
Distributed
Compression in a

Dense Microsensor
Network

The distributed nature of the sensor network ar-
chitecture introduces unique challenges and op-
portunities for collaborative networked signal
processing techniques that

can potentially lead to significant per-
formance gains. Many evolving
low-power sensor network scenarios
need to have high spatial density to en-
able reliable operation in the face of
component node failures as well as to facilitate high spatial
localization of events of interest. This induces a high level
of network data redundancy, where spatially proximal
sensor readings are highly correlated. In this article, we
propose a new way of removing this redundancy in a com-
pletely distributed manner, i.e., without the sensors need-

ing to talk to one another. Our constructive framework
for this problem is dubbed DISCUS (distributed source
coding using syndromes) and is inspired by fundamental

concepts from information theory. In
this article, we review the main ideas,
provide illustrations, and give the intu-
ition behind the theory that enables this
framework.

Introduction
We are currently in the midst of a “distributed” revolu-
tion, where distributed ways of communicating, process-
ing, sensing, and computing are dislodging more
traditional centralized architectures. The trend is to go
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away from a centralized, super-reliable, single-node plat-
form to a dense and distributed multitude of cheap, light-
weight, and potentially individually unreliable
components that, as a group, are capable of far more com-
plex tasks and inferences than any individual super-node.

A classical example of this is in distributed sensing,
where it is desirable to have high sensor density for reli-
ability, accuracy, and cheaper deployment. Advances in
device technology, networking, and information process-
ing have allowed the emergence of wireless sensor net-
work technology: highly reliable, modular, ubiquitous
devices that can form a network. In the paradigm investi-
gated by Smart Dust, hundreds or thousands of sensor
nodes of cubic-millimeter dimension are scattered about
an environment of interest. Each node has the capability
to sense elements of the environment, make computa-
tions, and communicate with other nodes or a centralized
observer. The major constraint to individual node perfor-
mance is energy, which is consumed primarily by sensing
and communications operations [2].

The need for a spatially dense sensor network is driven
by two requirements: i) reliable decision-making in the
face of unreliable individual components and ii) superior
spatial localization of transient events of interest. This can
lead to considerable system redundancy, however, in the
“ambient” mode. The need to strip this redundancy is un-
derlined by a couple of additional factors. First, there is
typically only a single radio channel available to the sensor
nodes for communication, making efficient bandwidth
utilization critical. Second, in a multihop network, the
benefits of data compression are magnified as energy sav-
ings are incurred at each transmission and reception along
the route.

Motivated by this, our article addresses an important
component of the communication fabric underlying sen-
sor networks: namely, an efficient framework for mini-
mizing the amount of internode communication while
preserving the resolution of the data gathered. The goal is
to compress sensor data from individual nodes while re-
quiring minimal (or no) intersensor communication.

One way of removing this spatial redundancy is
through joint processing based on an elaborate
intersensor information exchange. However, the com-
munication protocol associated with this exchange can it-

self be expensive. This raises the in-
teresting question about the tradeoff
that minimizes the system energy.
More specifically, what is the loss in
overall compression efficiency
should there be no intersensor com-
munication?

If the joint distribution quantifying
the sensor correlation structure is
known, the surprising answer is that
there is theoretically no loss in perfor-
mance under certain conditions. The
caveat, however, is that this is only in

theory, as it is based on asymptotic and random coding ar-
guments from information theory (under the name of the
Slepian-Wolf coding theorem [3], [4] and its extensions).
In this article, we are not interested in asymptotic bounds,
but rather in the formulation of a constructive, systematic
framework that can approach the bounds promised by in-
formation theory. Indeed, our work is motivated by the
following quote from a key article in the 50th year Com-
memorative Special Issue of the IEEE Transactions on Infor-
mation Theory [5] which laments that “despite the
existence of potential applications, the conceptual impor-
tance of (Slepian-Wolf) distributed source coding has not
been mirrored in practical data compression.”

We accordingly describe a constructive algorithmic
framework that involves an interesting interplay of signal
processing (source coding), communications (coding
theory), and estimation theory. In the interests of clarity
and to provide tutorial value, we will deliberately aim to
keep the treatment simple and intuitive, rather than de-
tailed and rigorous, referring the reader to appropriate
references.

In addition to the application of distributed sensor net-
works, other potential applications of the material de-
scribed here include stereo and multicamera vision
systems, compression of hyperspectral imagery, distrib-
uted database systems, surveillance systems, and simul-
cast of digital and analog television [6]. Furthermore,
there are some very interesting dualities and links be-
tween the distributed compression problem addressed in
this article and other multiuser problems, including
broadcast, multicast, intersymbol interference cancella-
tion, and information-hiding/watermarking, that make
the methods described in this article highly relevant tools
for the toolkit needed to tackle those problems as well.

Distributed Compression
Let us consider the problem of compressing an informa-
tion source in the presence of side information present
only at the decoder in the form of another correlated
source. The goal is for the decoder to reconstruct the orig-
inal source using this side information as well as the
bitstream sent by the encoder. For clarity, we first con-
sider discrete sources.
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� 1. Communication system: (a) Both encoder and decoder have access to the side infor-
mation Y (which is correlated to X). X can be described with H X Y( | ) bits/sample. (b)
Only decoder has access to the side information Y (which is correlated to X). The
Slepian-Wolf theorem says that X can still be described with H X Y( | ) bits/sample.



Discrete Sources
Consider first the problem where X and Y are correlated
discrete-alphabet independent identically distributed
(i.i.d.) sources, and we have to compress X losslessly,
with Y being known at the decoder but not at the en-
coder. To elaborate, if Y were known at both ends (see
Fig. 1(a)), then the problem of compressing X is well un-
derstood: one can compress X at the theoretical rate [3]
of its conditional entropy (conditional entropy, H X Y( | )
is a measure of probabilistic uncertainty in X given Y)
given Y, H X Y( | ). But what if Y were known only at the
decoder for X and not at the encoder (see Fig. 1(b))? The
surprising answer is that one can still compress X using
only H X Y( | )bits, the same as the case where the encoder
does know Y. That is, by knowing just p X Y( , ), the joint
distribution of X and Y, without explicitly knowing Y,
the encoder of X can perform as well as an encoder which
explicitly knows Y (n theory, only H X Y( | ) needs to be
known at the encoder, not even p X Y( , )). This is known
as the Slepian-Wolf coding theorem [4]. The
Slepian-Wolf theorem has been extended to the lossy en-
coding of continuous-valued sources by Wyner and Ziv
[7]-[9], who showed that a similar result holds in the case
where X and Y are correlated i.i.d. Gaussian random vari-
ables. If the decoder knows Y, then whether or not the en-

coder knows Y, the rate-distortion performance for cod-
ing X is identical. (The only caveat is that Y has to be
known losslessly at the decoder.) As in the lossless case,
the result is asymptotic and nonconstructive.

Although this is a source coding problem, in this work
we propose a framework resting heavily on channel cod-
ing principles. Let us consider the case of binary sources
as considered in “Example of Binary Sources,” where we
give an example to illustrate this connection to channel
coding. The key concept to note here is that we partition
the space of all outcomes of the source X into sets (called
cosets) such that the minimum distance between any two
codevectors in any coset is “large” enough. The encoder
saves rate by sending only the index of the coset contain-
ing the outcome. The decoder recovers the outcome of X
by searching through the coset whose index is received.
The search is for that codevector which is “closest” (in the
right metric) to the outcome of Y. This concept can be
generalized to encoding of more general discrete sources
as well as continuous alphabet sources as considered next.

General Scalar Sources
Here we remove the constraint that X, Y belong to a bi-
nary or even discrete alphabet and consider the continu-

MARCH 2002 IEEE SIGNAL PROCESSING MAGAZINE 53

Example of Binary Sources

Let us consider the following riddle to get insight
into this problem. Suppose X and Y are

equiprobable 3-bit binary words correlated in the fol-
lowing sense: the Hamming distance between X and Y
is no more than one. If Y is available to both the encoder
and the decoder, clearly it is wasteful to describe X using
3 bits, as there are only 2 bits of uncertainty between X
and Y (the modulo-two binary sum of X and Y:
{000,001,010,100}, which can be indexed and sent).
Now what if Y were revealed only to the decoder but not
the encoder: could X still be described using only 2 bits of
information?

A moment’s thought reveals that the answer is indeed
yes. The solution consists in realizing that since the de-
coder knows Y, it is wasteful for X to spend any bits in
differentiating between {X =000and X =111}, since the
Hamming distance between these two words is three,
whereas Y is known to be within Hamming distance 1 of
X . Thus, if the decoder knows that either X =000 or
X =111, it can resolve this uncertainty by checking which
of them is closer in Hamming distance to Y and declaring
that as the value of X . Note that the set {000 111, } is a
3-bit repetition code with a Hamming-distance of 3.
Likewise, in addition to the set {000 111, }, the following
three sets for X : {100 011, }, {010 101, }, and {001 110, }
are composed of pairs of words whose Hamming dis-
tance is three. Further, these four sets cover the complete
space of all possible binary 3-tuples that X can assume
Thus we send the index of the coset containing X , thus re-
quiring 2bits. This is illustrated in the figure to the right.

Recall that a channel code is specified by its 3-tuple
( , , )n k d , where n is code length, k is the message length,
and d is the minimum distance of the code. In the above
example, we considered the cosets of the linear ( , , )3 1 3
repetition code. In channel coding jargon, these cosets are
associated with a unique syndrome of the code. The syn-
dromesassociated with a linear channel code is defined as
s Hx= , where H is the parity-check matrix of the code,
and x is any valid codeword. The syndrome correspond-
ing to all valid codewords is the zero-vector, since by defi-
nition all valid codewords are in the null-space of H. A
nonzero syndrome vector signals symptoms of an errone-
ous reception (hence the term syndrome).

000
111

Coset-1

000
001
010
100

Outcome
of Y

111
110
101
011

� Example of binary source: when X = 000 or X =111, it
belongs to the same coset. The corresponding outcome
sets of Y are disjoint.



ous-valued case (defined on the real line R). In this article
we consider a simple correlation structure between the
source and the side information to illustrate the key con-
cepts. The approach presented here can be extended to
capture more elaborate correlation structures. We con-
sider the specific case (there has been some work on more
general correlation structures with a source coding per-
spective such as in [10]) where the correlation between X
and Y is captured as follows: Y is a noisy version of X:
i.e., Y X N= + , where N is also continuous valued (de-
fined on the real line R), i.i.d., and independent of X. As
before, the setup is that the decoder alone has access to the
Y process, and the task is to optimally compress the X
process. We will consider without loss of generality
(WLOG) the case where X and N are zero-mean Gaussi-
an random variables with known variances: our approach
can be generalized to arbitrary distributions for X and N.

The goal is to form the best approximation, $X, to X
given an encoding bit budget of R bits per sample. We
consider reconstruction with a fidelity criterion as given
below. Let ρ(.) be a function ρ:R R R× → + . We want to
minimize E X X[ ( , $ )]ρ where E(.) is the expectation opera-
tor. This problem can also be posed as minimizing the
rate of transmission R such that the reconstruction fidel-
ity is less than a target distortion D. This involves an intri-
cate interplay of source coding, channel coding, and
estimation theory. An example dealing with scalar
quantizers is given later on. Let us analyze the compo-
nents of the problem, one by one.

Source Coding
Due to the finite rate constraint on the information trans-
mitted, the source X has to be quantized. For a target re-
construction fidelity, a source code has to be designed,
which involves the following:
� Partition of the source space: the scalar input source space
is partitioned into 2 R s disjoint regions, where R s is de-
fined as the source rate in bits/sample.
� Codebook: Each region in the above partition is associ-
ated with a representation codeword, where the set of
representation codewords comprises the source code-
book.

The source is quantized to one of the source
codewords, and the index of the quantized codeword is
made available to the decoder errorlessly. This involves a
transmission rate of R s bits/sample. The representation
codeword to which X is quantized is referred to as an ac-
tive source codeword. The active source codeword is de-
noted by U. The decoding further involves a component
which deals with the estimation of the source based on
both the quantized source and the correlated side infor-
mation Y.

Estimation
The decoder gets the best estimate of X (minimizing the
fidelity criterion) conditioned on the outcome of the side
information and the source space region containing X.
The source rate R s is chosen such that the final estimation
error is within the target fidelity criterion.

Channel Coding
By exploiting the correlation between X and Y, we make
the decoder recover (within a tolerably small probability
of error) the index of the active source codeword with a
lower rate of transmission than R s . The active source
codeword U, characterizing the quantized representa-
tion, is correlated to X and in turn correlated to the side
information Y. (See Fig. 2.) This induces a fictitious

channel P Y U( | ) between U and Y.
The input of the channel is observed
by the encoder, and the output is ob-
served by the decoder. We propose to
build a “channel code” for this chan-
nel on the space of U. Let2 R c denote
the number of codewords in the de-
signed channel code [11] where Rc is
defined as channel rate (not to be
confused with actual channels used
for the transmission of information).
Suppose, for a given realization, the
active source codeword belongs to
this channel code and this is known at
the decoder, then we do not need to
send any information to the receiver,
as it can recover the intended code-
word index by observing Y (by de-
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� 2. Encoder and decoder blocks: The encoder quantizes the source using the source
codebook. The source quantized codeword is referred to as the active source codeword.
Then the encoder computes the index of the coset of the channel code containing the
active codeword and sends it to the decoder. The decoder finds the active codeword by
decoding the side information in the given coset.

We propose a new way of
removing this redundancy in a
completely distributed manner,
i.e., without the sensors needing
to talk to one another.



coding Y in the channel code). Since any codeword in the
source codebook can be an outcome of the quantization
with a finite probability, we partition the space of source
codebook into cosets of the designed channel code.

The encoder computes the index of the coset of the
channel code containing the active source codeword. This
index is transmitted errorlessly with a rate of transmission
of R R Rs c= − bits/sample to the decoder. The decoder
recovers the active source codeword in the given coset by
finding a codeword which is closest (in some metric) to
the observed side information. This approach involves
occasional decoding error, where the side information is
decoded to a wrong representation codeword which is
not the active source codeword. The probability of de-
coding error can be made arbitrarily small by designing a
channel code with a large minimum distance. The design
[12] involves the following:
� Source quantization and estimation for the desired dis-
tortion performance.
� The representation codebook to maximize the correla-
tion between U and Y.
� The channel code (and each of its cosets) to have a large
achievable rate Rc with minimum probability of decod-
ing error, on the space of the source codebook. The
source codebook is partitioned into the cosets of this
channel code.
� Efficient rule for decoding side information in a given
coset of the channel code.

The encoder and decoder are schematically shown in
Fig. 2.

Scalar Partitioning Example
Consider first a simple fixed-length (length-V) scalar
quantizer [13] designed for the probability density func-
tion of X. Let V =8 for ease of discussion. Let
∇= −{ , , , }r r rV0 1 1K be the set of reconstruction levels as
shown in the Fig. 3. Note that ∇ partitions the real line
into V intervals each associated with one of the recon-
struction levels. Thus the source codebook S= ∇ and
R s =3 bits/sample. If we use this quantizer to encode X,
we need to pay the price of 3 bits/sample. We would like
to expend less rate (say 1 bit/sample) by exploiting the
correlation between the source X and the side informa-
tion Y while still using the same quantizer. One way to do
this is the following. We partition the set ∇ into M V( )≤
cosets. For illustration, let M =2. We group r r r0 2 4, , , and
r6 into one coset. Similarly r r r1 3 5

, , , and r7 are grouped
into another coset. The channel code C={ , , , }r r r r0 2 4 6
and Rc =2 bits/ sample and the rate of
transmission is 1 bit/sample. In this
illustration we have taken the repre-
sentation codeword ri to be the cen-
troid of the disjoint region Γi . The
encoding can be described as follows:
� Find the codeword from the set ∇
which is closest (in terms of minimiz-

ing the desired distortion measure) to the source sample
X. Call this the active codeword.
� Send the index U ∈{ , , , }0 1 1K M − of the coset of Cin S
containing the active codeword.

The decoder deciphers the active codeword by finding
the codeword which is closest in some metric to Y in the
coset whose index is sent by the encoder. After finding the
codeword (say rk ), the decoder estimates X using all the
available information. We wish to minimize the expected
value of the distortion ρ( , $ )X X , where $X is the estimate of
X. As discussed before, there is always a finite probability
of decoding failure. The probability of decoding failure
(see Fig. 3) can be made sufficiently small with more effi-
cient coset constructions. Thus for this case, the source
codebook and the channel codebook are both
memoryless. For a given rate of transmission R
bits/source sample, we choose a scalar quantizer with2 R s

levels and partition it into 2 R cosets each containing 2 R c

codewords.

Trellis Partition
The previous section is an example of an uncoded system
based on scalar quantizers. We now describe a more so-
phisticated coded system based still on scalar
quantization but now having a trellis-coded system hav-
ing memory for the coset construction. We emphasize
that we still use fixed-length scalar quantizers for{ }X i i

n
=1 ,

but the cosets are built on the space ∇ n . Consider the
space ∇ n , and let V =8. In this space there are totally 2 3 n

distinct sequences. The task is to partition this sequence
space into cosets in such a way that the minimum distance
between any two sequences in a coset is made as large as
possible, while maintaining symmetry among the cosets.
We consider a trellis-based partitioning based on
convolutional codes and set-partitioning rules as in
Ungerboeck’s trellis-coded-modulation (TCM) [14].
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(no error) (error)

r0

Y
r1 r2

Y
r3 r4 r5 r6 r7

X

� 3. Reconstruction levels of scalar quantizer with eight levels. If Y and X are not close to
each other, there is a decoding error.

“Despite the existence of
potential applications, the
conceptual importance of
(Slepian-Wolf) distributed source
coding has not been mirrored in
practical data compression.”



Note that this is not to be confused with the concept of
trellis-coded-quantization (TCQ) in source coding.

We consider a trellis code where a bit stream with Rc

bits/unit time is used to partition 2 1R c + codevectors (for
the case R Rs c= +1) taking values in R. The set ∇ is parti-
tioned into four subsets (for the sake of clarity) as before.
We use Ungerboeck’s four-state trellis with the above set
partitioning rules. The trellis on this set is shown in Fig.

4(a) (which we call the principal trellis). Let Q:A 3 → ∇
be the one-to-one mapping from 3-tuple binary data onto
∇according to the following rules: Q r( )ζ η= whereζ ∈A 3

is the binary representation of η.
Using this, we can partition the space ∇ n into2 n cosets,

each containing 2 2 n sequences. Let H(t) be the parity
check matrix polynomial of the convolutional code used in
the structure. LetΘ be any sequence in ∇ n , thusQ − ∈1 ( )Θ
∇ 3 n . LetS Q= −1 ( )Θ . Thus the functionH(t)S(t)maps any
Θ belonging to ∇ n into A n . We are computing the syn-
drome of the given codevector Θ: this is precisely what the
encoder needs to send to the decoder.

Decoder Structure
The decoder has access to the process Y in addition to
the syndrome sequence sent by the encoder. In the
present example, it receives n bits of syndrome and n
samples of the process Y. Once the decoder gets the
syndrome sequence, it recognizes the coset (containing
2 2 n sequences) containing the active codeword se-
quence. We need a computationally efficient algorithm
for searching through this list. The search is for that
codeword sequence which is closest to the sequence
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� 4. Trellis section for the convolutional code: (a) principal trellis
and (b) complementary trellis.

Periodization of Probability Density Function

Let us now consider extending this work to general
memoryless sources [16]. Let us consider the coset par-

tition of the scalar quantizer. Let us denote the minimum
distance of any one coset by d*. Our design goal is to treat
all the elements of a coset jointly. To reflect this, we
“periodize” the PDF of X with period d*:

f x f x i dX X
i

*( ) ( . *)= +
= −∞

+∞

∑ .
(1)

We illustrate this in the figure to the right. We periodize
the PDF on the top figure with period d*, to get the middle
figure. We then truncate the PDF as shown in the bottom
figure. An optimal quantizer design is carried out for this
truncated “collapsed” PDF, and this optimal quantizer de-
sign is then repeated with period d* for the original PDF of
X . For training-based design, this periodization is equiva-
lent to appending the sample space by the same samples
with different mean bias corresponding to d*. The
quantizer is designed for this collapsed PDF. Note that the
collapsed PDF has lower variance and entropy than the
original: this precisely quantifies the benefit of leveraging
the correlated side-information! To summarize, the design
process involves the following steps:

1) Transform the original PDF of X , f xX( ), by
periodizing and truncating in the manner described above.

2) Do the conventional optimal quantizer design on the
transformed PDF f x*( ) from Step 1.

3) “Periodize” the quantizer design from Step 2 (i.e.,
the{ }qi ’s and{ }ti ’s) with period d* and apply it to the origi-
nal PDF of X , f xX( ).

The encoder transmits the index of the coset containing
the quantized outcome. Note that in this example the num-
ber of elements in this partition is four, hence requiring ex-
actly 2 bits to be specified. Since the transmitted bits specify
only the coset, the decoder has to use Y to disambiguate X
from the members of the specified coset.

−2d* −d* 0 d* 2d*

X

−d*/2 d*/2

X

X

� Illustration of PDF periodization.



( , ,..., )y y y n1 2 in terms of the given distortion measure.
If the syndrome were the all-zero sequence, then we can
use the Viterbi algorithm for this search in the principal
coset. Here we need to modify the Viterbi decoding al-
gorithm which is suitable for any syndrome sequence.
Consider the kth stage of the four-state Ungerboeck
trellis [14] as shown in Fig. 4(a). This is the trellis for
the coset with an all-zero syndrome (referred to as the
principal coset). Here each edge connecting one of the
four nodes at the( )k−1 th stage to one of the nodes at the
kth stage has a label associated with it. At each of the
four nodes at the ( )k−1 th stage, the minimum-metric
path (which is the distance between partially received
sequences) is maintained. At the kth stage, for each
node, we need to compute the metrics of all the paths
leading to that node and choose that path with the least
metric. If the kth bit of the syndrome sequence is one
rather than zero, we need to modify the labels on each
edge at the kth stage. As discussed earlier, for the
convolutional code under consideration, the sequence
Q 0 0 s(t)[[ | | ] ]T is one of the codeword sequences in the
coset whose syndrome is s(t). Thus at the kth stage of
decoding, if the kth bit of s(t) is one rather than zero, we
need to shift from the principal coset to the comple-
mentary coset (there are only two trellises in the given
example; see Fig. 4). This can be done at every stage in a
computationally elegant way [12].

Preliminary results [12] validate the power of the DIS-
CUS framework. A typical instance of our simulation re-
sults involves distributed coding of correlated i.i.d.
Gaussian sources that are noisy versions of each other
with correlation signal-to-noise ratio (quantifying the ra-
tio of the strength of the signal to the strength of the cor-
relation noise in dB) in the range of 12 to 20 dB. For this
instance, using very simple scalar quantization and trellis
codes as coset channel codes, the DISCUS approach at-
tains performance gains of 7 to 15 dB in the signal recon-
struction fidelity over the theoretical performance
bounds of coding systems (promised by Shannon [3], in-
volving infinite-complexity coding systems) that ignore
the correlation at the decoder. At the same time, our re-
sults indicate that we are within about 3-4 dB of the theo-
retical performance attainable if there were perfect
communication between the sources. This gap can be
lowered with more sophisticated source and channel
codes than the simple methods used in our preliminary
work [12] and are part of ongoing work. This shows the
untapped potential of these concepts for significant gains
in removing network data redundancy. Accurate statisti-
cal sensor models will be needed to extend the results
from the Gaussian models used in the preliminary studies
and are part of ongoing work.

Note that in the system the probability of occurrence
of the elements in a given coset are not the same. To cap-
ture this lack of uniformity we propose an approach based
on periodization of the probability density function of the
source X. This is illustrated in “Periodization of Probabil-

ity Density Function.” These systems give good gains on
scalar sources when compared with the case when the side
information is ignored while encoding.

Symmetric Encoding of Correlated Sources
So far, we have studied the asymmetric version of DIS-
CUS where one of the sources sends partial information
while the other sends full information (present in the
form of side-information). In practice, it may be desir-
able to have flexibility in the transmission rates and gen-
eralize DISCUS to the case of symmetric encoding,
where all sensors send only partial information to the de-
coder. One solution to this is to do time-divi-
sion-multiplexing [17], [18] between the sensors so that
at any time, one of the sensors will be acting as a primary
source. This requires synchronism between the sensors
and the encoders need to switch between these operat-
ing modes, which can be cumbersome and unnecessary.
Fortuitously, the asymmetric DISCUS framework can
be extended to the symmetric case, which can be shown
to incur no performance loss with respect to the asym-
metric version, and this can be done at the same compu-
tational complexity. We will not detail this here and
instead refer the reader to [19]. In addition to the con-
ventional symmetric distributed compression problem,
a problem of interest for sensor networks involves opti-
mal sensor fusion under bandwidth constraints, which
we now consider. Consider the sensor communication
[20] system shown in Fig. 5. Here, a number of sensors
observe an event, characterized by the signal X. The sen-
sors observe independent noisy versions of this event
(we restrict ourselves to this setup, though more com-
plex models can also be treated), represented by the sig-
nal set{ }Yi for i sensors. The individual sensors have rate
constraints{ }Ri to a central decoding unit, which desires
to optimally fuse this information to form an optimal es-
timate of X. It has been shown in theory [21] that the
optimal multisensor fusion problem under rate con-
straints exactly involves the DISCUS framework for
coding and estimation.
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� 5. Sensor network communication system: encoders observe
corrupted version of the source X , and transmit their informa-
tion to the decoder whose task is to get the best estimate, $X, of
X . The encoders do not communicate with each other.



Another Perspective
We address the problem of how to best allocate rates by
using coded modulation to get the best performance. We
first observe that there are two factors that contribute to
the MSE of the system:
� Quantization error: The quantization of the observa-
tion will induce distortion on the observation.
� Coset decoding error: When the decoder selects the in-
correct member of the chosen coset, this error will induce
a (large) distortion on the observation.

We now interpret the DISCUS functionality from the
familiar perspective of unequal error protection (UEP)
channel codes. Recall that in a typical correlation scenario
between X and Y, where X Y N= + , the LSBs of X and Y
are least correlated, and the MSBs most correlated. Ac-
cordingly, DISCUS dictates that we spend more bit rate
as we go from MSB to LSB. Qualitatively, as we approach
the LSB region, we cannot extract any gains from side in-
formation, and we will have to pay a bit for a bit. As we
approach the MSB region, we get more gains from the

side-information and can use a family of unequal strength
codes to extract this gain, needing weaker-strength codes
(which cost us less and less) as we approach the MSB. Be-
yond a certain threshold, the MSBs are free.

This is illustrated in Fig. 6. Note the three markers: be-
yond the top (MSB) marker, the bit plane correlation per-
mits no data needing to be sent. Beyond the bottom
(LSB) marker, the bit rate budget will not permit further
bit plane resolution. Between these two markers is the
“syndrome” marker, which separates the “full price” zone
from the “discount” zone. Of course, one can use multiple
syndrome markers to reflect different shades of discount.
These markers need to be optimized based on problem
constraints. We draw parallels from this framework to
that of multilevel coding in error correcting codes [22].
Note however that the analogy between DISCUS and the
use of UEP codes for data transmission is completely op-
posite: in the latter, it is the MSBs that need higher
strength codes!

Deployment in a Sensor Network
We illustrate through a simple example the power of DIS-
CUS in the context of a sensor network. For simplicity,
we consider the simple tree topology as given in Fig. 7.
Further suppose that we use the following correlation
structure in the tree to illustrate our concepts: the read-
ings at all nodes are 3-bit binary values, and each child
node is correlated with its parent node in the manner that
the Hamming distance between child node readings and
their parent node reading is no more than 1 bit. This ex-
actly mirrors the example of “Example of Binary
Sources.”

Suppose the “central station” Node A wants to collect
the readings from all other nodes in the network. This
scenario often occurs in an ad-hoc network, when a cer-
tain node broadcasts a request for readings from other
nodes. The “naive” solution would be to have the child
nodes C and D send their 3-bit readings to their parent B,
which would then relay these to A along with its own
3-bit reading. As a way of quantifying the amount of
work done by the network, suppose each tree link is 1 m
long. A metric that is used to measure the amount of en-
ergy expended in the network is bit-meters, referring to
the number of bits times the distance traveled by the bits.
Using this metric, a naive solution that ignores the corre-
lation structure would expend 3 bit-meters each from
Nodes C and D to Node A. Then A would expend 9
bit-meters to communicate with A (its own 3 bits plus the
6 bits of C and D) for a total of 15 bit-meters.

Now let us consider the role of DISCUS in exploiting
the correlation structure. Recall from “Example of Binary
Sources” that nodes C and D can reliably communicate
their 3-bit readings to their correlated parent node B us-
ing 2-bit syndromes. Node B can relay these messages
along to node A, along with its own 2-bit syndrome with
respect to node A. Node A invokes a successive decoding
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� 7. A tree network topology: central node is A.



framework by first decoding its correlated node B based
on its own reading and then decoding the readings of C
and D relative to the decoded reading of B. As each 3-bit
message in the original picture has been replaced by its
corresponding 2-bit syndrome, the DISCUS-based sce-
nario involves a reduction from 15 bit-meters to 10
bit-meters.

This toy example conveys the potential of DISCUS in
a sensor network scenario. We can also illustrate a few
other features. One drawback of the above example might
be that Node A has to do all the decoding work. How-
ever, this can be alleviated by having Node B do the DIS-
CUS decoding of C and D and relay to A their
“differences” with respect to its own reading (in this case,
the mod-2 sum). Due to the correlation structure, there
are only four error or difference patterns {000, 100, 010,
001}, which can be indexed using 2 bits. The total net-
work cost is still 10 bit-meters as before, but now there is
some amount of “load balancing” between nodes A and B
that might be desirable.

Likewise, consider another scenario where node A
wants to know the reading of node C only, rather than
that of all the nodes. As in our example, there is no corre-
lation structure between nodes A and C (as they are not a
parent-child pair), this would cost 6 bit-meters. How-
ever, if node B can be used as a “transcoder,” we can re-
duce this to 5 bit-meters by saving 1 bit-meter through
DISCUS for the link between C and B. These examples il-
lustrate that the DISCUS concept can be useful in a num-
ber of application scenarios depending on the network
topology and correlation structure, leading to the prom-
ise of significant network energy savings.

Other Applications
The idea of coding with side information can enable a
large range of applications. The coset coding framework
that we have developed here can be used to enable various
scenarios which make use of the “Slepian-Wolf binning”
concept. We list out several promising applications and
their results:

Multimedia transmission: We can use this framework to
optimally upgrade an existing analog transmission by
sending digital information. We treat the received analog
signal as side information at the decoder. This work re-
quires the graduation to more realistic models and is pre-
sented in [23].

The same framework can also be used for error resil-
ient multimedia transmission by way of multiple descrip-
tion coding for lossy packet networks. We also address
the uncertainty at the encoder about the actual packet
losses [25].

Blind Watermarking and Multiuser Communication: It
can be shown that there are duality connections to an-
other important problem of blind digital watermarking
of signals as has been pointed out in [26] and [27]. Here
we need to transmit messages by minimally perturbing

(watermarking) some known signal such as speech or im-
age or video. The decoder wishes to decode the message
after the watermarked signal goes through some attack
channel.

The broadcast channel, where a sender is communicat-
ing to many receivers, is intimately related to the blind
watermarking scenario. We consider the signals of the
previous users as the host signal and use the same
watermarking framework to add more users. It has been
shown that this is superior to using TDMA, FDMA, or
CDMA [28].

Conclusions
We have presented a new domain of collaborative infor-
mation communication and processing through the
framework on distributed source coding. This framework
enables highly effective and efficient compression across a
sensor network without the need to establish inter-node
communication, using well-studied and fast er-
ror-correcting coding algorithms.
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