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ABSTRACT Energy-Quality E-Q) tradeoffs have been explored in the context of
encryption processors [4]. A large class of algorithms, as they stand,
We introduce the notion of energy scalable computation on generaldo not render themselves to sUek scaling. Using simple modifi-
purpose processors. The principle idea is to maximize computa-cations, theE-Q behavior of the algorithm can be modified such
tional quality for a given energy constraint. The desirable energy- that if the available computational energy is reduced, the propor-
quality behavior of algorithms is discussed. Subsequently the tional hit in quality is minimal. However, one must ensure that the
energy-quality scalability of three distinct categories of commonly energy overhead attributed to the transform is insignificant com-
used signal processing algorithms (viz. filtering, frequency domain pared to the total energy consumption. It may be possible to do a
transforms and classification) are analyzed on the StrongARM SA- significant amount of preprocessing such thatER€ behavior is
1100 processor and transformations are described which obtain Sigclose to perfect but we might end up with a situation where the
nificant improvements in the energy-quality scalability of the algo- overall energy consumption is higher compared to the unscalable
rithm. system. This defeats the basic idea behind having a scalable system
viz. overall energy efficiency.

1. INTRODUCTION
2. ENERGY SCALABILITY EXAMPLE

In embedded systems, energy is a precious resource and must be”

used efﬁCiently. Therefore, itis hlghly desirable that we structure Consider the Simp|e power series shown in Equation 1. Such power

our algorithms and systems in such a fashion that computationalseries are frequently encountered in Taylor expansions used to eval-
accuracy can be traded off with energy requirement. At the heart of yate transcendental functions.

such transformations lies the concepirafremental refinemert].

Consider the scenario where an individual is using his laptop for a y = f(x) = 1+k;x+ k2x2 +..+ kNxN 1)
video telephone application. Based on the current battery state and ] ) ]

overall power consumption model [2] the system should be able to A Standard implementation of the algorithm would haveNastep
predict its uptime. If the battery life is insufficient, the user might 00p that would multiply the current value of the computed power

choose to tradeoff some quality/performance and extend the battery?f X with x and accumulate the resultynLet us assume we have to
life of his laptop. computef(2) for N=100. If thek;’s are similar, even aftelN-1 steps

in the loop, the value accumulated yrwould be approximately
Consider another scenario where a distributed sensor network [3] iS50 off from the final value since'/ f (2)=1/2 .Interms Bf
being used to monitor seismic activity from a remote basestation. Q performance, the algorithm does not do well. Assuming that the
Sensor nodes are energy constrained and have a finite lifetime. ltamount of energy required to evaludfg) on a processor iEmax
would be highly desirable to have energy scalable algorithms andand that each step dissipates the same amount of energy (ignoring
protocols running on the sensor network. The remote basestationnter-instruction effects etc.), we have about 50% computational
should have the capability to dynamically reduce energy consump-accuracy after dissipatindN¢1)/N.E,,, energy. However, if we had
tion (to prolong mission lifetime if uninteresting events have tg evaluate (0.5), the most significant terms would occur in the first
occurred) by altering the throughput and computation accuracy. few steps in the loop and tH&-Q behavior would be better. Based
This type of behavior necessitates algorithmic restrUCtUring SO thaton the above ana|ysis’ we can conclude that transforming the a|g0_
every computational step leads us incrementally closer to the out-rithm, as shown in Table I, will result in the most significant compu-
put. tations occurring early in the loop as a result of which, the
computational energy could be reduced, without taking a significant
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ciency perspective, its the average performance that matters. (ii) It Equation 2 holds over a significant range of computational energies,
is desirable to have aB-Q graph above the baselinE£Q on a nor-  overall efficiency is assured.

malized scale). This would imply that marginal returns in accuracy

from successive units of computational energy is diminishing. There-

fore, if the available energy is reduced by 10%, the quality degradation

is less that 10%, the lesser, the better. (iii) There is an energy overhead

associated with the transform which should be insignificant compared A

to the total energy.

TABLE | : POWER SERIES COMPUTATION

+= xpowi*K[i];
Y P 3 — Algorithm |

. Q’; Qy Algorithm 11 o
Original Algorithm Transformed Algorithm » % | |
~~_ 3
xpowi = 0.0; y = 1.0; if(x>1.0) { Quality ~.OC o
for(i=1; i<N; i++) { xpowi = pow(x,N); Distribution *, | |
Xpowi *= X; y = K[N]*xpowi+1; D
y += xpowi*k[i]; for( i=N-1; i>0; i-- ) { Y o
Xpowi /= X; | |
I

else {// original algo

]
E Energy (E) Emax, 1Emax, 1

Fig. 2. E-Qformal notions

12
x=1.50 Let us assume that there exists a quality distribupg(x), i.e. from
tr 2 7 | system statistics we are able to conclude that the probability that we
3 ; /’/ﬁdm;faﬂswme would want a quality is po(x). A typical quality distribution is shown
_ oerg . ¥ 3 1 in Fig. 2. The average energy consumption per output sample can then
./ be expressed as
% 06| 2 i X,X’X p _
E § ! Jx=1.10 E= IpQ(X)E(X)dX @
: oal 5} : i whereE(Q) is the inverse oR(E). When the quality distribution is
3* mm' ; unknown, we would like th&-Q behavior to be maximally concave
0 [ & A | downwards (with respect to the energy axis), i.e.
Original . fle.SO 32 E
0 ya AB) @
0 0.2 0.4 Normallge[; Energy 0.8 1 12 aE
Fig. 1. E-Q performance of power series algorithm The E-Q behavior suggested by Equation 4 is not always attainable

globally i.e. acrosO<E<E, ., aswe will see subsequently. How-
ever, on an average case, for a given energy availaliilitye would

like the obtainable qualit)(E) to be as high as possible.
3. FORMAL NOTIONS FOR SCALABILITY

We now formalize the notion of a desiratiieQ behavior of a system. 4 ENERGY SCALABLE TRANSFORMATIONS
TheE-Q graph of an algorithm is the functid@(E), representing some '

quality metric (e.q. mean-square error, peak signal-to-noise ratio et¢) 1 Filtering Application
as a function of the computational ener@« E<E_ ., . There ma

exist situations where the notion of a quality metric is unclear. Hom)%'n'te Impulse Response (FIR) filtering is one of the most commonly
ever, in this paper, we are dealing with signal processing algorithn@e_d Digital Signal Processing (DSP) ope_ratl_ons_. FIR filtering involves
where the notion of a quality metric is usually unambiguous. Considé}?e inner product of two vectors one of which is fixed and known as the

two algorithms (I and II) that perform the same function. Ideally, frorrg;pmse r.esponseh[n], of the filter [6]. An N-tap FIR filter is defined
an energy perspective, Il would be a more efficient scalable algorith Equation 5.

compared to | if N-1
n] = X[n—Kh[K 5
Q,(E)>Q,(E) OE @) yin] kzo [ (h[K] (5)
In most practical cases, Equation 2 will not hold over all energy valuegyious low power and energy efficient implementations of the FIR fil-
As shown in Table I, there might be a preprocessing overhead ase have been proposed and implemented [7]. The approximate process-
result of which the maximum energy consumptions might be differenf, techniques proposed in [8] reduce the total switched capacitance by
for the two cases (i.€Emax, 11> Emax, )- Nevertheless, as long as the gynamically varying the filter order based on signal statistics.
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Fig. 3. FIR filtering with coefficient reordering Fig. 4. E-Q graph for original and transformed FIR filtering

However, when we analyze the FIR filtering operation from a purén FIR filtering, the input data samples are unknown a priori. The par-
inner product perspective, it simply involvésmultiply and accumu- tial sum which is most significant is not completely deterministic until
late (MAC) cycles. For desire-Q behavior, the MAC cycles that con- all of them have been computed. More sophisticated schemes could
tribute most significantly to the outpyfn] should be done first. Each involve sorting both the data samples and the coefficients and using two
of the partial sumsx[k]lh[n—k] , depends on the data sample anevels of indirection to perform the correct inner product first by pick-
therefore its not apparent which ones should be accumulated first. Intog up the partial sum corresponding to the largest coefficient, then the
itively, the partial sums that are maximum in magnitude (and can therene corresponding to the largest data sample and so on. The overhead
fore affect the final result significantly) should be accumulated firstassociated with such a scheme involves real time sorting of incoming
Most FIR filter coefficients have a few coefficients that are large irsamples. Assuming that we have a presorted data array ahfithe
magnitude and progressively reduce in amplitude. Therefore, a simplext data samplg[n+1] can be inserted into the right position using a
but effectivemost-significant-first transfornnvolves sorting the binary search type technique which can be don®(@iogN). The scal-
impulse response in decreasing order of magnitude and reordering #iglity gains might not be substantial compared to the simpler scheme
MACSs such that the partial sum corresponding to the largest coefficietitscussed before. However, in applications such as autocorrelation
is accumulated first as shown in Fig. 3. Undoubtedly, the data samphich involves an inner product of a data stream with a shifted version
multiplied to the coefficient might be so small as to mitigate the effeabf itself, sorting both the vectors in the inner product would yield sig-
of the partial sum. Nevertheless, on an average case, the coefficiaificant improvements i&-Q behavior.

reordering by magnitude yields a betEQ performance than the orig-

inal scheme (See Appendix A for proof).

50

Fig. 4 illustrates the scalability results for a low pass filtering of speech
data sampled at 10kHz using a 128-tap FIR filter whose impulse
response (magnitude) is also outlined. The average energy consumption sl ,
per output sample (measured on the StrongARM SA-1100 [5] operat-
ing at 1.5V power supply and 206MHz frequency) in the original
scheme is 5.32]. Since the initial coefficients are not the ones with
most significant magnitudes titeQ behavior is poor. Sorting the coef-
ficients and using a level of indirection (in software that amounts to
having an index array of the same size as the coefficient arrayt-@e

451 : B 4

W
S
T
I

Eunsorted/Esorted
8 B
7 T
1 1

behavior can be substantially improved. It can be seen that fluctuations ;| - |
in data can lead to deviations from the ideal behavior suggested by L

Equation 4, nonetheless overall concavity is still apparent. The energy ™| . )
overhead associated with using a level of indirection on the SA-1100 sk '-..',-_ . g
was only 0.211J which is about 4% of the total energy consumption. e

Fig. 5 shows the ratio of the energy consumed in the unsorted system to % o 20 3 40
the sorted system for a given quality.

50 60 70 80 2 100
Quality

Fig. 5. Energy inefficiency of unsorted system compared to the sorted case
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4.2 Image Decoding Application

The Discrete Cosine Transform (DCT), which involves decompos- 100
ing a set of image samples into a scaled set of discrete cosine basis o} 1
functions, and the Inverse Discrete Cosine Transform (IDCT), FM-IDCT ‘ ‘ ‘ ‘

80H
which involves reconstructing the samples from the basis functions,

are crucial steps in digital video [9]. The 64-point, 2-D DCT and & ™| 1
IDCT (used on 8x8 pixel blocks in of an image) are defined respec- & eof 1
tively as 3
% 50 -
clulc[V] Ll o2 + Dumy o(2j + Vv g o ]
Xlu v = === 3 3 xli.jlcosi=¢ DCO% 6 0® 2 5 ; ‘ |
i=0j=0 IDCT

1 Tl 2i +Numy . ((2j +1)v 10 1

x[i, j] = i zo Z(c):[u]c[v]X[u, v]co% 6 [° 16 1Tg?) ) ‘ | | | | | |
u=0v-= 0 2 a4 12 14 16

6 8 10
. . . . E d (mJ
DCT is able to capture the spatial redundancy present in an image nergy consumed (m.J)

and the coefficients obtained are quantized and compressed. Most Fig. 6. E-Qgraph for FM-IDCT vs normal IDCT

existing algorithms attempt to minimize the number of arithmetic

operations (multiplications and additions) usually relying on the Fig. 6 and Fig. 8 illustrate thE-Q behavior of the FM-IDCT algo-
symmetry properties of the cosine basis functions (similar to the rithm. It is obvious from Fig. 8 that almost 90% image quality can
FFT algorithm) and on matrix factorizations [10]. TReQbehavior  pe obtained from as little as 25% of the total energy consumption.
of these algorithms are not good as they have been designed such terms of the overhead requirement, the only change that is
that computation takes a minimal yet constant number of opera-required is that we now need to store the IDCT coefficients in a

tions. The Forward Mapping-IDCT (FM-IDCT) algorithm, pro-  transposed fashion (i.e. all the low frequency components first and
posed in [11] can be shown to have BrQ performance with is s0 on).

much better than other algorithms. The algorithm is formulated as

follows
0,0 0,1 8,8
X0, 0 Co Co Co
X0, 1 20 o1 &8
W= Xoo| 1 |*Xgq| 1 |*+...tXgg| O (8) -
X 0,0 0,1 8,8 g
8, 8 g g s £
Ce4 Ce4 Co4 5
wherex; i are the reconstructed pel, jare the input DCT coeffi-

cients, and[c'k’ l] is the 64x64 constant reconstruction kernel. The
improvedE-Q behavior of the FM-IDCT algorithm can be attrib-
uted to the fact that most of the signal energy is concentrated in the
DC coefficient &y ) and in general in the low-frequency coeffi-
cients as shown in Fig. 7. Instead of reconstructing each pixel by
summing up all its frequency contributions, the algorithm incre- Rows (1-8) 8 o !
mentally accumulates the entire image based on spectral contribu-
tions from the low to high frequencies.

Columns (1-8)

Fig. 7. 8x8 DCT coefficient magnitudes averaged over a sample image

| | i |
164 Epayx 4164 .Epay 16/64 Eqay 32/64 Eppay Epmax

Fig. 8. lllustrating the incremental refinement property with respect to computational energy of the FM-IDCT algorithm



4.3 Classification using Beamforming In Scenario 1, we will perform beamforming without any knowledge of

. . . the source location in relation to the sensors. Beamforming will be
Beamforming algorithms can be used to aggregate highly correlatagne in a pre-set order <1,2,3,4,5,6>. The parameter we will use to

data from multiple sensors into one representative signal. The adva&:-ale energy is n, the number of sensors in beamformingn #&s

tages of beamforming is twofold. First, beamforming is used tg, - eased from 1 to 6, there is a proportional increase of energy. As the
enhance the desired signal while interference or uncorrelated SeNs8hsor moves from location A to B we take snapshots oEt@curve,
noise is reduced. This leads to an improvement in detection and Clasastifown in Fig. 11. This curve shows that with a preset beamforming
fication of the target. Second, beamforming reduces redundant d%er, there can be vastly differeBtQ curves, which leads to a very
through compression of multiple sensor data into one signal. Fig.p%Or energy-quality model. When the source is at location A, the beam-
shows a block diagram of a wireless network of M sensors utilizingOrming quality is only at maximum when sensors 5 and 6 are beam-
beamforming for local data aggregation. formed. Conversely, when the source is at location B, the beamforming
quality is close to maximum after beamforming 2 sensors. Therefore,
for this setup, since thEé-Q curve is highly data dependent, an accurate

) E-Q model for LMS beamforming is not possible.
e
/ 0\\. \ sp(n)
© To the
\ 07 + basestation 1
J () k=3 k=4 k=5 k=6
< _ 7 k=2
@ 0.8f
Data received from neighboring sensor: g
(=%
(7]
Fig. 9. Beamforming for data aggregation £0.6
[}
=
. . . . 0.4
We have studied various beamforming algorithms that fall under the £
category of “blind beamforming” [12]. These beamformers provide go 5
suitable weighting functionsy;(n), to satisfy a given optimality crite- '
rion, without knowledge of the sensor locations. In this paper we will
show energy scalability for one particular blind beamforming algo- 0 2 4 6 8 10 12
rithm, the Least Mean Squares (LMS) beamforming algorithm. The Energy (mJ)
LMS algorithm uses a minimum mean squared error criterion to deter- Fig. 11. E-Q snapshot for Scenario

mine the appropriate array weighting filters. This algorithm is consid-
ered an optimum algorithm, and is highly suitable for power awar

. g\n intelligent alternative is to perform some initial pre-processing of
wireless sensor networks [13]. g P pre-p 9

the sensor data to determine the desired beamforming order for a given
set of sensor data. Intuitively, we want to beamform the data from sen-
sors which have higher signal energy to interference energy. Using the

most-significant-first transforpwhich was proposed earlier, tfeQ
B sensor cluster scalability of the system can be improved.. To find the desired beam-
Interference forming order, first the sensor data energy is estimated. Then the sensor
= energies are sorted using a quicksort method. The quicksort output
determines the desired beamforming order. Fig. 12 shows a block dia-
A gram of the transformed system.
Source
trajectory
10m M beamforming
- . d
50m sg;ts;r__’ Esrgger:ga)ll || Quicksort] order
Fig. 10. Sensor testbed 1
LMS

> beamforming

We will now show how algorithmic transformations can be used to
improve theE-Q model for LMS beamforming. Fig. 10 shows our test-
bed of sensors for this example. We have an array of 6 sensors spaced at
approximately 10 meters, a source at a distance of 10 meters from the
sensor cluster, and interference at a distance of 50 meters. We wantrté@cenario 2, we apply thmost-significant-first transforrto improve
perform beamforming on the sensor data, measure the energy disbe E-Q curves for LMS beamforming. Fig. 13 shows theQ relation-
pated on the StrongARM SA-1100, calculate the matched filter outpship as the source moves from location A to B. In this scenario, we can
(quality), and provide a reliable model of tikeQ relationship as we ensure that th&-Q graph be monotonically increasing, thus improving
vary the number of sensors in beamforming. our E-Q models. However, there is a price to pay in computation
energy. If the energy cost required to compute the correlation and

Fig. 12. “Sort by significance” preprocessing
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quicksort was large compared to LMS beamforming, then the extf8&]
scalability is not worth the effort. However, in this case, the extra com-
putational cost was 8.8mJ of energy and this overhead is only 0.44% of

A. Chandrakasan, et. al., “Design Considerations for Distributed
Microsensor Systems”, Proceedings of the IEEE 1999 Custom In-
tegrated Circuits Conference, San Deigo, May 1999, pp. 279-286

J. Goodman, A. Dancy, A. P. Chandrakasan, “An Energy/Security
Scalable Encryption Processor Using an Embedded Variable Volt-
age DC/DC Converter”, IEEE Journal of Solid-State Circuits, vol.

the total energy for LMS beamforming (for the 2 sensor case). [4]

08 ~ 33, no. 11, Nov. 1998, pp. 1799-1809

0.7t . o [5] Advanced RISC Machines LtdAdvance RISC Machines Architec-
§0.6. T—— tural Reference ManuaPrentice Hall, New York, 1996
=4 k=3 k=4 [6] A.V.Oppenheimand R. W. Schafer, Discrete Time Signal Process-
$0-5f ing, Prentice Hall, New Jersey, 1989
Soa k=2 [7] A. Sinha and A. P. Chandrakasan, “Energy Efficient Filtering Us-
< ing Adaptive Precision and Variable Voltage”, 12th Annual IEEE
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[10] W. H. Chen, C. H. Smith and S. C. Fralick, “A Fast Computational
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Communication, vol. 25, Sept 1977, pp. 1004-1009
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5. CONCLUSIONS tion of the Inverse Discrete Cosine Transform”, Proceedings of the
Data Compression Conference (DCC ‘92), March 1992, pp. 219-
We have introduced the notion of energy scalable computation in the 228
context of signal processing. Algorithms that render incremental refinft2] Yao, et. al., “Blind Beamforming on a Randomly Distributed Sen-
ment of a certain quality metric such that the marginal returns from  sor Array System, IEEE Journal on Selected Areas in Communica-
every additional unit of energy is diminishing are highly desirable in  tions, vol. 16, no. 8, Oct. 1998, pp. 1555-1567
embedded applications. Using three broad classes of signal procesditg] A. Wang, W. Heinzelman and A. Chandrakasan, “Energy-Scalable
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(with insignificant overhead) the Energy-Qualiy-Q) behavior of the ings of SIPS ‘99, Oct. 1999
algorithm can be significantly improved. In general, we have concluded
that doing the most significant computations first enables computa-
tional energy reduction without significant hit in output quality.

6
Energy (mJ)
Fig. 13. E-Q snapshot for Scenario 2

APPENDIX A

The proof as to why sorting the filter coefficients would on an average
6. ACKNOWLEDGEMENTS produce a betteE-Q behavior is as follows. Assume that there bre
This research is sponsored by the Defense Advanced Researc Pro e corresponding to ow-tap filter and as the input data streams in,

Agency (DARPA) and Air Force Research Laboratory, Air Force Mate-he partial produgts co'rresponding to each of the taps are accumulated
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rial Command, USAF, under agreement number F30602-00-2-05§ . ! : X
ifted data samples. For a given filter coefficibptthe accumulated
(prgrtial products in the bin i with an expected value

The U.S. Government is authorized to reproduce and distribute repri

for Governmental purposes notwithstanding any copyright annotati 7 SZ X hy . .
hy E[x] which is independent of a particular tap (assumihgs
faify large). Therefore, the magnitude of a partial product, on an aver-

thereort.
age, is larger ih, is larger and sorting the coefficients will result in the
most significant partial products being accumulated first.
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