. Other formulations such as
Mackenzie’s [93]:
A
ID =logy(— +1 5.3
ng(W +1) (5.3)

have been proposed for the index of task difficulty.

Pointing device performance studies typically fit targeting time data to some
version of Fitts’ Law to obtain the index of performance for the given device [97].
A large body of research has extended Fitts’ Law to variously shaped targets in two
and three dimensions [2,49,76,94-96], compared performance of devices which are
controlled by flexing of different appendages such as fingers, wrist, and forearm [6,
97], and compared performance with different control-to-display gains [73], known
more commonly as mouse cursor sensitivity and acceleration. Some of the more
notable results have been that nonlinear mouse motion to cursor motion transfer
functions which causes disproportionately large cursor motions at faster hand speeds
do not decrease total targeting times but do decrease the distance the hand must
move. Also, a higher index of performance is achieved with a stylus manipulated
between the thumb and forefinger than by devices which sense only lateral motion

generated at a single finger, the wrist, or forearm [6].

5.1.1.1 Tracking Delay
Temporal lags in tracking introduced by motion sensors and motion process-
ing can also have a significant effect on manipulation performance. Mackenzie and

Ware [96] found that lags as small as 75 ms increased time to target 10% and target
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selection errors 36%, while lags of 225 ms increased movement time 64% and selec-
tion errors by 214%. Hoffman [64] had similar results, and both authors propose
extensions to Fitts’” Law to model these performance degradations. In light of this,
the MTS chord motion recognizer is designed to keep motion initiation or channel
selection lags less than 100 ms from the first finger touchdown of a chord. The ac-
tual lags depend on the rate of finger proximity stabilization, convergence of finger
identification, and the lateral finger velocities, but generally they hover under 100
ms. However, once the channel is selected and the first motion control signals are

generated, lag drops to at most two image frames, or 40 ms.

5.1.2 Integrating Typing and Pointing

A fundamental, difficult to circumvent, dichotomy exists between manipula-
tion tasks, e.g. pointing, dragging, or scrolling, and discrete specification tasks such
as command and text entry. Manipulation involves continuous, bidirectional adjust-
ment of parameters in some coordinate space, such as the position, size, and hue of
an on-screen object. In discrete specification, speech or a preordained hand gesture
must specify a character, word, or command from a finite set. Though graphical user
interface software has evolved so that users can freely intermix these approaches,
the input devices which support each approach, typically mouse and keyboard, have
remained substantially separate. This review will outline the capabilities of existing
direct manipulation devices and analyze past attempts to support manipulation and

discrete specification in an integrated device.

5.1.2.1 Embedding Pointing Devices in Mechanical Keyboards

Though people have long lamented the need to reach back and forth be-
tween the mouse and keyboard, the most visible attempts at integrating typing and
pointing have been driven by the miniaturization demands of laptop computers.

Most manufacturers have replaced the tiny thumb-operated trackballs of the early

228



1990s with credit-card-sized touchpads located below the spacebar. While this is
certainly an improvement, some users have a tendency to accidentally tap the pad
with their thumbs while typing, causing random mouse clicks. Synaptics, Inc., the
primary touchpad OEM, claims to have developed special filters which address this
problem [143].

IBM and Toshiba laptops continue to feature the Trackpoint pointing stick,
a tiny force-sensitive joystick embedded between the 'g’, 'h’, and 'b’ keys. Mouse
pointer velocity is proportional to the directional force applied to the stick by the
fingertips, and physical buttons below the spacebar serve as mouse buttons. Rut-
ledge and Selker [131] were the first to study the pointing stick, and they expected to
find that tasks involving a mixture of pointing and typing would be faster with the
embedded stick since reaching off the key layout for the pointing device was unnec-
essary. They actually found that though the homing time to switch from pointing
to the keyboard was reduced to 90 ms, switching from typing to pointing still took
about 400ms, 2/3 as long as for the mouse, because the pointing stick is such a small
target for the finger to find. The mouse also remained 25% faster than the pointing
stick for pure pointing tasks.

Similar joysticks have been built into a key of the keyboard such as the ’j’
key [40]. Pointing mode is entered after holding the key down for a short time
interval such as 200 ms. Clicking is accomplished by pressing another key while
still in pointing mode, e.g. while the ’j’ key is pressed. Douglas and Mithal [32]
found that though the homing time for the key joystick was again about 2/3 that of
the mouse (438 ms compared to 667 ms), the mouse was still about twice as fast at
pointing and dragging and therefore performed better overall even in mixed pointing
and typing tasks. Several subjects also complained of fatigue from having to hold
the ’j’ key down to remain in pointing mode.

Though the MTS integration method will also be susceptible to accidental
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activations, pointing mode can be entered at any time, anywhere on the surface
(including directly over home row) by placing two adjacent fingertips on the surface
synchronously. Similarly, dragging can be initiated by synchronously placing and
sliding three adjacent fingertips. Typing can resume any time after these fingertips
lift off the surface. Therefore the homing time for the M'TS going both from typing
to pointing and from pointing to typing is simply the time needed to lift the fingers
off the surface and put them back down again. This time ranges between 150 ms
and 300 ms depending on how hurried the operator is. Because the MTS offers such
a wide range of hand movement, its pointing speed and accuracy should be much
closer to that of a mouse than these tiny joysticks and touchpads. Therefore one
would expect better overall performance in mixed typing and pointing tasks on the

MTS as long as its typing performance is not degraded.

5.1.2.2 Detecting Pointing Gestures Above a Keyboard

An interesting but less commercially successful approach has been to sense
finger pointing either remotely or with ring attachments while the hand floats above
the keyboard. For example, Levine [91] attached a stylus ring to the thumb and a
palette ring to the index finger. Users could wear the rings while typing and rub
the stylus ring against the palette ring to move the pointer and click. Sibert and
Gokturk [136] similarly placed an infrared-emitting ring on the index finger. Four
infrared sensors mounted at the corners of a laptop display inferred the direction the
ring is pointing. Thus users would point their finger directly at the desired object
on the display.

Quek [121] applied his sophisticated video-based hand gesture recognition
system to track pointing gestures over a keyboard. The camera was mounted to look
down at the keyboard, and pointing mode began when the user extended the index
fingers and curled all the others. Pointing performance was only 18% poorer than

with a mouse. Without a blue dot to demarcate the fingertip, Quek’s video-based
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approach could only track the finger at 7 fps on a 150-MHz Silicon Graphics Indigo
2 workstation. Clearly the ring attachments, camera, or intensive computations

required with these approaches are undesirable if not impractical.

5.1.2.3 One Hand Points, the Other Types

Typing or issuing key commands with one hand while manipulating a mouse
or drawing tablet puck with the other is a natural approach often adopted by op-
erators of computer-aided-design (CAD) software [82,166]. A few companies [56,
69,103-106, 119, 153] have devised one-handed keyboards for this purpose which use
unique chording schemes or layouts to ensure all letters are within easy reach of one
hand. The primary disadvantage of these devices is that the operator must learn a
new key layout or chord typing scheme.

A strict allocation of manipulation tasks to one hand and discrete specifica-
tion to the other has more organizational clarity than the MTS mappings, which
spread both manipulations and typing equally over both hands. However, even if the
operator’s task requires equal amounts of typing and pointing, the risk of overuse
injuries in the hands is presumably greater for the one-handed keyboards because
the typing load for one hand is doubled, and the mousing hand will use only the
mousing muscles over and over. Assuming that typing and pointing do not load
exactly the same muscles, spreading these activities evenly over both hands as the
MTS does decreases the likelihood that any subset of muscles or tendons in one
hand will be overused. Finally, the one-handed typing, one-handed pointing ap-
proach precludes bimanual manipulations such as panning the background with the

non-dominant hand while pointing with the dominant hand.

5.1.2.4 Touch Pads and Screens
Touch screens and touchpads often distinguish pointing motions from em-

ulated button clicks or keypresses by assuming very little lateral fingertip motion
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will occur during taps on the touch surface which are intended as clicks. Inherent in
these methods is the assumption that tapping will usually be straight down from the
suspended finger position, minimizing those components of finger motion tangential
to the surface. This is a valid assumption if the surface is not finely divided into
distinct key areas or if the user does a slow, “hunt and peck” visual search for each
key before striking. For example, in a patent to Logan [92], taps with less than
about 1/16” lateral motion activate keys on a small keypad while lateral motion
in excess of 1/16” activates cursor control mode. In both patents cursor mode is
invoked by default when a finger stays on the surface a long time.

However, fast touch typing on a surface divided into a large array of key re-
gions tends to produce more tangential motions along the surface than thresholding
of lateral finger motion can tolerate. Such an array contains keys in multiple rows
and columns which may not be directly under the fingers, so the user must often
reach with the hand or flex or extend fingers to touch key regions. Quick reaching
and extending imparts significant lateral finger motion while the finger is in the air
which may still be present when the finger contacts the surface. Glancing taps with
as much as 1/4” lateral motion measured at the surface can easily result. Attempt-
ing to filter or suppress this much motion would make the cursor seem sluggish
and unresponsive. The MTS gets around this problem by only mapping pointing
and other manipulations to chords of two or more fingers, basically ignoring lateral

motion by lone fingers.

5.1.3 Manipulation in more than Two Degrees of Freedom

Each hand offers a total of 29 degrees of freedom (DOF) of motion [141], 23
of which come from the finger joints above the wrist. The remaining 6 come from
the overall hand position and orientation as measured from the palm center. A wide
range of devices have been developed to capture and reduce this wide range of hand

and finger flexibility into 3-6-DOF of motion control for two and three-dimensional
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graphical manipulation tasks. Such devices include 6-DOF force-sensitive balls such
as the Spaceball and Elastic General Purpose Grip Controller [169], the 6-DOF
Polhemus [19] and Bat [153] free-space hand trackers, the 4-DOF Rockin’ mouse [5],
4-DOF tilt-sensitive styli [149], and the 3-DOF two-ball mouse [98].
Human-computer interaction researchers have devised various classification

and evaluation schemes for these devices. For example, Mackinlay et al. argue that:

...input devices are transducers of any combination of linear and
rotary, absolute and relative, position and force, in any of the six spatial
degrees of freedom. [100], Page 145

The performance evaluation research, in turn, can be summarized by the assertion

of Jacob et al. that:

performance improves when the perceptual structure of the task matches
the control structure of the device. [71], Page 6

Thus position-sensing devices perform best for position control tasks [167], force-
sensitive devices perform best for rate or velocity control tasks [167], rotation-sensing
devices perform best for rotation control tasks [63], and so on. This suggests that the
MTS will be particularly adept at rotating and scaling two-dimensional documents
and objects. While such 2D document manipulation may not be as glamorous as
full 6-DOF navigation in 3D virtual worlds, almost all existing software applications

could benefit from more accessible rotation and scaling capabilities.

5.1.3.1 Integrality vs. Separability

The correspondence between device control structure and task perceptual
structure is particularly important with regard to bimanual manipulation and in-
tegrality of degrees of freedom. Integral degrees of freedom are those that can be
controlled simultaneously with a device to transmit diagonal motion. Separable de-
grees of freedom can only be accessed one at a time, limiting movement to directions

along an axis like the orthogonal drawing mode of many CAD programs. Jacob et
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al. [71] found that integral tasks such as simultaneously sizing and positioning an
object in two dimensions are best controlled with a device providing three integral
degrees of freedom. This is not surprising since one can usually reach a target more
quickly if allowed to travel along the diagonal if the target is in a diagonal direction.

However, Jacob et al. also found that for cognitively separable tasks such
as changing object color and positioning the object in two dimensions, a separable
device such as a 2DOF mouse with a button to switch between color adjustment
and position adjustment performed better. Thus the integrality of separability of
the device should be matched with that of the task. Other researchers have also
found in some cases that having too many integral degrees of freedom available
simultaneously can hurt performance because as users zero in on the target in one
set of axes, instabilities in hand motion may nudge the cursor away from the target
along the other axes.

For example, auxiliary scrolling controls for mice such as the pointing stick
on the IBM ScrollPoint mouse and the middle finger roller on the Roller Mouse of
Gillick and Lam [52] provide more than the two degrees of freedom standard for mice.
However, these scrolling degrees of freedom should be considered separable from the
two pointing degrees of freedom because, as Zhai et al. [170] note, manipulation
of more than two degrees of freedom at a time is very difficult with these devices,
preventing simultaneous panning, zooming and rotating.

Like the recent dual-pointing-stick bulldozer-interface of Zhai et al. [168],
the hand motion extractor presented in this chapter will try to strike a compro-
mise between integrity and separability. The motion filters will pass simultaneous
motions in multiple components or degrees of freedom which are truly in diagonal
directions, thus allowing fast manipulation across shortest path diagonals. But when
one of the rotation, scaling, or translation degrees of freedom dominates, indicating

the direction of motion is nearly along an axis, the non-dominant components will
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be suppressed so that control occurs exactly along the axis. Thus operators should
receive the speed gains of diagonal motion for coarse movements but be automati-
cally switched to a separable mode on the final approach to a target, protected from

the instabilities and non-uniformities of their own hand motions.

5.1.3.2 Bimanual Manipulation

Bimanual manipulation refers to simultaneous manipulation using both hands.
Guiard’s kinematic chain model [55], which posits that the coarse motions of the
non-preferred hand have evolved to function as a dynamic frame of reference for
the fine motions of the preferred (right) hand, has stimulated considerable exper-
imentation in the human-computer interaction community. Noticing that people
normally use their left hand to keep the position and orientation of a piece of paper
optimal for handwriting with the right hand, Guiard and Athenes [55] found that
handwriting speed drops up to 20% if subjects are instructed not to manipulate the
page with the non-preferred hand.

In one of the earliest studies, Buxton and Myers found a 15-25% performance
increase in a mixed scaling and positioning task when one hand positioned with a
puck while the other scaled with a slider, and subjects actually adapted the parallel
hand usage strategy without prompting. Kabbash et al. [77] verified that the left
hand is faster at long-distance pointing with mouse, trackball, or stylus, and the
right hand is faster at precision movements toward small targets. Leganchuk et
al. [90] found 15-30% better performance sweeping out rectangles with two-hands,
i.e., each hand controlling an opposite corner. Hinckley et al. [63] claim that users
can internally sense the position of the preferred hand with respect to the other and
manipulate accordingly without visual feedback.

Most of these experiments have been carried out with combinations of con-
ventional devices for each hand such as a stylus and puck on a Wacom tablet [86,90],

a mouse and a touchpad [61], a mouse and a pointing stick [170, 171], or two pointing
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sticks [168]. While such bimanual manipulation techniques have not been explored
yet on the MTS, its wide surface and hand identification ability are perfectly suited
for them. Moreover, the MTS is the only device known to be able to support typing
and bimanual manipulation in the same space. This could make bimanual manipu-

lation practical for a much wider population of computer users.

5.1.4 Channel Selection

Channel selection corresponds to pressing buttons on a mouse to activate
alternative modes such as dragging or scrolling. Most mice have one to three buttons
which, when used in chorded combination, can select up to 7 channels. Specialized
pucks for CAD systems may offer many more buutons. The finger identification
system of the MTS can distinguish seven channels, but the seventh is reserved for
whole hand resting. The primary advantage of MTS channel selection over mouse
channel selection is that the MTS does not require any sustained button-pressing
forces.

The multiple channel capability of the M'TS also allows it to avoid the cum-
bersome tap-drag sequence of single finger touchpads. Unlike drawing tablets, which
can sense the difference between a stylus hovering over the tablet and one pressing
on the tablet, touchpads can only track a finger when it is touching the surface [61].
Thus they require a special tap-drag timing sequence to distinguish finger motions
meant, for pointing from those meant for dragging. The MTS is free to allocate
dragging to one of its extra finger chord channels, avoiding the awkward tap-drag
sequences.

Fitzmaurice and Buxton [39] essentially argue that the device structure/perceptual
structure correspondence should extend to channel selection as well. They advocate

distinct graspable tools, each with a physical transducer, which are shaped as rulers,
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stretchable squares, bricks, or rotor to match the task of manipulating a set of cor-
responding virtual objects which look the same onscreen. They find that subjects
are faster at tracking four randomly moving objects onscreen with these special-
ized, space-multiplexed devices than with generic space-multiplexed devices such as
labeled pucks. Time-multiplexing by using one device to manipulate the cursor,
select, and drag each virtual object is also significantly slower. Again, the Wacom
tablet technology, which can track and identify multiple, cordless devices such as
pucks, styli, and airbrushes on the same tablet at the same time, was used for this
experiment.

This capacity to physically pick from multiple, specialized tools is commend-
able and well-suited for certain applications such as virtual painting and character
keyframe animation [39]. In contrast, the MTS’s chordic channel selection is closest
to generic space multiplexing and therefore may require additional cognitive load
to memorize the function of each channel. However, switching between channels on
the MTS is comparably instantaneous since there is no need to put down one tool
and pick up another. Thus if MTS operators are faced with the same tasks day
in and day out, they will likely achieve better tool or mode-switching performance,
and again they will not have to worry about tools impeding typing by cluttering the

work surface when put down.

5.2 Synchronization and Typing Detection
This section will explain how the M'TS uses the timings of finger touchdowns
and liftoffs to distinguish between asynchronous key taps and synchronous chord

taps or hand resting.

5.2.1 Keypress Registration

Figure 5.1 contains a flowchart of the keypress registration loop. As each new
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Figure 5.1: Flow chart of the keypress registration process.
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hand part touches down and its contact proximity surpasses a small threshold, it is

registered in a keypress queue unless any of the following conditions are true:
e its contact path has been identified as a palm instead of a finger.
e the hand it is associated with is currently involved in a chordic manipulation.

e it fails debounce testing, i.e., the same hand part lifted off the surface less

than 100-150 ms prior to the current touchdown.

In these cases the touchdown must be ignored by the typing detector to avoid
generation of keypresses from hand motions clearly not intended as typing. The
path tracking module (Section 3.3.3) facilitates debounce testing by reactivating a
finger’s old path if the finger lifts off and quickly touches back down over the same
spot. Upon reactivation the timestamp of the last liftoff by the old path is preserved
for comparison with the timestamp of the new touchdown.

Assuming the finger touchdown passes these registration tests, the current
position of the fingertip centroid (Fiz[n], F'i,[n]) is used to find the nearest key in a
predefined QWERTY key layout (e.g. see Figure 1.1 on Page 6). The touchdown
may be ignored if there are no key regions within a centimeter of the fingertip.
Assuming a key region is close to the finger, a keypress element data structure is
created containing the path index and finger identity, the closest key region, and
a timestamp indicating when the finger crossed the keypress proximity threshold.
The final step then appends this keypress element data structure to the tail of the
FIFO (first-in first-out) keypress queue. This accomplished, the loop continues to
process or wait for touchdowns by other fingers.

Note that the keypress queue effectively orders finger touchdowns by when
they pass the keypress proximity threshold. It thus fixes the order in which key
symbols from each finger tap will be transmitted to the host. However, an element’s

key symbol is not assured transmission to the host once in the keypress queue. Any
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of a number of conditions to be discussed in the following sections such as being
part of a synchronized subset of fingers can cause an element to be deleted from
the queue before being transmitted to the host. In this sense the keypress queue
should be considered a keypress candidate queue. Unlike the ordered lists of finger
touchdowns and releases maintained for each hand separately in the synchronization
detector below, the keypress queue includes and orders the finger touchdowns from

both hands.

5.2.2 The Synchronization Detector

Figure 5.2 shows a flowchart of the finger synchronization detection algo-
rithm. The flowchart continues into Figure 5.3 to show chord tap detection. This
synchronization detection process is repeated independently for the contacts as-
signed to each hand. Within each hand, the process takes as input the current
finger identifications and life cycle markers (Ppress, and Prejegse, in Section 3.3.4)
of each contact path. The identities are needed to ignore palm paths and distin-
guish different chords or combinations of synchronized fingers, while the life cycle
markers record the time at which each contact path first exceeds a press proximity
threshold and the time at which each contact path drops below a release proximity
threshold prior to total liftoff. These proximity thresholds are currently set to about
one-fifth the average fingertip proximity. Higher thresholds should be tolerable with
faster image frame rates (see Section 6.1.5.1), but with lower proximity thresholds,
the measured press and release times become imprecise, making comparisons and

sorting of them unreliable.

5.2.2.1 Sorting Paths by Press and Release Times
After the path identities and life cycle markers for the current proximity
image have been retrieved, the synchronization detection algorithm first searches

for subsets of fingers which touch down at about the same time and for subsets of
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Figure 5.2: Flow chart of the finger synchronization detection process.
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fingers which lift off at about the same time. This can be done by recording each
finger path along with its press time in a list as the finger crosses the press proximity
threshold. The list will therefore be ordered according to path press times. A similar
but separate list is maintained for path release times. Since the primary function
of the palms is to support the forearms while the hands are resting, not to actively
participate in typing or chordic manipulation, palm heel presses and releases are

excluded from these lists and most other synchronization tests.

5.2.2.2 Searching for Synchronized Finger Subsets

To check for synchronization between the two most recent finger presses,
the press times of the two most recent entries in the list are compared. If the
difference between the two press times is less than a temporal threshold, the two
finger presses are considered synchronized. If not, the most recent finger press is
considered asynchronous. Synchronization among three or more of the most recent
fingers up to five is found by comparing press times of the three, four, or five most
recent list entries. If the press time of the most recent entry is within a temporal
threshold of the nth most recent entry, synchronization among the n most recent
finger presses is indicated.

To accomodate imprecision in touchdown across the hand, the magnitude
of the temporal threshold increases slightly in proportion to the number of fingers
being tested for synchronization. To provide some hysteresis between typing and
chordic manipulation modes, the threshold also depends on the time since the last
typing-related touchdown or liftoff on either hand. The temporal threshold for
press synchronization detection can therefore vary between 0 ms and about 150 ms.
The largest set of recent finger presses found to be synchronized is recorded as the
synchronized subset, and the combination of finger identities comprising this subset
is stored conveniently as a finger identity bitfield. The term subset is used because

the synchronized press subset may not include all fingers currently touching the
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surface, as happens when a finger touches down much earlier than other fingers yet
remains touching as they simultaneously touch down. The list of path identities
sorted by release times is searched similarly to check for synchronous release of any

finger subset.

5.2.2.3 Synchronization Detector Decisions and Actions
The actions taken by the synchronization detector in Figure 5.2 can be sum-

marized as follows:

e Synchronized liftoff of three or more fingers always causes the keypresses as-
sociated with those fingers to be canceled, regardless of whether the original

touchdowns of those fingers were synchronized.

e Synchronized touchdown of three or more fingers always causes the keypresses
associated with those fingers to be canceled immediately, before anything is

known about liftoff synchronization.

e Synchronized touchdown of two fingers is ambiguous in itself, so a hold is
placed on the keypress processing queue which prevents either of the associ-
ated keys from being transmitted until the fingers releases can be checked for
synchronization. In case of asynchronous liftoff, the finger motions are most
likely keypresses, so the hold on the keypress queue is released, allowing trans-
mission of the keypresses to the host computer. In case liftoff of the two fingers
is synchronized or both fingers remain on the surface more than about half a
second, the associated keypresses are canceled, indicating that the fingers are

either just resting or part of a chord tap.

e Synchronized touchdown followed by synchronous liftoff of a subset of two
or more fingers without significant intervening lateral motion is considered a

chord tap.
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Note that finger pair synchronization detection must be treated as a special
case because sometimes when striking adjacent keys, the fingers roll from one key to
another so quickly that either touchdown or liftoff appears synchronized, but there
will still be some asynchrony in either touchdown or liftoff. Such rolling does not,
however, cause synchronization of touchdown or liftoff across more than two fingers,
so either touchdown or liftoff synchronization of three or more fingers is a sure sign
those fingers are not involved in typing. Instead of thresholding the touchdown time
difference and liftoff time difference separately, the finger pair liftoff and touchdown
time differences are added together and thresholded once for more robust detection.
However, even with such averaging of touchdown and liftoff synchronization, in a few
borderline cases the 50 fps sensor array scan rate is simply too slow to differentiate
barely asynchronous adjacent key strikes from synchronized finger pair chord taps.

This will be discussed further in Section 6.1.5.1.

5.2.2.4 TIssuing Chord Taps

If the chord tap conditions are met, the bitfield of finger identities for the
synchronized subset is used to check a lookup table for any input events such as
mouse clicks or keyboard commands assigned to the combination of fingers in the
chord tap. Though there are 26 possible combinations of identities for two or more
fingers, combinations containing the same number of fingertips all refer to the same
chord channel, and there are only seven unique channels per hand. The unique
channels are illustrated in Table 5.1 below. The channel for all five fingers is reserved
for hand resting, so chord taps of the whole hand will produce no input events.
The chord tap event lists of many of the other channels (especially the three and
four fingertip channels) may also be left empty to encourage hand resting during
typing by novices. Mouse clicks are the only events which absolutely need to be
generated by chord taps, so one channel must be allocated for each mouse button

to be emulated for a given operating system. See Tables 6.1-6.4 on Pages 289-292
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Table 5.1: The seven unique finger chord channels.
‘ Channel Icon ‘ Finger Combination ‘

°* Any 2 fingertips (ex-
cluding thumb).
°°* Any 3 fingertips (ex-
cluding thumb).
ot All 4 fingertips (ex-
cluding thumb).
’ Thumb and any finger-
\ tip.
°* Thumb and any 2 fin-
A gertips.
°°* Thumb and any 3 fin-
A gertips.
*** | Thumb and all 4 fin-
\ gertips.
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for examples of other chord tap event mappings used by the author. Though event
generation from chord taps needs to be restricted to encourage hand resting, a wide
range of input events can safely be generated on most channels in response to lateral

hand motions, as will be discussed in Section 5.4.3.

5.2.2.5 Avoiding Accidental Mouse Clicks

As a further precaution against accidental generation of mouse clicks during
typing, the chord tap event generator ignores the first chord tap which quickly
follows a valid keypress without an intervening lateral chord slide. This avoids
spurious mouse clicks which can randomly reposition the text cursor, yet it rarely
causes intentional chord taps to be lost since usually after typing the user will need
to reposition the mouse cursor before clicking, requiring an intervening chord slide.
If the mouse cursor happens to already be in place after typing, the user may have
to tap the finger chord a second time for the click to be sent, but this is much
less aggravating than undoing unintentional mouse clicks in the middle of a typing

session.

5.2.3 Keypress Acceptance and Transmission

Figure 5.4 shows the steps within the keypress acceptance and transmission
loop. This loop performs final keypress timing and identity tests upon finger release
before sending the key’s symbol or associated events to the host computer. The
first step is to peek at the element at the head of the keypress queue. This head
queue element represents the oldest finger touchdown which has neither transmitted
its associated key symbol nor been deleted from the queue as an invalid keypress
candidate. This head queue element can be deleted at any time prior to liftoff of its

associated contact path if any of the following conditions become true:

e the path’s identity is changed by the identification system from any finger

identity to a palm heel or forepalm identity.

247



A
O DELETE CURRENT

ELEMENT FROM
y KEYPRESS QUEUE
PICK ELEMENT AT HEAD
OF KEYPRESS QUEUE

A
@

LEMENT
PATH STILL
IDENTIFIED AS

PATH IN A
SYNCHRONIZED
SUBSET ?

FINGER SLID
TOO FAR ?

FINGER ?
N
A4
TIME
Y
@: SINCE PRESS < LFI'FNT%ER?
TAP TIMEOUT :
N
v
\
APPEND PRECEDING
MODIFIERS &
SKIP TO NEXT
ELEMENT'S KEY |« KEY REGION
ELEMENT IN .
REGION SYMBOL TO QUEUE A MODIFIER
HOST COMM QUEUE

PATH
PROXIMITY
PROFILE

IMPULSIVE
2

MOST
FINGERS

TOUCHING
?

FINGER PRESS >
JAP TIMEOUT

Figure 5.4: Flow chart of the keypress acceptance and transmission process.
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e the path is found to be a member of a synchronized finger subset as described

in the previous section.

e the contact has been on the surface more than about half a second without

liftoff and is clearly not a modifier key or typematic finger hold (see below).

Because users may be touch typing on the surface, several millimeters of lateral mo-
tion are allowed to accommodate glancing fingertip motions which often occur when
quickly reaching for keys. This is much more glancing tap motion than is tolerated
by touchpads which employ a single finger slide for mouse cursor manipulation and
a single finger tap for key or mouse button click emulation.

Assuming the keypress element has not been deleted by the above tests, the
algorithm next checks whether the finger whose touchdown created the keypress
element has since lifted off the surface. If the finger has lifted off soon enough after
touchdown to qualify as a normal key tap, the associated key symbol is transmitted
to the host and the keypress element is deleted from the head of the queue. The
MTS also generates a clicking sound for feedback to the operator as the key symbol
is transmitted to the host. Note that a keypress is always deleted from the queue
upon liftoff, but even though it may have stayed on the surface for a time exceeding
the tap timeout, it may have still caused transmission as a modifier key, as an

impulsive press with hand resting, or as a typematic press, as described below.

5.2.3.1 Handling Modifier Keys

To handle modifier keys such as <shift>, <ctrl>, or <alt>, if the head el-
ement’s finger has not yet lifted but the finger is over a modifier key, processing
advances to the next element in the queue without deleting the head. If the next
element is a valid key tap and successfully reaches the transmission stage, the trans-

mission stage will scan back toward the head of the queue for any modifier regions
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which are still pressed. The next element’s key symbol can then be sent to the host

along with the modifier flags of any preceding modifier regions.

5.2.3.2 Alternatives to Full Taps from Suspended Hands

Normally operators must touch the finger on the surface and lift back off
within a few hundred milliseconds for a key to be sent. Like the activation force
threshold of mechanical keyswitches, this timing constraint provides a way for the
operator to rest the finger on the key surface asynchronously without invoking a
keypress. This is necessary because operators sometimes begin hand resting by
simultaneously placing the central fingertips on the surface, but they follow asyn-
chronously with the pinky a second later and the thumb a second after that. These
latter presses are essentially asynchronous and will not be invalidated by the syn-
chronization detector, but as long as they are not lifted within a couple hundred
milliseconds, they will essentially time out and be deleted without transmission.
However, the requirement that fingers quickly lift off, i.e., crisply tap, the surface
to cause key generation makes it very difficult to type long sequences with most fin-
gers resting on the surface to support the hands. Basically, words cannot be typed
quickly without floating the hands above the surface. This is acceptable typing
posture except that the operators’ arms will eventually tire if the operator fails to
rest the hands back on the surface between sequences.

To provide an alternative typing posture which does not encourage suspen-
sion of the fingers above the surface, the M'TS has a second key acceptance mode
which does not require quick finger liftoff after each press. Instead, the user must
start with all five fingers of a hand resting on the surface. Then each time a finger
is asynchronously raised off the surface and dropped onto a key region, that key’s
symbol will be transmitted, regardless of subsequent liftoff timing. To allow the

operator to gently set down a raised finger without generating a key, the impulsivity
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of the proximity profile is measured according to the time taken for fingertip prox-
imity to saturate. If the proximity profile increases to its peak very slowly, say over
a 100 ms time interval, no key is generated from the finger touchdown. Such typing
from a resting hand posture requires minimal effort to support the hands or strike
keys, but this technique limits typing speed to about 20 words per minute (wpm);
thus it is intended mainly for people with repetitive strain injuries so severe that

the slightest exertion hurts.

5.2.3.3 Potential Typing Speeds

Though additional enhancements such as tactile feedback of key locations
and typing sequence recognition algorithms will be necessary to make touch typing
on the MTS as accurate as typing on a mechanical keyboard, a few remarks can be
made about how interaction of tapping motions with a hard surface ultimately limits
typing speeds. The best typing speeds seem to be obtainable with an intermediate
hand posture in which the MTS is placed on the lap to slope downward by 5-10°,
the palms rest on the surface, and the fingertips float very close to the surface.
The downward slope reduces the exertion by the wrist extensors needed to keep the
fingertips floating when the palms are planted on the surface. The fixed position
of the palms serves as a reference for more carefully regulating the height that
fingertips float above the surface without letting them accidentally touch. With the
palms planted, average floating finger height can be as little as 1/4”. This reduces
the downward travel necessary to strike a key region and may eventually support
typing speeds up to about 80 wpm. The closeness of the fingers to the surface also
makes it all but impossible to strike the surface so hard that the fingertips get jarred.

If the operator keeps palms floating above the surface, the regulation of float-
ing fingertip heights is not so stable, and the fingertips must be kept floating about
1/2” above the surface to avoid accidental touches. This appears to limit the max-

imum typing rate attainable to about 60 wpm when hands are fully suspended
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above the surface. The increased and unstable variations in floating fingertip height
also cause more variation in the impulsiveness of finger impact. This may result in

occasional fingertip jarring.

5.2.4 Typing Summary

The typing detection process described above thus allows the multi-touch
surface to ergonomically emulate both the typing and hand resting capabilities of
a standard mechanical keyboard. Crisp taps or impulsive presses on the surface
generate key symbols as soon as the finger is released or the impulse has peaked,
ensuring prompt feedback to the user. Fingers intended to rest on the surface
generate no keys as long as they are members of a synchronized finger press or
release subset or are placed on the surface gently and remain there along with
other fingers for a second or two. Once resting, fingers can be lifted and tapped or
impulsively pressed on the surface to generate key symbols without having to lift
other resting fingers. Glancing motions of single fingers as they tap key regions are
easily tolerated since chordic manipulations can only be initiated by synchronized

slides of two or more fingers.

5.3 Hand Motion Extraction

Technically, each hand has 23 degrees of freedom of movement in all finger
joints combined, but as a practical matter, tendon linkage limitations make it dif-
ficult to move all of the joints independently. Measurements of finger contacts on
a surface yield ten degrees of freedom in motion lateral to the surface, five degrees
of freedom in individual fingertip pressure or proximity to the surface, and one de-
gree of freedom of thumb orientation. However, many of these degrees of freedom
have limited ranges and would require unreasonable twisting and dexterity from the

average user to be accessed independently.
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The purpose of the motion component extraction algorithm is to glean from
the 16 observable degrees of freedom enough degrees of freedom for manipulation of
two-dimensional graphics. In two dimensions, the four basic degrees of freedom are
horizontal translation, vertical translation, rotation within the surface plane, and
zooming or resizing within the surface plane. For full 6-DOF manipulation in three
dimensions, two more rotational degrees of freedom are needed about the horizontal
and vertical axes. Though these could plausibly be obtained from differences in
hand tilt pressure across the surface, only 4 degrees of freedom in velocity will be
extracted here.

When only four degrees of freedom are needed, the basic hand and finger
motions can be whole hand translation, hand scaling by uniformly flexing or ex-
tending the fingers, and hand rotation either about the wrist as when unscrewing a
jar lid or between the fingers as when unscrewing a nut. Not only are these hand
motions easy to perform because they utilize motions which intuitively include the
opposable thumb, they correspond cognitively to the graphical manipulation tasks
of object rotation and sizing. Their only drawback is that the translational motions
of all the fingers during hand rotations and scalings do not cancel perfectly. As will
be seen in Figure 5.6, usually they add up to a net translation in some direction in
addition to the desired rotation or scaling. This makes it difficult for translation
to be integral with or performed simultaneously with scalings and rotations. To
prevent non-uniformities in rotation and scaling motions from bleeding into the ex-
tracted translations, the translation extractor will preferentially weight fingers such
as thumb and pinky whose translations cancel best. To provide uniform motion
gain even when some fingers remain stationary, it will also nonlinearly scale velocity

components depending on the finger speeds relative to one another.
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5.3.1 Inputs to the Extraction Algorithm

The steps of the motion extraction algorithm are shown in Figure 5.5. The
algorithm takes as input the identified contact paths for the given hand. These
paths contain the proximities and lateral velocities to be used in the motion cal-
culations. The identifications are needed so that motion of certain fingers or palm
heels which would degrade particular motion component calculations can be deem-
phasized. Since thumb motion is much more independent of the other fingers than
the fingertips are of one another, scalings and rotations are easier for the operator
to perform if one of these paths is from the opposable thumb. However, the extrac-
tion algorithm really depends only upon proper ordering of the finger paths. It will
continue to function the same if the thumb is not present or is misidentified as a

fingertip.

5.3.2 Scaling and Rotation Component Extraction

Since the weightings of particular fingers in the translation velocity average
will depend on the polar component speeds, the polar velocity components must be
measured from scaling and rotational motions before translation is measured. Unless
a rotational velocity is extracted from changes in thumb contact orientation, at least
two contacting fingers are necessary to compute hand scaling or rotation velocities.
If less than two fingers from the hand are touching the surface, the rotation and
scaling velocities are simply set to zero.

To further illustrate the unbalanced finger motions which occur during scal-
ing and rotation, Figure 5.6 shows trajectories of each finger during a contractive
hand scaling. The thumb (F1) and pinky (F5) travel in nearly opposite directions
at roughly the same speed, so that the sum of their motions cancels for zero net
translation, but the difference in their motions is maximized for a large net scaling.
The central fingers (F2-F4) also move toward a central point but the palm heels re-

main stationary, failing to complement the flexing of the central fingers. Therefore
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Figure 5.5: Flow chart of the algorithm for extracting hand scaling, rotation, and
translation velocities from individual finger velocities.
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the difference between motion of a central finger and any other finger is usually less
than the difference between the pinky and thumb motions, and the sum of central
finger velocities during a hand scaling adds up to a net vertical translation. Similar
phenomena occur during hand rotations, except that if the rotation is centered at
the wrist with forearm fixed rather than centered at the forepalms, a net horizontal
translation will appear in the sum of motions from any combination of fingers.
Since the differences in finger motion are usually greatest between thumb
and pinky, only the current and previous positions of the innermost and outermost
touching fingers are used for the initial hand scaling and rotation measurements.
The hand scaling velocity H,s is computed from the change in distance between the

innermost finger F'I and outermost finger FO:

d(FI[n], FO[n]) — d(FIn — 1], FOn — 1))
At

where d(FI[n], FO[n]) is the Euclidean distance between the fingers FI and FO.

Hyln] =

(5.4)

If one of the innermost or outermost fingers was not touching during the previous
proximity image, the change in separation is assumed to be zero. Similarly, the hand
rotational velocity H,,. is computed from the change in angle between the innermost

and outermost finger:

/(FI[n], FOn]) — £(FIn — 1], FO[n — 1))
Hyln] = ( At )

y (d(F[[n], FO[n])>

(5.5)

™
The change in angle is multiplied by the current separation to convert it to the
same units as the translation and scaling components. These equations capture any
rotation and scaling components of hand motion even if the hand is also translating
as a whole, thus making the rotation and scaling degrees of freedom integral with
translation.

Another reason the computations above are restricted to the thumb and

pinky or innermost and outermost fingers is that operators may want to make fine
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translating manipulations with the central fingers, i.e., index, middle, and ring, while
the thumb and pinky remain stationary. If changes in distances or angles between
the central fingers and the thumb were averaged with Equations 5.4-5.5, this would
not be possible because central finger translations would cause the appearance of
rotation or scaling with respect to the stationary thumb or pinky.

However, Equations 4.46—4.50 applied in the thumb verification process are
only sensitive to symmetric rotation and scaling about a fixed point between the
fingers. They approach zero if any significant whole hand translation is occurring
or the finger motions are not complementary. In case the operator fails to properly
move the outermost finger during a rotation or scaling gesture, equations of the
approximate form of Equations 4.46—4.50 are applied between the innermost F'I
and any touching fingers {Fc: I < ¢ < O} other than the outermost to supplement

the rotation and scaling velocities:

Hy[n] = —/Flpeealn] X Fegpeealn]

x cos (Flyy[n] — /(FI[n], Fe[n)))

x cos (Fegir[n] — £(FI[n], Feln))) (5.6)
Hyp[n) = —\/Flpeealn] x Fegpeean)

x sin (Flgir[n] — Z(FI[n], Fic[n]))

x sin (F'egir[n] — Z(FI[n], Fc[n])) (5.7)

The resulting velocities (Hys, [n],Hyr [n]) are combined with the results of Equa-
tions 5.4-5.5 via a maximum operation rather than an average in case translational

motion causes the fixed point rotations or scalings to be zero.

5.3.3 Translation Component Extraction
The simplest way to compute hand translation velocities would be to simply

average the lateral velocities of each finger. However, the operator expects the
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motion or control to display gain to be constant regardless of how many fingers are
being moved, even if some are resting stationary. Furthermore, if the operator is
simultaneously scaling or rotating the hand, a simple average is sensitive to spurious
net, translations caused by uncanceled central finger motions.

Therefore the translation component extractor carefully assigns weightings
for each finger before computing the average translation. The translation weighting
Fi,y of each finger is first initialized to its total contact proximity, i.e., Fliy,[n] ~
Fi,[n]. This ensures that fingers not touching the surface do not dilute the aver-
age with their zero velocities. Similarly, fingers which only touch lightly have less
influence since their position and velocity measurements may be more noisy. The
next step decreases the weightings of fingers which are relatively stationary so that
the control to display gain of intentionally moving fingers is not diluted. This can
be done by finding the fastest moving finger, recording its speed as a maximum fin-
ger speed and scaling each finger’s translation weighting in proportion to its speed

divided by the maximum of the finger speeds:

Fiyoln] = Fipofn] x ( Fispecalr MYW (5.5)

max; F jspeed

where the power ptw adjusts the strength of the speed dependence. Note that this
step can be skipped for applications such as computer-aided-design in which users
desire both a normal cursor motion gain mode and a low gain mode. Lower cursor
motion gain is useful for fine, short range positioning, and would be accessed by
moving only one or two fingers while keeping the others resting on the surface but
stationary.

The final weighting step decreases the translation weightings for the central
fingers during hand scalings and rotations, though it does not prevent the central
fingers from making fine translational manipulations while the thumb and pinky

are stationary. The formulas below accomplish this seamlessly by downscaling the
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central translation weightings as the magnitudes of the rotation and scaling velocities

become significant compared to a speed constant named Kpoiarthresh:

chw[n] x K olarthresh
Feypzn| =~ P 5.9
[ ] Kpolarthresh + |H111" [n” ( )

Fva [TL] x K olarthresh
Feppyln| = P 5.10
y[ ] Kpola'rth'resh + |Hvr[n]| + |Hvs[n]| ( )

These equations are applied only to the central fingers whose identities {c¢: I < ¢ <
O} are between the innermost and outermost. Note that since hand scaling does
not cause much horizontal translation bias, the horizontal translation weighting
Fcywe[n] need not be affected by hand scaling velocity H,s[n|, as indicated by the
lack of a hand scaling term in Equation 5.9. The translation weightings of the
innermost and outermost fingers are unchanged by the polar component speeds,
i.e., Flyyg[n] = Flyyn| & Fl,n] and FOuyg[n] & FOuyy[n] & FOu,(n].

With the translation weightings complete, the hand translation velocity vec-

tor (Hyg[n|, Hyy[n]) is computed from the weighted average of the finger velocities:

5 . .
=1 szwaZv:c

Hyy[n] T (5.11)
=1 vwIT
> FiyyyFiy

Hyyln] = 551 T (5.12)
i= VWY

5.3.4 Dead Zone Filtering

Despite the care taken to measure the rotation, scaling, and translation ve-
locities in such a way that the resultant velocity components are independent of
one another, uneven finger motion during hand scaling, rotation, or translation can
still cause minor perturbations in measurements of one degree of freedom while pri-
marily attempting to move in another. Non-linear filtering is necessary to remove
the remaining motion leakage between dominant components and nearly stationary
components. Each velocity component is passed through a separate dead-zone filter

which produces zero output velocity for input velocities less than a speed threshold
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but produces output speeds in proportion to the difference between the input speed
and the threshold for input velocities that exceed the threshold. However, the speed
threshold or width of each dead zone varies according to the distribution of current
and past component speeds.

For instance, the width of the translation dead zone can be set to about 1/5
of the rotation or scaling speeds, whichever is greater. If the operator is primarily
translating, this translation dead zone width will then be negligible compared to
the actual translation speed, and the only effect will be to downscale the translation
speed by a few percent. But if the operator is primarily rotating so that translation
speeds are less than 1/5 of rotation speeds, the translation velocity component
will be entirely suppressed to zero. Dependencies of the dead zone width on past
averages of component speeds relative to one another provide filter hysteresis to

ignore spurious transitions from hand rotation to translation or scaling.

5.3.5 Motion Extraction Results

Figures 5.7-5.9 show the four motion components for various whole-hand
slides across the surface. In each plot, the dotted (green) line represents a simple
average of finger translation velocities for the translation components. For the rota-
tion and scaling components, the dotted line represents the average of the changes in
angle or separation between all pairs of adjacent fingers, including the thumb-pinky
pair. The dashed line (cyan) represents weighted averages in translation velocity
for the translation components. For rotation and scaling, the dashed line is derived
only from the change in angle or separation between thumb and pinky over time.
The solid black line represents the finger-weighted (dashed) components after they
have been passed through the variable-width deadzone filters.

In Figure 5.7, the right hand slides in a circle with fingers expanding and

rotating counter-clockwise and then slides up while extending the fingers. Note how
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Figure 5.7: Velocity components extracted from simultaneous hand translation,
rotation, and scaling. Up to 700 ms, a right hand slides in a circle
with fingers expanding and rotating counter-clockwise. From 700—
1300 ms, the hand continues in a circle while fingers flex and the
wrist rotates back clockwise. From 1300-2000 ms, the hand slides
up and expands at the same time. Dotted lines are uniform averages
of finger motions, dashed are finger-weighted averages, and solid are
finger-weighted averages after dead-zone filtering.
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the finger-weighted translation components are much smaller than the simple aver-
age translations because they ignore the unbalanced motions of the central fingers
during the strong rotations and scalings. The dead zone filters downscale the finger-
weighted translations somewhat but never zero them altogether. For rotations and
scalings, the thumb-pinky differences are actually stronger than the average differ-
ences even after dead-zone filtering because they are not diluted by the relatively
weak changes in angle and separation between fingertips. Note that when only slid-
ing up and extending the fingers, the dead-zone filtered rotation component remains
zeroed most of the time.

In Figure 5.8, the whole hand slides roughly in a circle from the elbow while
fingers and wrists remain relaxed. All versions of the translation components are
nearly the same, though there is still slight leakage into the rotation and scaling
components from slight shifts in relative finger posture. Nevertheless, dead-zone
filtering is able to keep the rotation and scaling components zeroed most of the
time.

In Figure 5.9, the fingers first extend and flex back smoothly. After being
picked up briefly, the hand touches down again and rotates counter-clockwise and
back clockwise. Though the finger extension and flexion cause noticeable interfer-
ence in the translation and rotation components, dead-zone filtering again suppresses
this. Notice the large vertical translation interference when the uniform average of
all finger velocities is used. The hand rotation case is more troublesome. Filtering
is only able to suppress interference with the other components about half the time.
The thumb and pinky tend to separate as the hand becomes fully rotated clockwise,
causing substantial crossover into the scaling components. Notice the large distur-
bances in horizontal translation when it is computed from the uniform average of

finger translations.
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hand moves in a rough circle, causing the horizontal and vertical com-
ponents to resemble sine and cosine waves. The fingers are not flexed
nor the wrist rotated actively, but undoubtedly slight passive shifts
occur in their posture as the hand slides. Dotted lines are uniform
averages of finger motions, dashed are finger-weighted averages, and
solid are finger-weighted averages after dead-zone filtering.
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Figure 5.9: Velocity components extracted from separate hand rotation and scal-
ing motions. Up to 1000 ms, the fingers extend and flex back smoothly.
From 1000-3000 ms, the whole hand rotates counter-clockwise and
then back clockwise. Dotted lines are uniform averages of finger
motions, dashed are finger-weighted averages, and solid are finger-
weighted averages after dead-zone filtering.
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5.3.6 Motion Extraction Conclusions

Favoring the thumb and pinky motions while the hand is rotating or scal-
ing greatly improves the independence of the extracted motion components. This
will ultimately allow integral 4-DOF manipulation on the MTS. Though the cur-
rently implemented dead-zone filters successfully prevent leakage from non-uniform
translational motions into rotation and scaling components, further optimization of
dead-zone width dependencies will be necessary to completely suppress leakage of
imperfect hand rotation or scaling motions into the extracted translation compo-

nents.

5.4 Chord Motion Recognition

The chord motion recognizer is the final module of the typing and chordic
manipulation system. It has the responsibility of determining from the combination
of touching fingers which chordic manipulation the operator has selected at the
beginning of a hand slide. Then, once the hand is in motion, it sends out appropriate
command or manipulation events depending on the directions and speeds of the
extracted motion components. Thus it requires as input the identities of all touching
hand parts and the extracted hand scaling, rotation, and translation velocities. The
chord motion recognizer also receives finger subset synchronization signals from the
synchronization detector. Note that the chord motion recognition process is repeated

for each hand independently.

5.4.1 Channel Selection

Am important question in the design of a chord motion recognizer is whether
the selected channel should change in the middle of a slide if the combination of
fingers touching the surface changes, or whether the channel selection be fixed at
the beginning of a slide so later touchdowns or liftoffs of a finger or two have no

effect.
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5.4.1.1 Channels Follow Finger Combinations

The former solution is illustrated by the simple state diagram of Figure 5.10.

This appears to be the chord motion state machine used on recent Logitech touch-

GENTRATING
SINGLE OR
. CHORD TAP SELECTING MANTPULATING
A;‘]I g Eg\?ﬁq CHORD THROUGH
e ’ CHANNEL SELECTED CHANNEL

All Liftoff
Immediately
Any Touchdown Lateral Motion
All Liftoff Additional
Delayed Touchdowns/

Some Liftoffs

Liftoff of All Fingers

Figure 5.10: State diagram for 3-finger touchpad tapping and sliding.

pads [15] which detect and count up to three fingertips. When a single finger touches
down, a transition occurs from the floating state F to the channel selection state
C. State C counts additional touchdowns until lateral motion or total liftoff is de-
tected. If the finger or fingers lift off quickly, a transition occurs to the tap state T,
where a button click is issued. The identity of the emulated mouse button depends
on the maximum number of fingertips counted while in the channel selection state.
Likewise, when lateral motion is detected, a transition to the manipulation state
M occurs. If the single finger channel has been selected, pointing events are gener-
ated in proportion to the motion; the two finger channel generates dragging events.

However, the most notable characteristic of this state diagram is that if the number
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of touching fingers changes without total liftoff, control returns to state C for an
update of the channel selection. Thus the operator can transition immediately from
pointing to dragging by dropping a second finger on the surface in the middle of a

one-finger slide.

5.4.1.2 Initial Finger Combination Sets Channel

While this is an appropriate design for a small touchpad which has only
three channels, and this design may be advantageous for certain application, it was
not chosen for chordic manipulation on the MTS for a number of reasons. First,
the MTS offers quite a few more chord channels (see Table 5.1) which are mapped
to a much wider variety of commands and manipulations than just pointing and
dragging. Switching channels upon every change in touching finger identity could
be very confusing and accident-prone. For example, an accidental touchdown of
the thumb during a three-finger slide could switch from a horizontal drag to issuing
the “Back” command for a web browser. Fearing such accidents, operators might
suspend those fingers not included in the chord high above the surface. This could
be bad ergonomically, as typists who suspend their thumbs high above the space
bar are prone to overuse injuries such as DeQuervain’s syndrome [117].

Therefore, the MTS gives operators the freedom to drop any or all suspended
fingers to the surface for whole hand manipulation once their initial motion and
finger combination has selected a chord channel. Likewise, operators should be
able to continue translations on a selected channel as long as at least one finger
remains on the surface. Selecting a different channel always requires momentary
liftoff of all fingers. Though such liftoff also requires some finger extensor effort,
the MTS design assumes the effort of such liftoff for 100-200 ms to switch channels
pales in comparison to the fatigue from holding certain fingers suspended above the
surface for seconds at a time during slides. Another reason for tolerating additional

touchdowns is that for channels whose initiating chords do not include the thumb,

268



operators can set the thumb down shortly after slide initiation to access the full

dynamic range of the rotation and scaling degrees of freedom.

5.4.2 MTS Chord Motion State Machine

The MTS’s more tolerant state machine design is diagrammed in Figure 5.11.
The first difference from Figure 5.10 is that to distinguish slides from glancing finger
taps during typing, the transition from state F to state C requires at least two fingers
from a hand to be touching the surface. Thus a channel cannot be selected nor a
chordic manipulation start from motion of a single finger. Similarly, chord taps
require quick, synchronous release following synchronous touchdown of two or more
fingers as previously described in Section 5.2.2.3. Single finger taps are of course

interpreted as typing, which is not shown in the diagram.

5.4.2.1 State C: Channel Selection

State C continually checks for changes in the combination of fingers touching
the surface and for lateral finger or hand motion. As with chord tap recognition in
Section 5.2.2.4, the channel selector uses the combination of finger identities to look
up a channel from Table 5.1 along with the channel’s event mappings and motion
sensitivity parameters. The motion sensitivity parameters include speed thresholds
which determine how fast or how far the fingers must slide before triggering the
transition to the manipulation state M.

When state C detects significant motion on all touching fingers and advances
to the manipulation state M, the channel selection is locked in. Additional finger
touchdowns or liftoffs will not affect the channel selection during manipulation unless
they meet the special synchronization sequence to be discussed below. To prevent
premature lock in of the channel before all fingers in a chord have reached the
surface, finger and extracted hand motions are downscaled for about 50 ms after

each new finger touchdown or release, making it less likely that the initiation speed
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threshold will be crossed until finger presence and identifications have stabilized.
Also, the speeds of all touching fingers are required to pass the speed threshold and
be within a fraction of neighboring finger speeds to ensure chord motion is initially
coherent.

Note that there is no touchdown synchronization requirement for the tran-
sition from state C to state M. First of all, one is not necessary because coherent
motion in all the touching fingers is sufficient to distinguish sliding fingers from rest-
ing fingers. Also, novice operators may erroneously try to start a slide by placing
and sliding only one finger on the surface, forgetting that multiple fingers are neces-
sary. Tolerance of asynchronous touchdowns allows them to seamlessly correct this
by subsequently dropping and sliding the rest of the fingers desired for the chord.
The manipulation mode will then initiate without forcing the operator to pick up

all fingers and start over with synchronized finger touchdowns.

5.4.2.2 State SC: Synced Subset Channel Selection

States SC and ST provide a way to change channels when the hand is resting
on the surface without lifting all fingers off the surface. This is important because
otherwise operators may always tend to keep the hand suspended after being forced
to lift it off to reset the state machine and change channels. The synchronized
channel selection state SC can be entered from an existing channel manipulation
mode M by synchronously lifting some of the fingers, usually just two or three out
of five, and synchronously dropping them back to the surface. It can also be entered
after all fingers have been resting on the surface without sliding, ¢.e., from state C
directly without going through M, but this transition is not shown in the diagram
to avoid clutter.

Once in state SC, the new channel is determined from the combination of
fingers in the synchronized subset, not from the combination of all touching fingers.

From state SC a chord tap can be issued on the new channel through state ST by
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once again raising and dropping the same finger subset. Likewise, coherent lateral
motion of the fingers in this subset will cause a transition back to the manipulation
state, irrespective of the motion of the resting fingers. This transition also locks in
the new channel selection as before. Again, state SC offers the advantage that the
operator does not have to lift a whole resting hand from the surface before starting
a manipulation, but can instead leave most of the weight of the hands resting on
the surface and only lift and press the two or three fingers necessary to choose the

most common finger chords.

5.4.2.3 State M: Manipulation

The manipulation mode operates in several different ways depending on the
type of manipulation or command events which have been mapped to the selected
channel. For mouse pointing or dragging events, it simply integrates the extracted
velocity components over small, regular time intervals and sends mouse motion
packets to the host computer just like a mouse or touchpad would. For editing
keys whose actions are reversible such as the arrow keys, it integrates hand motion
in a particular direction. The motion recognizer then sends out the appropriate
key when a threshold is reached, resets the integrators for each direction or arrow
key, and begins integrating again. For one-shot commands such as cut which are
not easily reversible and which seldom need to be repeated, the motion recognizer
ceases integrating after the first issuance of the command, ensuring such commands
are only issued once per slide. Thus the operator must pick up the hand and begin a
new slide to perform a second cut. Table 5.2 shows the directional motion gestures

which the chord motion recognizer currently implements.

5.4.3 Chord Mappings
The chord motion recognizers for each hand function independently, and the

input events for each chord can be configured independently. This allows the system
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Table 5.2: The simple manipulations and lateral motion gestures recognized by

the MTS.
Motion Icon ‘ Type of Chord Motion ‘

@ Brief tap on surface (one-
shot).

+ Translation (slide) in any
direction.

1 Reversible translation up

or down.

- Reversible translation left
or right.

Reversible up or down
translation, irreversible
right translation.

Translation in a particu-
lar direction (one-shot).

TV

' Contractive hand scaling
7N (one-shot).

} Expansive hand scaling
4N (one-shot).

a2 Clockwise hand rotation
W (one-shot).

Fe Counter-clockwise hand
N A

rotation (one-shot).
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to allocate tasks between hands in many different ways and to support a variety of
bimanual manipulations. For example, mouse cursor motion could be allocated to
the fingertip pair chord on both hands and mouse button drag to a three fingertip
chord on both hands. This way either hand could point and drag on either half of
the surface. Primary mouse clicks would be generated by a tap of a fingertip pair
on either half of the surface, and double-clicks could be ergonomically generated by
a single tap of three fingertips on the surface. Window scrolling could be allocated
to slides of four fingers on either hand.

Alternatively, mouse cursor manipulations could be allocated as discussed
above to the right hand and right half of the surface, while corresponding text
cursor manipulations are allocated to chords on the left hand. For instance, left
fingertip pair movement would generate arrow key commands corresponding to the
direction of motion, and three fingertips would generate shift arrow combinations
for selection of text.

For host computer systems supporting manipulations in three or more degrees
of freedom, a left hand chord could be selected to pan, zoom, and rotate the display
background while a corresponding chord in the right hand could translate, resize and
rotate a foreground object. These chords would not have to include the thumb since
the thumb can touch down anytime after initiating chord motion without changing
the selected chord. The operator need only add the thumb to the surface when
attempting rotation or scaling.

Finger chords which initially include the thumb can be reserved for one-shot
command gestures. For example, the common editing commands cut, copy and
paste can be intuitively allocated to a pinch or contractive hand scaling, a chord
tap, and an anti-pinch of the thumb and an opposing fingertip. See Tables 6.1-6.4
on Pages 289-292 for the mappings used by the author for text editing and general

navigation of standard graphical user interfaces.
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5.5 Conclusions

This chapter has demonstrated how a system for integrating typing and ver-
satile chordic manipulations on the MTS can be built upon the hand tracking and
finger identification systems of Chapters 3 and 4. Robust path tracking from Chap-
ter 3 is necessary for the finger press and release times used for finger subset syn-
chronization detection to be reliable. Palm contacts must be identified as such so
that they can be fully ignored by the synchronization detector, typing detector,
hand motion extractor, and chord motion recognizer. Since manipulation channel
selection depends upon the presence of the thumb and number of fingertips, finger
and hand identification must also be robust and converge within about 100 ms of
the first finger’s touchdown. The hand motion extractor requires that the finger
identifications remain in proper order from innermost to outermost.

This chapter has also introduced several novel concepts for human-computer
interaction, the most fundamental being that typing can be distinguished from
chordic manipulation over the key layout fairly reliably by checking for synchro-
nization of finger motions on the same hand [160]. Full hand chords have been used
here not for typing but to enhance graphical manipulation, which led to the prob-
lem of extracting four integral degrees of freedom from hand rotation, scaling and
translation. A channel selection state machine has been designed to encourage hand
resting on the surface. While the systems of this chapter are not yet bulletproof
enough that anyone can walk up to the MTS and use it without training or practice,
they already work quite well for a skilled operator, as will be seen in a case study

of this author in the next and final chapter.
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Chapter 6

PRELIMINARY EVALUATION, FUTURE DIRECTIONS,
AND CONCLUSIONS

This chapter begins with a detailed testimonial of my experiences and a case
study of my RSI symptoms while using the typing and chordic manipulation capa-
bilities of the M'T'S to prepare this dissertation. Next, I outline usability, long-term
fatigue, and RSI case studies which could more formally and objectively evaluate
the efficiency and ergonomics of the MTS in the future. I end with a discussion of
future enhancements to the MTS and commercial operating systems which would

be necessary to support handwriting recognition or bimanual manipulation on the

MTS.

6.1 Testimonial and Case Study of the Author

Though construction of the MTS was completed in November 1998, the MTS
software did not function well enough to support daily use until early January 1999.
Since then I have used the MTS as the sole input device on my primary personal
computer to edit this dissertation and prepare results. My adviser, John Elias
has also been using a second prototype since February 1999 as his primary input
device. Here I will offer my impressions and observations from use of the MTS over
this period, pointing out issues which should be examined in the future by more
extensive, formal studies of user populations. Based upon the experiences of friends
and colleagues who have tried the MTS momentarily, I will also discuss difficulties

which novice operators are likely to have.
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6.1.1 My Fitness as an Evaluator

As developer of the MTS software, I am undoubtedly somewhat biased, some-
times in ways I cannot foresee. For example, because I have a notion of how the
typing and chordic manipulation are supposed to integrate, I unconsciously avoid
motions which confuse the M'TS algorithms. Every new person who has tried the
MTS has at least one strange motion habit which I never anticipated and which
demands enhancement of the motion filters. Because I received lessons in classical
piano performance for twelve years, my manual dexterity and precision is undoubt-
edly above average. During my first typing class as a freshman in high school, 1
gained speed and accuracy much faster than the rest of the class, so the ease with
which I have learned to operate the M'T'S would not be representative of the general
population even if I were not its designer.

However, I do have a lot of experience evaluating input devices, especially
for ergonomics. Over the years I have used the Kinesis contoured keyboard models
110-130, standard keyboards with various keyswitch stiffnesses, thumb and palm
operated track balls, mice and touchpads. During my struggles with RSI, I have
become very attuned to my body’s pain signals, so that I can tell the difference
between superficial muscle soreness, which can usually be ignored without conse-
quence, and the deep, burning pain in the forearms which warns that continued use
of the computer for another day can cause spiraling inflammation that incapacitates
my hands for weeks.

Much of this ergonomics awareness has been learned the hard way, as when
three-and-a-half years ago I failed to fix a malfunction in a left thumb roller device I
had added to a Kinesis keyboard. After a week using this malfunctioning, unreliable
roller intensely, I apparently tore a thumb adductor or index finger flexor tendon or
sheath, an injury which plagues me to this day. Though I asked two doctors and

several physical therapists for an exact diagnosis of this injury, none were able to
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offer one. For the first few months after the initial injury I could not extend my
left wrist past the neutral position. In the years since I have regained full wrist
flexibility through stretching and strengthening exercises, but this old injury has
remained troublesome, even as flare-ups in my other tendonitis hot spots such as
the epicondylitis in both elbows have become less severe.

Even after staying pain free for weeks on vacation, I have not been able to
type more than a page or two per day on any mechanical keyboard without causing
pain and tenderness where the left index finger flexor tendon passes through the
wrist. Though otherwise I prefer the Kinesis keyboard to a standard keyboard,
the raised posture and editing keys it imposes on the thumbs seemed to exacerbate
this injury more than a flat keyboard. Hence during the months prior to this MTS
trial, while I was writing the M'TS software using the Kinesis, my index finger pain
and tenderness were actually worsening. Thus I can clearly compare my symptoms
during this MTS trial to long-term symptoms leading up to the trial which other
alternative input devices, physical therapy, and time had failed to eliminate.

Finally, a three-month case study such as this one can provide information
on long-term use and effects that a short trial with a population of novices cannot.
For example, I have used the MTS long enough for frequently-performed gestures
to enter motor memory. Thus I can easily distinguish the truly useful chordic ma-
nipulations from those performed so rarely that I must still pause to remember

them.

6.1.2 Equipment and Methods

The MTS was connected to an IBM-compatible PC with a 200 MHz Cyrix
processor running IBM’s OS/2 operating system. Since the MTS emulates PS/2
keyboard and serial mouse protocols in hardware, no custom device drivers were
necessary. However, an operating system extension called Hotscroll by Samual Au-

det [4] enabled continuous scrolling of windows via emulated mouse events.
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This dissertation was written in the IXTEX typesetting language rather than
with a conventional word processor; therefore, formatting codes, references and text
were all included in ASCII text files editable with any common text editor. I used an
advanced programmer’s editor, Visual SlickEdit by MicroEdge, for this purpose. It
has a number of features which make editing more efficient, such as interactive word
and line completion, infinite undo and redo, and cut or copy of the line containing
the text cursor without first selecting it.

Though the MTS was the sole input device for my primary workstation, at
times I relied on other means to input text and graphical data. Many of the figures
were plotted with Matlab running on a Sun workstation with a Sun 4 keyboard
and Mouse-trak trackball attached. Also, I wrote out the first draft of long sections
of the text by hand and had a person type them in for me. Then I performed
all editing and page-sized additions through the typing and chordic manipulation
capability of the MTS prototype. Because of the slowness and inaccuracy of the
speech recognition software available for OS/2 (IBM’s Voicetype discrete dictation
software), I avoided use of speech recognition software during this period, preferring
the MTS for entry of small-to-moderate amounts of text and a typing assistant for
large new sections. Nevertheless, many days I typed 3-6 pages with the M'TS, more
than I had been able to type with a mechanical keyboard prior to the MTS trial

without causing significant pain for several days.

6.1.3 Typing

I was able to touch type [158] at my normal speed of up to 60 words per
minute on the MTS, making about twice as many errors as I would on a mechanical
keyboard. Because it was so easy to edit and correct errors with the MTS, this
increased error rate did not become an annoyance. However, entering text such as

C code which contained a lot of numbers or punctuation from the periphery of the
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key layout usually required a glance at the symbols printed on the MTS, which did
become annoying at times.

Figure 1.1 on Page 6 is a rendition of the QWERTY key layout used for
the first month of the MTS trial. I drew the key symbols on the surface with a
marker, but the surface was perfectly smooth, so there was no tactile indication of
their location. Therefore, to type with decent accuracy, the fingers either had to
remain resting on home row, picking up and placing one finger at a time, or they
had to be carefully suspended in the air above home row without drifting. With
the MTS on my lap sloping downward it was also comfortable to rest my palms
on the surface while the fingers hovered over home row. Both John Elias and I
have successfully learned to do this, but it is apparently not natural. All the people
who have momentarily tried to type on the MTS without any tactile feedback have
been able to hunt and peck by looking at the symbols drawn on the surface but
have not been able to touch type without looking. One conflating issue is that the
alphabetic key columns are straight vertical on the MTS, like on the Kinesis, rather
than slanted as on a conventional QWERTY keyboard. In any case, two issues need

to be examined in the future:

1. How hard is it for people to learn to keep their hands steady over home row,

i.e., how long does it take them to learn and can everyone learn?

2. How much tactile feedback of the key and home row positions is necessary to

speed adaption to and accuracy of touch typing on the MTS?

The second question needs to be determined very precisely because more tactile
feedback implies a rougher surface. Too rough a surface will impede smooth chordic

manipulation.
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6.1.4 Weekly Symptoms
6.1.4.1 First Two Weeks

During the first week or two using the device, I was still recovering from prior
use of the Kinesis keyboard. All-day use of the MTS would still cause superficial
inflammation and soreness by the end of the day, but deeper pain did not build up
from one day to the next like it recently had with the Kinesis. I had the feeling that
I was just mildly irritating already-inflamed tendons with the M'TS, not making the
inflammation worse in the long-term.

However, during the first week or two I experienced acute neck and shoulder
pain. I attributed this to M'TS software bugs which would not allow me to rest
my hands on the surface without causing spurious key activations. Bugs in the
chordic manipulation system also made pointer manipulation somewhat erratic or
unresponsive. I then spent a couple days fixing these bugs and enabling all five
fingers to drop to the surface in the middle of manipulation without switching or

disabling the selected channel.

6.1.4.2 Third and Fourth Weeks

At this point my neck and shoulder stiffness went away. Unfortunately I
cannot say whether this was because my body had finally adapted to the slightly
different postural requirements of the M'TS or if it was due to my improvements in
system reliability and resting hand tolerance. As I continued use of the MTS over
the next couple weeks, all the burning in my forearms which usually accompanies
moderate typing went away except the tenderness in my left index finger flexor.
Because of this my index finger was reluctant to stretch off home row for keys such

as the 't’ key, and often made typing errors.
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6.1.4.3 Fifth and Sixth Weeks

During the fifth week of the trial I decided the only way to improve my
typing endurance in the face of this nagging index finger injury would be to learn
a key layout which utilized the index finger less. In the QWERTY layout, the left
index finger handles 17.75% of the English typing load, more than any other finger
on either hand [101]. The Dvorak layout, on the other hand, only allocates 12%
of the typing load to the index finger, and most of that load is from home row
keys. Changing the MTS layout only required swapping of key centroid positions
in a configuration file and redrawing the symbols on the surface with a marker.
After the first couple days I realized that the Dvorak layout places the i’ key to
the right of the index finger home key even though the letter 'i’ appears twice as
often in English as the index home key 'u’. Presumably, Dvorak did this to optimize
digraphs involving either of these vowels, but since I wished to minimize index finger
stretching, I swapped the 'u’ and ’i’ keys. To speed relearning in the transition from
QWERTY to Dvorak, I also kept some of the rarer letter and punctuation keys
in their QWERTY positions. Figure 6.1 shows the modified version of the Dvorak
layout which I finally settled upon.

As most people who have learned Dvorak after QWERTY have noted, the
first week or two of the transition is quite disorienting. The lack of tactile feedback
from the MTS probably exacerbated this. Having no motor memory yet of finger
motion sequences on the Dvorak layout and no key edges with which to feel around
for keys, I once again found myself constantly holding my hands above the surface
and looking down to find my way around the foreign layout. This caused a resurgence

in my neck and shoulder stiffness and some arm fatigue.

6.1.4.4 Seventh and Eighth Weeks
However, within about two weeks, typing on the modified Dvorak layout

started becoming automatic, and these neck and shoulder symptoms subsided. Most
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importantly, the reduced index finger workload gave my index finger flexor tendon
a chance to recover. Since the first week after switching key layouts, my only mild
recurrences of pain or tenderness in this finger or my other weak spots have occurred

after typing 4-5 pages on consecutive days.

6.1.4.5 Ninth and Tenth Weeks

Since I was finishing this document, but my typing assistant was unavailable,
I typed 3-6 pages per day nearly every day of this two week period. This caused
sporadic tenderness in my index finger tendon but no other pain, and the index
finger never became so aggravated that I would have had to rest for days at a time,
which I could not have afforded. This period was the first time in four years that I

felt free to compose large amounts of text through typing rather than handwriting.

6.1.4.6 Conclusions

These experiences suggest that though I may not have infinite endurance
typing on the MTS, I have two or three times as much endurance as on a mechanical
keyboard. This is consistent with my previous experiences with zero-activation
force devices such as optical mouse buttons, Pilot rolling ball pens, and touchpads.
Minimal force devices still do not allow indefinitely long, intense use or unlimited
repetitions, but I can operate them 2-4 times as long per day before fatigue or
inflammation begins to build up.

Though my brief spouts of neck and shoulder pain could have been brought on
by other activities such as watching movies with my head propped against the high
armrest of a couch, they suggest that postural loading on the shoulders may increase
temporarily if operators cannot rest their hands on the surface or are unfamiliar with

the key layout.
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6.1.5 Recognition Errors and Accidental Activations

While the essentially zero activation force of the M'TS has obvious ergonomic
advantages, it also makes accidental activation by accidental contact with the surface
more likely. Though one can synchronously place palms and all five fingers on the
surface at any time without consequence, one has to be careful not to accidentally
tap the surface with a finger. As a skilled operator who knows how to undo any
accidental activations, this has not really been a problem. For me, the number
of errors due to accidental touches is about the same as the gesture recognition
error rate. For example, a few times a day the system will misinterpret a primary-
clicking finger pair tap as a thumb-finger tap or a hand scaling gesture as a rotation
gesture. Since the thumb-finger tap is mapped to copy, the former error will have
no consequence unless one is in the middle of a cut-paste sequence, in which the
clipboard contents could be overwritten. Similarly, a couple of times a day I will
accidentally touch the surface inserting a key while actually trying to float above
the surface. Since the command keys are in the middle of the MTS and the hands
are usually near home position, most such accidental activations involve insertion of
an alphabetic character rather than a command invocation by a function key. Thus
they are easy to correct as long as the error is noticed. Audible feedback from all
key activations ensures such insertions will be noticed in most cases.

The accidental activation problem is potentially much more serious for novices.
First, they may not know to precisely synchronize their chord taps or avoid acci-
dental touches of less than five fingers. Second, when they do accidentally activate
a key or chord command, they may become confused and not know how to undo
their error. Several modifications have already been made to the MTS software to
address this, and undoubtedly more will be needed in the future.

Disabling all but the most basic chordic manipulations when novices are first

learning MTS operation will avoid many accidental activations and much confusion.
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It is especially important to disable most chord taps so novices can rest fewer than
five fingers without generating spurious commands or mouse clicks. Novices trying
the system have been observed to accidentally activate the 3-finger chords during
typing and hand resting. I have these mapped to Escape on the left hand and
double-click on the right, and while these may be convenient for me, Escape is also
a key on the key layout, and successive finger pair taps also emulate double-click,
so novices can access these commands more safely without having them mapped
as chord taps. Only the right hand finger pair tap mapped to primary mouse
clicking is really needed for basic operation. The thumb-finger tap for the copy
command is particularly useful and less likely to be activated accidentally than
three or four finger chord taps. Once a person becomes more comfortable with
the synchronization requirements of M'TS operation, they can map and memorize

additional chord taps as they see fit.

6.1.5.1 Benefits of Higher Frame Rates

More selective touch filtering can also prevent accidental activations. To be
reliable, such filtering will require proximity image frame rates on the order of 100
fps instead of the current 50 fps. For example, the proximity threshold for key
activation can be raised given higher frame rates without requiring more forceful
fingertip impacts by the operator. This threshold is currently set to about one-
sixth the average fingertip tap proximity, not because some key taps are that light,
but because the peaks in proximity of extremely quick taps can fall between the
current 20 ms scanning cycles. Since the peaks in proximity as the finger bottoms
out can be missed, sometimes only the slight proximities at the ends of the tap life
cycle are detected. Raising this threshold will lower the likelihood that accidental
brushes against the surface will be interpreted as keypresses. Other options include

measuring the impulsiveness of finger touchdown to ignore hesitant, unintentional
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taps or stringently adapting debounce timing requirements to the operator’s average
tap speed.

Synchronization detection (Section 5.2.2) can also benefit from a higher frame
rate. Sometimes when tapping two horizontally adjacent keys in quick succession,
taps will be nearly synchronous, causing them to be erroneously interpreted as a
finger pair chord tap. Since the most frequent characters are scattered so far apart
in the QWERTY key layout, this does not happen that often. I observed it a couple
times for the ’oi’ bigram. However, in the Dvorak layout frequent bigrams are much
closer together, the most notable being 'th’ allocated to the middle and index finger
of the right hand. Therefore if I am not careful about my finger timings, the system
often misinterprets 'the’ as a primary mouse click followed by an ‘e‘. The 50 fps
frame rate is simply too slow to reliably determine that my ’th’ taps are in fact

slightly asynchronous.

6.1.6 Chordic Manipulation Performance

Even though I have only used the chordic manipulation system for editing and
desktop navigation so far and have not yet explored its 3D navigation potential, I
have found it to be just as effortless, efficient, and fluid as I had envisioned. I quickly
became so accustomed to the ability to switch instantaneously between typing and
pointing, dragging or scrolling as to take it for granted. I frequently used the
channels for mouse and text cursor pointing, selection by mouse or text cursor, and
scrolling. Though the channels for manipulation of Visual Slickedit features such
as word and line completion or infinite undo and redo were not used as frequently,
being able to “roll back” a document to any previous stage of editing as easily as
moving a cursor was intriguing. Using a stand-alone pointing device now seems
oddly primitive and inhibiting.

While I became unconsciously dependent on the cursor manipulation chan-

nels, performing the one-shot command gestures is positively fun because they can
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accomplish so much with quick series of small, precise motions. In other words, they
enable the “chunking and phrasing” of gestures espoused by Buxton [20-22]. As a
replacement for keyboard hotkeys and macros, they are just as easy to learn, but
require much less effort than pressing a key. Moreover, since recognition of chordic
command gestures is independent of absolute position on the surface, they can al-
ways be performed at the current hand position without reaching or looking for a
particular region of the surface.

Tables 6.1-6.4 detail the chord tap and motion mappings for each hand which
were programmed into the MTS during my trial. Refer back to Pages 9-10 for
Tables 1.1-1.2 containing legends for the chord channel and motion icons.

The mapping tables list the finger combination and motions necessary to
generate the noted command or manipulation. Each command and manipulation is
rated according to how useful it was for me, i.e., how frequently I performed it, how
useful or necessary it might be for general GUI manipulation by novices, and how
safe it is for novices. By safety I mean how prone the finger combination and motion
is to accidental activation or recognition errors, not how ergonomic it is. Ratings
are on a scale of 0-5, with 0 being the worst and 5 the best. Combinations which
have a high novice necessity rating but a low novice safety rating definitely require
further improvements to the motion or accidental activation filters.

I have used the one-shot command gestures for word search and replace, file
save, window close, browser back and forward, and code compile often enough for
them to become automatic. However, it is the cut, copy, and paste gestures which
really transform the editing experience since they function so well in tandem with
the cursor manipulations. For example, after performing a right hand 3-fingertip
drag to emulate object selection via mouse or a left hand 3-fingertip drag to emulate
text selection via arrow keys, one can copy the selected object with a thumb-fingertip

chord tap, reposition the mouse or text cursor with a fingertip pair manipulation by
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Table 6.1: Mappings for right hand manipulation channels.

Useful | Needed | Safe
Right for by for
Hand Chord GUI Author | Novices| Novices
Channel | Motion Action (0-5) (0-5) (0-5)
@ Primary mouse button
click. 5 5 3
4{-’ Mouse cursor manipula-
tion. 5 ) )
@ Primary mouse button
double-click. 5 3 1
°°* <jvt> Dragging/Selection  via
primary mouse button. 5 5 4
@ No mapping to avoid ac-
cidents. - - 0
ve o Continuous
<1vt> scrolling /panning of
current window. ) 4 4
\ . |
Key layout homing. ) 1 1
oo No mapping to tolerate
\ <‘¢—> shifts in resting hand pos-
ture. - - 0
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Table 6.2: Mappings for left hand manipulation channels.

Useful | Needed | Safe
Left for by for
Hand Chord GUI Author | Novices| Novices
Channel | Motion Action (0-5) (0-5) (0-5)
@ No mapping to avoid ac-
cidents. - - 1
°e ﬁvt» Text cursor manipulation
via arrow keys. 4 3 3
e @ Escape key (cancel com-
mand). 1 1 0
e ﬁvt, Selection via text cursor
(<shift>arrow keys). 4 3 3
@ No mapping to avoid ac-
cidents. - - 0
oot I Page Up and Page Down
keys. 4 3 2
otte <«— | Home (beginning of line)
key. 2 2 2
End (of line) key. 2 2 2
’ Key layout homing. 2 1 1
ve o No mapping to tolerate
P <1vt> shifts in resting hand pos-
ture. - - 0
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Table 6.3: Mappings for right hand command gesture channels.

Useful | Needed | Safe
Right for by for
Hand Chord GUI Author | Novices| Novices
Channel | Motion Action (0-5) (0-5) (0-5)
‘ f
\ Z | Cut (to clipboard). 4 4 5
A Copy (to clipboard). 5 5 3
. }
\ # X\ | Paste (from clipboard). 5 5 5
\ }» Interactive word comple-
tion. 4 2 2
\ -~ Popup word completion
list. 1 1 2
°° @ Secondary mouse button
. click (popup menu). 3 4 3
°* + Dragging/Selection  via
\ secondary mouse button. 3 3 5
@ Popup application win-
\ ;
dow list. 3 2 2
o r
\ | New file. 3 2 4
oc¢ !
A o Open file dialog. 1 2 4
o060 +
. 7N Save the current file. 4 2 4
Y *
Close the current file or
‘ £ X subwindow. 4 2 4
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Table 6.4: Mappings for left hand command gesture channels.

Useful | Needed | Safe
Left for by for
Hand Chord GUI Author | Novices| Novices
Channel | Motion Action (0-5) (0-5) (0-5)
. '
’ AN | Cut (to clipboard). 4 4 5
’ Copy (to clipboard). 5 5 3
. }
’ # X | Paste (from clipboard). 5 5 5
’ 1 Undo or Redo. 3 2 2
’ @ Alt (to access menubar). 1 1 2
°e —+ | -> (the pointer punctua-
’ tion for C code). 3 0 4
" l _ (the underscore charac-
’ ter). 3 1 4
oo +
’ Z % | Find (<ctil>F). 3 9 4
oo *
’ # X\ | Replace (<ctrl>R). 3 2 4
*oe re Make project (compile
’ A code). 3 1 4
.' I Next or previous subwin-
dow. 1 1 3
e - Next or previous virtual
’ desktop. 1 1 3
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either hand, and paste the selection with a thumb-fingertip anti-pinch, all with the
hand nearly staying in place. While this sequence may sound complex, the entire
sequence can be performed in 3-5 seconds if the selection is only to be moved a
short distance, about half the time it would take if cut and paste buttons had to
be accessed off a toolbar. These MTS editing gestures match the convenience of
the drag-and-drop capability of the Macintosh and the middle-mouse-button paste
feature common to the X11 Windowing System, yet they are much more flexible
since one can choose to either cut or copy the selected text to the clipboard and not
worry about losing the clipboard after moving the text cursor.

Replacing a word with another word from a different paragraph is a partic-
ularly quick variation of such copy and paste sequences. One simply performs a
3-fingertip tap to emulate double-click and select the replacement word, copies the
selection with a thumb-fingertip chord tap, moves the mouse over the word to be
replaced, performs another 3-fingertip chord tap to select it, and a thumb-finger
anti-pinch to paste. The only motions in the sequence limited by Fitts’ law (Sec-
tion 5.1.1) involve positioning the mouse cursor over the words. The other motions
are instantaneous, open-loop gestures unaffected by Fitts’ law.

The best evidence I can give of the integration efficiency of cursor manipula-
tion and editing commands on the MTS is that [ now rely much more on the mouse
cursor than I ever did before. Always before I shunned editing with the mouse
cursor in favor of keyboard hotkeys and the text cursor manipulation rollers I had
installed on my Kinesis keyboard. Even using a touchpad next to the Kinesis was
just too inefficient and tiring for constant manipulations. But since the one-shot
editing gestures integrate equally well with mouse or text cursor manipulation on
the MTS, T am no longer reluctant to use the mouse cursor. The following factors

may also contribute to my new tolerance for the mouse cursor:

e the MTS provides a much larger surface over which to manipulate than the
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tiny touchpads.

e the MTS dedicates a manipulation channel to emulation of double-clicks and

tap drags so the operator need not perform these awkward motions.
e the MTS eliminates homing motions between the mouse and keyboard.

e the 4-fingertip scrolling channels obviate tasks such as scrollbar manipulation

which are awkward using the mouse cursor.

The freedom to use any combination of two fingertips for pointing also turns
out to be quite a boon. I often alternate between the index and middle pair, the
middle and ring fingertip pair, and the ring and pinky fingertip pair to vary my
hand posture. Such alternation does not seem to cause any cognitive confusion;
remembering to use a particular number of fingertips seems as easy or easier than
remembering to use a particular set of fingertips. I often prefer using the ring and
pinky pair because they require less forearm pronation than sliding the index and

middle fingers while holding up or curling under the ring and pinky fingers.

6.2 Future Evaluations
Formal evaluation of the MTS can proceed along three tracks, the first being
short-term usability trials, the second being RSI case studies, and the third being

fatigue studies.

6.2.1 Usability Trials

The goal of usability trials would be to measure how quickly people learn
and adapt to the MTS and how efficient they become at interactive editing tasks.
Depending on the target market, the tasks could involve editing term papers, Java
source code, CAD drawings, or color images. A trial would consist of four ninety-

minute sessions spread over four consecutive days, plus a follow-up session a week
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Table 6.5: Schedule for MTS usability study.

| Activity | Day 1 | Day 2 | Day 3 | Day 4 | Day 11 |
Pretest: Standard V
MTS | v v v v v
Tutorial vV
Practice Vv vV vV Vv Vv
Post-test: Standard V V
MTS | v v v Vv v

later to measure retention [128,133] of learned chordic manipulation skills. About
twelve students who were already familiar with software for the chosen editing task
would participate in each study. To encourage uniformity in the subject’s back-
grounds, the students would preferably be members of the same composition, pro-
gramming, drafting or art class, and the trial would take place in the middle of the
semester when they were already familiar with the requisite editing software.
Table 6.5 shows the daily session schedules for the usability trials. At the
beginning of the first session, subjects’ performance with a standard mouse and
keyboard would be evaluated for about 15 minutes. Then untrained performance
on the MTS would be evaluated for the same amount of time. The performance
measure would be the time taken to make pre-specified changes to a sample docu-
ment. Erroneous mouse or key activations would also be logged. For the next 15
minutes the subjects would participate in an interactive tutorial of M'TS operations
such as typing, pointing, dragging, and scrolling. They would also be taught one-
shot gestures for a few commands such as cut, copy, paste, file save, and file close.
For the following 30 minutes, subjects would be allowed to work on standardized
class assignments using the MTS to develop familiarity with it. During the last 15
minutes of the session, subjects’ performance on the MTS would be evaluated with

another sample document.
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Each session on subsequent days would begin with a 15-minute evaluation on
the MTS, allow uncontrolled use of the MTS on class assignments for 60 minutes,
and end with another performance evaluation in the last 15 minutes. To control
for learning of the editing task rather than learning of M'TS operation, the fourth
session and retention sessions would end with another evaluation of performance
on standard mouse and keyboard. At the end of the first, fourth, and retention
sessions, subjects would be asked to fill out a questionnaire with their impression of
MTS operation.

To discourage growth in familiarity with the evaluation tasks, a different sam-
ple document requiring similar changes would be used in each successive evaluation.
Also, sample documents would be presented to each subject in different, random
order across sessions to control for variations in the difficulty of edits to each docu-
ment. To force subjects to adopt the most basic one-shot command gestures such
as copy and paste, alternative methods for invoking the commands such as menus
and hotkeys would be disabled for all sessions.

Such a study would establish the learning curve for M'TS adoption by people
already familiar with computers. Logs of all hand activity on the MTS during the
evaluations would also indicate which MTS activities are the most troublesome to
learn. Finally, such a study would determine if people can achieve greater efficiency
on the MTS or some subset of M'TS operation than on a standard keyboard-mouse

combination in just a few days.

6.2.2 RSI Case Studies

The subjects in the RSI case studies would be composed of individuals like
myself who have a history of moderate-to-severe repetitive strain injuries to the
hands or forearms. Subjects would maintain a daily log of pain symptoms through-
out the study. They would also be asked to fill out using the computer a standard

pain questionnaire or scale [18,28,124] at the beginning and end of each work day.
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Subjects would continue to use their conventional input devices during the first week
or two of the study to firmly establish reference symptom levels. Subjects would
receive two one-on-one tutorial sessions to learn basic motions and postures so they
could use the MTS to their best advantage. Then subjects would adopt the MTS
for all computer use and continue to use it for several weeks.

The MTS software would be adapted as necessary to accomodate particularly
severe injuries such as my left index finger tendonitis. Hand activity logging software
on the MTS would keep track of total repetitions and intensity of usage each day so
subjects would not have to estimate their time at the computer each day. Such logs
might expose phenomena such as increases in endurance or daily MTS usage while
reported pain remained constant. After pain symptoms and MTS usage patterns
had reached a plateau for at least two weeks, subjects would be asked to switch back
to their former input devices for a week or two to check for recurrence or changes
in symptoms.

Unfortunately, conducting truly “blind” studies on the ergonomic effective-
ness of the MTS would be impossible because its shape and feel are radically different
than those of other input devices. One way to root out possible placebo effects from
switching to a new device would be to have some subjects switch from their standard
keyboard to an equally radical keyboard such as the Kinesis instead of the MTS.
Presumably all subjects would experience short-term worsening of symptoms while
getting used to their new devices, but medium-term improvement from either device
would probably follow. The hypothesis would be that in the long-term, the minimal
activation force of the MTS would allow more complete recovery, especially under

heavy workloads.
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6.2.3 Typing Fatigue Studies

One goal of the fatigue study would be to determine how the muscle work
load during typing on the MTS is distributed about the body. Since chordic ma-
nipulations can be performed with at least part of the hand weight supported by
the surface most of the time, and chordic manipulations require minimal activation
force, they are expected to be less fatiguing than any other method of graphical
manipulation or command gesture entry. Similarly, finger flexor exertion will al-
most surely be minimal when typing on the M'TS. However, it is possible that finger
extensor and shoulder muscle exertion may be more than for a standard keyboard
during fast typing since the fingers must remain fully suspended above the surface
to make quick strokes. This is likely to depend on whether subjects rest their palms
on the surface while typing, and if they do rest their palms, the downward slope of
the surface may be important. Therefore the study should measure through muscle
electrical activity the relative exertions of various muscle groups during typing on
the MTS. It would also measure how patterns of hand resting and finger impact
forces change as subjects adapt to the MTS.

Ten subjects with good typing skills such as secretaries or transcription typ-
ists would be chosen. The study could be modeled closely after Gerard’s long term
studies [45] on the effects of keyswitch stiffness and auditory feedback on typing
forces. The MTS would be supported by load cells to monitor finger impact force
during typing and the degree of resting hand support. During evaluation sessions,
subjects would be outfitted with EMG (electromyogram) sensors on selected finger
flexor, finger extensor, shoulder, and neck muscles to monitor the electrical activity
which drives muscles.

During the first one hour evaluations session, subjects would be trying to

type on the MTS for the first time. Muscle tension would likely be heightened
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during this session while subjects were trying to adapt to surface typing. On fol-
lowing days subjects would return for 15-minute EMG evaluations at the beginning
and end of 90-minute M'TS typing practice sessions. To reduce the accumulation of
high frequency EMG data, only the mean, standard deviation, and median EMG
frequency computed over two-minute overlapping windows would be stored. De-
creases in median EMG frequency are one possible measure of fatigue in fast twitch
muscle fibers [144,165]. Alternatively, near infrared spectroscopy [113] could mea-
sure changes in tissue oxygenation levels to infer fatigue. After a few days of such
sessions, each subject would be given an MTS for use on the job at their personal
workstations. They would return for two-hour evaluations at one-week intervals for
a month to measure long-term adaption of muscle exertion during typing on the
MTS.

Analysis of MTS load cell forces during successive evaluation sessions would
indicate whether subjects became more comfortable resting hands on the M'T'S over
time. Analysis of muscle exertion patterns versus hand resting patterns could es-
tablish the strength of the link between hand suspension and muscle exertion. This
could also establish whether finger extensor exertion is minimized with resting palms
or floating palms. Typing activity patterns observed in subjects with especially low
exertion could suggest ways for all M'TS operators to avoid fatigue from floating
hands. Comparison of EMG’s between the first and last session would indicate how
much extra tension people will experience during initial adaption to the MTS and

how quickly, if ever, such tension drops to negligible levels.

6.3 Future Directions for MTS Development
6.3.1 Increased Array Resolution

Higher resolution electrode arrays should permit segmentation of more spe-
cialized hand configurations such as pen grips or fists. The pen grip configuration

(Figure 2.10), in which outer fingers curl under toward the palm so their knuckles
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touch the surface, may offer better index finger control for handwriting and draw-
ing applications than the “default” hand configuration (Figure 2.8), in which outer
fingertips are normal to the surface. Preliminary experiments suggest that if the
pinched fingers and outer knuckles are segmented properly, the existing finger identi-
fication system will correctly identify knuckles in a pen grip. Simple contact size and
vertical separation measurements [162] can reliably distinguish the outer knuckles
of the pen grip from the outer fingertips of the partially closed hand configuration
(Figure 2.9). Knowing that pen grips are distinguishable from the hand configura-
tions used in typing and chordic manipulation, one can envision a system in which
the operator switches to handwriting mode with a hand configuration change just
as easy as the configuration changes which switch between typing and pointing with
the current MTS prototype. Preferably the index finger would be tracked as the
inking stylus so the operator would not even have to stop and pick up an external

stylus.

6.3.2 Handwriting Recognition

Integration of handwriting recognition would assuage certain deficiencies in
typing and chordic manipulation on the MTS. Operators who have trouble typing
on the MTS or who do not know how to touch type could rely on the handwriting
mode for text entry. Good typists might rely on it only for entry of punctuation and
symbols which are either hard to reach on the key layout without looking down or
which do not exist at all on the key layout. Alternatively, handwriting mode could be
used to invoke command macros by drawing particular alphabetic symbols as in Pen
for OS/2 [142]. This could supplement the chordic manipulation gestures which can
be performed more simply and quickly but lack the mnemonic associations possible
with alphabetic symbols. Preferably, chordic manipulations would still invoke the
most frequent commands such as cut, copy, and paste, while handwritten symbols

would be mapped to a larger set of less-frequently-used commands.
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6.3.3 Universal Access

People with handicaps such as loss of fine motor control in the fingers may
have trouble performing the precise chordic manipulations described in Chapter 5.
For these people the system could be modified to recognize grosser manipulations
such as rotation and translation of a fist. Because the hand parts in a fist are closer
together than in a chording hand, the fist would also require finer sensor arrays, at

least in the vertical dimension, for reliable segmentation.

6.3.4 Fault Tolerant Segmentation

Segmentation algorithms which are more tolerant of individual sensor failures
should also be investigated as finer sensor arrays become available. A single mal-
functioning electrode sensor which produces random, zero, or full scale proximity
measurements can easily disrupt the outward search for contact boundaries from
local maxima (Section 3.2.5). This does not really matter on the relatively coarse
sensor array of the current prototype because even if the segmentation search man-
aged to continue past a bad electrode to find the correct contact boundary, a single
bad electrode could still perturb the contact centroid so much as to make accurate
pointing or typing impossible near the faulty electrode. However, as electrodes be-
come smaller in finer sensor arrays, any one electrode will have a smaller influence
on the fingertip centroid. At sensor array pitches of 1 mm x 1 mm, for example,
failure of a single electrode should cause only barely noticeable biases in contact cen-
troids. But with the current segmentation search pattern which tests only nearest
neighbor pixels, a single bad electrode under a finger could cause many electrodes
in the same or adjacent rows to be falsely excluded from the search, precipitating

major disturbances in the fingertip centroid even for fine arrays.
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6.3.5 Upgrading Operating Systems for High-DOF, Bimanual Manipu-
lation

The chordic manipulations introduced in Chapter 5 are only the most basic
examples of the rich bimanual and high-DOF interactions enabled by the MTS.
Though researchers have been demonstrating intuitive bimanual applications such
as tool glass menus [14], bezier curves [86,147], and simultaneous pointing and
scrolling [171] for over a decade, few widely available input devices and therefore few
operating systems support them [61]. High-DOF devices such as drawing tablets are
currently supported by specialized drivers for drawing or pen computing application.

If the MTS can be manufactured cheaply enough, the MTS has the potential
to bring bimanual manipulation capability to a much wider population of computer
users. To take full advantage of this capability, operating systems and graphical user
interface frameworks should incorporate dual-stream manipulation messages into
event queues at the same level where mouse and keyboard messages are currently
processed. Current mouse messages in Windows 98, OS/2, XWindows, and Java
support manipulation in only two dimensions and selection by only three or four
mouse buttons. These message formats should be extended to at least six degrees of
freedom of manipulation and at least five independent buttons, one for each finger
on a hand. For maximum flexibility, a message format for absolute positioning
should be optional as an alternative to velocity or relative positioning formats. Such
enhancements could aid acceptance of all 3D navigational devices, not just the MTS,
and should be based on generalized classifications of input devices such as Buxton’s
taxonomy [26]. These issues are partially addressed by drawing tablet protocols
such as the XInput extensions [118] to XWindows. However, even the XInput format
currently supports only 5DOF' in a manner specific to drawing tablets.

The software enhancements necessary for dual stream input, ¢.e., simulta-

neous two-handed manipulation, are more fundamental. Though most operating
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systems allow more than one pointing device to be connected simultaneously, the
motion commands of each device are merged into one stream so they all control the
same cursor. While having a mouse cursor for each hand would be even more con-
fusing than controlling the text cursor with the left hand and mouse with the right,
research has shown [86] that it is useful and cognitively natural to pan, resize, and
orient the background with the non-dominant hand while pointing with the dom-
inant hand. People do this everyday without even noticing when they optimally
orient a piece of paper with the left hand while writing on it with the right.

However, in current systems, the operator cannot scroll and move the pointer
simultaneously yet independently because scrolling is usually activated as an aux-
iliary button drag in the single pointer input stream. For such operations to be
supported simultaneously, the input stream from the non-dominant panning hand
needs to be kept separate and possibly processed on a separate thread from the
dominant pointing stream, i.e., one thread would move and redraw the background
in response to messages in the left hand stream while the other thread moves and
redraws the pointer or other foreground object being manipulated. Programmers
will have to deal with interesting synchronization issues such as arise when laying
ink in a drawing application by panning the background with the left hand while
simultaneously sliding the inking tool with the right hand.

6.4 Conclusion

This dissertation has demonstrated that, despite the limitations of proximity
imaging, a large multi-touch surface can support a rich assortment of text entry,
command entry, and graphical manipulation methods in a precise and non-fatiguing
manner. Though the system occasionally misrecognizes the thumb or a palm or a
directional slide, the frequency of these errors is already so small as to not frustrate
the author under daily use. By phasing out parallelogram electrodes, increasing the

frame rate, and continuing to tune the finger and hand identification algorithms,
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those errors which can be blamed on faulty recognition of somewhat ambiguous
hand configurations and motions will in all likelihood be eliminated entirely.
Nevertheless, some human errors due to performance of the wrong hand con-
figuration or motion will always slip through. The price of integrating typing and
4-DOF chordic manipulations so seamlessly is increased demand for operator pre-
cision: finger touchdowns must be better synchronized and finger flexions more
uniform than corresponding activities on stand-alone devices. The author’s expe-
riences operating the MTS indicate that these requirements for precision are easy
for a skilled-operator to meet and therefore well within the range of human capabil-
ity. The questions that remain are: how hard will it be for novices to master these
requirements for relatively precise finger motion, and who will be willing to learn
these chordic manipulations which can make interaction with computers so much
more fluid? At the very least, the minimally-fatiguing nature of MTS activation
offers new hope for people suffering from repetitive strain injuries to fingers, wrists
and forearms. At best, the combination of extensive graphical manipulation capa-
bility and support for legacy touch typing skill will make the MTS practical enough
to replace both mouse and keyboard in the personal computing tasks of the 21st

Century.
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Appendix A

ERGONOMICS FOR ENGINEERS

Full evaluation of any engineering design assumes an understanding of the
physical limitations in each mechanism’s materials. Human soft tissues are the most
likely material to fail as a result of poor input device design and overuse. Therefore,
the conditions under which soft tissue damage accumulates should be understood

before comparing device designs.

A.1 Risk Factors for RSI

Various epidemiological studies of industrial jobs have identified the following
risk factors for repetitive strain injuries [87]: repeated and sustained exertions,
forceful exertions, localized mechanical stress, posture, joint kinematics, recovery
time, and exposure to low temperatures. Some of these risk factors apply only
marginally to computer use. For example, localized mechanical force is not likely to
be encountered unless the user rests the forearms on a sharp table edge or taps too
hard on a surface. Likewise, low temperature is less of a concern now that computers
no longer need to be kept in frigid rooms. However, repetitive and forceful exertion,
poor posture, and insufficient recovery time all contribute to input device overuse
injuries such as tendonitis, tenosynovitis, epicondylitis, DeQuervain’s syndrome, and
carpal tunnel syndrome [37,45,117].

A common component of these injuries is inflammation and weakening of
tendons, which connect muscle to bone, and of surrounding tissues. For exam-

ple, tenosynovitis involves inflammation of the tendon sheath. Epicondylitis refers
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to inflammation of the tissue where the finger flexor and extensor muscles con-
nect to the elbow bone. The painful nerve damage of tunnel syndromes can occur
when swelling of nearby tendons increases pressure on the nerves inside the tunnels

through joints [120].

A.2 The Role of Force x Repetition in Soft Tissue Damage

The tendon tissue itself is a viscoelastic matrix of collagen fibers and filler
cells. If too much tensile force is applied to the tendon or the tendon is stretched
so often that the fibers don’t have time to snap back, creep will occur, tearing some
fibers and weakening the matrix [37,45]. Unlike bones, which heal stronger than
the original when broken, damaged tendons never fully regain their original strength
because the replacement collagen fibers are more elastic but weaker and oriented
less effectively than the originals.

Because repetition prevents proper mechanical and physiological recovery,
the degree of tendon damage is actually related to the product of the applied force
and frequency, rather than the sum [37]. For example, risk of injury in jobs which
require both high force and high repetition can be nearly thirty times higher than
the risk from high-force/low-repetition or low-force/high-repetition jobs [137,138].
These data are thought to fit a monotonic increasing exposure-response relation-
ship like the dose-response relationship for poisons, though the risk at intermediate
activity levels has not been successfully measured [87]. Goldstein [53] hypothesizes
that when the microtrauma from repetitive loads accumulates past a critical cumu-
lative trauma threshold, long-term tissue damage and inflammatory processes set in.
Resting allows the tissues to recover from microtrauma at an exponential rate, with
partial recovery in seconds but full recovery taking days [84].

The remaining risk factors amplify the effects of repetition by further slowing
recovery of tissue. Extreme joint postures compress tissues, thereby hindering blood

circulation and increasing friction between the tendons and their sheaths [122]. For
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example, extreme wrist flexion or extension increases the fluid pressure in the carpal
canal. Sustained elevation of canal pressure is in turn considered both a sign and
cause of carpal tunnel syndrome. Holding awkward postures may also require low-
level static muscle contraction. While dynamic muscle contraction pumps blood
in and out of the muscles, static contraction keeps blood out, eventually causing
oxygen and nutrient depletion [54]. Strained tissue clearly cannot recover without
ample oxygen and nutrients [113].

While the gradual nature of these injuries makes the recovery rate and crit-
ical cumulative trauma threshold very difficult to pinpoint, elevated physiological
measures of fatigue have been observed at the moderate-force, high-repetition con-
ditions typical of mouse and keyboard use. Johnson et al. [74] measured significant
fatigue in the muscles which grip the sides of the mouse after 3 hours of mouse
operation. Even though the average gripping force was only 0.6% of maximum vol-
untary contraction (MVC), the “low frequency fatigue” persisted up to 40 minutes
after mouse usage stopped. Murthy et al. [113] found mean oxygenation of extensor
carpi radialis brevis dropped to 89% of resting baseline after one minute of 5% MVC
and to 81% after 10% MVC. Gerard et al. [44] measured 5-9% MVC in finger flexors
and extensors during skilled typing on a standard keyboard, while exertion dropped
to 3-6% MVC on a Kinesis ergonomic keyboard. In both keyboards exertion hovers
around 5% MVC, a proposed threshold above which prolonged exposure may cause
overuse injury. A study of carpal tunnel pressure during fingertip loading by Rempel
et al. [125] indicates that the peak fingertip forces encountered during typing can

temporarily elevate carpal tunnel pressure as much as extreme wrist posture does.

A.3 Activation Forces of Input Devices
The above analysis suggests that among conventional input devices, the sus-
tained force of gripping the mouse, sustained postural loads from reaching too far

for the mouse, and the repetitive clicking of stiff buttons can contribute to overuse
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injuries. These concerns are addressed by capacitive touchpads which encourage
neutral postures and extremely light tapping [24]. The splits in various ergonomic
keyboards have successfully neutralized the awkward wrist postures of conventional
keyboards [44,65,66,114,164], but less progress has been made in minimizing typ-
ing force.

Human factors studies have uncovered interesting relationships between typ-
ing force and keyswitch construction. Though make force, the force which must
be applied before the key makes electrical contact, ranges between .3 and 1.0 N on
most keyboards, users apply 2.5 to 7.9 times more force than necessary as a safety
factor to ensure keys are always activated [43,45,126,139]. The safety factor de-
creases with increasing make force, but overall applied force is still minimized with
lower make forces [45,126]. Other keyswitch parameters such as make point travel,
the distance the key depresses before making electrical contact, and overtravel, the
distance the key depresses after making electrical contact but before bottoming out,
can also affect applied force. Radwin [123] found that peak applied force dropped
24% as overtravel increased from 0.0 to 3.0 mm, while pretravel had no significant
effect. Gerard [45] found that typists applied roughly the same force to keyswitches
with .72 N buckling springs, which produced an abrupt change in force feedback
and an audible click, as they did to cheaper .28 N rubber dome keyswitches. Peak
applied forces were 53% higher for rubber dome switches with .83 N make force.
Finger flexor EMG’s were independent of pace as long as typists worked at or below
their comfortable pace, possibly because faster typists make more efficient move-
ments [45].

Though these studies indicate which keyswitch designs will lessen typing
force, the need to support resting hands and avoid accidental activation of keys
ultimately limits the reduction of typing force [123] with mechanical keyswitches.

Rose [127] suggests make forces less than .5 N may lead to accidental activation
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and an increase in static extensor contraction for postural support, but .3 N seems

tolerable on ergonomic keyboards such as the Kinesis which has firm wrist rests.

A.4 Relevance to the MTS

The approach taken in this dissertation has been to eliminate pressure switches
altogether in favor of touchpad-like surface tapping and algorithmic discrimination
between resting fingers and keypresses. There is no doubt subjectively that finger
impact and finger flexion forces are greatly reduced when typing on the MTS. Future
research should verify that this translates to reduction in pressure inside the carpal
tunnel and avoidance of the critical cumulative trauma threshold. Also, future re-
search should ensure that the MTS does not impose excessive postural demands

since the hands are sometimes suspended above its surface.
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Appendix B

VERTICAL INTERPOLATION BIASES ON
PARALLELOGRAM ELECTRODE ARRAYS

Though the interspersed wedges of parallelogram electrode arrays introduced
in Section 2.1.8 generally aid vertical interpolation when row spacings are larger
than fingertip contact heights, they can cause misleading vertical measurements for
small, light contacts not centered exactly on or between electrodes. The interpo-
lated vertical position is always unbiased if contacts are centered on a row, but as
Figure B.1 illustrates, under certain conditions it is biased when a contact is be-
tween rows. The actual positions of all contacts in Figure B.1 are halfway between
the top (light gray) and bottom (dark gray) rows, and the interpolated positions of
contacts a), ¢), d), and f) accurately reflect this because the contacts overlap equal
portions of top and bottom electrodes. However, contact b) appears to overlap two
to three times as much light gray as dark gray, which will cause a stronger signal
on the top middle electrode and the interpolated position to be about 3/4 of the
way to the top row. For an electrode row spacing of 1.2 cm this corresponds to a
position error of 3-5 mm.

For the wider contact in Figure B.1e the contact overlaps of the middle and
left columns are roughly equal, and only the right column is severely biased because
the contact only touches the top electrode there. When the right column inter-
polation is averaged with the unbiased middle and left column interpolations the

final reported position will be only 1-2 mm too high. For even larger contacts the
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a) o d e f) g

Figure B.1: Diagram illustrating the vertical interpolation biases which can arise
when small-to-medium-sized contacts are halfway between parallelo-
gram electrode rows but not centered on or between columns. In a)
and d) small and medium contacts (ovals) are centered halfway be-
tween the left and middle columns and touch or overlap equal portions
of top row electrodes (light gray) and bottom row electrodes (dark
gray). In c) and f) the contacts are centered on the middle columns
but still overlap equal portions of top and bottom rows, causing their
vertical position to be correctly interpolated as halfway between the
rows. But in b) and e) the contacts are just to the left of middle
column center and overlap more of the top row electrodes than the
bottom, causing their interpolated vertical position to be erroneously
high. If they were just to the right of column center their interpo-
lated vertical position would be erroneously low. The bias worsens
for smaller contacts so that even though the tiny contacts in g) are
centered between rows, the one on the left will be interpolated to be
centered on the bottom row while the one on the right will be inter-
polated to be centered on the top row. Note that the parallelogram
shadings in this figure are only meant to visually differentiate the top
row electrodes from bottom row electrodes where the contacts over-
lap them, not to indicate the relative proximity measured in each row.
The gaps between columns are necessary to route sensor wiring, but
eliminating them would not eliminate the biases.
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errors caused by biased overlap on peripheral columns become minuscule because
the correct interpolations by columns toward the center of the contact dominate the
centroid average.

Figure B.1g shows the worst case scenario, in which the position error can be
as much as plus or minus half a row spacing. Here the contacts are so small that the
left contact only overlaps the bottom left electrode, so its position will be reported
as centered on the bottom row, a full 6 mm lower than the actual position, and the
right contact will be reported a full 6 mm too high.

Note that the parallelograms cause no significant biases in horizontal centroid
computation. This is easily proved by summing the proximity signals in each column
and then interpolating horizontally using the column sums. As long as the vertical
gaps between parallelograms are minuscule and the proximity sensors are linear,
these computed column sums are equivalent to the proximity signal which would
be obtained from a physically continuous rectangular electrode spanning the whole

column, so they should produce exactly the same horizontal interpolation.

B.1 Nonlinear Vertical Centroid for Parallelogram Interpolation

The MTS employs a number of methods to ameliorate the effects of these
vertical interpolation biases. First, sensed electrode capacitance is inversely propor-
tional to flesh proximity, so using a substantially thick dielectric cover between the
fingers and electrodes weakens the signal at the center of a contact where it is firmly
touching the dielectric, preventing the center from totally dominating the signals
from the contact periphery. For very small, light contacts such as in Figure B.1g,
this causes the contact to appear wider or more diffuse to the sensors and exhibit
more moderate biases between those of Figure B.1b and Figure B.le. When a finger
is moving horizontally across the surface, the biases manifest themselves as vertical
oscillations in the finger trajectory. Therefore during medium-to-high speed motion

they can be removed with a low-pass motion filter.
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For medium-sized contacts as in Figure B.le, a nonlinear centroid compu-
tation which de-emphasizes the potentially biased columns at the periphery of the
contact in favor of those columns at the center which are overlapped evenly can
further diminish the errors by at least a factor of two. Note that in the biased
right column the contact only overlaps the left side of the column at the tip of
the top electrode, so the total signal from the right column is much less than that
from the left or middle columns. This is the most straightforward indication that
the right column is on the contact periphery and may contribute a biased vertical
interpolation.

Instead of linearly weighting the contribution of each column’s vertical inter-
polation by each column’s total proximity as in a standard centroid (Equation 3.11),
the following nonlinear centroid formulas square each column’s total proximity to
emphasize the stronger, unbiased interpolations of the central columns. Let Gg, be
the electrodes in the intersection of group G and electrode column j, G,. be the
total proximity of Gg;, and Gy, be the vertical centroid as measured within the

electrodes of column j:

GEj = GgN {6 S ]} (Bl)

G, = > e (B.2)
eEGEj

Gy, = Z s (B-3)
eEGEj GZJ'

Then the improved vertical centroid Gype, for parallelogram arrays is given by:

Gzpar = ZGi (B4)
J
GG,
Gypar = Z GJ “ (B5)
g zpar

Though these steps ameliorate the interpolation biases to less than a millimeter,

ensuring that they are not a nuisance during evaluation of the MTS, they still
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cause noticeable oscillations in on-screen cursor motion given high cursor motion
sensitivity and light fingertip contacts. The only known way to eliminate the biases
entirely is to decrease electrode row spacing so much that parallelograms are no

longer needed.
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Appendix C

CONVERGENCE TRAPS FOR LOCALIZED
COMBINATORIAL SEARCH ON AN ATTRACTOR
RING.

Figures C.1 and C.2 demonstrate unfortunate cases in which a pairwise ex-
change sequence like bubble sort can get trapped in assignments whose cost is only
a local minimum. In Figure C.1, the attractors do not lie on a perfect circle, and
a single contact (circle) is poorly initialized to an attractor z on the opposite side
of the ring from its closest attractor c. For the contact’s assignment to propagate
around the ring to the closest attractor c, there must be a subsequence of the pair-
wise exchange sequence such that swapping in each pair of the subsequence decreases
the contact’s assignment distance. Moreover, this subsequence must connect the far
attractor = to the contact’s closest attractor ¢ through overlapping attractor pairs.

In the case of Figure C.1a, where the attractors are arranged around a perfect
circle, this convergence condition is met because the attractors ¢ and d adjacent to
the far attractor x are closer to the contact than x. This can be verified visually by
noticing that they lie within the circle of points (heavy arc) the same distance from
the contact as attractor x. It can also be verified by noticing that these attractors
are on the same side of the relevant perpendicular bisector as the contact o, which
will cause the contact to be swapped out of the far attractor and propagate toward

the near attractor c.
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Figure C.1: Diagrams showing convergence failures for attractor rings which are
not perfectly circular. In a) the attractor ring is perfectly circular so
pairwise swapping of adjacent attractors can propagate a contact’s
(o) assignment from an attractor (x) on the opposite side of the ring
to the closest attractor (c) on the near side. But the concavity in the
ring of b) and the warping of the ring in c) trap the contact (o) in
the far attractor (x) since attractors (a) and (d) adjacent to the far
attractor are farther from the contact than (x).
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The case of Figure C.1b contains a concavity in the attractor ring at z. This
causes attractor x to be closer to the contact o than its adjacent attractors a and
d. Thus pairwise swaps with these adjacent attractors will not be accepted and the
contact cannot escape from attractor x. This is verified visually by noting that the
adjacent attractors a and d lie outside the equidistant arc which passes through z or
noting that attractor x is on the same side of the adjacent perpendicular bisectors
as the contact o.

The elliptical attractor ring of Figure C.1c shows that a concavity is not
necessary to prevent convergence. Again the attractors adjacent to the far attractor
are outside of the equidistant arc and perpendicular bisectors, trapping the contact’s
assignment on the far attractor.

Since the finger attractor ring is not perfectly circular, convergence failures
similar to those of Figure C.1b and Figure C.1c have actually been observed in the
identification system. Typically a fingertip contact will get trapped in a palm attrac-
tor and misidentified as a palm. This has been addressed successfully by increasing
the size of the exchange neighborhood for palm attractors to include all attractors
instead of just the next attractor in the ring. Thus when the exchange sequence
reaches a palm attractor, pairwise swaps are considered between the palm attractor
and all other attractors, and the swap which produces the minimum assignment cost
over all such pairs is taken. This increases the worst case number of comparisons to
O(M3), the same as algorithms for general assignment problems.

Figure C.2 shows that for attractor rings which are perfectly circular, sym-
metric and full of contacts, pairwise exchange can get stuck in rotational local min-
ima. The assignment of Figure C.2a clearly has the globally lowest total assignment
cost, but the rotated assignments of Figure C.2b are also a local minimum. Under
the distance-squared metric, the assignments of Figure C.2b all meet the local pair-

wise ordering relation. All pairwise swaps such as the swap on the bottom attractors
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Figure C.2: Rotational local minimum for a perfectly symmetric attractor ring full
of contacts. The global minimum assignment is shown in a). How-
ever, the rotated assignments in b) are also a stable local minimum
because no pairwise swap such as that in c¢) will be accepted under
the distance-squared metric.
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in Figure C.2c would increase the assignment costs and will not be taken, trapping
the assignments in this rotated state. However, this type of convergence failure
has not been noticed in practice, presumably because the asymmetries in attractor
spacings around the actual finger attractor ring discourage this type of convergence

failure.
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