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Abstract

Pervasive networks of micro-sensors and actuators offer
to revolutionize the ways in which we understand and
construct complex physical systems. Sensor networks
must be scalable, long-lived and robust systems, over-
coming energy limitations and a lack of pre-installed
infrastructure. We explore three themes in the design
of self-configuring sensor networks: tuning density to
trade operational quality against lifetime; using multi-
ple sensor modalities to obtain robust measurements;
and exploiting fixed environmental characteristics. We
illustrate these themes through the problem of localiza-
tion, which is a key building block for sensor systems
that itself requires coordination.

Keywords - low-power wireless, sensor networks, lo-
calization, self-configuration, localized algorithms.

1 Introduction

Recent technological advances have fostered the emer-
gence of small, low-power devices that integrate mi-
crosensing and actuation with on-board processing and
wireless communications capabilities. When deployed
in large numbers and embedded deeply within large-
scale physical systems, these devices gain the ability
to measure aspects of the physical environment in un-
precedented detail. Through distributed coordination,
pervasive networks of micro-sensors and actuators will
revolutionize the ways in which we understand and con-
struct complex physical systems.[EGHK99]

There are many potential applications of sensor net-
works: physiological monitoring; environmental mon-
itoring (air, water, soil, chemistry); condition based
maintenance; smart spaces; military surveillance; preci-
sion agriculture; transportation; factory instrumentation
and inventory tracking. This paper will address require-
ments and design themes for these densely distributed,
physically coupled and wireless sensor networks.
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as part of the SCOWR project, and was also made possible in part due
to support from Cisco systems.
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Due to the sheer numbers of nodes involved and the
particular needs of applications (eg. emergency ser-
vices), these systems must be ad hoc deployable. In
extreme cases, nodes may be dropped from an aircraft
in a remote terrain; however, even assuming individual
placement, the scale of the system and variations in the
environment require that they self-configure and adapt
to their environment without user intervention. Because
wiring is often impractical, nodes must be untethered.
This requirement stems from many factors, including re-
moteness (wildlife monitoring), mobility, and the need
for ad hoc deployment. Once deployed, these systems
must operate despite being largely unattended, since
nodes may be inaccessible, whether due to their tight
physical coupling (large industrial plants, aircraft interi-
ors) or inhospitable terrain (toxic or urban locations).

The above requirements impose substantial physical
constraints at both the node and system levels. Nodes
must be small for unobtrusive monitoring. Since they
are untethered, their energy sources must be on-board,
and is often relatively small. The system as a whole
must tolerate ad hoc deployment and unattended oper-
ation without infrastructure support. Given such con-
straints, the network designers’ goals shift towards ex-
tending system lifetime and robustness in the face of
unpredictable dynamics, rather than focusing on opti-
mizing channel throughput or minimizing node deploy-
ment.

Although in most systems centralized solutions are
preferred for simplicity, several constraints of wireless
sensor networks make centralization expensive and of-
ten infeasible. Node energy limitations place numerous
constraints on communication [PK00]. In addition, ra-
dios used in sensor networks are often quite low band-
width (10-20Kb/s). Finally, system dynamics (node
movement or failure and changes in radio propagation)
with large numbers of nodes make a global picture ex-
pensive to get and impossible to maintain.

Localization is an important building block for sen-
sor networks and is itself a sensor network. We use it
as our example to motivate the need for automatic self-
configuration through adaptive localized algorithms.
A localized algorithm is a distributed computation in
which sensor nodes achieve a desired global objec-
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Figure 1: Localization - an example sensor network.
Beacons self-organize into a coordinate system using
pairwise distance estimates obtained by acoustic rang-
ing. Other nodes may determine position to be the cen-
troid of proximate radio beacons.

tive while constraining their communication to sensors
within some neighborhood [EGHK99].

In this paper, we explore coordination in wireless
sensor networks based on adaptive localized algorithms
that exploit both the local processing available at each
node as well as the redundancy available in densely
distributed sensor networks. We introduce the design
themes of density, multiple sensor modalities and adap-
tation to fixed environments, and show how they can be
applied to build self-configuring localization systems.

2 Node L ocalization

Unlike the Internet, wireless sensor networks are orga-
nized around the naming of data, not nodes [EGHK99].
Nodes are neither unique nor reliable; applications ex-
press a need for a particular data element or type of data
by naming it directly. By eliminating indirection, e.g.
the mapping from a name to a node address to a route,
a sensor network can eliminate the maintenance over-
head associated with constructing and maintaining these
mappings and directory services.

Because sensor data are intrinsically associated with
the physical context of the phenomena being sensed,
spatial coordinates are often a natural way to name data.
Spatial coordinates are also employed by collaborative
signal processing algorithms (e.g. beamforming) that
combine data from multiple sensor nodes for such tasks
as target tracking. Furthermore, geographic assistance
in ad hoc routing promises significant reductions in en-
ergy consumption [KK00, XHEO1].

The problem of estimating spatial coordinates is
known as localization, and has generated much interest
in recent years [BP00, BHEOO, DPGO01, Gir00, WJH97,
NBO0O, PCB00, SHS01]. When sensor nodes are de-
ployed in an unplanned topology, there is no a priori
knowledge of location. Device constraints such as cost,
form factor (including antenna size) and power con-
sumption may preclude the use of GPS on all nodes.
Moreover GPS does not work indoors, under water, or
in the presence of overhead obstructions such as dense
foliage. Thus, in many scenarios, sensor network nodes

will need to determine their relative positions and self-
organize into a spatial coordinate system without relying
on remote infrastructures such as GPS.

Such a localization system is in itself an example of
a wireless sensor network, as it involves a collection
of networked nodes collaborating to achieve a higher
level task: a coordinate system based on sensory mea-
surements of the physical environment (such as signal
strength, signal propagation characteristics, or packet
delivery rates).

A sensor network may be organized as a tiered ar-
chitecture of nodes, perhaps with a mix of small PC-
class nodes (32-bit CPUs, 107 bytes RAM/Flash) and
smaller nodes such as UCB Motes [HSW*00] (8-bit
CPUs, 10% bytes RAM, 10° bytes Flash). By mixing
node sizes, very small-form-factor nodes can be densely
deployed and physically co-located with targets, while
larger but more capable nodes are still available when
needed [CEET01]. Because individual node capabilities
are quite varied, we require a federation of localization
approaches (see Figure 1).

Multilateration algorithms: In one approach, sen-
sor nodes measure a sufficient number of pair-wise dis-
tance estimates, and then use multilateration algorithms
for position estimation. One promising ranging technol-
ogy uses a combination of radio and acoustic signals,
using the much faster radio signal to establish time refer-
ence and the time of flight of acoustic signals to estimate
distance[Gir00]. Sensor nodes with these capabilities
can independently form a relative coordinate system.

Proximity-based Localization: Such nodes can act as
beacons for smaller devices such as the UCB motes that
may not have the hardware capability for acoustic rang-
ing. A beacon would periodically broadcast its position.
By listening to broadcasts from a collection of nearby
beacons and inferring proximity to those beacons with
low message loss, each node could estimate its position
to be the centroid of its proximate beacons [BHEOQ].

Iterative Multilateration: If the density of beacons
is not sufficient in some areas of the sensor network,
the proximity-based localization can be augmented by
the more costly and perhaps less precise approach of it-
erative multilateration, in which beacon information is
propagated through multiple hops to enable location es-
timation in areas of low beacon density[SHSO01].

All the above approaches are sensitive to environmen-
tal vagaries. The problems that arise include (i) incor-
rect range measurements due to non line-of-sight condi-
tions for acoustic ranging, (ii) error in RSSI-based rang-
ing caused by variations in channel parameters across
different environments (1/r™ models), (iii) poor corre-
lation between RSSI and distance owing to multipath
interference and fading, and (iv) insufficient number of
reachable beacons or interference amongst densely de-
ployed beacons for proximity-based localization. We
argue below that such problems call for the use of self-
configuring localized algorithms.

Since almost all ranging techniques rely on signal



propagation characteristics, they are susceptible to ex-
ternal factors such as interference, multipath effects and
changes in temperature and humidity. The signal propa-
gation characteristics of both radio and acoustic signals
may change with variations in the surrounding environ-
ment. These physical effects are difficult to predict and
can lead to incorrect range measurements which would
greatly affect the quality of localization in our multi-
lateration and iterative multilateration approaches dis-
cussed above.

Beacon placement and density can significantly af-
fect the quality of localization in our proximity-based
localization approach[BHEOla]. We cannot rely on a
uniform placement of beacons as propagation charac-
teristics of low power radio communications can signif-
icantly affect the visibility of beacons even when uni-
formly placed. An intuitive way to solve this problem is
to deploy a large number of beacons. The problem with
this approach is that we cannot have all deployed bea-
cons turned on simultaneously because of the possibil-
ity of interference among several beacons vying for the
communication channel as well as excessive energy use.
In simple and small structured environments (indoors,
factory automation plants etc.), we could perhaps model
and carefully place exactly the right number of beacons.
However, this approach is not useful when we deploy
large systems in dynamic, unpredictable environments.

Two characteristics are clearly desirable in practi-
cal solutions to the problems described above. First,
the overall system must dynamically and autonomously
adapt (self-configure) and reconfigure to the particulars
of its environmental setting. Second, due to scalability
and energy-efficiency considerations, and because envi-
ronmental characteristics can vary widely even within
a single region of interest, self-configuration must be
achieved by individual beacons using localized algo-
rithms.

3 Design Themes

Because sensing and actuation define a physical scope
to a node’s influence, localized algorithms provide a
natural design paradigm for physically distributed sen-
sor networks. More importantly, localized algorithms
are attractive because of their scalability and robust-
ness. Localized algorithms scale well with network size
since scaling is influenced by density rather than phys-
ical extent, therefore algorithm complexity grows with
the degree and not total size of the graphs. Since they
are self-configuring, they can also be self-re-configuring
and thus can be robust to network partitions and node
failures.

In this section, we elaborate upon a few design
themes that arise in the application of adaptive lo-
calized algorithms for scalable coordination and self-
configuration in wireless sensor networks.

3.1 Density

Density is an important parameter in physically dis-
tributed systems, both density of the solution space and
of nodes. We formalize these notions below.

3.1.1 Solution Space Density

Localized algorithms are most effective when the prob-
lem solution space is dense, that is, a given problem has
a large number of satisfying solutions. Since localized
algorithms work with limited local information, we can-
not use them to solve problems wherein we need to de-
termine a global optimal solution. Because we do not
have accurate, general, models of the physical world,
measurement is needed and is well suited to localized
algorithms. An example is our self-configuring beacon
placement algorithms wherein beacons locally measure
their neighbors and message loss to determine their roles
(be active or passive).

3.1.2 Network Density

Localized algorithms are more effective when the net-
work itself is dense. We can express the network density
#(R) in terms of number of nodes per nominal coverage
area. Thus, if N nodes are scattered in a region of area
A, and the nominal range of each node is R,

N -7 - R?
i .

Note that the range R can be either the range of a par-
ticular sensor or the radio transmission range (idealized
with circular propagation). In each case, the associated
network density will be different.

Various phenomena saturate at a certain critical net-
work density particular to them. Beyond this critical
node density, additional nodes do not necessarily pro-
vide additional sensing, communication or coverage fi-
delity and are essentially interchangeable. For instance,
Kleinrock and Silvester show that in a wireless network
with a uniform distribution of nodes, when u(R) is 6
nodes, the probability that a node is connected reaches
1 [KS78] regardless of actual node placement.

For problems where such a critical saturation density
exists, the solution space density S can be related to net-
work density. Let A be the critical density required to
accomplish a certain task. Is u(R) > A, only a subset of
A nodes in any local neighborhood of size u(R) needs
to participate in the task.

The size of the solution space S, is the number of dis-
tinct subsets of nodes that could be active in any neigh-

borhood.
g — (u(f))

In other words, for a given A, S o u(R)*, and grows
rapidly with u(R).
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3.1.3 Controlling Density by Changing Radio
Power

How can we control network density? In many next
generation sensor nodes, we can realistically expect the
radio transmit power level of a node to be software-
controllable [HSW+00]. Assuming the receiver and
transmitter gains remain the same, the nominal trans-
mission range of a radio R is typically a function of its
transmit power level P,. For instance, according to the
Friis Free Space radio propagation model [Rap96], the
received power at distance d,

Pd) o o ®
If the threshold power for reception is Py, then

P.(R) = Pu 4)
Thus

R x P32 (5)

However, at very short ranges radio shadowing effects
can attenuate specific frequencies, so the use of fre-
quency hopping techniques is important. The correla-
tion of range with transmit power in many cases may
be non ideal, non radial, even non monotonic and con-
cave. However, multiple power levels can still be used
as a coarse adjustment of network density. For instance,
if R? o« P, then doubling the transmit power level can
achieve twice the network density in Egn. 1.

Additionally, multiple power levels can be used to get
more information about the system. For instance, multi-
hop communication breaks down at network partitions
as there are no nodes en route. By transmitting at a
higher power, information about such partitions can be
communicated. Finally, multiple power levels can be
used to construct a tiered architecture that takes advan-
tage of heterogeneous capabilities and reach[CEE*01].

Assuming beacons are distributed uniformly at ran-
dom, proximity-based localization[BHEOQQ] saturates at
a certain beacon density[BHEO1a] When there are re-
dundant beacons, the system will be expending unnec-
essary energy and beacons may interfere with one an-
other by congesting the communication channel. Our
challenge is to find the right balance of beacons that pro-
vide basic beacon coverage and are conducive to good
localization quality. Based on our principles of solution
space and node density, we know localized algorithms
may be applied here.

Our solution is termed STROBE, for Selectively
TuRning Off BEacons[BHEQ1b]. Our basic approach
is to extend system lifetime by exploiting the redun-
dancy provided by dense sensor networks. Beacons
in STROBE can be in either one of two active states
(LISTEN-BEACON, BEACON-ONLY)?! or in a passive

1Two active states are needed because listening incurs energy cost.

state (SLEEP) and transition between these states de-
pending on the number of their active neighbor bea-
cons. While maintaining the desired threshold local-
ization granularity across the terrain, STROBE both re-
duces the self-interference amongst several transmitting
beacons and improves system lifetime by probabilisti-
cally turning off redundant beacons. By tuning it based
on system and node energy consumption parameters,
STROBE can be made energy efficient.

3.2 Multiple Sensor Modalities

Any individual mode of sensing can be blocked or con-
fused by the environment. Leveraging multiple sensor
modalities is one way to achieve robustness despite un-
predictable environmental characteristics [GEO1]. For
every sensory system, there exists a set of environmen-
tal conditions that will confuse it, and a subset of those
in which it fails to identify that it is confused. How-
ever, different sensory modalities are often orthogonal
to each other, in the sense that their sets of failure con-
ditions are largely disjoint. We contend that we can im-
prove the quality of our sensor observations through co-
ordination and communication, with significantly less
effort relative to the effort required to incrementally im-
prove the sensors on their own, simply by using these
“orthogonal” modalities to identify each others’ failure
modes and reject bad data.

Based on these ideas, we are developing a proto-
type ad hoc deployable multimodal localization system
[GEO1] that is composed of many stand-alone acous-
tic ranging units and a few acoustic ranging units with
cameras. In general, acoustic ranging performance suf-
fers when the “line of sight” (LOS) path is obstructed.
Acoustic range measurements in obstructed conditions
often consistently detect longer reflected paths, leading
to unbounded range error. Because they measure the
long path consistently, it can be very difficult to identify
these errors based exclusively on analysis of acoustic
data.

However, suppose each camera’s field of view con-
tains several ranging units, which might be identified by
a characteristic pattern strobed on an IR LED. Any rang-
ing unit that the camera can see has a high probability of
LOS to the camera, and thus in those cases, an accurate
range can be determined with acoustics. Additionally,
using angular displacement, a camera can estimate the
range between any two ranging units in its field of view.
By using the relatively coarse angular information from
the camera, ranging units would be able to identify and
ignore large errors resulting from obstructed conditions.
Additionally, in a more complex scenario, two cameras
might coordinate to formulate a 3D model of the terrain
and thus determine the location of obstructing features,
applying the techniques of Kanade[KON92].



3.3 Adapting to a Fixed Environment

Tolerance of random placement or high node mobil-
ity are not the only reasons to design sensor networks
to be self-configuring. Even in cases where they are
placed uniformly and do not move, nodes must inde-
pendently self-organize to coordinate for collaborative
sensing functions.

The environments in which these systems are ex-
pected to operate will be time-varying due to RF va-
garies and other environmental dynamics. In addition
to time-varying components, many characteristics of the
environment will be a function of fixed elements, such
as trees or hills on a terrain. Although time-varying ef-
fects can be analysed statistically, errors and distortions
resulting from fixed elements must be compensated by
detecting and adapting to these conditions. An approach
aimed at characterizing the environment has the poten-
tial to improve sensing fidelity as well as energy ef-
ficiency. For example, in the multimodal localization
system [GEOQ1] previously described, nodes could retain
long-term information about non line of sight pairs de-
tected when obstructions change slowly.

3.3.1 Adaptingto System Characteristics

It is difficult to design localized algorithms that both
empirically adapt to a wide range of environments and
converge to a desired global behavior over that entire
range. Some information about the system can signifi-
cantly help the convergence of localized algorithms. Ex-
ternal system information may be provided in several
ways. Some examples are: (i) Instead of treating all
nodes uniformly, perform edge detection to distinguish
boundary nodes. (ii) Use information about partitions or
other nodes. (iii) Use long range radios or tiered archi-
tectures to balance energy efficiency with convergence.

We will illustrate the first example with the context
of self-configuring beacon placement. Our simulations
show that to improve the system lifetime with STROBE,
it is important to distinguish boundary beacons (through
edge detection) from other beacons. Consider the fol-
lowing example. All beacons form a linear chain of D
hops. Each beacon has a nominal transmission range
R and their regions of coverage overlap. Suppose only
1 in every 2 beacons needs to be active to achieve our
threshold localization quality. Let ¢ be the total energy
of each beacon and ¢, be the rate of energy dissipation
when a beacon is active. To keep things simple, we as-
sume the rate of energy dissipation when a beacon is in
the SLEEP state ¢, is negligible.

Case 1: Treating nodes uniformly.
Boundary beacons estimate a lower neighborhood
size and are always active. In that case, expected
lifetime of a boundary beacon B,

¢

Lb = —_.
ba

(6)

After time L; the boundary beacon will die. In
this period, other beacons were active only half the
time.

Expected lifetime of a beacon that is & hops from
the boundary can be derived as,

Ly = 2-Ly-(1—(1/2)F). @)
In this case, beacons die successively at times
Ly,1.5Ly,---,~ 2L,. These cascading failures
lead to a non-uniform behavior across the network.

Case 2: Edge detection.
If a boundary beacon can detect it is at the bound-
ary, it can adjust its duty cycle to be active only half
the time. Lifetime of boundary beacons

L, = 25 (8)
= 2-Iy ©)

Lifetime of a beacon (k hops from the boundary)

L. = 2-L. (10)
Case 1 leads to a cascading failure that does not occur
in Case 2. Thus we achieve uniform behavior across the
system by distinguishing boundary nodes, and improve

system lifetime.

3.3.2 Adaptingtothe Wireless Channel

Savvides et al. [SHSO01] propose an approach by which
nodes in a wireless network can improve the accuracy of
their RSSI based location estimates (discussed in Sec-
tion 2) by dynamically deriving (learning) the surround-
ing wireless channel properties. The algorithm starts
with an initial guess of channel properties? and tries to
obtain node position estimates through a sequence of
successive multilateration. The initial set of position es-
timates can now be used to obtain an initial estimate of
the channel properties by providing two crucial compo-
nents: (i) A large set of inputs for the estimation of the
channel parameters. (ii) A corresponding error variance
that is used as a weight for each input in the channel
model estimator.

Using these inputs, the channel model estimator can
produce a new estimate of the channel properties which
can be used in subsequent multilaterations. The process
is repeated until the values of the channel model, and
consequently position estimates converge to a specified
tolerance.

This makes it a versatile solution that even without
prior calibration can work in many different settings
where the propagation channel properties are different.
Furthermore, if the sensors are deployed over a wide
area, the signal propagation characteristics may vary

2For instance, parameters such as the additive Gaussian channel
noise in the log-normal shadowing model[Rap96].



widely even across the region of interest. Calculating
the propagation characteristics locally yields better ac-
curacy in the node location estimates.

4 Conclusions

Localization is a key building block for sensor network
applications and is a sensor network in and of itself. We
exemplified three design themes that will be important
in wireless sensor networks generally - density, multiple
sensor modalities for robust measurements and adapting
to fixed environmental features.
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