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Preface

This preface introduces the ARM7TDMI r4pl Technical Reference Manual. It contains
the following sections:

. About this manual on page xvi
. Feedback on page xx.
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Preface

About this manual

This is the Technical Reference Manual for the ARM7TDMI r4p1 processor.

Product revision status

Intended audience

Using this manual

The rnpn identifier indicates the revision status of the product described in this manual,
where:

rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

This manual has been written for experienced hardware and software engineers who are
working with the ARM7TDMI processor.

This manual is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the architecture.

Chapter 2 Programmer’s Model
Read this chapter for a description of the 32-bit ARM and 16-bit Thumb
instruction sets.

Chapter 3 Memory Interface
Read this chapter for a description of nonsequential, sequential, internal,
and coprocessor register transfer memory cycles.

Chapter 4 Coprocessor Interface
Read this chapter for details of theimplementation of the specialized
additional instructions for use with coprocessors and a description of the
interface.

Chapter 5 Debug Interface

Read this chapter for a description of the ARM7TDMI core hardware
extensions for advanced debugging to make it simpler to develop
application software, operating systems, and hardware.

Chapter 6 Instruction Cycle Timings

Read this chapter for a description of the instruction cycle timings.

Xvi
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Conventions

Preface

Chapter 7 AC and DC Parameters

Read this chapter for a description of the AC and DC parameters, timing
diagrams, definitions, and operating data.

Appendix A Signal and Transistor Descriptions
Read this chapter for a description of the ARM7TDMI core signals.

Appendix B Debug in Depth

Read this chapter for further information on the debug interface and
EmbeddedICE-RT macrocell.

Appendix C Differences Between Rev 3a and Rev 4

Read this chapter for a description of the differences and enhancements
between Rev 3a and Rev 4 of the processor.

Glossary Read the glossary for a list of terms used in this manual.

Conventions that this manual can use are described in:
. Typographical

. Timing diagrams on page xviii
. Signals on page xviii
. Numbering on page Xix.

Typographical
The typographical conventions are:

italic Highlights important notes, introduces special terminology,
denotes internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes
signal names. Also used for terms in descriptive lists, where
appropriate.

monospace Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You
can enter the underlined text instead of the full command or option
name.

ARM DDI 0210C
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Preface

monospace italic ~ Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

< and > Angle brackets enclose replaceable terms for assembler syntax
where they appear in code or code fragments. They appear in
normal font in running text. For example:

. MRC p15, @ <Rd>, <CRn>, <CRm>, <Opcode_2>
. The Opcode_2 value selects which register is accessed.

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in
timing diagrams. Variations, when they occur, have clear labels. You must not assume
any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Clockl [ |
HIGH to LOW \ \
Transientv—
HIGHLOW to HIGH []
Busstable
Bus to high impedance ]7
Bus change :)O(:
High impedance to stable bus —O(:

Key to timing diagram conventions

Signals
The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means HIGH for
active-HIGH signals and LOW for active-LOW signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

xviii Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C
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Prefix n Denotes active-LOW signals except in the case of AHB or
Advanced Peripheral Bus (APB) reset signals.

Prefix P Denotes APB signals.
Suffix n AHB HRESETn and APB PRESETDBGn reset signals.
Numbering

The numbering convention is:

<size in bits>'<base><number>

This is a Verilog method of abbreviating constant numbers. For example:

. 'h7B4 is an unsized hexadecimal value.
. '07654 is an unsized octal value.
. 8'd9 is an eight-bit wide decimal value of 9.

. 8'h3F is an eight-bit wide hexadecimal value of 0x3F. This is
equivalent to bOO111111.

. 8'b1111 is an eight-bit wide binary value of bOO001111.

This section lists publications by ARM Limited, and by third parties.

ARM Limited periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets, addenda, and the ARM Limited
Frequently Asked Questions list.

ARM publications

This document contains information that is specific to the ARM7TDMI core. See the
following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100).

Other publications
This section lists relevant documents published by third parties:

. IEEE Std. 1149.1-1990 Standard Test Access Port and Boundary-Scan
Architecture.
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Preface

Feedback

ARM Limited welcomes feedback both on the ARM7TDMI r4pl processor, and its
documentation.

Feedback on this product

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on this manual

If you have any comments about this manual, send email to errata@arm.com giving:

. the title

. the number

. the relevant page number(s) to which your comments refer
. a concise explanation of your comments.

ARM Limited also welcomes general suggestions for additions and improvements.
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Chapter 1
Introduction

This chapter introduces the ARM7TDMI r4p1 processor. It contains the following
sections:

. About the ARM7TDMI core on page 1-2
. Architecture on page 1-4
. Block, core, and functional diagrams on page 1-6

. Instruction set summary on page 1-10.

ARM DDI 0210C Copyright © 2001, 2004 ARM Limited. All rights reserved.



Introduction

1.1 About the ARM7TDMI core

The ARM7TDMI core is a member of the ARM family of general-purpose 32-bit
microprocessors. The ARM family offers high performance for very low power
consumption, and small size.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The RISC instruction set and related decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:

. a high instruction throughput
. an excellent real-time interrupt response
. a small, cost-effective, processor macrocell.

This section describes:

. The instruction pipeline

. Memory access on page 1-3

. Memory interface on page 1-3.

. EmbeddedICE-RT logic on page 1-3.

1.1.1 The instruction pipeline

The ARM7TDMI core uses a pipeline to increase the speed of the flow of instructions
to the processor. This enables several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:
. Fetch

. Decode

. Execute.

The instruction pipeline is shown in Figure 1-1.

Fetch Instruction fetched from memory
Decode Decoding of registers used in

instruction

# Register(s) read from register bank
Execute Shift and ALU operation
Write register(s) back to register bank

Figure 1-1 Instruction pipeline

During normal operation, while one instruction is being executed, its successor is being
decoded, and a third instruction is being fetched from memory.
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The program counter points to the instruction being fetched rather than to the instruction
being executed. This is important because it means that the Program Counter (PC)
value used in an executing instruction is always two instructions ahead of the address.

1.1.2 Memory access

The ARM7TDMI core has a Von Neumann architecture, with a single 32-bit data bus
carrying both instructions and data. Only load, store, and swap instructions can access
data from memory.

Data can be:

. 8-bit (bytes)

. 16-bit (halfwords)
. 32-bit (words).

Words must be aligned to 4-byte boundaries. Halfwords must be aligned to 2-byte
boundaries.

1.1.3 Memory interface

The ARM7TDMI processor memory interface has been designed to allow performance
potential to be realized, while minimizing the use of memory. Speed-critical control
signals are pipelined to enable system control functions to be implemented in standard
low-power logic. These control signals facilitate the exploitation of the fast-burst access
modes supported by many on-chip and off-chip memory technologies.

The ARM7TDMI core has four basic types of memory cycle:
. idle cycle

. nonsequential cycle
. sequential cycle
. coprocessor register transfer cycle.

1.1.4 EmbeddedICE-RT logic

The EmbeddedICE-RT logic provides integrated on-chip debug support for the
ARMT7TDMI core. You use the EmbeddedICE-RT logic to program the conditions
under which a breakpoint or watchpoint can occur.

The EmbeddedICE-RT logic contains a Debug Communications Channel (DCC), used
to pass information between the target and the host debugger. The EmbeddedICE-RT
logic is controlled through the Joint Test Action Group (JTAG) test access port.

For more information about the EmbeddedICE-RT logic, see Chapter 5 Debug
Interface and Appendix B Debug in Depth.

ARM DDI 0210C
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1.2 Architecture

The ARM7TDMI processor has two instruction sets:
. the 32-bit ARM instruction set
. the 16-bit Thumb instruction set.

The ARM7TDMI processor is an implementation of the ARMv4T architecture. For full
details of both the ARM and Thumb instruction sets, see the ARM Architecture
Reference Manual.

This section describes:
. Instruction compression
. The Thumb instruction set.

1.21 Instruction compression

Microprocessor architectures traditionally have the same width for instructions and
data. In comparison with 16-bit architectures, 32-bit architectures exhibit higher
performance when manipulating 32-bit data, and can address a large address space
much more efficiently.

16-bit architectures typically have higher code density than 32-bit architectures, but
approximately half the performance.

Thumb implements a 16-bit instruction set on a 32-bit architecture to provide:
. higher performance than a 16-bit architecture
. higher code density than a 32-bit architecture.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit
ARM instruction that has the same effect on the processor model. Thumb instructions
operate with the standard ARM register configuration, allowing excellent
interoperability between ARM and Thumb states.

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit
ARM instructions in real time, without performance loss.

Thumb has all the advantages of a 32-bit core:

. 32-bit address space

. 32-bit registers

. 32-bit shifter, and Arithmetic Logic Unit (ALU)
. 32-bit memory transfer.

1-4
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Thumb therefore offers a long branch range, powerful arithmetic operations, and a large
address space.

Thumb code is typically 65% of the size of ARM code, and provides 160% of the
performance of ARM code when running from a 16-bit memory system. Thumb,
therefore, makes the ARM7TDMI core ideally suited to embedded applications with
restricted memory bandwidth, where code density and footprint is important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives designers
the flexibility to emphasize performance or code size on a subroutine level, according
to the requirements of their applications. For example, critical loops for applications
such as fast interrupts and DSP algorithms can be coded using the full ARM instruction
set then linked with Thumb code.

ARM DDI 0210C
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1.3 Block, core, and functional diagrams

The ARM7TDMI processor architecture, core, and functional diagrams are illustrated

in the following figures:

. Figure 1-2 on page 1-7 shows a block diagram of the ARM7TDMI processor
components and major signal paths

. Figure 1-3 on page 1-8 shows the main processor logic at the core of the
ARM7TDMI

. Figure 1-4 on page 1-9 shows the major signal paths for the ARM7TDMI
processor.
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Figure 1-2 ARM7TDMI processor block diagram
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Figure 1-3 ARM7TDMI main processor logic
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1.4 Instruction set summary

This section provides a description of the instruction sets used on the ARM7TDMI
processor.

This section describes:

. Format summary
. ARM instruction summary on page 1-12
. Thumb instruction summary on page 1-19.

1.4.1 Format summary

This section provides a summary of the ARM, and Thumb instruction sets:
. ARM instruction summary on page 1-12
. Thumb instruction summary on page 1-19.

A key to the instruction set tables is provided in Table 1-1.

The ARM7TDMI processor uses an implementation of the ARMv4T architecture. For
a complete description of both instruction sets, see the ARM Architecture Reference
Manual.

Table 1-1 Key to tables

Type

Description

{cond}

<Oprnd2>

Condition field, see Table 1-6 on page 1-18.

Operand2, see Table 1-4 on page 1-17.

{field}

Control field, see Table 1-5 on page 1-18.

S

Sets condition codes, optional.

B

Byte operation, optional.

H

Halfword operation, optional.

T

Forces address translation. Cannot be used with pre-indexed addresses.

Addressing modes  See Addressing modes on page 1-14.

#32bit_Imm

<reglist>

A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.

A comma-separated list of registers, enclosed in braces ( { and } ).

The ARM instruction set formats are shown in Figure 1-5 on page 1-11.
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See the ARM Architectural Reference Manual for more information about the ARM
instruction set formats.

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

Data processinga™dl  Cond  |0|0|1| Opcode |S| Rn Rd Operand 2
Multiply Cond 0/0/0|0|0|0O[|A|S Rd Rn Rs 11001 Rm
Multiply long Cond 0/0|0|0[1|U|A|S RdHi RdLo Rn 1/0]0(1 Rm
Single dataswap| Cond |0 |0|0|1|0|B|0|0 Rn Rd 0/0|0|0[1]|0|0]1 Rm
Branch and exchange|  Cond |0 0|0 [1[0| 0|1/ 0/ 1|1|1[1][1][1][1/1][1/1/1/1|0[0]|0]1 Rn
o e rorey|  Cond |00 0|P|U/O/W Ll Rn Rd  |0/0[0[0|1|S|H[1| Rm
Halfword data vansfer. | Cond |00 |0 |P U|1|W|L Rn Rd Offset |1 |/S|H|1| Offset
Single data transfer Cond 0|1|1|P/UBIW|L Rn Rd Offset
Undefined Cond 0|11 1
Block data transfer Cond 1/0|0|P|U|IS|W|L Rn Register list
Branch Cond 1/0(1|L Offset
Coprocessordatal Cond | 1|1|0|P|U|N|W|L Rn CRd CP# Offset
Coprocee | Cond | 1|1/1/0| CPOpc CRn CRd CP# CP 0| CRm
Coprocessorregsler|  GCond |1 |1|1/0 CPOpc|L| CRn Rd CP# CP |1| CRm
Software interrupt Cond 101111 Ignored by processor

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

Figure 1-5 ARM instruction set formats

—— Note

Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a multiply instruction with bit [6] changed to a 1. These
instructions must not be used because their action might change in future ARM
implementations. The behavior of these instruction codes on the ARM7TDMI
processor is unpredictable.

ARM DDI 0210C Copyright © 2001, 2004 ARM Limited. All rights reserved. 1-11
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1.4.2 ARM instruction summary
The ARM instruction set summary is listed in Table 1-2.
Table 1-2 ARM instruction summary

Operation Assembly syntax

Move Move MOV{cond}{S} Rd, <Oprnd2>
Move NOT MVN{cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{cond} Rd, SPSR
Move CPSR to register MRS{cond} Rd, CPSR
Move register to SPSR MSR{cond} SPSR{field}, Rm
Move register to CPSR MSR{cond} CPSR{field}, Rm
Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm
Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>
Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>
Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>
Multiply MUL{cond}{S} Rd, Rm, Rs
Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn
Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Compare (MP{cond} Rd, <Oprnd2>
Compare negative CMN{cond} Rd, <Oprnd2>

1-12 Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C



Introduction

Table 1-2 ARM instruction summary (continued)

Operation Assembly syntax
Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ{cond} Rn, <Oprnd2>
AND AND{cond}{S} Rd, Rn, <Oprnd2>
EOR EOR{cond}{S} Rd, Rn, <Oprnd2>
ORR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>
Branch Branch B{cond} Tabel
Branch with link BL{cond} Tabel
Branch and exchange instruction set BX{cond} Rn
Load ‘Word LDR{cond} Rd, <a_mode2>

Word with user-mode privilege

LDR{cond}T Rd, <a_mode2P>

Byte

Byte with user-mode privilege

LDR{cond}B Rd, <a_mode2>

LDR{cond}BT Rd, <a_mode2P>

Byte signed LDR{cond}SB Rd, <a_mode3>
Halfword LDR{cond}H Rd, <a_mode3>
Halfword signed LDR{cond}SH Rd, <a_mode3>

Multiple block data operations

. Increment before LDM{cond}IB Rd{!'}, <reglist>{A}

. Increment after LDM{cond}IA Rd{!}, <reglist>{A}

. Decrement before LDM{cond}DB Rd{!'}, <reglist>{A}

. Decrement after LDM{cond}DA Rd{!}, <reglist>{A}

. Stack operation LDM{cond}<a_mode4L> Rd{!}, <reglist>

. Stack operation, and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>A
d Stack operation with user registers LDM{cond}<a_mode4L> Rd{!}, <reglist>A

ARM DDI 0210C Copyright © 2001, 2004 ARM Limited. All rights reserved. 1-13
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Table 1-2 ARM instruction summary (continued)

Operation Assembly syntax
Store Word STR{cond} Rd, <a_mode2>
Word with user-mode privilege STR{cond}T Rd, <a_mode2P>
Byte STR{cond}B Rd, <a_mode2>
Byte with user-mode privilege STR{cond}BT Rd, <a_mode2P>
Halfword STR{cond}H Rd, <a_mode3>
Multiple block data operations -
. Increment before STM{cond}IB Rd{!}, <reglist>{A}
. Increment after STM{cond}IA Rd{!}, <reglist>{A}
. Decrement before STM{cond}DB Rd{!}, <reglist>{A}
3 Decrement after STM{cond}DA Rd{!}, <reglist>{A}
. Stack operation STM{cond}<a_mode4S> Rd{!}, <reglist>
. Stack operation with user registers STM{cond}<a_mode4S> Rd{!}, <reglist>A
Swap ‘Word SWP{cond} Rd, Rm, [Rn]
Byte SWP{cond}B Rd, Rm, [Rn]
Coprocessors Data operation CDP{cond} p<cpnum>, <opl>, CRd, CRn, CRm, <op2>

Move to ARM register from coprocessor

MRC{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>

Move to coprocessor from ARM register

MCR{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>

Load LDC{cond} p<cpnum>, CRd, <a_mode5>
Store STC{cond} p<cpnum>, CRd, <a_mode5>
Software interrupt SWI 24bit_Imm
Addressing modes

The addressing modes are procedures shared by different instructions for generating
values used by the instructions. The five addressing modes used by the ARM7TDMI

processor are:
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5

Shifter operands for data processing instructions.

Load and store word or unsigned byte.

Load and store halfword or load signed byte.

Load and store multiple.
Load and store coprocessor.

Copyright © 2001, 2004 ARM Limited. All rights reserved.
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The addressing modes are listed with their types and mnemonics Table 1-3.

Table 1-3 Addressing modes

Type or

Addressing mode addressing mode

Mnemonic or stack type

Mode 2 <a_mode2> Immediate offset [Rn, #+/-12bit_Offset]
Register offset [Rn, +/-Rm]
Scaled register offset ~ [Rn, +/-Rm, LSL #5bit_shift_imm]
[Rn, +/-Rm, LSR #5bit_shift_imm]
[Rn, +/-Rm, ASR #5bit_shift_imm]
[Rn, +/-Rm, ROR #5bit_shift_imm]
[Rn, +/-Rm, RRX]

Pre-indexed offset -

Immediate [Rn, #+/-12bit_Offset]!
Register [Rn, +/-Rm]!
Scaled register [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed offset -

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm
[Rn], +/-Rm, ASR #5bit_shift_imm
[Rn], +/-Rm, ROR #5bit_shift_imm
[Rn, +/-Rm, RRX]

Mode 2, privileged <a_mode2P> Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]
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Table 1-3 Addressing modes (continued)

Type or

addressing mode ~ Mnemonic or stack type

Addressing mode

Scaled register offset ~ [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed offset -

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Mode 3, <a_mode3> Immediate offset [Rn, #+/-8bit_Offset]
Pre-indexed [Rn, #+/-8bit_Offset]!
Post-indexed [Rn], #+/-8bit_Offset
Register [Rn, +/-Rm]
Pre-indexed [Rn, +/-Rm]!
Post-indexed [Rn], +/-Rm

Mode 4, load <a_mode4L> IA, increment after FD, full descending

IB, increment before ~ ED, empty descending

DA, decrement after FA, full ascending

DB decrement before ~ EA, empty ascending
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Table 1-3 Addressing modes (continued)

Type or

Addressing mode addressing mode

Mnemonic or stack type

Mode 4, store <a_mode4S> IA, increment after FD, full descending

IB, increment before ~ ED, empty descending

DA, decrement after FA, full ascending

DB decrement before ~ EA, empty ascending

Mode 5, coprocessor data transfer <a_mode5> Immediate offset [Rn, #+/-(8bit_Offsetx4)]
Pre-indexed [Rn, #+/-(8bit_Offsetx4)]!
Post-indexed [Rn], #+/-(8bit_Offset«4)
Operand 2

An operand is the part of the instruction that references data or a peripheral device.
Operand 2 is listed in Table 1-4.

Table 1-4 Operand 2

Operand Type Mnemonic

Operand 2 <Oprnd2>  Immediate value #32bit_Imm
Logical shift left Rm LSL #5bit_Imm
Logical shift right Rm LSR #5bit_Imm

Arithmetic shift right ~ Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm
Register Rm

Logical shift left Rm LSL Rs
Logical shift right Rm LSR Rs

Arithmetic shift right ~ Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended  Rm RRX
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Fields

Fields are listed in Table 1-5.

Condition fields

Table 1-5 Fields

Type Suffix Sets Bit
Field {field} _c Control field mask bit 3
_f Flags field mask bit 0
_s Status field mask bit 1
X Extension field mask bit 2

Condition fields are listed in Table 1-6.

Table 1-6 Condition fields

Field type Suffix Description Condition
Condition {cond} EQ Equal Z set
NE Not equal Z clear
CS Unsigned higher, or same  C set
CC Unsigned lower C clear
MI Negative N set
PL Positive, or zero N clear
VS Overflow V set
vC No overflow V clear
HI Unsigned higher C set, Z clear
LS Unsigned lower, or same C clear, Z set
GE Greater, or equal N=V (N and V set or N and V clear)
LT Less than N<>V (N set and V clear) or (N clear and V set)
GT Greater than Z clear, N=V (N and V set or N and V clear)
LE Less than, or equal Z set or N<>V (N set and V clear) or (N clear and V set)
AL Always Flag ignored
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1.4.3 Thumb instruction summary
The Thumb instruction set formats are shown in Figure 1-6.

See the ARM Architectural Reference Manual for more information about the ARM
instruction set formats.

Format 1514131211109 8 7 6 5 4 3 2 1 0

Move shifted register 01 0(0|0| Op Offsetb Rs Rd
Rn/
Add and subtract 02 0[{0|0|1|1[1|Op Rs Rd
offset3
Move, compare, add, ar!d subt_ract 03 0lo/1] op Rd Offscts
immediate
ALU operation 04 0(1/0/0]0/0 Op Rs Rd
High register operations and branch 05 ol1/0lo/0|1] op H1H2 RsHs | RdHd
exchange
PC-relative load 06 0|1/0(01 Rd Word8
Load and store with relative offset 07 0oj{1/0/1|L|B|O Ro Rb Rd
Load and store sign-extended byte and 08 ol1lol1lHIs!1 Ro Rb Rd
halfword
Load and store with immediate offset 09 0/1|1|B|L Offsets Rb Rd
Load and store halfword 10 110/0|0|L Offsets Rb Rd
SP-relative load and store 11 110(01|L Rd Word8
Load address 12 1/0/1]0SP| Rd Word8
Add offset to stack pointer 13 11011(1/0(0|0|0|S SWord7
Push and pop registers 14 110/1[1|L|1]0|R Rlist
Multiple load and store 15 1/1]0]0|L Rb Rlist
Conditional branch 16 111101 Cond Softset8
Software interrupt 17 111101 (1]1]1]1 Value8
Unconditional branch 18 11111010 Offset11
Long branch with link 19 111111 |H Offset

Format 1514131211109 8 7 6 5 4 3 2 1 0

Figure 1-6 Thumb instruction set formats
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The Thumb instruction set summary is listed in Table 1-7.

Table 1-7 Thumb instruction set summary

Operation Assembly syntax
Move Immediate MOV Rd, #8bit_Imm
High to Low MOV Rd, Hs
Low to High MOV Hd, Rs
High to High MOV Hd, Hs
Arithmetic Add ADD Rd, Rs, #3bit_Imm
Add Low, and Low ADD Rd, Rs, Rn
Add High to Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add High to High ADD Hd, Hs
Add Immediate ADD Rd, #8bit_Imm
Add Value to SP ADD SP, #7bit_Imm ADD SP, #-7bit_Imm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn SUB Rd, Rs, #3bit_Imm
Subtract Immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MUL Rd, Rs
Compare Low, and Low CMP Rd, Rs
Compare Low, and High CMP Rd, Hs
Compare High, and Low CMP Hd, Rs
Compare High, and High CMP Hd, Hs
Compare Negative CMN Rd, Rs
Compare Immediate CMP Rd, #8bit_Imm
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Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax
Logical AND AND Rd, Rs
EOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MVN Rd, Rs
Test bits TST Rd, Rs
Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm LSL Rd, Rs
Logical shift right LSR Rd, Rs, #5bit_shift_imm LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm ASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditional -
. if Z set BEQ Tabel
. if Z clear BNE Tabel
. if C set BCS Tabel
. if C clear BCC Tabel
. if N set BMI Tabel
. if N clear BPL Tabel
. if V set BVS Tabel
. if V clear BVC Tabel
. if C set and Z clear BHI Tabel
. if C clear and Z set BLS Tabel
o if ((N set and V set) or (N clear and V clear)) BGE Tabel
. if ((N set and V clear) or if (N clear and V set))  BLT Tabel
. if (Z clear and ((N or V set) or (N or V clear))) BGT Tabel

ARM DDI 0210C
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Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax

. if (Z set or ((N set and V clear) or (N clear and BLE Tabel
V set)))

Unconditional B label
Long branch with link BL Tabel
Optional state change -
. to address held in Lo reg BX Rs
. to address held in Hi reg BX Hs

Load With immediate offset -
. word LDR Rd, [Rb, #7bit_offset]
. halfword LDRH Rd, [Rb, #6bit_offset]
. byte LDRB Rd, [Rb, #5bit_offset]
With register offset -
. word LDR Rd, [Rb, Ro]
. halfword LDRH Rd, [Rb, Ro]
. signed halfword LDRSH Rd, [Rb, Ro]
3 byte LDRB Rd, [Rb, Ro]
. signed byte LDRSB Rd, [Rb, Ro]
PC-relative LDR Rd, [PC, #1@bit_Offset]
SP-relative LDR Rd, [SP, #1@bit_Offset]
Address -
o using PC ADD Rd, PC, #10bit_Offset
. using SP ADD Rd, SP, #10bit_Offset
Multiple LDMIA Rb!, <reglist>
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Table 1-7 Thumb instruction set summary (continued)

Operation Assembly syntax
Store With immediate offset -
. word STR Rd, [Rb, #7bit_offset]
o halfword STRH Rd, [Rb, #6bit_offset]
. byte STRB Rd, [Rb, #5bit_offset]
With register offset -
. word STR Rd, [Rb, Ro]
o halfword STRH Rd, [Rb, Ro]
. byte STRB Rd, [Rb, Ro]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STMIA Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <reglist>

Push LR, and registers onto stack

PUSH <reglist, LR>

Pop registers from stack

Pop registers, and pc from stack

POP <reglist>

POP <reglist, PG>

Software Interrupt

SWI 8bit_Imm

ARM DDI 0210C
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Chapter 2
Programmer’s Model

This chapter describes the ARM7TDMI core programmer’s model. It contains the
following sections:

. About the programmer’s model on page 2-2
. Processor operating states on page 2-3

. Memory formats on page 2-4

. Data types on page 2-6

. Operating modes on page 2-7

. Registers on page 2-8

. The program status registers on page 2-13
. Exceptions on page 2-16

. Interrupt latencies on page 2-23

. Reset on page 2-24.
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21 About the programmer’s model

The ARM7TDMI processor core implements ARM architecture v4T, which includes
the 32-bit ARM instruction set, and the 16-bit Thumb instruction set. The programmer’s
model is described in the ARM Architecture Reference Manual.
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2.2 Processor operating states

The ARM7TDMI processor has two operating states:
ARM 32-bit, word-aligned ARM instructions are executed in this state.
Thumb 16-bit, halfword-aligned Thumb instructions are executed in this state.

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate
halfwords.

Note

Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

221 Switching state

The operating state of the ARM7TDMI core can be switched between ARM state and
Thumb state using the BX instruction. This is described in the ARM Architecture
Reference Manual.

All exception handling is entered in ARM state. If an exception occurs in Thumb state,
the processor reverts to ARM state. The transition back to Thumb state occurs
automatically on return. An exception handler can change to Thumb state but it must
return to ARM state to enable the exception handler to terminate correctly.

ARM DDI 0210C
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2.3

2341

Memory formats

Little-endian

31

The ARM7TDMI processor views memory as a linear collection of bytes numbered in
ascending order from zero. For example:

. bytes zero to three hold the first stored word
. bytes four to seven hold the second stored word.

The ARM7TDMI processor is bi-endian and can treat words in memory as being stored
in either:

. Little-endian.
. Big-endian on page 2-5

Note
Little-endian is traditionally the default format for ARM processors.

The endian format of a CPU dictates where the most significant byte or digits must be
placed in a word. Because numbers are calculated by the CPU starting with the least
significant digits, little-endian numbers are already set up for the processing order.

Endian configuration has no relevance unless data is stored as words and then accessed
in smaller sized quantities (halfwords or bytes).

In little-endian format, the lowest addressed byte in a word is considered the
least-significant byte of the word and the highest addressed byte is the most significant.
So the byte at address 0 of the memory system connects to data lines 7 through 0.

For a word-aligned address A, Figure 2-1 shows how the word at address A, the
halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3
map on to each other when the core is configured as little-endian.

24 23 16 15 8 7 0

Word at address A

Halfword at address A+2 Halfword at address A

Byte at address A+3 | Byte at address A+2 | Byte at address A+1 Byte at address A

Figure 2-1 Little-endian addresses of bytes and halfwords within words

2-4
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2.3.2 Big-endian

31

In big-endian format, the ARM7TDMI processor stores the most significant byte of a
word at the lowest-numbered byte, and the least significant byte at the
highest-numbered byte. So the byte at address 0 of the memory system connects to data
lines 31 through 24.

For a word-aligned address A, Figure 2-2 shows how the word at address A, the
halfword at addresses A and A+2, and the bytes at addresses A, A+1, A+2, and A+3
map on to each other when the core is configured as big-endian.

24 23 16 15 8 7 0

Word at address A

Halfword at address A Halfword at address A+2

Byte at address A | Byte at address A+1 | Byte at address A+2 | Byte at address A+3

Figure 2-2 Big-endian addresses of bytes and halfwords within words

ARM DDI 0210C
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2.4 Data types
The ARM7TDMI processor supports the following data types:
. words, 32-bit
. halfwords, 16-bit
. bytes, 8-bit.
You must align these as follows:
. word quantities must be aligned to four-byte boundaries
. halfword quantities must be aligned to two-byte boundaries
. byte quantities can be placed on any byte boundary.
Note
Memory systems are expected to support all data types. In particular, the system must
support subword writes without corrupting neighboring bytes in that word.
2-6 Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C
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25 Operating modes

The ARM7TDMI processor has seven modes of operation:

User mode is the usual ARM program execution state, and is used for executing
most application programs.

Fast Interrupt (FIQ) mode supports a data transfer or channel process.
Interrupt (IRQ) mode is used for general-purpose interrupt handling.
Supervisor mode is a protected mode for the operating system.

Abort mode is entered after a data or instruction Prefetch Abort.
System mode is a privileged user mode for the operating system.

—— Note

You can only enter System mode from another privileged mode by modifying the
mode bit of the Current Program Status Register (CPSR).

Undefined mode is entered when an undefined instruction is executed.

Modes other than User mode are collectively known as privileged modes. Privileged
modes are used to service interrupts or exceptions, or to access protected resources.

Each register has a mode identifier as listed in Table 2-1.

Table 2-1 Register mode identifiers

Mode Mode identifier

User usr

Fast interrupt ~ fiq

Interrupt irq
Supervisor sve
Abort abt
System Sys

Undefined und

ARM DDI 0210C
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2.6

2.6.1

Registers

The ARM7TDMI processor has a total of 37 registers:
. 31 general-purpose 32-bit registers
. 6 status registers.

These registers are not all accessible at the same time. The processor state and operating
mode determine which registers are available to the programmer.

The ARM-state register set

In ARM state, 16 general registers and one or two status registers are accessible at any
one time. In privileged modes, mode-specific banked registers become available. Figure
2-3 on page 2-10 shows which registers are available in each mode.

The ARM-state register set contains 16 directly-accessible registers, r0 tor15. A further
register, the CPSR, contains condition code flags and the current mode bits. Registers
10 to r13 are general-purpose registers used to hold either data or address values.
Registers r14 and r15 have the following special functions:

Link register Register r14 is used as the subroutine Link Register (LR).

Register r14 receives a copy of r15 when a Branch with Link (BL)
instruction is executed.

At all other times you can treat r14 as a general-purpose register.
The corresponding banked registers r14_svc, r14_irq, r14_fiq,
r14_abt and r14_und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Program counter Register r15 holds the PC.

In ARM state, bits [1:0] of r15 are undefined and must be ignored.
Bits [31:2] contain the PC.

In Thumb state, bit [0] is undefined and must be ignored. Bits
[31:1] contain the PC.

By convention, r13 is used as the Stack Pointer (SP).

In privileged modes, another register, the Saved Program Status Register (SPSR), is
accessible. This contains the condition code flags and the mode bits saved as a result of
the exception which caused entry to the current mode.

Banked registers are discrete physical registers in the core that are mapped to the
available registers depending on the current processor operating mode. Banked register
contents are preserved across operating mode changes.

2-8
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FIQ mode has seven banked registers mapped to r8—r14 (r8_figq—r14_fiq).

In ARM state, many FIQ handlers do not have to save any registers.

Programmer’s Model

The User, IRQ, Supervisor, Abort, and undefined modes each have two banked registers

mapped to r13 and r14, allowing a private SP and LR for each mode.

System mode shares the same registers as User mode.

Figure 2-3 shows the ARM-state registers.

ARM-state general registers and program counter

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
rd4 rd4 rd4 rd r4 r4
r5 r5 r5 r5 r5 r5
r6 ré ré ré ré ré
r7 r7 r7 r7 r7 r7
r8 r8_fiq r8 r8 r8 r8
r9 r9_fiq r9 r9 r9 r9
r10 r10_fiq r10 r10 r10 r10
r1 r11_fiq r1 r11 r1 r11
r12 r12_fiq r12 r12 r12 r12
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)

ARM-state program status registers
’ CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

B = banked register

Figure 2-3 Register organization in ARM state

ARM DDI 0210C
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2.6.2

The Thumb-state register set

The Thumb-state register set is a subset of the ARM-state set. The programmer has
access to:

8 general registers, rO0—17

the PC
the SP
the LR

the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set is
shown in Figure 2-4.

Thumb-state general registers and program counter

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
ré ré ré ré ré ré
r7 r7 r7 r7 r7 r7
SP SP_fiq SP_svc SP_abt SP_irgq SP_und
LR LR_fiq LR_svc LR_abt LR_irq LR_und
PC PC PC PC PC PC
Thumb-state program status registers
S CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il = banked register

Figure 2-4 Register organization in Thumb state

2-10
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2.6.3 The relationship between ARM-state and Thumb-state registers

The Thumb-state registers relate to the ARM-state registers in the following way:

Thumb-state rO—r7 and ARM-state rO—r7 are identical

Thumb-state CPSR and SPSRs and ARM-state CPSR and SPSRs are identical
Thumb-state SP maps onto the ARM-state r13

Thumb-state LR maps onto the ARM-state r14

Thumb-state pc maps onto the ARM-state pc (r15).

These relationships are shown in Figure 2-5.

Thumb state ARM state
ro > ro
r1 > r1
r2 > r2
r3 > r3
r4 > r4
r5 > rs
ré > ré
r7 > r7
r8
ro
r10
r11
ri2
Stack pointer (SP) » Stack pointer (r13)
Link register (LR) » Link register (r14)
Program counter (PC) > PC (r15)
Current program
status register > CPSR
(CPSR)
Saved program status
registerg(SPSR) d SPSR

Figure 2-5 Mapping of Thumb-state registers onto ARM-state registers

ARM DDI 0210C
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Note

Registers rO—r7 are known as the low registers. Registers r8—r15 are known as the high
registers.

2.6.4 Accessing high registers in Thumb state

In Thumb state, the high registers, r8-r15, are not part of the standard register set. The
assembly language programmer has limited access to them, but can use them for fast
temporary storage.

You can use special variants of the MOV instruction to transfer a value from a low
register, in the range r0-r7, to a high register, and from a high register to a low register.
The CMP instruction enables you to compare high register values with low register
values. The ADD instruction enables you to add high register values to low register
values. For more details, see the ARM Architecture Reference Manual.
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2.7 The program status registers

The ARM7TDMI processor contains a CPSR and five SPSRs for exception handlers to
use. The program status registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

Condition
code flags Reserved Control bits
| | |
| I . |
31 30 29 28 27 26 25 24 23 8 7 6 54 3 2 10
Nizjelvi- [ [/ [V R [T amsvzMiivo
Overflow Mode bits
——— Carry or borrow or extend - State bit
Zero ———  FIQ disable
- Negative or less than IRQ disable
Figure 2-6 Program status register format
Note —

To maintain compatibility with future ARM processors, you must not alter any of the
reserved bits. One method of preserving these bits is to use a read-write-modify strategy
when changing the CPSR.

The remainder of this section describes:
. Condition code flags

. Control bits on page 2-14

. Reserved bits on page 2-15.

2741 Condition code flags

The N, Z, C, and V bits are the condition code flags, you can set them by arithmetic and
logical operations. They can also be set by MSR and LDM instructions. The
ARM7TDMI processor tests these flags to determine whether to execute an instruction.

All instructions can execute conditionally in ARM state. In Thumb state, only the
Branch instruction can be executed conditionally. For more information about
conditional execution, see the ARM Architecture Reference Manual.

ARM DDI 0210C
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2.7.2

Control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the:
. interrupt disable bits

. T bit

. mode bits.

The control bits change when an exception occurs. When the processor is operating in
a privileged mode, software can manipulate these bits.
Interrupt disable bits

The I and F bits are the interrupt disable bits:
. when the I bit is set, IRQ interrupts are disabled
. when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:
. when the T bit is set, the processor is executing in Thumb state
. when the T bit is clear, the processor executing in ARM state.

The operating state is reflected on the external signal TBIT.

—— Caution

Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If
you do this, the processor enters an unpredictable state.

Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C
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Mode bits

Bits M[4:0] determine the processor operating mode as shown in Table 2-2. Not all
combinations of the mode bits define a valid processor mode, so take care to use only
the bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb-state registers Visible ARM-state registers

10000 User r0-r7, SP, LR, PC, CPSR r0-r14, PC, CPSR

10001 FIQ r0-r7, SP_fiq, LR_fiq, PC, CPSR, r0-17, r8_fiq-r14_fig, PC, CPSR,
SPSR_fiq SPSR_fiq

10010 IRQ r0-r7, SP_irq, LR _irq, PC, CPSR, r0-r12, r13_irq, r14_irq, PC, CPSR,
SPSR_irq SPSR_irq

10011 Supervisor  r0-r7, SP_svc, LR_svc, PC, CPSR, r0-r12, r13_svc, r14_svc, PC, CPSR,
SPSR_svc SPSR_svc

10111 Abort rO0—r7, SP_abt, LR_abt, PC, CPSR, r0-r12, r13_abt, r14_abt, PC, CPSR,
SPSR_abt SPSR_abt

11011 Undefined rO0—r7, SP_und, LR_und, PC, CPSR, rO0—r12, r13_und, r14_und, PC, CPSR,
SPSR_und SPSR_und

11111 System r0-r7, SP, LR, PC, CPSR r0-r14, PC, CPSR

An illegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, apply reset.

2.7.3 Reserved bits

The remaining bits in the PSRs are unused, but are reserved. When changing a PSR flag
or control bits, make sure that these reserved bits are not altered. Also, make sure that
your program does not rely on reserved bits containing specific values because future
processors might have these bits set to 1 or 0.

ARM DDI 0210C
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2.8 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example, to service an interrupt from a peripheral. Before attempting to handle an
exception, the ARM7TDMI processor preserves the current processor state so that the
original program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptions are dealt with in the fixed
order given in Table 2-3.

This section provides details of the ARM7TDMI processor exception handling:

. Exception entry and exit summary

. Entering an exception on page 2-17

. Leaving an exception on page 2-17

. Fast interrupt request on page 2-18

. Interrupt request on page 2-18

. Software interrupt instruction on page 2-20
. Undefined instruction on page 2-20

. Exception vectors on page 2-21

. Exception priorities on page 2-21.

2.8.1 Exception entry and exit summary

Table 2-3 summarizes the pc value preserved in the relevant r14 on exception entry, and
the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Exception . . Previous state ARM r14_x
Return instruction Remarks

or entry Thumb r14_x

BL MOV PC, R14 PC+4 PC+2 Where PC is the address of the BL, SWI, or
undefined instruction fetch that had the

SWI MOVS PC, Rl4_svc PC+4 PC+2 Prefetch Abort

UDEF MOVS PC, R14_und PC+4 PC+2

PABT SUBS PC, R14_abt, #4 PC+4 PC+4

FIQ SUBS PC, R14_fiq, #4 PC+4 PC+4 Where PC is the address of the instruction

. that was not executed because the FIQ or

IRQ SUBS PC, Rl4_irq, #4  PC+4 PC+4 IRQ took priority

DABT SUBS PC, R14_abt, #8  PC+8 PC+8 Where PC is the address of the Load or Store
instruction that generated the Data Abort

RESET Not applicable - - The value saved in r14_svc upon reset is
unpredictable
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2.8.2 Entering an exception

The ARM7TDMI processor handles an exception as follows:
1. Preserves the address of the next instruction in the appropriate LR.

When the exception entry is from ARM state, the ARM7TDMI processor copies
the address of the next instruction into the LR, current PC+4 or PC+8 depending
on the exception.

When the exception entry is from Thumb state, the ARM7TDMI processor writes
the value of the PC into the LR, offset by a value, current PC+4 or PC+8
depending on the exception, that causes the program to resume from the correct
place on return.

The exception handler does not have to determine the state when entering an
exception. For example, in the case of a SWI, MOVS PC, rl4_svc always returns to
the next instruction regardless of whether the SWI was executed in ARM or
Thumb state.

2. Copies the CPSR into the appropriate SPSR.
3. Forces the CPSR mode bits to a value that depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM7TDMI processor can also set the interrupt disable flags to prevent otherwise
unmanageable nestings of exceptions.

Note

Exceptions are always entered in ARM state. When the processor is in Thumb state and
an exception occurs, the switch to ARM state takes place automatically when the
exception vector address is loaded into the PC. An exception handler might change to
Thumb state but it must return to ARM state to enable the exception handler to
terminate correctly.

2.8.3 Leaving an exception

When an exception is completed, the exception handler must:

1. Move the LR, minus an offset to the PC. The offset varies according to the type
of exception, as shown in Table 2-3 on page 2-16.

2. Copy the SPSR back to the CPSR.

Clear the interrupt disable flags that were set on entry.

Note

The action of restoring the CPSR from the SPSR automatically resets the T bit to
whatever value it held immediately prior to the exception.

ARM DDI 0210C
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2.8.4

2.8.5

2.8.6

Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports data transfers or channel
processes. In ARM state, FIQ mode has eight banked registers to remove the
requirement for register saving. This minimizes the overhead of context switching.

An FIQ is externally generated by taking the nFIQ input LOW. The input passes into
the core through a synchronizer.

Irrespective of whether exception entry is from ARM state or from Thumb state, an FIQ
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

FIQ exceptions can be disabled within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM7TDMI processor checks for a LOW level on the
output of the FIQ synchronizer at the end of each instruction.

Interrupt request

Abort

The Interrupt Request (IRQ) exception is a normal interrupt caused by a LOW level on
the nIRQ input. IRQ has a lower priority than FIQ, and is masked on entry to an FIQ
sequence. As with the nFIQ input, nIRQ passes into the core through a synchronizer.

Irrespective of whether exception entry is from ARM state or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

You can disable IRQ at any time, by setting the I bit in the CPSR from a privileged
mode.

An abort indicates that the current memory access cannot be completed. An abort is
signaled by the external ABORT input. The ARM7TDMI processor checks for the abort
exception at the end of memory access cycles.

The abort mechanism enables the implementation of a demand-paged virtual memory
system. In such a system, the processor is allowed to generate arbitrary addresses. When
the data at an address is unavailable, the Memory Management Unit (MMU) signals an
abort.

The abort handler must then:

. Work out the cause of the abort and make the requested data available.
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. Load the instruction that caused the abort using an LDR Rn, [R14_abt,#-8]
instruction to determine whether that instruction specifies base register
write-back. If it does, the abort handler must then:

—  determine from the instruction what the offset applied to the base register
by the write-back was

— apply the opposite offset to the value that will be reloaded into the base
register when the abort handler returns.

This ensures that when the instruction is retried, the base register will have been
restored to the value it had when the instruction was originally executed.

The application program needs no knowledge of the amount of memory available to it,
nor is its state in any way affected by the abort.

There are two types of abort:
. a Prefetch Abort occurs during an instruction prefetch
. a Data Abort occurs during a data access.

Prefetch Abort

When a Prefetch Abort occurs, the ARM7TDMI processor marks the prefetched
instruction as invalid, but does not take the exception until the instruction reaches the
Execute stage of the pipeline. If the instruction is not executed, for example because it
fails its condition codes or because a branch occurs while it is in the pipeline, the abort
does not take place.

After dealing with the reason for the abort, the handler executes the following
instruction irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort

When a Data Abort occurs, the action taken depends on the instruction type:

. Single data transfer instructions (LDR and STR). If write back base register is
specified by the instruction then the abort handler must be aware of this. In the
case of a load instruction the ARM7TDMI processor prevents overwriting of the
destination register with the loaded data.

. Swap instruction (SWP):

— onaread access suppresses the write access and the write to the destination
register

— on a write access suppresses the write to the destination register.

ARM DDI 0210C
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. Block data transfer instructions (LDM and STM) complete. When write-back is
specified, the base register is updated.

If the base register is in the transfer list and has already been overwritten with
loaded data by the time that the abort is indicated then the base register reverts to
the original value. The ARM7TDMI processor prevents all register overwriting
with loaded data after an abort is indicated. This means that the final value of the
base register is always the written-back value, if write-back is specified, at its
original value. It also means that the ARM7TDMI core always preserves r15 in
an aborted LDM instruction, because r15 is always either the last register in the
transfer list or not present in the transfer list.

After fixing the reason for the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This action restores both the PC and the CPSR, and retries the aborted instruction.

2.8.7 Software interrupt instruction

The Software Interrupt instruction (SWI) is used to enter Supervisor mode, usually to
request a particular supervisor function. The SWI handler reads the opcode to extract
the SWI function number.

A SWI handler returns by executing the following irrespective of the processor
operating state:

MOVS PC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SWI.

2.8.8 Undefined instruction

When the ARM7TDMI processor encounters an instruction that neither it, nor any
coprocessor in the system can handle, the ARM7TDMI core takes the undefined
instruction trap. Software can use this mechanism to extend the ARM instruction set by
emulating undefined coprocessor instructions.

After emulating the failed instruction, the trap handler executes the following
irrespective of the processor operating state:

MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the undefined
instruction.

For more information about undefined instructions, see the ARM Architecture Reference
Manual.

2-20

Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C



2.8.9 Exception vectors

Programmer’s Model

Table 2-4 lists the exception vector addresses. In this table, I and F represent the
previous value of the IRQ and FIQ interrupt disable bits respectively in the CPSR.

Table 2-4 Exception vectors

Address  Exception Mode on entry | state on entry F state on entry
0x00000000  Reset Supervisor Set Set

0x00000004  Undefined instruction = Undefined Set Unchanged
0x00000008  Software interrupt Supervisor Set Unchanged
0x0000000C  Prefetch Abort Abort Set Unchanged
0x00000010  Data Abort Abort Set Unchanged
0x00000014 Reserved Reserved - -

0x00000018 I1RQ IRQ Set Unchanged
0x0000001C  FIQ FIQ Set Set

2.8.10 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they are handled. The priority order is listed in Table 2-5.

Table 2-5 Exception priority order

Priority

Exception

Highest

Reset

Data Abort

FIQ

IRQ

Prefetch Abort

Lowest

Undefined instruction and SWI
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Some exceptions cannot occur together:

. The undefined instruction and SWI exceptions are mutually exclusive. Each
corresponds to a particular, non-overlapping, decoding of the current instruction.

. When FIQs are enabled, and a Data Abort occurs at the same time as an FIQ, the
ARMT7TDMI processor enters the Data Abort handler, and proceeds immediately
to the FIQ vector.

A normal return from the FIQ causes the Data Abort handler to resume execution.

Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculations in a system that uses aborts to support virtual
memory.
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2.9 Interrupt latencies

The calculations for maximum and minimum latency are described in:
. Maximum interrupt latencies
. Minimum interrupt latencies.

2.9.1 Maximum interrupt latencies
When FIQs are enabled, the worst-case latency for FIQ comprises a combination of:

Tsyncmax The longest time the request can take to pass through the synchronizer.
Tsyncmax is four processor cycles.

Tidm The time for the longest instruction to complete. The longest instruction
is an LDM that loads all the registers including the PC. Tig, is 20 cycles
in a zero wait state system.

Texe The time for the Data Abort entry. Tex is three cycles.

Ttiq The time for FIQ entry. Tfq is two cycles.

The total latency is therefore 29 processor cycles, just over 0.7 microseconds in a
system that uses a continuous 40MHz processor clock. At the end of this time, the
ARM7TDMI processor executes the instruction at 0x1c.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ,
having higher priority, can delay entry into the IRQ handling routine for an arbitrary
length of time.

2.9.2 Minimum interrupt latencies

The minimum latency for FIQ or IRQ is the shortest time the request can take through
the synchronizer, Tsynemin, plus Trg, a total of five processor cycles.
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2.10 Reset

When the nRESET signal goes LOW a reset occurs, and the ARM7TDMI core
abandons the executing instruction and continues to increment the address bus as if still
fetching word or halfword instructions. nMREQ and SEQ indicates internal cycles
during this time.

When nRESET goes HIGH again, the ARM7TDMI processor:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and
CPSR into them. The values of the PC and CPSR are indeterminate.

2. Forces M[4:0] to b10011, Supervisor mode, sets the I and F bits, and clears the
T-bit in the CPSR.

3. Forces the PC to fetch the next instruction from address 0x00.
4.  Reverts to ARM state if necessary and resumes execution.
After reset, all register values except the PC and CPSR are indeterminate.

More information is provided in Reset sequence after power up on page 3-31.
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Memory Interface

This chapter describes the ARM7TDMI processor memory interface. It contains the
following sections:

About the memory interface on page 3-2
Bus interface signals on page 3-3

Bus cycle types on page 3-4

Addressing signals on page 3-11

Address timing on page 3-14

Data timed signals on page 3-17

Stretching access times on page 3-28
Privileged mode access on page 3-30

Reset sequence after power up on page 3-31.
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3.1 About the memory interface

The ARM7TDMI processor has a Von Neumann architecture, with a single 32-bit data
bus carrying both instructions and data. Only load, store, and swap instructions can
access data from memory.
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The signals in the ARM7TDMI processor bus interface can be grouped into four

categories:

. clocking and clock control
. address class signals

. memory request signals

. data timed signals.

The clocking and clock control signals are:

. MCLK

. nWAIT

. ECLK

. nRESET.
The address class signals are:
. A[31:0]

. nRW

. MAS[1:0]
. nOPC

. nTRANS
. LOCK

. TBIT.

The memory request signals are:
. nMREQ
. SEQ.

The data timed signals are:
. D[31:0]

. DIN[31:0]

. DOUT]I31:0]

. ABORT

. BL[3:0].

The ARM7TDMI processor uses both the rising and falling edges of MCLK.

Bus cycles can be extended using the nWAIT signal. This signal is described in
Stretching access times on page 3-28. All other sections of this chapter describe a

simple system in which nWAIT is permanently HIGH.
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3.3 Bus cycle types

The ARM7TDMI processor bus interface is pipelined. This gives the maximum time for
a memory cycle to decode the address and respond to the access request:

. memory request signals are broadcast in the bus cycle ahead of the bus cycle to
which they refer

. address class signals are broadcast half a clock cycle ahead of the bus cycle to
which they refer.

A single memory cycle is shown in Figure 3-1.

v [ 1L L L]

APE | | | | |
TMREQ X X X X_
asto) X X X X
w11 —— O

Figure 3-1 Simple memory cycle
The ARM7TDMI processor bus interface can perform four different types of bus cycle:

. a nonsequential cycle requests a transfer to or from an address which is unrelated
to the address used in the preceding cycle

. a sequential cycle requests a transfer to or from an address which is either the
same, one word, or one halfword greater than the address used in the preceding
cycle

. an internal cycle does not require a transfer because it is performing an internal

function, and no useful prefetching can be performed at the same time

. a coprocessor register transfer cycle uses the data bus to communicate with a
coprocessor, but does not require any action by the memory system.
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Bus cycle types are encoded on the nMREQ and SEQ signals as listed in Table 3-1.

Table 3-1 Bus cycle types

nMREQ SEQ Buscycletype Description

0 0 N-cycle Nonsequential cycle

0 1 S-cycle Sequential cycle

1 0 I-cycle Internal cycle

1 1 C-cycle Coprocessor register transfer cycle

A memory controller for the ARM7TDMI processor must commit to a memory access
only on an N-cycle or an S-cycle.

3.3.1 Nonsequential cycles

A nonsequential cycle is the simplest form of bus cycle, and occurs when the processor
requests a transfer to or from an address that is unrelated to the address used in the
preceding cycle. The memory controller must initiate a memory access to satisfy this
request.

The address class and (nMREQ and SEQ) signals that comprise an N-cycle are
broadcast on the bus. At the end of the next bus cycle the data is transferred between the
CPU and the memory. It is not uncommon for a memory system to require a longer
access time (extending the clock cycle) for nonsequential accesses. This is to allow time
for full address decoding or to latch both a row and column address into DRAM. This
is illustrated in Figure 3-2 on page 3-6.

—— Note

In Figure 3-2 on page 3-6, nMREQ and SEQ are highlighted where they are valid to
indicate the N-cycle.
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N-cycle , S-cycle

MCLK |_| |_|
A[31:0] X a X atd
nMREQ ~ \ [
SEQ / L
nRAS \
D[31:0] CD—

Figure 3-2 Nonsequential memory cycle

The ARM7TDMI processor can perform back-to-back, nonsequential memory cycles.
This happens, for example, when an STR instruction is executed. If you are designing a
memory controller for the ARM7TDMI core, and your memory system is unable to
cope with this case, use the nWAIT signal to extend the bus cycle to allow sufficient
cycles for the memory system. See Stretching access times on page 3-28.

3.3.2 Sequential cycles

Sequential cycles are used to perform burst transfers on the bus. This information can
be used to optimize the design of a memory controller interfacing to a burst memory
device, such as a DRAM.

During a sequential cycle, the ARM7TDMI processor requests a memory location that
is part of a sequential burst. For the first cycle in the burst, the address can be the same
as the previous internal cycle. Otherwise the address is incremented from the previous

cycle:
. for a burst of word accesses, the address is incremented by 4 bytes
. for a burst of halfword accesses, the address is incremented by 2 bytes.

Bursts of byte accesses are not possible.

A burst always starts with an N-cycle or a merged IS-cycle (see Nonsequential cycles
on page 3-5), and continues with S-cycles. A burst comprises transfers of the same type.
The A[31:0] signal increments during the burst. The other address class signals are
unaffected by a burst.

3-6 Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C



Memory Interface

The possible burst types are listed in Table 3-2.

Table 3-2 Burst types

Burst type Address increment Cause

Word read 4 bytes ARM7TDMIcore code fetches, or LDM instruction
Word write 4 bytes STM instruction
Halfword read 2 bytes Thumb code fetches

All accesses in a burst are of the same data width, direction, and protection type. For
more details, see Addressing signals on page 3-11.

Memory systems can often respond faster to a sequential access and can require a
shorter access time compared to a nonsequential access. An example of a burst access
is shown in Figure 3-3.

4———N-cycle———p«S-cycle >4 S-cycle >

vk [ | e B I

A[31:0] X a X §a+4 X §a+8 Xamj‘12
nMREQ | ‘ |
SEQ /

nRAS 3 \ | %

nCAS \ / \ / \ /_
D[31:0] CH—Cr—D)

Figure 3-3 Sequential access cycles
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3.3.3 Internal cycles

During an internal cycle, the ARM7TDMI processor does not require a memory access,
as an internal function is being performed, and no useful prefetching can be performed
at the same time.

Where possible the ARM7TDMI processor broadcasts the address for the next access,
so that decode can start, but the memory controller must not commit to a memory
access. This is shown in Figure 3-4 and, is further described in Nonsequential memory
cycle on page 3-6.

N-cycle: S-cycle | I-cycle :C-cycle
MCLK | | | | | |

A31:0] a X §a+4 X §a+8 X a+12 )

nMREQ I U

SEQ

nRAS | |

nCAS _\_/ \_/ |
D[31:0] —CD C_\_/ -

Figure 3-4 Internal cycles

3.3.4 Merged IS cycles

Where possible, the ARM7TDMI processor performs an optimization on the bus to
allow extra time for memory decode. When this happens, the address of the next
memory cycle is broadcast on this bus during an internal cycle. This enables the
memory controller to decode the address, but it must not initiate a memory access
during this cycle. In a merged IS cycle, the next cycle is a sequential cycle to the same
memory location. This commits to the access, and the memory controller must initiate
the memory access. This is shown in Figure 3-5 on page 3-9.

3-8
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«—|-cycle—»<4——S-cycle—»

wok | L L
A310] X X
seq )\ / \
s —
nCAS \_/—
D[31:0] ::)—

Figure 3-5 Merged IS cycle

—— Note

When designing a memory controller, ensure that the design also works when an I-cycle
is followed by an N-cycle to a different address. This sequence can occur during
exceptions, or during writes to the PC. It is essential that the memory controller does
not commit to the memory cycle during an I-cycle.

3.3.5 Coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARM7TDMI processor uses the data
buses to transfer data to or from a coprocessor. A memory cycle is not required and the
memory controller does not initiate a transaction. The memory system must not drive
onto the data bus during a coprocessor register transfer cycle.

The coprocessor interface is described in Chapter 4 Coprocessor Interface. The
coprocessor register transfer cycle is shown in Figure 3-6 on page 3-10.
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¢ N-cycle* C-cycle%f
meew | | |||

ABtop X )( )(
nMREQ / \
D[31:01 < >—< X 5 =

Memory Memory Coprocessor

Figure 3-6 Coprocessor register transfer cycles

3.3.6 Summary of ARM memory cycle timing

A summary of ARM7TDMI processor memory cycle timing is shown in Figure 3-7.

«4—N-cycle——p«S-cycle- >« |-cycle < C-cycle »

vewk [ | I I e O
A[31:0] X a X §a+4 X §a+8 X X
NMREQ ~ | -/ |
nRAS \ /
nCAS i S A 1 i

Figure 3-7 Memory cycle timing
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34 Addressing signals

3.41  A[31:0]

342 nRW

3.43 MAS[1:0]

The address class signals are:

. A[31:0]
. nRW
. MAS[1:0]

. nOPC on page 3-12
. nTRANS on page 3-13
. LOCK on page 3-13
. TBIT on page 3-13.

A[31:0] is the 32-bit address bus that specifies the address for the transfer. All addresses
are byte addresses, so a burst of word accesses results in the address bus incrementing
by four for each cycle.

The address bus provides 4GB of linear addressing space.

When a word access is signaled the memory system ignores the bottom two bits, A[1:0],
and when a halfword access is signaled the memory system ignores the bottom bit,
A[0].

All data values must be aligned on their natural boundaries. All words must be
word-aligned.

nRW specifies the direction of the transfer. nRW indicates an ARM7TDMI processor
write cycle when HIGH, and an ARM7TDMI processor read cycle when LOW. A burst
of S-cycles is always either a read burst, or a write burst. The direction cannot be
changed in the middle of a burst.

The MASI[1:0] bus encodes the size of the transfer. The ARM7TDMI processor can
transfer word, halfword, and byte quantities.

All writable memory in an ARM7TDMI processor based system must support the
writing of individual bytes to enable the use of the C Compiler and the ARM debug tool
chain, for example Multi-ICE.

ARM DDI 0210C
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The address produced by the processor is always a byte address. However, the memory
system must ignore the bottom redundant bits of the address. The significant address
bits are listed in Table 3-3.

Table 3-3 Significant address bits

MAS[1:0] Width Significant address bits

00 Byte A[31:0]
01 Halfword  A[31:1]
10 Word A[31:2]
11 Reserved -

The size of transfer does not change during a burst of S-cycles.

The ARM7TDMI processor cannot generate bursts of byte transfers.

Note

During instruction accesses the redundant address bits are undefined. The memory
system must ignore these redundant bits.

A writable memory system for the ARM7TDMI processor must have individual byte
write enables. Both the C Compiler and the ARM debug tool chain, for example,
Multi-ICE, assume that arbitrary bytes in the memory can be written. If individual byte
write capability is not provided, you might not be able to use either of these tools
without data corruption.

344 nOPC
The nOPC output conveys information about the transfer. An MMU can use this signal
to determine whether an access is an opcode fetch or a data transfer. This signal can be
used with nTRANS to implement an access permission scheme. The meaning of nOPC
is listed in Table 3-4.
Table 3-4 nOPC
nOPC Opcode/data
0 Opcode
1 Data
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nTRANS

LOCK

TBIT

Memory Interface

The nTRANS output conveys information about the transfer. An MMU can use this
signal to determine whether an access is from a privileged mode or User mode. This
signal can be used with nOPC to implement an access permission scheme. The
meaning of nNTRANS is listed in Table 3-5.

Table 3-5 nTRANS encoding

nTRANS Mode
0 User
1 Privileged

More information relevant to the nTRANS signal and security is provided in Privileged
mode access on page 3-30.

LOCK is used to indicate to an arbiter that an atomic operation is being performed on
the bus. LOCK is normally LOW, but is set HIGH to indicate that a SWP or SWPB
instruction is being performed. These instructions perform an atomic read/write
operation, and can be used to implement semaphores.

TBIT is used to indicate the operating state of the ARM7TDMI processor. When in:
. ARM state, the TBIT signal is LOW
. Thumb state, the TBIT signal is HIGH.

Note

Memory systems do not usually have to use TBIT because MAS[1:0] indicates the size
of the instruction required.

ARM DDI 0210C
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3.5 Address timing

The ARM7TDMI processor address bus can operate in one of two configurations:
. pipelined
. depipelined.

Note

ARM Limited strongly recommends that pipelined address timing is used in new design
to obtain optimum system performance.

ARM Limited strongly recommends that ALE is tied HIGH and not used in new
designs.

Address depipelined configuration is controlled by the APE or ALE input signal. The
configuration is provided to ease the design of the ARM7TDMI processor in both
SRAM and DRAM-based systems.

APE affects the timing of the address bus A[31:0], plus nRW, MAS[1:0], LOCK,
nOPC, and n TRANS.

In most systems, particularly a DRAM-based system, it is desirable to obtain the
address from ARM7TDMI processor as early as possible. When APE is HIGH then the
ARMT7TDMI processor address becomes valid after the rising edge of MCLK before
the memory cycle to which it refers. This timing allows longer periods for address
decoding and the generation of DRAM control signals. Figure 3-8 shows the effect on
the timing when APE is HIGH.

vew L 5L L L

APE

P\ | \
A[31:0] X —C X A X

. ) ) Vo VAN Yo
D[31:0] 1) ) 7/ i/ A

TMREQ X X X X C
>_

Figure 3-8 Pipelined addresses

SRAMs and ROMs require that the address is held stable throughout the memory cycle.
In a system containing SRAM and ROM only, APE can be tied permanently LOW,
producing the desired address timing. In this configuration the address becomes valid
after the falling edge of MCLK as shown in Figure 3-9 on page 3-15.

3-14
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—— Note

The AMBA specification for Advanced High-performance Bus (AHB) and Advanced
System Bus (ASB) requires a pipelined address bus. This means that APE must be
configured HIGH.

vew L b T L L]
4 I R

nMREQ :
SEQ :

X |
A[31:0] X \Fé(

D[31:0]

AN
]
AN
J
N
N~
N
J
AN
T

Figure 3-9 Depipelined addresses

Many systems contain a mixture of DRAM, SRAM and ROM. To cater for the different
address timing requirements, APE can be safely changed during the LOW phase of
MCLK. Typically, APE is held at one level during a burst of sequential accesses to one
type of memory. When a nonsequential access occurs, the timing of most systems
enforce a wait state to allow for address decoding. As a result of the address decode,
APE can be driven to the correct value for the particular bank of memory being
accessed. The value of APE can be held until the memory control signals denote
another nonsequential access.

Previous ARM processors included the ALE signal, and this is retained for backwards
compatibility. This signal also enables you to modify the address timing to achieve the
same results as APE, but in a dynamic manner. To obtain clean MCLK low timing of
the address bus by this mechanism, ALE must be driven HIGH with the falling edge of
MCLK, and LOW with the rising edge of MCLK. ALE can simply be the inverse of
MCLK but the delay from MCLK to ALE must be carefully controlled so that the T q
timing constraint is achieved. Figure 3-10 on page 3-16 shows how you can use ALE

to achieve SRAM compatible address timing. See Chapter 7 AC and DC Parameters for
details of the exact timing constraints.
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Figure 3-10 SRAM compatible address timing

Note

If ALE is to be used to change address timing, then you must tie APE HIGH. Similarly,
if APE is to be used, ALE must be tied HIGH.

You can obtain better system performance when the address pipeline is enabled with
APE HIGH. This allows longer time for address decoding.
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3.6 Data timed signals

This section describes:

. D[31:0], DOUT[31:0], and DIN[31:0]

. ABORT on page 3-23

. Byte latch enables on page 3-23

. Byte and halfword accesses on page 3-25.

3.6.1  D[31:0], DOUT[31:0], and DIN[31:0]

The ARM7TDMI processor provides both unidirectional data buses, DIN[31:0],
DOUT[31:0], and a bidirectional data bus, D[31:0]. The configuration input BUSEN is

used to select which is active. Figure 3-11 shows the arrangement of the data buses and
bus-splitter logic.

————  Buffer control

EmbeddICE
Logic
< DIN[31:0]
ARM7TDMI ¢ P D[31:0]
Latch > DOUT[31:0]
G
I—Latch control4|

Figure 3-11 External bus arrangement

When the bidirectional data bus is being used then you must disable the unidirectional
buses by driving BUSEN LOW. The timing of the bus for three cycles, load-store-load,
is shown in Figure 3-12 on page 3-18.
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. read cycle , write cycle , read cycle ,

MCLK _| | | | | | |
D310

Figure 3-12 Bidirectional bus timing

Unidirectional data bus

When BUSEN is HIGH, all instructions and input data are presented on the input data
bus, DIN[31:0]. The timing of this data is similar to that of the bidirectional bus when
in input mode. Data must be set up and held to the falling edge of MCLK. For the exact
timing requirements see Chapter 7 AC and DC Parameters.

In this configuration, all output data is presented on DOUT[31:0]. The value on this bus
only changes when the processor performs a store cycle. Again, the timing of the data
is similar to that of the bidirectional data bus. The value on DOUT[31:0] changes after
the falling edge of MCLK.

The bus timing of a read-write-read cycle combination is shown in Figure 3-13.

. read cycle , write cycle , read cycle |
L I S
DIN[31:0] X D1§ X X D2§ X

DOUT[31:0] | X | Dout

D[31:0] <\»( 01%{ Dout )( <\»( D2§><

Figure 3-13 Unidirectional bus timing

When the unidirectional data buses are being used, and BUSEN is HIGH, the
bidirectional bus, D[31:0], must be left unconnected.

The unidirectional buses are typically used internally in ASIC embedded applications.
Externally, most systems still require a bidirectional data bus to interface to external
memory. Figure 3-14 on page 3-19 shows how you can join the unidirectional buses up
at the pads of an ASIC to connect to an external bidirectional bus.
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nENOUT

PAD

DOUT[31:0]

—— XDATA[31:0]

ARM7TDMI

DIN[31:0]

Figure 3-14 External connection of unidirectional buses

Bidirectional data bus

When BUSEN is LOW, the buffer between DIN[31:0] and D[31:0] is disabled. Any
data presented on DIN[31:0] is ignored. Also, when BUSEN is LOW, the value on
DOUT]31:0] is forced to 0x00000000.

When the ARM7TDMI processor is reading from memory DIN[31:0] is acting as an
input. During write cycles the ARM7TDMI core must output data. During phase 2 of
the previous cycle, the signal nRW is driven HIGH to indicate a write cycle. During the
actual cycle, nNENOUT is driven LOW to indicate that the processor is driving D[31:0]
as an output. Figure 3-15 shows the bus timing with the data bus enabled. Figure 3-16
on page 3-20 shows the circuit that exists in the processor for controlling exactly when
the external bus is driven out.

<4——memory cycle—p
MCLK

A[31:0] X

| X
nRW_/ \_*
| Vo
) S—

nENOUT P\

D[31:0]

N\

Figure 3-15 Data write bus cycle
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ARM7TDMI A
Scan I
cell [ ] ose
A
Data direction SC(;T [ ]nENOUT
control from core
A
Scan
coll [ ] nENIN
A
- TBE
Write data DI31:0]
from core :

Read data
to core

Figure 3-16 Data bus control circuit

The macrocell has an additional bus control signal, nENIN that enables the external
system to manually tristate the bus. In the simplest systems, nENIN can be tied LOW
and nENOUT can be ignored. In many applications, when the external data bus is a
shared resource, greater control might be required. In this situation, nNENIN can be used
to delay when the external bus is driven.

Note
For backwards compatibility, DBE is also included. At the macrocell level, DBE and
nENIN have almost identical functionality and in most applications one can be tied to
keep the data bus enabled.

The processor has another output control signal called TBE. This signal is usually only
used during test and must be tied HIGH when not in use. When driven LOW, TBE
forces all tristateable outputs to high impedance, it is as though both DBE and ABE
have been driven LOW, causing the data bus, the address bus, and all other signals
normally controlled by ABE to become high impedance.
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—— Note

There is no scan cell on TBE. Therefore, TBE is completely independent of scan data
and can be used to put the outputs into a high impedance state while scan testing takes
place.

Table 3-6 lists the tristate control of the processor outputs.

Table 3-6 Tristate control of processor outputs

Processor output ABE DBE TBE

A[31:0] Yes - Yes
D[31:0] - Yes Yes
nRW Yes - Yes
LOCK Yes - Yes
MASI[1:0] Yes - Yes
nOPC Yes - Yes
nTRANS Yes - Yes

ARM7TDMI core test chip example system

Connecting the ARM7TDMI processor data bus, D[31:0] to an external shared bus
requires additional logic that varies between applications in the case of a test chip.

In this application, care must be taken to prevent bus clash on D[31:0] when the data
bus drive changes direction. The timing of nENIN, and the pad control signals must be
arranged so that when the core starts to drive out, the pad drive onto D[31:0] is disabled
before the core starts to drive. Similarly, when the bus switches back to input, the core
must stop driving before the pad is enabled.

Figure 3-17 on page 3-22 shows the circuit implemented in the ARM7TDMI processor
test chip.
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ARM7TDMI test chip or product

ARM7TDMI core MCLK .
L | * [ ] mcLk
vdd

Scan DBE nEDBE
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nEN2

Scan — nENOUT
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—
L D[31:0]
|
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Figure 3-17 Test chip data bus circuit

Note

At the core level, TBE and DBE are inactive, tied HIGH, because in a packaged part
you do not have to manually force the internal buses into a high impedance state. At the
pad level, the test chip signal EDBE is used by the bus control logic to enable the
external memory controller to arbitrate the bus and asynchronously disable the
ARMT7TTDMI core test chip if necessary.
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ABORT indicates that a memory transaction failed to complete successfully. ABORT
is sampled at the end of the bus cycle during S-cycles and N-cycles.

If ABORT is asserted on a data access, it causes the processor to take the Data Abort
trap. If it is asserted on an opcode fetch, the abort is tracked down the pipeline, and the
Prefetch Abort trap is taken if the instruction is executed.

ABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.

3.6.3 Byte latch enables

To ease the connection of the ARM7TDMI core to subword sized memory systems,
input data and instructions can be latched on a byte-by-byte basis. You can achieve this
by the use of the BL[3:0] signal as follows:

. BL[3] controls the latching of the data present on D[31:24]
. BL[2] controls the latching of the data present on D[23:16]
. BL[1] controls the latching of the data present on D[15:8]
. BL[0] controls the latching of the data present on D[7:0].

Note

It is recommended that BL[3:0] is tied HIGH in new designs and word values from
narrow memory systems are latched onto latches that are external to the ARM7TDMI
core.

In a memory system that contains 32-bit memory only, BL[3:0] can be tied HIGH. For
subword-wide memory systems, the BL[3:0] signals are used to latch the data as it is

read out of memory. For example, a word access to halfword-wide memory must take
place in two memory cycles, as follows:

1. Inthe first cycle, the data for D[15:0] is obtained from the memory and latched
into the core on the falling edge of MCLK when BL[1:0] are both HIGH.

2. In the second cycle, the data for D[31:16] is latched into the core on the falling
edge of MCLK when BL[3:2] are both HIGH.

In Figure 3-18 on page 3-24, a word access is performed from halfword-wide memory
in two cycles:

1. Inthe first cycle, the read data is applied to the lower half of the bus.

2. Inthe second cycle, the read data is applied to the upper half of the bus.
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Because two memory cycles are required, nWAIT is used to stretch the internal
processor clock. nWAIT does not affect the operation of the data latches. Using this
method, data can be taken from memory a word, halfword, or byte at a time and the
memory can have as many wait states as required. In multi-cycle memory accesses,
nWAIT must be held LOW until the final part is latched.

In the example shown in Figure 3-18, the BL[3:0] signals are driven to value 0x3 in the
first cycle so that only the latches on D[15:0] are open. BL[3:0] can be driven to value
0xF and all of the latches opened. This does not affect the operation of the core because
the latches on D[31:16] are written with the correct data during the second cycle.

Note
BL[3:0] must be held HIGH during store cycles.

MCLK J

| | | | |

| | | | |

oS O N R

MREQ T T T T T
"sea | i A ! i ]
A[31:0] | X X! l i P

1 1 I 1 1

nWAIT : : \ | / : :

D[15:0] : : ) l l

: : : — :

D[31:16] ! ! ! { ' , !
BL[3:0] | | ) ox3 i oxC i ]

Figure 3-18 Memory access

Figure 3-19 on page 3-25 shows a halfword load from single-wait state byte-wide
memory. In the figure, each memory access takes two cycles:

. In the first access:
—  BLJ[3:0] are driven to 0xF
—  the correct data is latched from D[7:0]
— unknown data is latched from D[31:8].

. In the second cycle, the byte for D[15:8] is latched so the halfword on D[15:0] is
correctly read from memory. It does not matter that D[31:16] are unknown
because the core extracts only the halfword of interest.
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BL3:0] | . B oxF B lox2 § ]

D[7:0]
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Figure 3-19 Two-cycle memory access

3.6.4 Byte and halfword accesses

The processor indicates the size of a transfer by use of the MAS[1:0] signal as described
in MAS[1:0] on page 3-11.

Byte, halfword, and word accesses are described in:
. Reads
. Writes on page 3-26.

Reads

When a halfword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the processor extracts the valid halfword or byte field from
it. The fields extracted depend on the state of the BIGEND signal, which determines
the endian configuration of the system. See Memory formats on page 2-4.

A word read from 32-bit memory presents the word value on the whole data bus as listed
in Table 3-7 on page 3-26.

When connecting 8-bit to 16-bit memory systems to the processor, ensure that the data
is presented to the correct byte lanes on the core as listed in Table 3-7 on page 3-26.
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Table 3-7 Read accesses

Access type MAS[1:0] A[1:0] Little-endian BIGEND =0 Big-endian BIGEND = 1
Word 10 XX D[31:0] D[31:0]
Halfword 01 0X D[15:0] D[31:16]
01 1X D[31:16] D[15:0]
Byte 00 00 D[7:0] D[31:24]
00 01 D[15:8] D[23:16]
00 10 D[23:16] D[15:8]
00 11 D[31:24] D[7:0]
Note

For subword reads the value is placed in the ARM register in the least significant bits
regardless of the byte lane used to read the data. For example, a byte read on A[1:0] =
01 in a little-endian system means that the byte is read on bits D[15:8] but is placed in

the ARM register bits [7:0].

Writes

When the ARM7TDMI processor performs a byte or halfword write, the data being
written is replicated across the data bus, as shown in Figure 3-20 on page 3-27. The
memory system can use the most convenient copy of the data.

A writable memory system must be capable of performing a write to any single byte in
the memory system. This capability is required by the ARM C Compiler and the debug
tool chain.

3-26
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Figure 3-20 Data replication
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3.7 Stretching access times

The ARM7TDMI processor does not contain any dynamic logic that relies on regular
clocking to maintain the internal state. Therefore, there is no limit upon the maximum
period for which MCLK can be stretched, or nWAIT held LOW. There are two
methods available to stretch access times as described in:

. Modulating MCLK

. Use of nWAIT to control bus cycles.

Note

If you wish to use an Embedded Trace Macrocell (ETM) to obtain instruction and data

trace information on a trace port then you must use the nWAIT signal to stretch access
times.

3.71 Modulating MCLK

All memory timing is defined by MCLK, and long access times can be accommodated
by stretching this clock. It is usual to stretch the LOW period of MCLK, because this
enables the memory manager to abort the operation if the access is eventually
unsuccessful.

MCLK can be stretched before being applied to the processor, or the nWAIT input can
be used together with a free-running MCLK. Taking nWAIT LOW has the same effect
as stretching the LOW period of MCLK.

3.7.2  Use of nWAIT to control bus cycles

The pipelined nature of the processor bus interface means that there is a distinction
between clock cycles and bus cycles. nWAIT can be used to stretch a bus cycle, so that
it lasts for many clock cycles. The nWAIT input allows the timing of bus cycles to be
extended in increments of complete MCLK cycles:

. when nWAIT is HIGH on the rising edge of MCLK, a bus cycle completes

. when nWAIT is sampled LOW, the bus cycle is extended by stretching the low
phase of the internal clock.

nWAIT must only change during the LOW phase of MCLK.

In the pipeline, the address class signals and the memory request signals are ahead of
the data transfer by one bus cycle. In a system using nWAIT this can be more than one
MCLK cycle. This is illustrated in Figure 3-21 on page 3-29, which shows nWAIT
being used to extend a nonsequential cycle. In the example, the first N-cycle is followed
a few cycles later by another N-cycle to an unrelated address, and the address for the
second access is broadcast before the first access completes.
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Figure 3-21 Typical system timing

—— Note

When designing a memory controller, you are strongly advised to sample the values of
nMREQ, SEQ, and the address class signals only when nWAIT is HIGH. This ensures
that the state of the memory controller is not accidentally updated during an extended
bus cycle.
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3.8 Privileged mode access

If only privileged mode access is required from a memory system, you are advised to
use the nTRANS pin on the core. This signal distinguishes between User and privileged
accesses.

This is recommended because if the Operating System (OS) accesses memory on behalf
of the current application, it must perform these accesses in User mode. This is achieved
using the LDRT and STRT instructions that set n'TRANS appropriately.

This measure avoids the possibility of a hacker deliberately passing an invalid pointer
to an OS and getting the OS to access this memory with privileged access. This
technique could otherwise be used by a hacker to enable the user application to access
any memory locations such as I/O space.

The least significant five bits of the CPSR are also output from the core as inverted
signals, nM[4:0]. These indicate the current processor mode as listed in Table 3-8.

Table 3-8 Use of nM[4:0] to indicate current processor mode

M[4:0] nM[4:0] Mode

10000  O1111 User

10001 01110 FIQ

10010 01101 IRQ

10011 01100 Supervisor

10111 01000 Abort

11011 00100 Undefined

11111 00000 System

Note
The only time to use the nM[4:0] signals is for diagnostic and debug purposes.
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3.9 Reset sequence after power up

It is good practice to reset a static device immediately on power-up, to remove any
undefined conditions within the device that can otherwise combine to cause a DC path
and consequently increase current consumption. Most systems are reset by using a
simple RC circuit on the reset pin to remove the undefined states within devices while
clocking the device.

During reset, the signals nMREQ and SEQ show internal cycles where the address bus
continues to increment by two or four bytes. The initial address and increment values
are determined by the state of the core when nRESET was asserted. They are undefined
after power up.

After nRESET has been taken HIGH, the ARM core does two further internal cycles
before the first instruction is fetched from the reset vector (address 0x00000000). It then
takes three MCLK cycles to advance this instruction through the
Fetch-Decode-Execute stages of the ARM instruction pipeline before this first
instruction is executed. This is shown in Figure 3-22.

—— Note

nRESET must be held asserted for a minimum of two MCLK cycles to fully reset the
core.

You must reset the EmbeddedICE-RT logic and the TAP controller as well, whether the
debug features are used or are not. This is done by taking nTRST LOW for at least Ty,
no later than nRESET.

In Figure 3-22, x, y, and z are incrementing address values.

Fetch 1 Decode 1  Execute 1

vew [ L[ L[ LI [ L]
nRESET [ ] §

A[31:0] X x Xy X z X1 o XT a4 X8 X
S G S S S G S S G e
nMREQ V V A\ A A A

SEQ A A A [ Vv Vv
nEXEC \

Figure 3-22 Reset sequence
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Chapter 4

Coprocessor Interface

This chapter describes the ARM7TDMI core coprocessor interface. It contains the

following sections:

About coprocessors on page 4-2

Coprocessor interface signals on page 4-4

Pipeline following signals on page 4-5

Coprocessor interface handshaking on page 4-6
Connecting coprocessors on page 4-12

If you are not using an external coprocessor on page 4-15
Undefined instructions on page 4-16

Privileged instructions on page 4-17.
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4.1 About coprocessors

The ARM7TDMI core instruction set enables you to implement specialized additional
instructions using coprocessors to extend functionality. Coprocessors are separate
processing units that are tightly coupled to the ARM7TDMI processor. A typical
coprocessor contains:

. an instruction pipeline (pipeline follower)

. instruction decoding logic

. handshake logic

. a register bank

. special processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM7TDMI processor in the
system, and tracks the pipeline in the ARM7TDMI processor. This means that the
coprocessor can decode the instructions in the instruction stream, and execute those that
it supports. Each instruction progresses down both the ARM7TDMI core pipeline and
the coprocessor pipeline at the same time.

The execution of instructions is shared between the ARM7TDMI core and the
COProcessor.

The ARM7TDMI processor:

1. Evaluates the instruction type and the condition codes to determine whether the
instructions are executed by the coprocessor, and communicates this to any
coprocessors in the system, using nCP1.

2. Generates any addresses that are required by the instruction, including
prefetching the next instruction to refill the pipeline.

3. Takes the undefined instruction trap if no coprocessor accepts the instruction.

The coprocessor:

1. Decodes instructions to determine whether it can accept the instruction.
2. Indicates whether it can accept the instruction by using CPA and CPB.
3. Fetches any values required from its own register bank.

4.  Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined
instruction trap. You can choose whether to emulate coprocessor functions in software,
or to design a dedicated coprocessor.
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411 Coprocessor availability

Up to 16 coprocessors can be referenced by a system, each with a unique coprocessor
ID number to identify it. The ARM7TDMI core contains one internal coprocessor:

. CP14, the Debug Communications Channel (DCC) coprocessor.

Other coprocessor numbers have also been reserved. Coprocessor availability is listed
in Table 4-1.

Table 4-1 Coprocessor availability

Coprocessor number Allocation

15 Reserved for system control
14 Debug controller

13:8 Reserved

7:4 Available to users

3:0 Reserved

If you intend to design a coprocessor send an email with coprocessor in the subject line
to info@arm.com for up-to-date information on which coprocessor numbers have been
allocated.
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4.2

Coprocessor interface signals

The signals used to interface the ARM7TDMI core to a coprocessor are grouped into
four categories.

The clock and clock control signals are:

MCLK
nWAIT
nRESET.

The pipeline following signals are:

nMREQ
SEQ
nTRANS
nOPC
TBIT.

The handshake signals are:

nCPI
CPA
CPB.

The data signals are:

D[31:0]
DIN[31:0]
DOUTI[31:0].

4-4
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4.3 Pipeline following signals

Every coprocessor in the system must contain a pipeline follower to track the
instructions in the ARM7TDMI processor pipeline. The coprocessors connect to the
configured ARM7TDMI core input data bus, D[31:0] or DIN[31:0], over which
instructions are fetched, and to MCLK and nWAIT.

It is essential that the two pipelines remain in step at all times. When designing a
pipeline follower for a coprocessor, you must observe the following rules:

. At reset, with nRESET LOW, the pipeline must either be marked as invalid, or
filled with instructions that do not decode to valid instructions for that
COprocessor.

. The coprocessor state must only change when nWAIT is HIGH, except during
reset.

. An instruction must be loaded into the pipeline on the falling edge of MCLK, and
only when nOPC, nMREQ, and TBIT were all LOW in the previous bus cycle.
These conditions indicate that this cycle is an ARM instruction fetch, so the new
opcode must be read into the pipeline.

. The pipeline must be advanced on the falling edge of MCLK when nOPC,
nMREQ and TBIT are all LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete
execution, because the first action of any instruction performing an instruction
fetch is to refill the pipeline.

Any instructions that are flushed from the ARM7TDMI processor pipeline:
. never signal on nCPI that they have entered execute

. are automatically replaced in the coprocessor pipeline follower by the prefetches
required to refill the core pipeline.

There are no coprocessor instructions in the Thumb instruction set, so coprocessors
must monitor the state of the TBIT signal to ensure that they do not decode pairs of
Thumb instructions as ARM instructions.
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4.4 Coprocessor interface handshaking

Coprocessor interface handshaking is described as follows:

. The coprocessor

. The ARM7TDMI processor on page 4-7

. Coprocessor signaling on page 4-7

. Consequences of busy-waiting on page 4-8

. Coprocessor register transfer instructions on page 4-9
. Coprocessor data operations on page 4-10

. Coprocessor load and store operations on page 4-10.

The ARM7TDMI core and any coprocessors in the system perform a handshake using
the signals shown in Table 4-2.

Table 4-2 Handshaking signals

Signal Direction Meaning

nCPI ARMT7TDMI core to coprocessor ~ NOT coprocessor instruction

CPA Coprocessor to ARM7TDMI core  Coprocessor absent

CPB Coprocessor to ARM7TDMI core  Coprocessor busy

These signals are explained in more detail in Coprocessor signaling on page 4-7.

441  The coprocessor

The coprocessor decodes the instruction currently in the Decode stage of its pipeline,
and checks whether that instruction is a coprocessor instruction. A coprocessor
instruction contains a coprocessor number that matches the coprocessor ID of the
COpProcessor.

If the instruction currently in the Decode stage is a relevant coprocessor instruction:
1. The coprocessor attempts to execute the instruction.

2. The coprocessor handshakes with the ARM7TDMI core using CPA and CPB.

Note

The coprocessor can drive CPA and CPB as soon as it decodes the instruction. It does
not have to wait for nCPI to be LOW but it must not commit to execute the instruction
until nCPI has gone LOW.
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442 The ARM7TDMI processor
Coprocessor instructions progress down the ARM7TDMI core pipeline in step with the
coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1. The coprocessor instruction has reached the Execute stage of the pipeline. It
might not if it is preceded by a branch.

2. The ARM7TDMI processor cannot execute the instruction because the
instruction is in the coprocessor or undefined part of the instruction set.

3. The instruction has passed its conditional execution tests.

If all these requirements are met, the ARM7TDMI core signals by taking nCPI LOW,
this commits the coprocessor to the execution of the coprocessor instruction.

44.3 Coprocessor signaling
The coprocessor responses are listed in Table 4-3.

Table 4-3 Summary of coprocessor signaling

CPA CPB Response Remarks

0 0 Coprocessor present If a coprocessor can accept an instruction, and can start that instruction
immediately, it must signal this by driving both CPA and CPB LOW. The
ARM7TDMI processor then ignores the coprocessor instruction and
executes the next instruction as normal.

0 1 Coprocessor busy If a coprocessor can accept an instruction, but is currently unable to process
that request, it can stall the ARM7TDMI processor by asserting busy-wait.
This is signaled by driving CPA LOW, but leaving CPB HIGH. When the
coprocessor is ready to start executing the instruction it signals this by
driving CPB LOW. This is shown in Figure 4-1 on page 4-8.

1 0 Invalid response -

1 1 Coprocessor absent If a coprocessor cannot accept the instruction currently in Decode, it must
leave CPA and CPB both HIGH. The ARM7TDMI processor takes the
undefined instruction trap.
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Figure 4-1 Coprocessor busy-wait sequence

CPA and CPB are ignored by the ARM7TDMI processor when it does not have a
undefined or coprocessor instruction in the Execute stage of the pipeline.

A summary of coprocessor signaling is listed in Table 4-3 on page 4-7.

44.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can be interrupted. If a valid FIQ or IRQ occurs
and the appropriate bit is clear in the CSPR, then the ARM7TDMI processor abandons
the coprocessor instruction, and signals this by taking nCPI HIGH. A coprocessor that
is capable of busy-waiting must monitor nCPI to detect this condition. When the
ARMT7TDMI core abandons a coprocessor instruction, the coprocessor also abandons
the instruction, and continues tracking the ARM7TDMI processor pipeline.

4-8 Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C



Coprocessor Interface

—— Caution

It is essential that any action taken by the coprocessor while it is busy-waiting is
idempotent. This means that the actions taken by the coprocessor must not corrupt the
state of the coprocessor, and must be repeatable with identical results. The coprocessor
can only change its own state when the instruction has been executed.

The ARM7TDMI processor usually returns from processing the interrupt to retry the
coprocessor instruction. Other coprocessor instructions can be executed before the
interrupted instruction is executed again.

445 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, are used to transfer data
between a register in the ARM7TDMI processor register bank and a register in the
coprocessor register bank. An example sequence for a coprocessor register transfer is
shown in Figure 4-2.

(=TT I e e s Y A o
Fetch stagej:X ADD X SuB X MCR X TST X SUB IX X X]
Decode stagej:x iX ADD X suB X MCR X ‘X’ST X suB X XX]

Execute stagej:X 1X :X ADD X suB X MCR X TST X SuB X:|

nCPI

CPA

CPB

L

D[31:0] | X AD:D X SL‘}JB X MC::R X TS:ST ) Sl;JB HDA}TAH INS:TRX ‘ )

Figure 4-2 Coprocessor register transfer sequence
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44.6 Coprocessor data operations

Coprocessor data operations, CDP instructions, perform processing operations on the
data held in the coprocessor register bank. No information is transferred between the
ARM7TDMI processor and the coprocessor as a result of this operation. An example
sequence is shown in Figure 4-3.

MCLK —| L L T L 10 I I

Fetchstage | X ADD X sus X cop Tt D X B B
Decode stage : X : \ Aoo X sus X cor X TSt X sus X ; X
Execute stage X X Y app X sus \ cor N Tt \  sus X

nCPI — f f f f |
(from ARM) ! i | | R S

CPA (from

coprocessor) | \—e—,—/

CPB (from
COprocessor)

i Instr fetch Instr fetch Instr fetch Instr fetch Instr fetch
D[31:0] X (ADD) X (SUB) X (coP) X (Tsm) X (SUB) X'”S”feth

Figure 4-3 Coprocessor data operation sequence

4.4.7 Coprocessor load and store operations

The coprocessor load and store instructions are used to transfer data between a
coprocessor and memory. They can be used to transfer either a single word of data, or
a number of the coprocessor registers. There is no limit to the number of words of data
that can be transferred by a single LDC or STC instruction, but by convention no more
than 16 words should be transferred in a single instruction. An example sequence is
shown in Figure 4-4 on page 4-11.

Note

If you transfer more than 16 words of data in a single instruction, the worst case
interrupt latency of the ARM7TDMI processor increases.
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o 1 e e O e Y e e 0 o O
Fetch stage aop [\ sus Y tocn=4fY  TsT Y SuB ) X X:
Pecode ) ST )  OET) ) o
Sorids) () ) ) ST S SET)
nCPI \ /
CPA } \ [°
CPB \ /—c
SR R e ) G v G ) ) e G|

Figure 4-4 Coprocessor load sequence
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4.5 Connecting coprocessors

A coprocessor in an ARM7TDMI processor system must have 32-bit connections to:
. the instruction stream from memory
. data written by the core, MCR

. data read by the core, MRC.

The coprocessor can optionally have connections to:
. data written from memory, LDC
. data read to memory, STC.

This section describes:
. Connecting a single coprocessor
. Connecting multiple coprocessors on page 4-13.

4.5.1 Connecting a single coprocessor

An example of how to connect:

. a coprocessor into an ARM7TDMI processor system if you are using a
bidirectional bus is shown in Figure 4-5

. a coprocessor into an ARM7TDMI processor system if you are using a
unidirectional bus is shown in Figure 4-6 on page 4-13.

DI31:0] | Memory

ARM core
system

CPDRIVE

Coprocessor

Figure 4-5 Coprocessor connections with bidirectional bus
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ASEL
DIN
ARM core < Memory
gouTt system
» 0
CSEL
[ O K
1 CPDIN |CPDOUT |CPDRIVE
Coprocessor

Figure 4-6 Coprocessor connections with unidirectional bus
The logic for Figure 4-6 is as follows:

on FALLING MCLK
ASEL = ((nMREQ = 1 and SEQ = 1) and (not nRW))
CSEL = ((nMREQ = 1 and SEQ = 1) and (nRW))

4.5.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as

follows:
nCPI Connect this signal to all coprocessors present in the system.
CPA and CPB

The individual CPA and CPB outputs from each coprocessor must be
ANDed together, and connected to the CPA and CPB inputs on the
ARM7TDMI processor.

You must multiplex the output data from the coprocessors.

Connecting multiple coprocessors is shown in Figure 4-7 on page 4-14.
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CPA / | CPAn
nCPI
ARM core -—T—>»
CPB —— - - — — | — —CPBn
CPB2

cPB1 v  [CPA1 vy [chA2 :
| |
Coprocessor Coprocessor I Coprocessor |
1 2 ! n !
| |

Figure 4-7 Connecting multiple coprocessors
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4.6 If you are not using an external coprocessor

If you are implementing a system that does not include any external coprocessors, you
must tie both CPA and CPB HIGH. This indicates that no external coprocessors are
present in the system. If any coprocessor instructions are received, they take the
undefined instruction trap so that they can be emulated in software if required. The
internal coprocessor, CP14, can still be used.

The coprocessor outputs from the ARM7TDMI processor are usually left unconnected
but these outputs can be used in other parts of a system as follows:.

. nCPI
. nOPC
. TBIT.

ARM DDI 0210C
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4.7 Undefined instructions

Undefined instructions are treated by the ARM7TDMI processor as coprocessor
instructions. All coprocessors must be absent, CPA and CPB must be HIGH, when an
undefined instruction is presented. The ARM7TDMI processor takes the undefined
instruction trap.

For undefined instructions to be handled correctly, any coprocessors in a system must
give the absent response (CPA and CPB HIGH) to an undefined instruction. This
enables the core to take the undefined instruction exception.

The coprocessor must check bit [27] of the instruction to differentiate between the
following instruction types:

. undefined instructions have 0 in bit [27]

. coprocessor instructions have 1 in bit [27].

Coprocessor instructions are not supported in the Thumb instruction set but undefined
instructions are. All coprocessors must monitor the state of the TBIT output from
ARM7TDMI core. When the ARM7TDMI core is in Thumb state, coprocessors must
drive CPA and CPB HIGH, and the instructions seen on the data bus must be ignored.
In this way, coprocessors do not execute Thumb instructions in error, and all undefined
instructions are handled correctly.
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4.8 Privileged instructions

The output signal nTRANS enables the implementation of coprocessors, or
coprocessor instructions, that can only be accessed from privileged modes. The signal
meanings are given in Table 4-4.

Table 4-4 Mode identifier signal meanings, nTRANS

nTRANS Meaning

0 User mode instruction

1 Privileged mode instruction

If used, the nTRANS signal must be sampled at the same time as the coprocessor
instruction is fetched and is used in the coprocessor pipeline Decode stage.

—— Note

If a User mode process, with n'TRANS LOW, tries to access a coprocessor instruction
that can only be executed in a privileged mode, the coprocessor responds with CPA and
CPB HIGH. This causes the ARM7TDMI processor to take the undefined instruction
trap.

ARM DDI 0210C
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Chapter 5
Debug Interface

This chapter describes the ARM7TDMI processor debug interface. It contains the
following sections:

. About the debug interface on page 5-2

. Debug systems on page 5-4

. Debug interface signals on page 5-6

. ARM7TDMI core clock domains on page 5-10

. Determining the core and system state on page 5-12.

This chapter also describes the ARM7TDMI processor EmbeddedICE-RT logic module
in the following sections:

. About EmbeddedICE-RT logic on page 5-13
. Disabling EmbeddedICE-RT on page 5-15
. Debug Communications Channel on page 5-16.
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5.1 About the debug interface

The ARM7TDMI processor debug interface is based on IEEE Std. 1149.1 - 1990,
Standard Test Access Port and Boundary-Scan Architecture. Refer to this standard for
an explanation of the terms used in this chapter and for a description of the Test Access
Port (TAP) controller states. A flow diagram of the TAP controller state transitions is
provided in Figure B-2 on page B-5.

The ARM7TDMI processor contains hardware extensions for advanced debugging
features. These make it easier to develop application software, operating systems and
the hardware itself.

The debug extensions enable you to force the core into one of the following modes:

Halt mode On a breakpoint or watchpoint, the core enters debug state. In
debug state, the core is stopped and isolated from the rest of the
system. When debug has completed, the debug host restores the
core and system state, and program execution resumes.

Monitor mode On a breakpoint or watchpoint, an Instruction Abort or Data Abort
is generated instead of entering debug state. The core still receives
and services interrupts as normal.

In either case, you can examine the internal state of the core and the external state of the
system while system activity continues.

5.1.1 Stages of debug

A request on one of the external debug interface signals, or on the EmbeddedICE-RT
logic, forces the ARM7TDMI processor into debug state. The events that activate debug
are:

. a breakpoint (an instruction fetch)
. a watchpoint (a data access)
. an external debug request.

The internal state of the ARM7TDMI processor is then examined using a JTAG-style
serial interface. In halt mode, this enables instructions to be inserted serially into the
core pipeline without using the external data bus. So, for example, when in debug state,
a Store Multiple (STM) can be inserted into the instruction pipeline and this exports the
contents of the ARM7TDMI core registers. This data can be serially shifted out without
affecting the rest of the system.

In monitor mode, the JTAG interface is used to transfer data between the debugger and
a simple monitor program running on the ARM7TDMI core.

5-2
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The ARM7TDMI core has two clocks:
. MCLK is the memory clock
. DCLK is an internal debug clock, generated by the test clock, TCK.

During normal operation, the core is clocked by MCLK and internal logic holds DCLK
LOW.

When the ARM7TDMI processor is in halt mode, the core is clocked by DCLK under
control of the TAP state machine and MCLK can free-run. The selected clock is output
on the signal ECLK for use by the external system.

Note
NWAIT must be HIGH in debug state.

In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.

ARM DDI 0210C
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5.2 Debug systems

Figure 5-1 shows a typical debug system using an ARM core.

Host computer running
Debug host ARM or third party
toolkit

Protocol

For example Multi-ICE
converter

Development system

Debug target —{containing an
ARM7TDMI processor

Figure 5-1 Typical debug system

A debug system typically has three parts:
. Debug host

. Protocol converter

. Debug target on page 5-5.

The debug host and the protocol converter are system-dependent.

5.2.1 Debug host

The debug host is a computer that is running a software debugger such as the ARM
Debugger for Windows (ADW). The debug host enables you to issue high-level
commands such as setting breakpoints or examining the contents of memory.

5.2.2 Protocol converter

The protocol converter communicates with the high-level commands issued by the
debug host and the low-level commands of the ARM7TDMI processor JTAG interface.
Typically it interfaces to the host through an interface such as an enhanced parallel port.
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The ARM7TDMI processor has hardware extensions that ease debugging at the lowest
level. The debug extensions:

. enable you to halt program execution

. examine and modify the core internal state of the core

. view and modify the state of the memory system

. execute abort exceptions, enabling real-time monitoring of the core
. resume program execution.

5.2.3 Debug target

The major blocks of the debug target are shown in Figure 5-2.

ARM7TDMI processor

Scan chain 0

EmbeddedICE-RT

logic ARM CPU

main processor

— Scan chain 2 < logic

BREAKPT

—>| Scan chain 1

~| TAP controller <

Figure 5-2 ARM7TDMI block diagram
The ARM CPU main processor logic
This has hardware support for debug.
The EmbeddedICE-RT logic

This is a set of registers and comparators used to generate debug
exceptions such as breakpoints. This unit is described in About
EmbeddedICE-RT logic on page 5-13.

The TAP controller

This controls the action of the scan chains using a JTAG serial interface.
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5.3 Debug interface signals

There are three primary external signals associated with the debug interface:

. BREAKPT and DBGRQ are system requests for the processor to enter debug
state

. DBGACK is used to indicate that the core is in debug state.

Note

DBGEN must be configured HIGH to fully enable the debug features of the
processor. See Disabling EmbeddedICE-RT on page 5-15.

The following sections describe:
. Entry into debug state
. Action of the ARM7TDMI processor in debug state on page 5-9.

5.3.1 Entry into debug state

The ARM7TDMI processor is forced into debug state following a breakpoint,
watchpoint, or debug request.

In monitor mode, the processor continues to execute instructions in real time, and will
take an abort exception. The abort status register enables you to establish whether the
exception was because of a breakpoint or watchpoint, or to a genuine memory abort.

You can use the EmbeddedICE-RT logic to program the conditions under which a
breakpoint or watchpoint can occur. Alternatively, you can use the BREAKPT signal
to enable external logic to flag breakpoints or watchpoints and monitor the following:

. address bus
. data bus
. control signals.

The timing is the same for externally-generated breakpoints and watchpoints. Data must
always be valid on the falling edge of MCLK. When this is an instruction to be
breakpointed, the BREAKPT signal must be HIGH on the next rising edge of MCLK.
Similarly, when the data is for a load or store, asserting BREAKPT on the rising edge
of MCLK marks the data as watchpointed.

When the processor enters debug state, the DBGACK signal is asserted. The timing for
an externally-generated breakpoint is shown in Figure 5-3 on page 5-7.

The following sections describe:

. Entry into debug state on breakpoint on page 5-7

. Entry into debug state on watchpoint on page 5-8

. Entry into debug state on debug request on page 5-8.
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MCLK >
| R | S
ABol . X X X X ¢
! T i
BREAKPT o\ c £
; T D (D
DBGACK § IR o ¥
i o D |
R C C : : : :
nMREQ PN
SEQ Memory‘cycles S S X Internal cycles

Figure 5-3 Debug state entry

Entry into debug state on breakpoint

The ARM7TDMI core marks instructions as being breakpointed as they enter the
instruction pipeline, but the core does not enter debug state until the instruction reaches
the Execute stage.

Breakpointed instructions are not executed. Instead, the processor enters debug state.
Depending on whether you have set bit [4] in the debug control register, the core
instruction processing stops, or an abort exception is executed (Abort on page 2-18).
When you examine the internal state, you see the state before the breakpointed
instruction.

When your examination is complete, the breakpoint must be removed. This is usually
handled automatically by the debugger which also restarts program execution from the
previously-breakpointed instruction.

—— Note

When a breakpointed conditional instruction reaches the Execute stage of the pipeline,
the breakpoint is always taken, regardless of whether the condition is met.
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A breakpointed instruction does not cause the ARM7TDMI core to enter debug state
when:

. A branch or a write to the PC precedes the breakpointed instruction. In this case,
when the branch is executed, the core flushes the instruction pipeline and so
cancels the breakpoint.

. An exception occurs before the breakpointed instruction reaches the Execute
stage of the pipeline. This causes the processor to flush the instruction pipeline
and so cancel the breakpoint. In normal circumstances, on exiting from an
exception, the ARM7TDMI core branches back to the next instruction to be
executed before the exception occurred. In this case, the pipeline is refilled and
the breakpoint is reflagged.

Entry into debug state on watchpoint

Watchpoints occur on data accesses. Depending on whether you have set bit [4] in the
debug control register, the core instruction processing stops, or an abort exception is
executed (Abort on page 2-18). A watchpoint is always taken, but the core might not
enter debug state immediately. In all cases, the current instruction completes. If the
current instruction is load or store multiple instruction (LDM or STM), many cycles can
elapse before the watchpoint is taken.

On a watchpoint, the following sequence occurs:

1. The current instruction completes.

2. All changes to the core state are made.

3. Load data is written into the destination registers.
4.  Base write-back is performed.

If a watchpoint occurs when an exception is pending (even when Monitor mode enable
is reset), the core enters debug state in the same mode as the exception.
Entry into debug state on debug request

The ARM7TDMI processor can be forced into debug state on debug request in either of
the following ways:

. through EmbeddedICE-RT logic programming (see Programming breakpoints on
page B-44 and Programming watchpoints on page B-46)

. by asserting the DBGRQ pin.

5-8
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The DBGRQ pin is an asynchronous input and is therefore synchronized by logic inside
the ARM7TDMI processor before it takes effect. Following synchronization, the core
normally enters debug state at the end of the current instruction. However, if the current
instruction is a busy-waiting access to a coprocessor, the instruction terminates and
ARMT7TDMI processor enters debug state immediately. This is similar to the action of
nIRQ and nFIQ.

5.3.2 Action of the ARM7TDMI processor in debug state

In debug state, nMREQ and SEQ indicate internal cycles. This enables the rest of the
memory system to ignore the core and function as normal. Because the rest of the
system continues to operate, the ARM7TDMI processor is forced to ignore aborts and
interrupts.

The system must not change the following signals during debug:

BIGEND If BIGEND changes during debug:
. synchronization problems are introduced
. the programmer’s view of the processor changes without the

knowledge of the debugger.

nRESET Resetting the core while debugging causes the debugger to lose
track of the core.

When the system applies reset to the ARM7TDMI processor by
driving nRESET LOW, the processor state changes with the
debugger unaware that the core has reset.

When instructions are executed in halt mode, all memory interface outputs except
nMREQ and SEQ change asynchronously to the memory system. For example, every
time a new instruction is scanned into the pipeline, the address bus changes.

The memory controller must be designed to ensure that asynchronous behavior does not
affect the rest of the system. Although the behavior of nMREQ and SEQ is
asynchronous, this does not affect the system because nMREQ and SEQ are forced to
indicate internal cycles regardless of the behavior of the rest of the core.

5.3.3 Action of the ARM7TDMI core in monitor mode

In monitor mode, the ARM7TDMI processor continues to execute instructions, and the
memory interface behaves as normal.
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5.4  ARM7TDMI core clock domains
The ARM7TDMI clocks are described in Clocks on page 5-3.

This section describes:
. Clock switch during debug
. Clock switch during test on page 5-11.

5.4.1 Clock switch during debug

When the ARM7TDMI processor enters halt debug state, it switches automatically
from MCLK to DCLK, it then asserts DBGACK in the HIGH phase of MCLK. The
switch between the two clocks occurs on the next falling edge of MCLK. This is shown
in Figure 5-4.

The core is forced to use DCLK as the primary clock until debugging is complete. On
exit from debug, the core must be allowed to synchronize back to MCLK. This must be
done by the debugger in the following sequence:

1. The final instruction of the debug sequence is shifted into the data bus scan chain
and clocked in by asserting DCLK.

2. RESTART is clocked into the TAP instruction register.

The core now automatically resynchronizes back to MCLK and starts fetching
instructions from memory at MCLK speed.

See Exit from debug state on page B-26.

MCLK

DBGACK

DCLK

e
\ Multiplexer

switching point

Figure 5-4 Clock switching on entry to debug state

Note
In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.
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5.4.2 Clock switch during test

When serial test patterns are being applied to the ARM7TDMI core through the JTAG
interface, the processor must be clocked using DCLK. MCLK must be held LOW.

Entry into test is less automatic than debug and you must take care to prevent spurious
clocking on the way into test.

During test, you can use the TAP controller to serially test the processor. If scan chain
0 and INTEST are selected, DCLK is generated while the state machine is in the
RUN-TEST/IDLE state. During EXTEST, DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
this is done, MCLK can be resumed. After INTEST testing, you must take care to
ensure that the core is in a sensible state before reverting to normal operation. The safest
ways to do this are as follows:

. select RESTART, then cause a system reset

. insert MOV PC, # into the instruction pipeline before reverting to normal
operation.

ARM DDI 0210C
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5.5 Determining the core and system state

When the core is in debug state, you can examine the core and system state by forcing
the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine if the
processor entered debug from Thumb state or ARM state, by examining bit [4] of the
EmbeddedICE-RT logic debug status register. When bit [4] is HIGH, the core has
entered debug from Thumb state.

For more details about determining the core state, see Determining the core and system
state in debug state on page B-23.
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The EmbeddedICE-RT logic provides integrated on-chip debug support for the
ARMT7TDMI core.

The EmbeddedICE-RT logic is programmed serially using the ARM7TDMI processor
TAP controller. Figure 5-5 illustrates the relationship between the core, the
EmbeddedICE-RT logic, and the TAP controller, showing only the pertinent signals.

ARM CPU main
processor logic

Figure 5-5 ARM7 CPU main processor logic, TAP controller, and EmbeddedICE-RT logic

DBGRQI >
<«——DBGRQI
A[31:0]—P>
D[31:0] —>|
nOPC——p «——EXTERN1——
nRW——p <«—— EXTERNO——
TBIT—p - RANGEOUT0O—p
- MAS[1:0]—p> Embede e(IICE'RT —— RANGEOUT1—p
nTRANS —> ogie - DBGACK—p
- DBGACKI—p <«—BREAKPT——
<«— BREAKPTI—] «——DBGRQ
«——IFEN «——DBGEN
ECLK—p
nMREQ—p>
I A A
SDOUT SDIN CONTROL
\ 4 I I
<«——TCK
NTRST—p> TAP ™S
«——TDI————
TDO——»
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The EmbeddedICE-RT logic comprises:
. two real-time watchpoint units
. three independent registers:
—  debug control register
—  debug status register
— abort status register.
. Debug Communications Channel (DCC).

The debug control register and the debug status register provide overall control of
EmbeddedICE-RT operation. The abort status register is used when monitor mode is
selected.

You can program one or both watchpoint units to halt the execution of a program by the
core. Execution halts when the values programmed into EmbeddedICE-RT match the
values currently appearing on the address bus, data bus, and various control signals.

Note
You can mask any bit so that its value does not affect the comparison.

You can configure each watchpoint unit for either a watchpoint or a breakpoint.
Watchpoints and breakpoints can be data-dependent in halt mode only.
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5.7 Disabling EmbeddedICE-RT

The EmbeddedICE-RT logic is disabled by setting DBGEN LOW.

—— Caution

Hard-wiring the DBGEN input LOW permanently disables the EmbeddedICE-RT
logic. However, you must not rely upon this for system security.

When DBGEN is LOW:

. BREAKPT and DBGRQ are ignored by the core

. DBGACK is forced LOW by the ARM7TDMI core

. interrupts pass through to the processor uninhibited by the debug logic
. the EmbeddedICE-RT logic enters low-power mode.

ARM DDI 0210C
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5.8 Debug Communications Channel

The ARM7TDMI processor EmbeddedICE-RT logic contains a Debug
Communications Channel (DCC) to pass information between the target and the host
debugger. This is implemented as coprocessor 14 (CP14).

The DCC comprises:

. a 32-bit communications data read register

. a 32-bit communications data write register

. a 32-bit communications control register for synchronized handshaking between

the processor and the asynchronous debugger.

These registers are located in fixed locations in the EmbeddedICE-RT logic register
map, as shown in Figure B-7 on page B-40, and are accessed from the processor using
MCR and MRC instructions to coprocessor 14.

The registers are accessed as follows:
By the debugger  Through scan chain 2 in the usual way.
By the processor  Through coprocessor register transfer instructions.

The following sections describe:
. DCC control register
. Communications through the DCC on page 5-18.

5.8.1 DCC control register

The DCC control register controls synchronized handshaking between the processor
and the debugger. The control register format is shown in Figure 5-6.

EmbeddedICE Control
version Reserved bits
I | %
\ | |
31 30 29 28 27 2 10
oftfofol- |/ /- [w[R

DCC data read register

——— DCC data write register

Figure 5-6 DCC control register format
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The function of each register bit is as follows:

Bits [31:28] Contain a fixed pattern that denotes the EmbeddedICE-RT version
number, in this case b0100.

Bits [27:2] Reserved.

Bit [1] If this bit is clear, the DCC data write register is ready to accept

data from the processor.
If this bit is set, there is data in the DCC data write register and the
debugger can scan it out.

Bit [0] If this bit is clear, the DCC data read register is ready to accept
data from the debugger.

If this bit is set, the DCC data read register has data that has not
been read by the processor and the debugger must wait.

—— Note

If execution is halted, bit [0] might remain asserted. The debugger can clear it by writing
to the DCC control register.

Writing to this register is rarely necessary, because in normal operation the processor
clears bit [0] after reading it.

Use the instructions listed in Table 5-1 to access the DCC registers.

Table 5-1 DCC register access instructions

Instructions

Explanation

MRC CP14, 0, Rd,

MCR CP14, 0, Rn,

(0, Co, 0 Places the value from the DCC control register into the destination register (Rd)

(1, Co, @ Writes the value in the source register (Rn) to the DCC data write register

MRC CP14, 0, Rd,

C1, Co, @ Returns the value in the DCC data read register into Rd

Because the Thumb instruction set does not contain coprocessor instructions, you are
advised to access this data through SWI instructions when in Thumb state.
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5.8.2 Communications through the DCC

You can send and receive messages through the DCC. The following sections describe:
. Sending a message to the debugger

. Receiving a message from the debugger

. Interrupt-driven use of the DCC on page 5-19.

Sending a message to the debugger

When the processor has to send a message to the debugger, it must check that the
communications data write register is free for use by finding out if the W bit of the
debug communications control register is clear.

The processor reads the debug communications control register to check the status of
bit [1] (the W bit):

. If the W bit is clear then the communications data write register is clear.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

As the data transfer occurs from the processor to the DCC data write register, the W bit
is set in the DCC control register. When the debugger polls this register it sees a
synchronized version of both the R and W bit. When the debugger sees that the W bit
is set, it can read the DCC data write register and scan the data out. The action of reading
this data register clears the W bit of the DCC control register. At this point, the
communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the DCC control
register:

. if the R bit is clear, the DCC data read register is free and data can be placed there
for the processor to read

. if the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the DCC data read register is free, data is written there using the JTAG interface.
The action of this write sets the R bit in the DCC control register.

The processor polls the DCC control register. If the R bit is set, there is data that can be
read using an MRC instruction to coprocessor 14. When the debugger polls this register
and sees that the R bit is clear, the data has been taken and the process can now be
repeated.
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Interrupt-driven use of the DCC

An alternative, and potentially more efficient, method to polling the debug
communications control register is to use the COMMTX and COMMRX outputs from
the ARM7TDMI processor. You can use these outputs to interrupt the processor when:

. a word is available to be read from the DCC data read register
. the DCC data write register is empty and available for use.

These outputs are usually connected to the system interrupt controller, that drives the
nIRQ and nFIQ ARM7TDMI processor inputs.
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5.9 Monitor mode

The ARM7TDMI processor contains logic that enables the debugging of a system
without stopping the core entirely. This enables the continued servicing of critical
interrupt routines while the core is being interrogated by the debugger. Setting bit [4] of
the debug control register enables the monitor mode features of the ARM7TDMI
processor. When this bit is set, the EmbeddedICE-RT logic is configured so that a
breakpoint or watchpoint causes the ARM7TDMI core to enter abort mode, taking the
Prefetch or Data Abort vectors respectively. There are a number of restrictions you must
be aware of when the ARM core is configured for monitor-mode debugging:

. Breakpoints and watchpoints cannot be data-dependent in monitor mode. No
support is provided for use of the range functionality. Breakpoints and
watchpoints can only be based on:

—  instruction or data addresses

— external watchpoint conditioner (EXTERNO or EXTERNT1)
—  User or privileged mode access (n'TRANS)

— read/write access for watchpoints (nRW)

—  access size (watchpoints MAS[1:0]).

. External breakpoints or watchpoints are not supported.

. No support is provided to mix halt mode and monitor mode functionality.

The fact that an abort has been generated by the monitor mode is recorded in the abort
status register in coprocessor 14 (see The abort status register on page B-52).

The monitor mode enable bit does not put the ARM7TDMI processor into debug state.
For this reason, it is necessary to change the contents of the watchpoint registers while
external memory accesses are taking place, rather than changing them when in debug
state where the core is halted.

If there is a possibility of false matches occurring during changes to the watchpoint
registers (caused by old data in some registers and new data in others) you must:

1. Disable the watchpoint unit by setting EmbeddedICE-RT disable, bit [5] in the
debug control register.

2. Poll the debug control register until the EmbeddedICE-RT disable bit is read back
as set.

3. Change the other registers.

Re-enable the watchpoint unit by clearing the EmbeddedICE-RT disable bit in the
debug control register.
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Chapter 6

Instruction Cycle Timings

This chapter describes the ARM7TDMI processor instruction cycle operations. It

contains the following sections:

About the instruction cycle timing tables on page 6-3

Branch and branch with link on page 6-4

Thumb branch with link on page 6-5

Branch and Exchange on page 6-6

Data operations on page 6-7

Multiply and multiply accumulate on page 6-9

Load register on page 6-11

Store register on page 6-13

Load multiple registers on page 6-14

Store multiple registers on page 6-16

Data swap on page 6-17

Software interrupt and exception entry on page 6-18

Coprocessor data operation on page 6-19

Coprocessor data transfer from memory to coprocessor on page 6-20
Coprocessor data transfer from coprocessor to memory on page 6-22

Coprocessor register transfer, load from coprocessor on page 6-24
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Coprocessor register transfer, store to coprocessor on page 6-25
Undefined instructions and coprocessor absent on page 6-26
Unexecuted instructions on page 6-27

Instruction speed summary on page 6-28.
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6.1 About the instruction cycle timing tables

In the following tables:

nMREQ and SEQ, are pipelined up to one cycle ahead of the cycle to which they
apply. They are shown in the cycle in which they appear and indicate the next
cycle type.

The address, MAS[1:0], nRW, nOPC, nTRANS, and TBIT signals, that appear
up to half a cycle ahead, are shown in the cycle to which they apply. The address
is incremented to prefetch instructions in most cases. Because the instruction
width is four bytes in ARM state and two bytes in Thumb state, the increment
varies accordingly.

The letter L is used to indicate instruction length:
—  four bytes in ARM state
—  two bytes in Thumb state.

The letter i is used to indicate the width of the instruction fetch output by
MASI1:0]:

— i=2 in ARM state represents word accesses

— i=1 in Thumb state represents halfword accesses.

Terms placed inside brackets represent the contents of an address.

The * symbol indicates zero or more cycles.
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6.2 Branch and branch with link

A branch instruction calculates the branch destination in the first cycle, while
performing a prefetch from the current PC. This prefetch is done in all cases because,
by the time the decision to take the branch has been reached, it is already too late to
prevent the prefetch.

During the second cycle a fetch is performed from the branch destination, and the return
address is stored in Register r14 if the link bit is set.

The third cycle performs a fetch from the destination +L, refilling the instruction
pipeline. If the instruction is a branch with link (R14 is modified) four is subtracted from
R14 to simplify the return instruction from SUB PC,R14,#4 to MOV PC,R14. This enables
subroutines to push R14 onto the stack and pop directly into PC upon completion.

The cycle timings are listed in Table 6-1 where:

. pc is the address of the branch instruction
. alu is the destination address calculated by the ARM7TDMI core
. (alu) is the contents of that address.

Table 6-1 Branch instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pe+2L i 0 (pc+2L) 0 0 0

2 alu i 0 (alu) 0 1 0

3 alu+L i 0 (alu+L) 0 1 0
alu+2L

Note

Branch with link is not available in Thumb state.
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6.3 Thumb branch with link

A Thumb Branch with Link operation consists of two consecutive Thumb instructions.
See the ARM Architecture Reference Manual for more information.

The first instruction acts like a simple data operation to add the PC to the upper part of
the offset, storing the result in Register r14, LR.

The second instruction which takes a single cycle acts in a similar fashion to the ARM
state branch with link instruction. The first cycle therefore calculates the final branch
destination whilst performing a prefetch from the current PC.

The second cycle of the second instruction performs a fetch from the branch destination
and the return address is stored in R14.

The third cycle of the second instruction performs a fetch from the destination +2,
refilling the instruction pipeline and R14 is modified, with 2 subtracted from it, to
simplify the return to MOV PC, R14. This makes the PUSH {..,LR} ; POP {..,PC} type of
subroutine work correctly.

The cycle timings of the complete operation are listed in Table 6-2 where:
. pc is the address of the first instruction of the operation.

Table 6-2 Thumb long branch with link

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc+4 1 0 (pc+4) O 1 0

2 pc+6 1 0 (pc+6) O 0 0

3 alu 1 0 (alu) 0 1 0

4 alu+2 1 0 (alu+2) O 1 0
alu+4
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6.4 Branch and Exchange

A Branch and Exchange (BX) operation takes three cycles and is similar to a branch. In
the first cycle, the branch destination and the new core state are extracted from the
register source, whilst performing a prefetch from the current PC. This prefetch is
performed in all cases, since by the time the decision to take the branch has been
reached, it is already too late to prevent the prefetch.

During the second cycle, a fetch is performed from the branch destination address using
the new instruction width, dependent on the state that has been selected.

The third cycle performs a fetch from the destination address +2 or +4 (dependent on
the new specified state), refilling the instruction pipeline.

The cycle timings are listed in Table 6-3 where:

. W and w represent the instruction width before and after the BX respectively. The
width equals four bytes in ARM state and two bytes in Thumb state. For example,
when changing from ARM to Thumb state, W equals four and w equals two

. I and i represent the memory access size before and after the BX respectively.
MAS[1:0] equals two in ARM state and one in Thumb state. When changing
from Thumb to ARM state, I equals one and i equals two.

. T and t represent the state of the TBIT before and after the BX respectively. TBIT
equals O in ARM state and 1 in Thumb state. When changing from ARM to
Thumb state, T equals 0 and t equals 1.

Table 6-3 Branch and exchange instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC TBIT

1 pc +2W I 0 (pc+2W) 0 0 0 T

2 alu i 0 (alu) 0 1 0 t

3 alu+w i 0 (alu+w) 0 1 0 t
alu + 2w
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6.5 Data operations

A data operation executes in a single datapath cycle unless a shift is determined by the
contents of a register. A register is read onto the A bus, and a second register or the
immediate field onto the B bus (see Figure 1-3 on page 1-8). The ALU combines the A
bus source and the shifted B bus source according to the operation specified in the
instruction, and the result, when required, is written to the destination register.

Note

Compare and test operations do not produce results. Only the ALU status flags are
affected.

An instruction prefetch occurs at the same time as the data operation, and the program
counter is incremented.

When the shift length is specified by a register, an additional datapath cycle occurs
during this cycle. The data operation occurs on the next cycle which is an internal cycle
that does not access memory. This internal cycle can be merged with the following
sequential access by the memory manager as the address remains stable through both
cycles.

The PC can be one or more of the register operands. When it is the destination, external
bus activity can be affected. If the result is written to the PC, the contents of the
instruction pipeline are invalidated, and the address for the next instruction prefetch is
taken from the ALU rather than the address incrementer. The instruction pipeline is
refilled before any further execution takes place, and during this time exceptions are
ignored.

PSR transfer operations (MSR and MRS) exhibit the same timing characteristics as the
data operations except that the PC is never used as a source or destination register.

The cycle timings are listed in Table 6-4 on page 6-8 where:

. pc is the address of the branch instruction
. alu is the destination address calculated by the ARM7TDMI core
. (alu) is the contents of that address.
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Table 6-4 Data operation instruction cycles

Operationtype Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

normal 1 pc+2L i 0 (pc+2L) O 1 0
pc+3L
dest=pc 1 pc+2L i 0 (pc+2L) O 0 0
2 alu i 0 (alu) 0 1 0
3 alu+L i 0 (alu+L) O 1 0
alu+2L
shift(Rs) 1 pc+2L i 0 (pc+2L) 1 0 0
2 pc+3L i 0 - 0 1 1
pc+3L
shift(Rs) 1 pc+8 2 0 (pc+8) 1 0 0
dest=pc 2 pc+12 2 0 - 0 0 1
3 alu 2 0 (alu) 0 1 0
4 alu+4 2 0 (alu+4) O 1 0
alu+8
Note

The shifted register operations where the destination is the PC are not available in
Thumb state.
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Instruction Cycle Timings

The multiply instructions use special hardware that implements integer multiplication
with early termination. All cycles except the first are internal.

The cycle timings are listed in the following tables:

. multiply instruction cycle operations are listed in Table 6-5

. multiply accumulate instruction cycle operations are listed in Table 6-6

. multiply long instruction cycle operations are listed in Table 6-7 on page 6-10

. multiply accumulate long instruction cycle operations are listed in Table 6-8 on
page 6-10.

In Table 6-5 to Table 6-8 on page 6-10:

. m is the number of cycles required by the multiplication algorithm. See
Instruction speed summary on page 6-28.

Table 6-5 Multiply instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+2L 0 i (pc+2L) 1 0 0
2 pc+3L 0 i - 1 0 1
. pc+3L 0 i - 1 0 1
m pc+3L 0 1 - 1 0 1
m+1 pc+3L 0 i - 0 1 1
pc+3L
Table 6-6 Multiply accumulate instruction cycle operations
Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+8 0 2 (pc+8) 1 0 0
2 pc+8 0 2 - 1 0 1
. pc+12 0 2 - 1 0 1
m pc+12 0 2 - 1 0 1
m+1 pc+12 0 2 - 1 0 1
m+2 pc+12 0 2 - 0 1 1
pc+12
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Table 6-7 Multiply long instruction cycle operations

Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+8 0 i (pc+8) 1 0 0
2 pc+12 0 i - 1 0 1
. pc+12 0 i - 1 0 1
m pc+12 0 i - 1 0 1
m+1 pc+12 0 i - 1 0 1
m+2 pc+12 0 i - 0 1 1
pc+12
Table 6-8 Multiply accumulate long instruction cycle operations
Cycle Address nRW MAS[1:0] Data nMREQ SEQ nOPC
1 pc+8 0 2 (pc+8) 1 0 0
2 pc+8 0 2 - 1 0 1
. pc+12 0 2 - 1 0 1
m pc+12 0 2 - 1 0 1
m+1 pc+12 0 2 - 1 0 1
m+2 pc+12 0 2 - 1 0 1
m+3 pc+12 0 2 - 0 1 1
pc+12
Note

The multiply accumulate, multiply long, and multiply accumulate long operations are

not available in Thumb state.
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6.7 Load register

The first cycle of a load register instruction performs the address calculation. During the
second cycle the data is fetched from memory and the base register modification is
performed, if required. During the third cycle the data is transferred to the destination
register, and external memory is unused. This third cycle can normally be merged with
the next prefetch cycle to form one memory N-cycle.

Either the base, or destination, or both, can be the PC, and the prefetch sequence is
changed if the PC is affected by the instruction.

The data fetch can abort, and in this case the destination modification is prevented. In
addition, if the processor is configured for early abort, the base register write-back is
also prevented.

The cycle timings are listed in Table 6-9 where:

. c represents the current processor mode:
—  ¢=0 for User mode
— c¢=1 for all other modes

. d=0 if the T bit has been specified in the instruction (such as LDRT) and d=c at
all other times

. s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-12).

Table 6-9 Load register instruction cycle operations

Operation type Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS

normal pc+2L i 0 (pc+2L) O 0 0 c
alu S 0 (alu) 1 0 1 d
pc+3L i 0 - 0 1 1 c
pc+3L

dest=pc pc+8 2 0 (pc+8) 0 0 0 c
alu 0 pc’ 1 0 1 d
pc+12 2 0 - 0 0 1 c
pc’ 2 0 (pe’) 0 1 0 c
pc’+4 2 0 (pc’+4) O 1 0 c
pc’+8
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Note

Operations where the destination is the PC are not available in Thumb state.

Table 6-10 MAS[1:0] signal encoding

Bit[1] Bit[0] Data size

0 0 byte

0 1 halfword
1 0 word

1 1 reserved
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6.8 Store register

The first cycle of a store register instruction is similar to the first cycle of load register
instruction. During the second cycle the base modification is performed, and at the same
time the data is written to memory. There is no third cycle.

The cycle timings are listed in Table 6-11 where:

c represents the current processor mode:
—  ¢=0 for User mode
—  c=1 for all other modes

d=0 if the T bit has been specified in the instruction (such as LDRT) and d=c at
all other times.

s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-12).

Table 6-11 Store register instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC nTRANS
1 pc+2L i 0 (pc+2L) O 0 0 c
2 alu S 1 Rd 0 0 1 d

pc+3L
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6.9 Load multi

ple registers

The first cycle of the LDM instruction is used to calculate the address of the first word
to be transferred, while performing a prefetch from memory. The second cycle fetches
the first word, and performs the base modification. During the third cycle, the first word
is moved to the appropriate destination register while the second word is fetched from
memory, and the modified base is latched internally in case it is needed to restore
processor state after an abort. The third cycle is repeated for subsequent fetches until the
last data word has been accessed, then the final (internal) cycle moves the last word to
its destination register. The cycle timings are listed in Table 6-12.

The last cycle can be merged with the next instruction prefetch to form a single memory
N-cycle. If an abort occurs, the instruction continues to completion, but all register
modification after the abort is prevented. The final cycle is altered to restore the
modified base register (that could have been overwritten by the load activity before the
abort occurred).

When the PC is in the list of registers to be loaded the current instruction pipeline must
be invalidated.

Note

The PC is always the last register to be loaded, so an abort at any point prevents the PC
from being overwritten.

LDM with PC as a destination register is not available in Thumb state. Use
POP{R1ist,PC} to perform the same function.

Table 6-12 Load multiple registers instruction cycle operations

Destination registers

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

Single register

1 pc+2L i 0 (pc+2L) O 0 0

2 alu 2 0 (alu) 1 0 1

3 pc+3L i 0 - 0 1 1
pc+3L
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Table 6-12 Load multiple registers instruction cycle operations (continued)

Destination registers Cycle Address MAS[1:0]1 nRW Data nMREQ SEQ nOPC
Single register dest=pc 1 pc+2L i 0 (pe+2L) O 0 0
2 alu 2 0 pc’ 1 0 1
3 pc+3L i 0 - 0 0 1
4 pc’ i 0 (pc”) 0 1 0
5 pc’+L i 0 (pc’+L) O 1 0
pc’+2L
n registers (n>1) 1 pc+2L i 0 (pc+2L) O 0 0
2 alu 2 0 (alu) 0 1 1
. alu+e 2 0 (alu+e) 0 1 1
n alu+e 2 0 (alu+e) 0 1 1
n+1 alu+e 2 0 (alu+e) 1 0 1
n+2 pc+3L i 0 - 0 1 1
pc+3L
n registers (n>1) including pc 1 pc+2L i 0 (pe+2L) O 0 0
2 alu 2 0 (alu) 0 1 1
. alu+e 2 0 (alu+e) 0 1 1
n alu+e 2 0 (alu+e) 0 1 1
n+1 alu+e 2 0 pc’ 1 0 1
n+2 pc+3L i 0 - 0 0 1
n+3 pc’ i 0 (pc’) 0 1 0
n+4 pc’+L i 0 (pc’+L) O 1 0
pc’+2L
ARM DDI 0210C Copyright © 2001, 2004 ARM Limited. All rights reserved. 6-15



Instruction Cycle Timings

6.10 Store multiple registers

The store multiple instruction proceeds very much as load multiple instruction, without

the final cycle. The abort handling is much more straightforward as there is no

wholesale overwriting of registers.

The cycle timings are listed in Table 6-13 where:

. Ra is the first register specified

. Re are the subsequent registers specified.

Table 6-13 Store multiple registers instruction cycle operations

Register Cycle Address MAS[1:0]1 nRW Data nMREQ SEQ nOPC
Single register 1 pc+2L i 0 (pe+2L) O 0 0
2 alu 2 1 Ra 0 0 1
pc+3L
n registers (n>1) 1 pc+8 i 0 (pc+2L) O 0 0
2 alu 2 1 Ra 0 1 1
. alu+e 2 1 Re 0 1 1
n alu+e 2 1 Re 0 1 1
n+1 alu+e 2 1 Re 0 0 1
pc+12
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6.11 Data swap

This is similar to the load and store register instructions, but the actual swap takes place
in the second and third cycles. In the second cycle, the data is fetched from external
memory. In the third cycle, the contents of the source register are written out to the
external memory. The data read in the second cycle is written into the destination
register during the fourth cycle.

LOCK is driven HIGH during the second and third cycles to indicate that both cycles
must be allowed to complete without interruption.

The data swapped can be a byte or word quantity. Halfword quantities cannot be
specified.

The swap operation can be aborted in either the read or write cycle, and in both cases
the destination register is not affected.

The cycle timings are listed in Table 6-14 where:

. s represents the size of the data transfer shown by MAS[1:0] (see Table 6-10 on
page 6-12), s can only represent byte and word transfers. Halfword transfers are
not available.

Table 6-14 Data swap instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC LOCK

1 pc+8 2 0 (pc+8) O 0 0 0
2 Rn b/w 0 (Rn) 0 0 1 1
3 Rn b/w 1 Rm 1 0 1 1
4 pc+12 2 0 - 0 1 1 0
pc+12
— Note

The data swap operation is not available in Thumb state.
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6.12 Software interrupt and exception entry

Exceptions (including software interrupts) force the PC to a particular value and cause
the instruction pipeline to be refilled. During the first cycle the forced address is
constructed, and a mode change can take place. The return address is moved to R14 and
the CPSR to SPSR_svc.

During the second cycle the return address is modified to facilitate return, though this
modification is less useful than in the case of the branch with link instruction.

The third cycle is required only to complete the refilling of the instruction pipeline.

The cycle timings are listed in Table 6-15 where:

. pc for:
—  software interrupts is the address of the SWI instruction
—  Prefetch Aborts is the address of the aborting instruction

—  Data Aborts is the address of the instruction following the one which
attempted the aborted data transfer

—  other exceptions is the address of the instruction following the last one to
be executed before entering the exception

. C represents the current mode-dependent value
. T represents the current state-dependent value
. Xn is the appropriate trap address.

Table 6-15 Software Interrupt instruction cycle operations

Cycle Address ?ﬁ)? nRW Data nMREQ SEQ nOPC nTRANS Mode TBIT

1 pc+2L i 0 (pc+2L) O 0 0 C old T

2 Xn 2 0 (Xn) 0 1 0 1 exception 0

3 Xn+4 2 0 (Xn+4) 0 1 0 1 exception 0
Xn+8
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6.13 Coprocessor data operation

A coprocessor data operation is a request from the core for the coprocessor to initiate
some action. The action does not have to be completed for some time, but the
coprocessor must commit to doing it before driving CPB LOW.

If the coprocessor is not capable of performing the requested task, it must leave CPA
and CPB HIGH. If it can do the task, but cannot commit right now, it must drive CPA
LOW but leave CPB HIGH until it can commit. The core busy-waits until CPB goes
LOW.

The cycle timings are listed in Table 6-16 where:
. b represents the busy cycles.

Table 6-16 Coprocessor data operation instruction cycle operations

:t:tus Cycle Address nRW ?4“;? Data nMREQ SEQ nOPC nCPI CPA CPB
ready 1 pc+8 0 2 (pc+8) O 0 0 0 0 0
pc+12
not ready 1 pc+8 0 2 (pc+8) 1 0 0 0 0 1
2 pc+8 0 2 - 1 0 1 0 0 1
. pc+8 0 2 - 1 0 1 0 0 1
b pc+8 0 2 - 0 0 1 0 0 0
pc+12
— Note

Coprocessor data operations are not available in Thumb state.
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6.14 Coprocessor data transfer from memory to coprocessor

For coprocessor transfer instructions from memory the coprocessor must commit to the
transfer only when it is ready to accept the data. When CPB goes LOW, the processor
produces the addresses and expects the coprocessor to take the data at sequential cycle
rates. The coprocessor is responsible for determining the number of words to be
transferred, and indicates the last transfer cycle by driving CPA and CPB HIGH.

The ARM7TDMI processor spends the first cycle (and any busy-wait cycles) generating
the transfer address, and updates the base address during the transfer cycles.

The cycle timings are listed in Table 6-17 where:
. b represents the busy cycles
. n represents the number of registers.

Table 6-17 Coprocessor data transfer instruction cycle operations

:;Zister Cycles Address ?:IAO? nRW Data nMREQ SEQ nOPC nCPI CPA CPB
status
Single 1 pc+8 2 0 (pc+8) O 0 0 0 0 0
register 2 alu 2 0 (alu) 0 0 1 1 1 1
ready pc+12
Single 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
register 2 pc+8 2 0 - 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+l alu 2 0 (alu) 0 0 1 1 1 1
pc+12
nregisters 1 pc+8 2 0 (pc+8) O 0 0 0 0 0
(n>1) 2 alu 2 0 (alu) 0 1 1 1 0 0
ready . alu+e 2 0 (alu+e) O 1 1 1 0 0
n alu+e 2 0 (alu+*) O 1 1 1 0 0
n+1 alu+e 2 0 (alu+) O 0 1 1 1 1
pc+12
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Table 6-17 Coprocessor data transfer instruction cycle operations (continued)

::;ister Cycles Address MAS pw Data nMREQ SEQ nOPC nCPI CPA CPB
status [1:0]
n registers 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
(n>1) 2 pc+8 2 0 - 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+1 alu 2 0 (alu) 0 1 1 1 0 0
. alu+e 0 (alu+s) 0O 1 1 1 0 0
n+b alu+e 2 0 (alu+e) O 1 1 1 0 0
n+b+1 alu+e 2 0 (alu+e) O 0 1 1 1 1
pc+12
— Note

Coprocessor data transfer operations are not available in Thumb state.
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6.15 Coprocessor data transfer from coprocessor to memory

The ARM7TDMI processor controls these instructions in the same way as for memory
to coprocessor transfers, with the exception that the nRW line is inverted during the
transfer cycle.

The cycle timings are listed in Table 6-18 where:
. b represents the busy cycles
. n represents the number of registers.

Table 6-18 coprocessor data transfer instruction cycle operations

g;ister Cycle Address MAS nRW Data nMREQ SEQ nOPC nCPI CPA CPB
status [1:0]
Single 1 pc+8 2 0 (pc+8) O 0 0 0 0 0
register 2 alu 2 1 CPdata 0 0 1 1 1 1
ready - pc+12 - - - - - - - - -
Single 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
register 2 pc+8 2 0 - 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+1 alu 2 1 CPdata O 0 1 1 1 1
pc+12
nregisters 1 pc+8 2 0 (pc+8) O 0 0 0 0 0
(n>1) 2 alu 2 1 CPdata 0 1 1 1 0 0
ready . alu+e 2 1 CPdata 0 1 1 1 0 0
n alu+e 2 1 CPdata O 1 1 1 0 0
n+1 alu+e 2 1 CPdata 0 0 1 1 1 1
pc+12
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Table 6-18 coprocessor data transfer instruction cycle operations (continued)

::eZister Cycle Address MAS RW Data nMREQ SEQ nOPC nCPl CPA CPB
status [1:0]
nregisters 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
(n>1) 2 pc+8 2 0 - 1 0 1 0 0 1
not ready . pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 0 0 1 0 0 0
b+1 alu 2 1 CPdata 0 1 1 1 0 0
. alu+e 2 1 CPdata 0 1 1 1 0 0
n+b alu+e 2 1 CPdata 0 1 1 1 0 0
n+b+1  alu+e 2 1 CPdata O 0 1 1 1 1
pc+12
— Note

Coprocessor data transfer operations are not available in Thumb state.
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6.16 Coprocessor register transfer, load from coprocessor

The busy-wait cycles are similar to those described in Coprocessor data transfer from
memory to coprocessor on page 6-20, but the transfer is limited to one word, and the
ARMT7TDMI core puts the data into the destination register in the third cycle. The third
cycle can be merged with the next prefetch cycle into one memory N-cycle as with all
processor register load instructions.

The cycle timings are listed in Table 6-19 where:
. b represents the busy cycles.

Table 6-19 Coprocessor register transfer, load from coprocessor

Cycle Address ?{:‘:ﬁ nRW Data nMREQ SEQ nOPC nCPI CPA CPB
ready 1 pc+8 2 0 (pc+8) 1 1 0 0 0 0
2 pc+12 2 0 CPdata 1 0 1 1 1 1
3 pc+12 2 0 - 0 1 1 1 - -
- pc+12
notready 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
2 pc+8 2 0 - 1 0 1 0 0 1
. pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 1 1 1 0 0 0
b+1 pc+12 2 0 CPdata 1 0 1 1 1 1
b+2 pc+12 2 0 - 0 1 | 1 - -
pc+12
Note

Coprocessor register transfer operations are not available in Thumb state.
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6.17 Coprocessor register transfer, store to coprocessor

This is the same as described in Coprocessor register transfer, load from coprocessor
on page 6-24, except that the last cycle is omitted.

The cycle timings are listed in Table 6-20 where:

b represents the busy cycles.

Table 6-20 Coprocessor register transfer, store to coprocessor

MAS

Cycle Address [1:0] nRW Data nMREQ SEQ nOPC nCPI CPA CPB
ready 1 pc+8 2 0 (pc+8) 1 1 0 0 0 0
2 pc+12 2 1 Rd 0 0 1 1 1 1
pc+12
notready 1 pc+8 2 0 (pc+8) 1 0 0 0 0 1
2 pc+8 2 0 - 1 0 1 0 0 1
. pc+8 2 0 - 1 0 1 0 0 1
b pc+8 2 0 - 1 1 1 0 0 0
b+l pc+12 2 1 Rd 0 0 1 1 1 1
pc+12
— Note

Coprocessor register transfer operations are not available in Thumb state.

ARM DDI 0210C
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6.18 Undefined instructions and coprocessor absent

When the processor attempts to execute an instruction that neither it nor a coprocessor
can perform (including all undefined instructions) this causes the processor to take the
undefined instruction trap.

Cycle timings are listed in Table 6-21 where:
. C represents the current mode-dependent value
. T represents the current state-dependent value.

Table 6-21 Undefined instruction cycle operations

Cycle Address ?q%? nRW Data nMREQ SEQ nOPC nCPI nTRANS Mode TBIT
1 pe+2L i 0 (pe+2L) 1 0 0 0 C old T
2 pc+2L i 0 - 0 0 0 1 C Old T
3 Xn 2 0 (Xn) 0 1 0 1 1 00100 0O
4 Xn+4 2 0 Xn+4) O 1 0 1 1 00100 O
Xn+8
Note

. Coprocessor instructions are not available in Thumb state.

. CPA and CPB are HIGH during the undefined instruction trap.
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6.19 Unexecuted instructions

Any instruction whose condition code is not met does not execute and adds one cycle
to the execution time of the code segment in which it is embedded (see Table 6-22).

Table 6-22 Unexecuted instruction cycle operations

Cycle Address MAS[1:0] nRW Data nMREQ SEQ nOPC

1 pc+2L i 0 (pe+2L) O 1 0

pc+3L
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6.20 Instruction speed summary

Because of the pipelined architecture of the CPU, instructions overlap considerably. In
a typical cycle, one instruction can be using the data path while the next is being

decoded and the one after that is being fetched. For this reason Table 6-23 presents the
incremental number of cycles required by an instruction, rather than the total number of
cycles for which the instruction uses part of the processor. Elapsed time, in cycles, for
aroutine can be calculated from these figures listed in Table 6-23. These figures assume
that the instruction is actually executed. Unexecuted instructions take one cycle.

If the condition is not met then all instructions take one S-cycle. The cycle types N, S,
I, and C are described in Bus cycle types on page 3-4.

In Table 6-23:
. b is the number of cycles spent in the coprocessor busy-wait loop

. m is:

1 if bits [31:8] of the multiplier operand are all zero or one, else

2 if bits [31:16] of the multiplier operand are all zero or one, else

3 if bits [31:24] of the multiplier operand are all zero or all one, else

4,

. n is the number of words transferred.

Table 6-23 ARM instruction speed summary

Instruction Cycle count Additional
Data Processing S +I for SHIFT(Rs)
+S + N if R15 written
MSR, MRS S -
LDR S+N+I +S +Nif R15 loaded
STR 2N -
LDM nS+N+I +S +N if R15 loaded
ST™M (n-1)S+2N -
SWP S+2N+1 -
B.BL 2S+N -
SWI, trap 2S+N -
MUL S+ml -
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Table 6-23 ARM instruction speed summary (continued)

Instruction Cycle count Additional
MLA S+(m+1)I -
MULL S+(m+1)1 -
MLAL S+(m+2)I -
CDP S+bl -
LDC, STC (n-1)S+2N+bl -
MCR N+bI+C -
MRC S+(b+1)I+C -

ARM DDI 0210C
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Chapter 7

AC and DC Parameters

This chapter gives the AC timing parameters of the ARM7TDMI core. It contains the
following sections:

. Timing diagrams on page 7-2
. Notes on AC parameters on page 7-19
. DC parameters on page 7-24.

ARM DDI 0210C
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7.1 Timing diagrams

The AC timing diagrams provided in this section are as follows.

General timings on page 7-3

ABE address control on page 7-5
Bidirectional data write cycle on page 7-5
Bidirectional data read cycle on page 7-6
Data bus control on page 7-7

Output 3-state time on page 7-8
Unidirectional data write cycle on page 7-8
Unidirectional data read cycle on page 7-9
Configuration pin timing on page 7-9
Coprocessor timing on page 7-10
Exception timing on page 7-10
Synchronous interrupt timing on page 7-11
Debug timing on page 7-12

DCC output timing on page 7-13
Breakpoint timing on page 7-13

TCK and ECLK relationship on page 7-14
MCLK timing on page 7-14

Scan general timing on page 7-15

Reset period timing on page 7-16

Output enable and disable times due to HIGHZ TAP instruction on page 7-16
Output enable and disable times due to data scanning on page 7-17.
ALE address control on page 7-17

APE address control on page 7-18.

Note

Each diagram is provided with a table that describes the timing parameters. In the
tables:

the letter f at the end of a signal name indicates the falling edge
the letter r at the end of a signal name indicates the rising edge.

7-2
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nMREQ
SEQ
nEXEC
INSTRVALID
A[31:0] ‘ X X
i‘iTah% i
! Taddr >
nRW -
*Trwh i
| < Trwd <
MAS[1:0] ‘ : :
LOCK ‘ 3X X
E«Tblh$
: ¢ Tbld ) :
nM[4:0] i ‘
nTRANS X X
TBIT ¢deh !
| l ded ! !
nOPC ; X X
i‘iTopch*: i
! Topcd >
Figure 7-1 General timings
Note

In Figure 7-1, nWAIT, APE, ALE, and ABE are all HIGH during the cycle shown.
Tedel 18 the delay, on either edge (whichever is greater), from the edge of MCLK to

ECLK.
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The timing parameters used in Figure 7-1 on page 7-3 are listed in Table 7-1.

Table 7-1 General timing parameters

Symbol Parameter Parameter type
Taddr MCLKTr to address valid Maximum
Tan Address hold time from MCLKr Minimum
Toid MCLKTr to MAS[1:0] and LOCK Maximum
Toin MASI[1:0] and LOCK hold from MCLKr Minimum
Tedel MCLK to ECLK delay Maximum
Texd MCLKTf to nEXEC and INSTRVALID valid Maximum
Texn nEXEC and INSTRVALID hold time from Minimum
MCLKf
Tmdd MCLKTr to nTRANS, nM[4:0], and TBIT valid Maximum
Timdh nTRANS and nM[4:0] hold time from MCLKr  Minimum
Tisd MCLKTf to nMREQ and SEQ valid Maximum
Tmsh nMREQ and SEQ hold time from MCLKf Minimum
Toped MCLKTr to nOPC valid Maximum
Topch nOPC hold time from MCLKr Minimum
Tiwd MCLKTr to nRW valid Maximum
Tiwh nRW hold time from MCLKr Minimum

7-4 Copyright © 2001, 2004 ARM Limited. All rights reserved.

ARM DDI 0210C



AC and DC Parameters

MCLK—! <i>\ |

ABE

A[31:0]
nRW
LOCK
nOPC
NTRANS
MAS[1:0]

XX

Figure 7-2 ABE address control

The timing parameters used in Figure 7-2 are listed in Table 7-2.

Table 7-2 ABE address control timing parameters

Symbol Parameter Parameter type
Tabe Address bus enable time Maximum
Tab: Address bus disable time =~ Maximum

MCLK qJ |

nENOUT 3 /Q 3 3 /

Tnengﬂ : ¢ : TnenhAN : ¢
D[31:0] ; { j L)
:l Tdout L ! i Tdohgw ! ‘

Figure 7-3 Bidirectional data write cycle

Note
In Figure 7-3 DBE is HIGH and nENIN is LOW during the cycle shown.
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The timing parameters used in Figure 7-3 on page 7-5 are listed in Table 7-3.

Table 7-3 Bidirectional data write cycle timing parameters

Symbol Parameter Parameter type
Tdon DOUT][31:0] hold from MCLKf Minimum
Taout MCLKI( to D[31:0] valid Maximum
Then MCLKIf to nENOUT valid Maximum
Thenh nENOUT hold time from MCLKf Minimum

MCLK ) | |
7 | |
NENOUT ! 3 3 | \

Tnen"i : ¢ i Tgih‘” <
D[31:0] 1 1 (i Loy
: | Tdis": ‘7
BL[3:0] | X X
T |

bylh»i <

Tbyls ) : :

Figure 7-4 Bidirectional data read cycle

Note
In Figure 7-4, DBE is HIGH and nENIN is LOW during the cycle shown.

The timing parameters used in Figure 7-4 are listed in Table 7-4.

Table 7-4 Bidirectional data read cycle timing parameters

Symbol Parameter Parameter type
Toyin BL[3:0] hold time from MCLKf Minimum
Toyis BL[3:0] set up to from MCLKr Minimum
Tdin DIN[31:0] hold time from MCLKf Minimum
Tais DIN[31:0] setup time to MCLKf Minimum
Then MCLKTf to nENOUT valid Maximum
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MCLK
nENOUT /
DBE
. > <7Tdch
D[31:0] . ——( »
*Tdout+
nENIN : ‘
Tdbz"; < ;
Tdbe": M
Figure 7-5 Data bus control
—— Note

The cycle shown in Figure 7-5 is a data write cycle because nNENOUT was driven LOW
during phase one. Here, DBE has first been used to modify the behavior of the data bus,

and then nENIN.

The timing parameters used in Figure 7-5 are listed in Table 7-5.

Table 7-5 Data bus control timing parameters

Symbol Parameter Parameter type
Tabe Data bus enable time from DBEr  Maximum
Tdbnen DBE to nENOUT valid Maximum
Tabz Data bus disable time from DBEf  Maximum
Tdoh DOUT]31:0] hold from MCLKf  Minimum
Tdout MCLKTf to D[31:0] valid Maximum
ARM DDI 0210C Copyright © 2001, 2004 ARM Limited. All rights reserved. 7-7
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MCLK—\ | |

TBE

A[31:0]
D[31:0]
nRW
LOCK
nOPC
NTRANS
MASI[1:0]

Figure 7-6 Output 3-state time
The timing parameters used in Figure 7-6 are listed in Table 7-6.

Table 7-6 Output 3-state time timing parameters

Symbol Parameter Parameter type
Tive Address and Data bus enable time from TBEr ~ Maximum
Tw: Address and Data bus disable time from TBEf Maximum

Tnengﬂ :

MCLK ¢ | |
i i ‘e

nENOUT N
Tduhu* i ¢
DOUT[31:0] | XX
T

Figure 7-7 Unidirectional data write cycle
The timing parameters used in Figure 7-7 are listed in Table 7-7.

Table 7-7 Unidirectional data write cycle timing parameters

Symbol Parameter Parameter type
Tdohu DOUTI[31:0] hold time from MCLKf Minimum
Taoutu MCLKTf to DOUT[31:0] valid Maximum
Then MCLKI(f to nENOUT valid Maximum
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MCLK—<1>/7 | |

nENOUT ! | \
Toon— <+ ! T, P
DIN[31:0] 3 3 X 1 X
1 | T, —» P -
BL[3:0] | X X | =
Tbylh"i 347 ‘: §
| Tbylsgbl 347

Figure 7-8 Unidirectional data read cycle
The timing parameters used in Figure 7-8 are listed in Table 7-8.

Table 7-8 Unidirectional data read cycle timing parameters

Symbol Parameter Parameter type
Toyin BL[3:0] hold time from MCLKf Minimum
Toyis BL[3:0] set up to from MCLKr Minimum
Tdihu DIN[31:0] hold time from MCLKf Minimum
Tdisu DIN[31:0] set up time to MCLKf Minimum
Then MCLK(f to nENOUT valid Maximum

MCLK

Tcth ) : 3

BIGEND X X ‘
i T, —» i
ISYNC ! X X !
3 Tcts"‘: H—‘: 3
‘ Tcth"; 3‘7

Figure 7-9 Configuration pin timing
The timing parameters used in Figure 7-9 are listed in Table 7-9.

Table 7-9 Configuration pin timing parameters

Symbol Parameter Parameter type
Ten Configurations hold time ~ Minimum
Tets Configuration setup time ~ Minimum

ARM DDI 0210C
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‘«—Phase 1——»4——Phase 2—»

MCLK | |

« T, > Ty «—
nCPI X X 3 X X
CPA | -« T, P
CPB | X | X |
nMREQ : 3 < T W
SEQ ‘ =
; T, P

Figure 7-10 Coprocessor timing

Note
In Figure 7-10, usually nMREQ and SEQ become valid Ty, after the falling edge of
MCLK. In this cycle the core has been busy-waiting for a coprocessor to complete the
instruction. If CPA and CPB change during phase 1, the timing of nMREQ and SEQ
depends on Tepms. Most systems can generate CPA and CPB during the previous phase

2, and so the timing of nMREQ and SEQ is always T

The timing parameters used in Figure 7-10 are listed in Table 7-10.

Table 7-10 Coprocessor timing parameters

Symbol Parameter Parameter type
Teph CPA,CPB hold time from MCLKr  Minimum
Tepi MCLK(f to nCPI valid Maximum
Tepin nCPI hold time from MCLKf Minimum
Tepms CPA, CPB to nMREQ, SEQ Maximum
Teps CPA, CPB setup to MCLKr Minimum
MCLK | \
i : < Torts > Tabth*‘;
ABORT | | / | :
FQ i ! <«T pieT >
nIRQ | ‘ ! ‘ \ ! \
3 i* TI'S* Trm H 3
nRESET 3 Y

Figure 7-11 Exception timing
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—— Note

In Figure 7-11 on page 7-10, to guarantee recognition of the asynchronous interrupt
(ISYNC=0) or reset source, the appropriate signals must be setup or held as follows:

. setup Tjs and T respectively before the corresponding clock edge

. hold Tjy, and Tjs respectively after the corresponding clock edge.

These inputs can be applied fully asynchronously where the exact cycle of recognition
is unimportant.

The timing parameters used in Figure 7-11 on page 7-10 are listed in Table 7-11.

Table 7-11 Exception timing parameters

Symbol Parameter tl;a;:meter
Tabth ABORT hold time from MCLKf Minimum
Tabts ABORT set up time to MCLKf Minimum
Tim Asynchronous interrupt guaranteed nonrecognition time, with ISYNC=0 Maximum
Tis Asynchronous interrupt set up time to MCLKT for guaranteed recognition, with ISYNC=0  Minimum
Trm Reset guaranteed nonrecognition time Maximum
T Reset setup time to MCLKT for guaranteed recognition Minimum

MCLK | | |

nFIQ ! Ty > <+
nIRQ ‘ ‘ \T 3 \

sih ™ .«

Figure 7-12 Synchronous interrupt timing

The timing parameters used in Figure 7-12 are listed in Table 7-12.

Table 7-12 Synchronous interrupt timing parameters

Symbol Parameter Parameter type
Tsin Synchronous nFIQ, nIRQ hold from MCLKIf with ISYNC=1  Minimum
Tsis Synchronous nFIQ, nIRQ setup to MCLKIf, with ISYNC=1 Minimum

ARM DDI 0210C
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MCLK

DBGACK

BREAKPT

DBGRQ

EXTERN[1]

DBGRAQI

RANGEOUTO
RANGEOUT1

The timing parameters used in Figure 7-13 are listed in Table 7-13.

dbgh

Tdqu ’

<+ Tbrks el Tbrkh >

‘¢>Trqs > Trqh AN

exts exth

A

dbgrq

rgh

T —»

Figure 7-13 Debug timing

Table 7-13 Debug timing parameters

Symbol Parameter Parameter type
Torkn Hold time of BREAKPT from MCLKr Minimum
Thrks Set up time of BREAKPT to MCLKr Minimum
Tdbgd MCLKTr to DBGACK valid Maximum
Tabgh DGBACK hold time from MCLKr Minimum
Tdbgrq DBGRQ to DBGRQI valid Maximum
Texth EXTERN][1:0] hold time from MCLKf Minimum
Texts EXTERNI1:0] set up time to MCLKf Minimum
Trg MCLKIf to RANGEOUT0, RANGEOUT1 valid Maximum
Trgh RANGEOUT0, RANGEOUT1 hold time from MCLKf Minimum
Trgh DBGRQ guaranteed non-recognition time Minimum
Trgs DBGRQ set up time to MCLKTr for guaranteed recognition ~ Minimum

7-12 Copyright © 2001, 2004 ARM Limited. All rights reserved.
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MCLK | |_

COMMTX : X%
COMMRX 1

«T___»

! commd
Figure 7-14 DCC output timing

The timing parameter used in Figure 7-14 is listed in Table 7-14.

Table 7-14 DCC output timing parameters

Parameter

Symbol Parameter
type

Teommd MCLKr to COMMRX, COMMTX valid Maximum

MCLK [

BREAKPT |

nCPI § | /
nEXEC ; 3 ‘
nMREQ ; j \% :
SEQ : Tbcemsf < |
INSTRVALID

Figure 7-15 Breakpoint timing

—— Note

In Figure 7-15, BREAKPT changing in the LOW phase of MCLK (to signal a
watchpointed store) affects nCPI, nEXEC, nMREQ, and SEQ in the same phase.

The timing parameter used in Figure 7-15 is listed in Table 7-15.

Table 7-15 Breakpoint timing parameters

Parameter

Symbol Parameter
type

Theems BREAKPT to nCPI, nEXEC, nMREQ, SEQ delay Maximum

ARM DDI 0210C
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TCK | |
ECLK ] ] |

ctdel i

Figure 7-16 TCK and ECLK relationship

Note

In Figure 7-16, Tel is the delay, on either edge (whichever is greater), from the edge
of TCK to ECLK.

The timing parameter used in Figure 7-16 is listed in Table 7-16.
Table 7-16 TCK and ECLK timing parameters

Symbol Parameter Parameter type

Tetdel TCK to ECLK delay Maximum

MCLK

nWAIT

ECLK

nMREQ
SEQ

A[31:0]

Figure 7-17 MCLK timing

Note
In Figure 7-17, the core is not clocked by the HIGH phase of MCLK when nWAIT is
LOW. During the cycles shown, nMREQ and SEQ change once, during the first LOW
phase of MCLK, and A[31:0] change once, during the second HIGH phase of MCLK.
Phase 2 is shown for reference. This is the internal clock from which the core times all
its activity. This signal is included to show how the HIGH phase of the external MCLK
has been removed from the internal core clock.

7-14
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The timing parameters used in Figure 7-17 on page 7-14 are listed in Table 7-17.

Table 7-17 MCLK timing parameters

Symbol Parameter Parameter type
Tadar MCLKTr to address valid Maximum
Tickh MCLK HIGH time Minimum
Tinekl MCLK LOW time Minimum
Tinsd MCLKIf to nMREQ and SEQ valid  Maximum
Twh nWAIT hold from MCLKf Minimum
Tws nWAIT setup to MCLKr Minimum

TCK | [

TMS
TDI

TDO

Data in

Data out

- T T -

7 [ 7
‘ X X ‘
bsss bssh !
> Togan * Toean
1, < » ! I
Tbsdd | Tbsdd

Figure 7-18 Scan general timing

The timing parameters used in Figure 7-18 are listed in Table 7-18.

Table 7-18 Scan general timing parameters

Symbol Parameter Parameter type
Thsch TCK high period Minimum
Thscl TCK low period Minimum
Tosdd TCK to data output valid Maximum
Thosdn Data output hold time from TCK  Minimum
Thsin TDI, TMS hold from TCKr Minimum

ARM DDI 0210C
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Table 7-18 Scan general timing parameters (continued)

Symbol Parameter Parameter type

Thsis TDI, TMS setup to TCKr Minimum

Thsod TCKIf to TDO valid Maximum

Thsoh TDO hold time from TCKf Minimum

Thssh 1/0 signal setup from TCKr Minimum

Thsss /O signal setup to TCKT, Minimum

nRESET |
« T
nTRST |
¢ T »!
D[31:0] | oer
DBGACK |
nCPI_
nENOUT
nEXECﬂ HﬁTrstd
nMREQ
SEQ

v

R

rstl

Figure 7-19 Reset period timing

The timing parameters used in Figure 7-19 are listed in Table 7-19.

Table 7-19 Reset period timing parameters

Symbol Parameter Parameter type
Tosr nTRST reset period Minimum
Trstd nRESETT to D[31:0], DBGACK, nCPL, nENOUT, nEXEC, nMREQ, SEQ valid Maximum
Trsu nRESET LOW for guaranteed reset Minimum
TCK
ﬂ‘ Tbsz N : M‘ Tbse h
Al] \ 1 ./
o] | —4 ! ) —
Figure 7-20 Output enable and disable times due to HIGHZ TAP instruction
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—— Note

Figure 7-20 on page 7-16 shows the Tyge, output enable time, parameter and T, output
disable time, when the HIGHZ TAP instruction is loaded into the instruction register.

The timing parameters used in Figure 7-20 on page 7-16 are listed in Table 7-20.

TCK | !—

+1‘ * Tbsz Tbse# -
All ) ([
D[] — N
Figure 7-21 Output enable and disable times due to data scanning
—— Note

Figure 7-21 shows the Ty, output enable time, parameter and Ty, output disable time

when data scanning, due to different logic levels being scanned through the scan cells
for ABE and DBE.

The timing parameters used in Figure 7-21 are listed in Table 7-20.

Table 7-20 Output enable and disable timing parameters

Symbol Parameter Parameter type
Thse Output enable time ~ Maximum
Thosz Output disable time ~ Maximum

i¢——Phase 1 —»47 Phase 2—»

MCLK—! | |_

ALE ! \
T,

! ald !
|

A[31:0]
nRW
LOCK
nOPC
nTRANS
MASI[1:0]

aleh

Figure 7-22 ALE address control
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Note

In Figure 7-22 on page 7-17, Tyjq is the time by which ALE must be driven LOW to
latch the current address in phase 2. If ALE is driven LOW after T4, then a new address
is latched. This is known as address breakthrough.

The timing parameters used in Figure 7-22 on page 7-17 are listed in Table 7-21.

Table 7-21 ALE address control timing parameters

Symbol Parameter Parameter
type
Taa Address group latch output time Maximum
Tate Address group latch open output delay ~ Maximum
Taleh Address group latch output hold time Minimum
MCLK
APE X | |
A[31 0] Taphgﬂ ! _7Tap34>§ i
nRW i i | e
LOCK i i Tapeh 4’: 3
nOPC 3 3 3 X:X
nTRANS ! ! ! ‘
| | Tope P -
MAS[1:0] ape ‘

Figure 7-23 APE address control
The timing parameters used in Figure 7-23 are listed in Table 7-22.

Table 7-22 APE address control timing parameters

Symbol Parameter :,a;:meter
Tape MCLK( to address group valid Maximum
Tapen Address group output hold time from MCLKf  Minimum
Taph APE hold time from MCLKf Minimum
Taps APE set up time to MCLKr Minimum

7-18
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7.2 Notes on AC parameters

Table 7-23 lists the AC timing parameters in alphabetical order.

Contact your supplier for AC timing parameter values.

In Table 7-23:

. the letter f at the end of a signal name indicates the falling edge

. the letter r at the end of a signal name indicates the rising edge.

Table 7-23 AC timing parameters used in this chapter
Symbol  Parameter E/apr: meter zli'g:;ereference
Tabe Address bus enable time Maximum Figure 7-2 on page 7-5
Tabth ABORT hold time from MCLKf Minimum Figure 7-11 on page 7-10
Tabts ABORT set up time to MCLKf Minimum Figure 7-11 on page 7-10
Tabz Address bus disable time Maximum Figure 7-2 on page 7-5
Taddr MCLKTr to address valid Maximum Figure 7-1 on page 7-3
Figure 7-17 on page 7-14

Tan Address hold time from MCLKr Minimum Figure 7-1 on page 7-3
Taa Address group latch time Maximum Figure 7-22 on page 7-17
Tale Address group latch open output delay Maximum Figure 7-22 on page 7-17
Taleh Address group latch output hold time Minimum Figure 7-22 on page 7-17
Tape MCLKT to address group valid Maximum Figure 7-23 on page 7-18
Tapen Address group output hold time from MCLKf Minimum Figure 7-23 on page 7-18
Taph APE hold time from MCLKf Minimum Figure 7-23 on page 7-18
Taps APE set up time to MCLKr Minimum Figure 7-23 on page 7-18
Tocems BREAKPT to nCPI, nEXEC, nMREQ, SEQ delay Maximum Figure 7-13 on page 7-12
Toia MCLKTr to MAS[1:0] and LOCK Maximum Figure 7-1 on page 7-3
Toin MAS[1:0] and LOCK hold from MCLKTr Minimum Figure 7-1 on page 7-3
Torkh Hold time of BREAKPT from MCLKr Minimum Figure 7-13 on page 7-12
Torks Set up time of BREAKPT to MCLKr Minimum Figure 7-13 on page 7-12

ARM DDI 0210C
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Table 7-23 AC timing parameters used in this chapter (continued)

Symbol Parameter Parameter Figure

type cross reference
Thsch TCK high period Minimum Figure 7-18 on page 7-15
Thsel TCK low period Minimum Figure 7-18 on page 7-15
Thsdd TCK to data output valid Maximum Figure 7-18 on page 7-15
Thsdn Data output hold time from TCK Minimum Figure 7-18 on page 7-15
Thse Output enable time Maximum Figure 7-20 on page 7-16
Figure 7-21 on page 7-17
Thsin TDI, TMS hold from TCKr Minimum Figure 7-18 on page 7-15
Thsis TDI, TMS setup to TCKr Minimum Figure 7-18 on page 7-15
Thsod TCKIf to TDO valid Maximum Figure 7-18 on page 7-15
Thsoh TDO hold time from TCKf Minimum Figure 7-18 on page 7-15
Tosr nTRST reset period Minimum Figure 7-19 on page 7-16
Thssh I/O signal setup from TCKr Minimum Figure 7-18 on page 7-15
Thsss /0 signal setup to TCKT, Minimum Figure 7-18 on page 7-15
Tosz Output disable time Maximum Figure 7-20 on page 7-16
Figure 7-21 on page 7-17
Toyin BL[3:0] hold time from MCLKf Minimum Figure 7-4 on page 7-6
Figure 7-8 on page 7-9
Thoyis BL[3:0] set up to from MCLKr Minimum Figure 7-4 on page 7-6
Figure 7-8 on page 7-9
Tegel MCLK to ECLK delay Maximum Figure 7-1 on page 7-3
Teikbs TCK to boundary scan clocks Maximum -
Teommd MCLKr to COMMRX, COMMTX valid Maximum Figure 7-14 on page 7-13
Teph CPA,CPB hold time from MCLKr Minimum Figure 7-10 on page 7-10
Tepi MCLK(f to nCPI valid Maximum Figure 7-10 on page 7-10
Tepin nCPI hold time from MCLKf Minimum Figure 7-10 on page 7-10
Tepms CPA, CPB to nMREQ, SEQ Maximum Figure 7-10 on page 7-10
Teps CPA, CPB setup to MCLKr Minimum Figure 7-10 on page 7-10
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Table 7-23 AC timing parameters used in this chapter (continued)

AC and DC Parameters

Symbol  Parameter E/apr: meter E:g:;ereference
Tetdel TCK to ECLK delay Maximum Figure 7-16 on page 7-14
Tetn Config hold time Minimum Figure 7-9 on page 7-9
Tets Config setup time Minimum Figure 7-9 on page 7-9
Tabe Data bus enable time from DBEr Maximum Figure 7-5 on page 7-7
Tdbgd MCLKr to DBGACK valid Maximum Figure 7-13 on page 7-12
Tdbgh DGBACK hold time from MCLKr Minimum Figure 7-13 on page 7-12
Tabgrq DBGRQ to DBGRQI valid Maximum Figure 7-13 on page 7-12
Tdbnen DBE to nENOUT valid Maximum Figure 7-5 on page 7-7
Tabz Data bus disable time from DBEf Maximum Figure 7-5 on page 7-7
Tacke DCLK induced, TCKI to various outputs valid Maximum -
Tackn DCLK induced, various outputs hold from TCKf Minimum -
Tackr DCLK induced, TCKTr to various outputs valid Maximum -
Tackrh DCLK induced, various outputs hold from TCKr Minimum -
Tdin DIN[31:0] hold time from MCLKf Minimum Figure 7-4 on page 7-6
Tdihu DIN[31:0] hold time from MCLKf Minimum Figure 7-8 on page 7-9
Tais DIN[31:0] setup time to MCLKf Minimum Figure 7-4 on page 7-6
Taisu DIN[31:0] set up time to MCLKf Minimum Figure 7-8 on page 7-9
Tdoh DOUTI[31:0] hold from MCLKf Minimum Figure 7-3 on page 7-5
Figure 7-5 on page 7-7
Tdohu DOUT]|31:0] hold time from MCLKf Minimum Figure 7-7 on page 7-8
Tdout MCLK(f to D[31:0] valid Maximum Figure 7-3 on page 7-5
Figure 7-5 on page 7-7
Taoutu MCLKTf to DOUT[31:0] valid Maximum Figure 7-7 on page 7-8
Tecapd TCK to ECAPCLK changing Maximum -
Texd MCLKT( to nEXEC and INSTRVALID valid Maximum Figure 7-1 on page 7-3
Texh nEXEC and INSTRVALID hold time from MCLKf Minimum Figure 7-1 on page 7-3
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Table 7-23 AC timing parameters used in this chapter (continued)

Parameter Figur
Symbol Parameter aramete gure
type cross reference
Texth EXTERN][1:0] hold time from MCLKf Minimum Figure 7-13 on page 7-12
Texts EXTERNI1:0] set up time to MCLKf Minimum Figure 7-13 on page 7-12
Tim Asynchronous interrupt guaranteed nonrecognition time, Maximum Figure 7-11 on page 7-10
with ISYNC=0
Tis Asynchronous interrupt set up time to MCLKTf for guaranteed ~ Minimum Figure 7-11 on page 7-10
recognition, with ISYNC=0
Trckh MCLK HIGH time Minimum Figure 7-17 on page 7-14
Tmeki MCLK LOW time Minimum Figure 7-17 on page 7-14
Tmdd MCLKTr to nTRANS, nM[4:0], and TBIT valid Maximum Figure 7-1 on page 7-3
Tmdn nTRANS and nM[4:0] hold time from MCLKr Minimum Figure 7-1 on page 7-3
Thsd MCLKTf to nMREQ and SEQ valid Maximum Figure 7-1 on page 7-3
Figure 7-17 on page 7-14
Tish nMREQ and SEQ hold time from MCLKf Minimum Figure 7-1 on page 7-3
Then MCLK(f to nENOUT valid Maximum Figure 7-3 on page 7-5
Figure 7-4 on page 7-6
Figure 7-7 on page 7-8
Figure 7-8 on page 7-9
Thenh nENOUT hold time from MCLKf Minimum Figure 7-3 on page 7-5
Toped MCLKTr to nOPC valid Maximum Figure 7-1 on page 7-3
Topch nOPC hold time from MCLKr Minimum Figure 7-1 on page 7-3
T MCLK(f to RANGEOUT0, RANGEOUT1 valid Maximum Figure 7-13 on page 7-12
Trgn RANGEOUT0, RANGEOUT1 hold time from MCLKf Minimum Figure 7-13 on page 7-12
Tim Reset guaranteed nonrecognition time Maximum Figure 7-11 on page 7-10
Tiqn DBGRQ guaranteed non-recognition time Minimum Figure 7-13 on page 7-12
Trgs DBGRQ set up time to MCLKTr for guaranteed recognition Minimum Figure 7-13 on page 7-12
Trs Reset setup time to MCLKTr for guaranteed recognition Minimum Figure 7-11 on page 7-10
Tistd nRESETT to D[31:0], DBGACK, nCPI, nENOUT, nEXEC, Maximum Figure 7-19 on page 7-16
nMREQ, SEQ valid
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Table 7-23 AC timing parameters used in this chapter (continued)

Symbol  Parameter E/apr: meter E:g:;ereference

Trsu nRESET LOW for guaranteed reset Minimum Figure 7-19 on page 7-16
Trwd MCLKTr to nRW valid Maximum Figure 7-1 on page 7-3
Trwh nRW hold time from MCLKr Minimum Figure 7-1 on page 7-3
Tsdd SDOUTBS to TDO valid Maximum -

Tshbst TCK to SHCLKBS, SHCLK2BS falling Maximum -

Tshbsr TCK to SHCLKBS, SHCLK2BS rising Maximum -

Tsin Synchronous nFIQ, nIRQ hold from MCLK(f with ISYNC=1  Minimum Figure 7-12 on page 7-11
Tiis Synchronous nFIQ, nIRQ setup to MCLKTf, with ISYNC=1 Minimum Figure 7-12 on page 7-11
Tibe Address and Data bus enable time from TBEr Maximum Figure 7-6 on page 7-8
Tiv, Address and Data bus disable time from TBEf Maximum Figure 7-6 on page 7-8
Ticks TCK to TCK1, TCK2 falling Maximum -

Tickr TCK to TCK1, TCK2 rising Maximum -

Tidbgd TCK to DBGACK, DBGRQI changing Maximum -

Tipta TCKIf to TAP outputs Maximum -

Tipm TAP outputs hold time from TCKf Minimum -

Tiprd TCKTr to TAP outputs Maximum -

Tipeh TAP outputs hold time from TCKr Minimum -

Tistd nTRSTI to every output valid Maximum -

Tistd nTRSTf to TAP outputs valid Maximum -

Tiests nTRSTr setup to TCKr Maximum -

Twh nWAIT hold from MCLKf Minimum Figure 7-17 on page 7-14
Tws nWAIT setup to MCLKr Minimum Figure 7-17 on page 7-14
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7.3 DC parameters

Contact your supplier for information on:
. operating conditions
. maximum ratings.
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Appendix A
Signal and Transistor Descriptions

This appendix describes the signals and transistors in the ARM7TDMI processor. It
contains the following sections:

. Transistor dimensions on page A-2
. Signal types on page A-3

. Transistor dimensions on page A-2.
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A.1 Transistor dimensions

Table A-1 shows the dimensions of the output driver for a 0.18um ARM7TDMI r4pl
processor.

Table A-1 Transistor gate dimensions of the output driver for a 0.18pym process

MOSFET Width Length
type

P 16.2um 0.18um
N 8.28um 0.18um
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A.2  Signal types
Table A-2 lists the signal types used in the ARM7TDMI r4p1 processor.

Table A-2 Signal types

Type Description

I1C Input CMOS thresholds

P Power

o Output
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A.3 Signal descriptions

Table A-3 describes all the signals used for the ARM7TDMI r4pl processor.

Table A-3 Signal descriptions

Name

Type

Description

A[31:0]
Addresses

This is the 32-bit address bus. ALE, ABE, and APE are used to control
when the address bus is valid.

ABE
Address bus enable

ABORT
Memory abort

IC

1IC

The address bus drivers are disabled when this is LOW, putting the address
bus into a high impedance state. This also controls the LOCK, MAS[1:0],
nRW, nOPC, and nTRANS signals in the same way. ABE must be tied
HIGH if there is no system requirement to disable the address drivers.

The memory system uses this signal to tell the processor that a requested
access is not allowed.

ALE
Address latch enable

IC

This signal is provided for backwards compatibility with older ARM
processors. For new designs, if address retiming is required, ARM Limited
recommends the use of APE, and for ALE to be connected HIGH.

The address bus, LOCK, MAS[1:0], nRW, nOPC, and nTRANS signals
are latched when this is held LOW. This enables these address signals to be
held valid for the complete duration of a memory access cycle. For example,
when interfacing to ROM, the address must be valid until after the data has
been read.

APE
Address pipeline enable

BIGEND

Big endian configuration

IC

1C

Selects whether the address bus, LOCK, MAS[1:0], nRW, nTRANS, and
nOPC signals operate in pipelined (APE is HIGH) or depipelined mode
(APE is LOW).

Pipelined mode is particularly useful for DRAM systems, where it is
desirable to provide the address to the memory as early as possible, to allow
longer periods for address decoding and the generation of DRAM control
signals. In this mode, the address bus does not remain valid to the end of the
memory cycle.

Depipelined mode can be useful for SRAM and ROM access. Here the
address bus, LOCK, MAS[1:0], nRW, nTRANS, and nOPC signals must
be kept stable throughout the complete memory cycle. However, this does
not provide optimum performance.

See Address timing on page 3-14 for details of this timing.

Selects how the processor treats bytes in memory:
. HIGH for big-endian format
. LOW for little-endian format.

Copyright © 2001, 2004 ARM Limited. All rights reserved.
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Table A-3 Signal descriptions (continued)

Name Type Description
BL[3:0] 1C The values on the data bus are latched on the falling edge of MCLK when
Byte latch control these signals are HIGH. For most designs these signals must be tied HIGH.
BREAKPT 1C A conditional request for the processor to enter debug state is made by
Breakpoint placing this signal HIGH.
If the memory access at that time is an instruction fetch, the processor enters
debug state only if the instruction reaches the execution stage of the pipeline.
If the memory access is for data, the processor enters debug state after the
current instruction completes execution. This enables extension of the
internal breakpoints provided by the EmbeddedICE-RT logic.
See Behavior of the program counter in debug state on page B-28 for details
on the use of this signal.
BUSDIS o When INTEST is selected on scan chain 0, 4, or 8 this is HIGH. It can be
Bus disable used to disable external logic driving onto the bidirectional data bus during
scan testing. This signal changes after the falling edge of TCK.
BUSEN IC A static configuration signal that selects whether the bidirectional data bus
Data bus configuration (D[31:0]) or the unidirectional data busses (DIN[31:0] and DOUT[31:0])
are used for transfer of data between the processor and memory.
When BUSEN is LOW, D[31:0] is used; DOUT[31:0] is driven to a value
of zero, and DIN[31:0] is ignored, and must be tied LOW.
When BUSEN is HIGH, DIN[31:0] and DOUT[31:0] are used; D[31:0] is
ignored and must be left unconnected.
See Chapter 3 Memory Interface for details on the use of this signal.
COMMRX o When the communications channel receive buffer is full this is HIGH.
Communications channel receive This signal changes after the rising edge of MCLK.
See Debug Communications Channel on page 5-16 for more information.
COMMTX (¢ When the communications channel transmit buffer is empty this is HIGH.
Communications channel transmit This signal changes after the rising edge of MCLK.
See Debug Communications Channel on page 5-16 for more information.
CPA 1C Placed LOW by the coprocessor if it is capable of performing the operation
Coprocessor absent requested by the processor.
CPB 1C Placed LOW by the coprocessor when it is ready to start the operation

Coprocessor busy

requested by the processor.

It is sampled by the processor when MCLK goes HIGH in each cycle in
which nCPI is LOW.

ARM DDI 0210C
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Table A-3 Signal descriptions (continued)

Name Type Description
D[31:0] 1C Used for data transfers between the processor and external memory.
Data bus (0] During read cycles input data must be valid on the falling edge of MCLK.
During write cycles output data remains valid until after the falling edge of
MCLK.
This bus is always driven except during read cycles, irrespective of the value
of BUSEN. Consequently it must be left unconnected if using the
unidirectional data buses.
See Chapter 3 Memory Interface.
DBE 1C Must be HIGH for data to appear on either the bidirectional or unidirectional
Data bus enable data output bus.
When LOW the bidirectional data bus is placed into a high impedance state
and data output is prevented on the unidirectional data output bus.
It can be used for test purposes or in shared bus systems.
DBGACK o When the processor is in a debug state this is HIGH.
Debug acknowledge
DBGEN IC A static configuration signal that disables the debug features of the processor
Debug enable when held LOW.
This signal must be HIGH to enable the EmbeddedICE-RT logic to function.
DBGRQ 1C This is a level-sensitive input, that when HIGH causes ARM7TDMI core to
Debug request enter debug state after executing the current instruction. This enables
external hardware to force the ARM7TDMI core into debug state, in
addition to the debugging features provided by the EmbeddedICE-RT logic.
See Appendix B Debug in Depth.
DBGRQI (0] This is the logical OR of DBGRQ and bit [1] of the debug control register.
Internal debug request
DIN[31:0] 1C Unidirectional bus used to transfer instructions and data from the memory to
Data input bus the processor.
This bus is only used when BUSEN is HIGH. If unused then it must be tied
LOW.
This bus is sampled during read cycles on the falling edge of MCLK.
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Table A-3 Signal descriptions (continued)

Name Type Description
DOUT[31:0] o Unidirectional bus used to transfer data from the processor to the memory
Data output bus system.
This bus is only used when BUSEN is HIGH. Otherwise it is driven to a
value of zero.
During write cycles the output data becomes valid while MCLK is LOW,
and remains valid until after the falling edge of MCLK.
DRIVEBS (0] Controls the multiplexors in the scan cells of an external boundary-scan
Boundary scan cell enable chain.
This must be left unconnected, if an external boundary-scan chain is not
connected.
ECAPCLK o Only used on the ARM7TDMI test chip, and must otherwise be left
EXTEST capture clock unconnected.
ECAPCLKBS o Used to capture the device inputs of an external boundary-scan chain during
EXTEST capture clock for EXTEST.
boundary-scan When scan chain 3 is selected, the current instruction is EXTEST and the
TAP controller state machine is in the CAPTURE- DR state, then this signal
is a pulse equal in width to TCK2.
This must be left unconnected, if an external boundary-scan chain is not
connected.
ECLK o In normal operation, this is simply MCLK, optionally stretched with
External clock output nWAIT, exported from the core. When the core is being debugged, this is
DCLK, which is generated internally from TCK.
EXTERNO 1C This is connected to the EmbeddedICE-RT logic and enables breakpoints
External input 0 and watchpoints to be dependent on an external condition.
EXTERN1 1C This is connected to the EmbeddedICE-RT logic and enables breakpoints
External input 1 and watchpoints to be dependent on an external condition.
HIGHZ o When the HIGHZ instruction has been loaded into the TAP controller this
High impedance signal is HIGH.
See Appendix B Debug in Depth for details.
ICAPCLKBS o This is used to capture the device outputs in an external boundary-scan chain
INTEST capture clock during INTEST.

This must be left unconnected, if an external boundary-scan chain is not
connected.

ARM DDI 0210C
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Table A-3 Signal descriptions (continued)

Name Type Description
INSTRVALID o Indicates that the instruction in the Execute stage of the pipeline was valid
Instruction valid and has been executed (unless it failed its conditions codes).
IR[3:0] (0] Reflects the current instruction loaded into the TAP controller instruction
TAP controller instruction register register. These bits change on the falling edge of TCK when the state
machine is in the UPDATE-IR state.
The instruction encoding is described in Public instructions on page B-9.
ISYNC 1C Set this HIGH if nIRQ and nFIQ are synchronous to the processor clock.
Synchronous interrupts Set it LOW for asynchronous interrupts.
LOCK o When the processor is performing a locked memory access this is HIGH.
Locked operation This is used to prevent the memory controller allowing another device to
access the memory.
It is active only during the data swap (SWP) instruction.
This is one of the signals controlled by APE, ALE and ABE.
MAS[1:0] o Used to indicate to the memory system the size of data transfer (byte,
Memory access size halfword or word) required for both read and write cycles, become valid
before the falling edge of MCLK and remain valid until the rising edge of
MCLK during the memory cycle.
The binary values 00, 01, and 10 represent byte, halfword, and word
respectively (11 is reserved).
This is one of the signals controlled by APE, ALE, and ABE.
MCLK IC This is the main clock for all memory accesses and processor operations.
Memory clock input The clock speed can be reduced to enable access to slow peripherals or
memory.
Alternatively, the nWAIT can be used with a free-running MCLK to
achieve the same effect.
nCPI (0] LOW when a coprocessor instruction is processed. The processor then waits
Not coprocessor instruction for a response from the coprocessor on the CPA and CPB lines.
If CPA is HIGH when MCLK rises after a request has been initiated by the
processor, then the coprocessor handshake is aborted, and the processor
enters the undefined instruction trap.
If CPA is LOW at this time, then the processor enters a busy-wait period
until CPB goes LOW before completing the coprocessor handshake.
nENIN IC This must be LOW for the data bus to be driven during write cycles.
NOT enable input Can be used in conjunction with nENOUT to control the data bus during

write cycles.
See Chapter 3 Memory Interface.

A-8 Copyright © 2001, 2004 ARM Limited. All rights reserved.
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Table A-3 Signal descriptions (continued)

Name Type Description

nENOUT o During a write cycle, this signal is driven LOW before the rising edge of

Not enable output MCLK, and remains LOW for the entire cycle. This can be used to aid
arbitration in shared bus applications.
See Chapter 3 Memory Interface.

nENOUTI O During a coprocessor register transfer C-cycle from the EmbeddedICE-RT

Not enable output communications channel coprocessor to the ARM core, this signal goes
LOW. This can be used to aid arbitration in shared bus systems.

nEXEC o This is HIGH when the instruction in the execution unit is not being executed

Not executed because, for example, it has failed its condition code check.

nFIQ 1C Taking this LOW causes the processor to be interrupted if the appropriate

Not fast interrupt request enable in the processor is active. The signal is level-sensitive and must be
held LOW until a suitable response is received from the processor. nFIQ can
be synchronous or asynchronous to MCLK, depending on the state of
ISYNC.

nHIGHZ o When the current instruction is HIGHZ this signal is LOW. This is used to

Not HIGHZ place the scan cells of that scan chain in the high impedance state.
This must be left unconnected, if an external boundary-scan chain is not
connected.

nIRQ IC As nFIQ, but with lower priority. Can be taken LOW to interrupt the

Not interrupt request processor when the appropriate enable is active. nIRQ can be synchronous
or asynchronous, depending on the state of ISYNC.

nM[4:0] (0] These are the inverse of the internal status bits indicating the current

Not processor mode processor mode.

nMREQ o When the processor requires memory access during the following cycle this

Not memory request is LOW.

nOPC o When the processor is fetching an instruction from memory this is LOW.

Not op-code fetch

This is one of the signals controlled by APE, ALE, and ABE.

ARM DDI 0210C
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Table A-3 Signal descriptions (continued)

Name Type Description

nRESET 1C Used to start the processor from a known address.

Not reset A LOW level causes the instruction being executed to terminate abnormally.
This signal must be held LOW for at least two clock cycles, with nWAIT
held HIGH.

When LOW the processor performs internal cycles with the address
incrementing from the point where reset was activated. The address
overflows to zero if nRESET is held beyond the maximum address limit.
When HIGH for at least one clock cycle, the processor restarts from address
0.

nRW o When the processor is performing a read cycle, this is LOW.

Not read, write This is one of the signals controlled by APE, ALE, and ABE.

nTDOEN o When serial data is being driven out on TDO this is LOW.

Not TDO enable Usually used as an output enable for a TDO pin in a packaged part.

nTRANS o When the processor is in User mode, this is LOW.

Not memory translate It can be used either to tell the memory management system when address
translation is turned on, or as an indicator of non-User mode activity.

This is one of the signals controlled by APE, ALE, and ABE.

nTRST 1C Reset signal for the boundary-scan logic. This pin must be pulsed or driven

Not test reset LOW to achieve normal device operation, in addition to the normal device
reset, nRESET.

See Chapter 5 Debug Interface.

nWAIT 1C When LOW the processor extends an access over a number of cycles of

Not wait MCLK, which is useful for accessing slow memory or peripherals.
Internally, nWAIT is logically ANDed with MCLK and must only change
when MCLK is LOW.

If nWALIT is not used it must be tied HIGH.

PCLKBS (0] This is used by an external boundary-scan chain as the update clock.

Boundary scan This must be left unconnected, if an external boundary-scan chain is not

update clock connected.

RANGEOUTO o When the EmbeddedICE-RT watchpoint unit 0 has matched the conditions

EmbeddedICE-RT RANGEOUTO0

currently present on the address, data, and control buses, then this is HIGH.
This signal is independent of the state of the watchpoint enable control bit.
RANGEOUTO changes when ECLK is LOW.

A-10
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Table A-3 Signal descriptions (continued)

Name Type

Description

RANGEOUT1 o
EmbeddedICE-RT RANGEOUT1

RSTCLKBS 0)
Boundary scan Reset Clock

SCREG][3:0] o
Scan chain register

SDINBS (0]
Boundary scan serial input data

SDOUTBS IC
Boundary scan serial output data

As RANGEOUTO but corresponds to the EmbeddedICE-RT watchpoint
unit 1.

When either the TAP controller state machine is in the RESET state or when
nTRST is LOW, then this is HIGH. This can be used to reset external
boundary-scan cells.

These reflect the ID number of the scan chain currently selected by the TAP
controller. These change on the falling edge of TCK when the TAP state
machine is in the UPDATE-DR state.

This provides the serial data for an external boundary-scan chain input. It
changes from the rising edge of TCK and is valid at the falling edge of TCK.

Accepts serial data from an external boundary-scan chain output,
synchronized to the rising edge of TCK.

This must be tied LOW, if an external boundary-scan chain is not connected.

SEQ (0]
Sequential address

When the address of the next memory cycle is closely related to that of the
last memory access, this is HIGH.

In ARM state the new address can be for the same word or the next. In
THUMB state, the same halfword or the next.

It can be used, in combination with the low-order address lines, to indicate
that the next cycle can use a fast memory mode (for example DRAM page
mode) or to bypass the address translation system.

SHCLKBS o

Boundary scan shift clock, phase
one

Used to clock the master half of the external scan cells and follows TCK1
when in the SHIFT-DR state of the state machine and scan chain 3 is
selected. When not in the SHIFT-DR state or when scan chain 3 is not
selected, this clock is LOW.

SHCLK2BS o

Boundary scan shift clock, phase
two

TAPSM[3:0] (@)
TAP controller

state machine

As SHCLKBS but follows TCK2 instead of TCK1.

This must be left unconnected, if an external boundary-scan chain is not
connected.

These reflect the current state of the TAP controller state machine. These bits
change on the rising edge of TCK.

See Figure B-2 on page B-5.
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Table A-3 Signal descriptions (continued)

Name Type Description

TBE IC When LOW, D[31:0], A[31:0], LOCK, MAS[1:0], nRW, nTRANS, and

Test bus enable nOPC are set to high impedance.
Similar in effect as if both ABE and DBE had been driven LOW. However,
TBE does not have an associated scan cell and so enables external signals to
be driven high impedance during scan testing.
Under normal operating conditions TBE must be HIGH.

TBIT o When the processor is executing the THUMB instruction set, this is HIGH.
It is LOW when executing the ARM instruction set.
This signal changes in phase two in the first execute cycle of a BX
instruction.

TCK IC Clock signal for all test circuitry. When in debug state, this is used to
generate DCLK, TCK1, and TCK2.

TCK1 o HIGH when TCK is HIGH (slight phase lag because of the internal clock

TCK, phase one non-overlap).

TCK2 o HIGH when TCK is LOW (slight phase lag because of the internal clock

TCK, phase two non-overlap).
It is the non-overlapping complement of TCK1.

TDI IC Serial data for the scan chains.

TDO o Serial data from the scan chains.

Test data output

TMS 1C Mode select for scan chains.

VDD P Provide power to the device.

Power supply

VSS P These connections are the ground reference for all signals.

Ground
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Appendix B
Debug in Depth

This appendix describes the debug features of the ARM7TDMI core in further detail
and includes additional information about the EmbeddedICE-RT logic. It contains the
following sections:

Scan chains and the JTAG interface on page B-3

Resetting the TAP controller on page B-6

Pullup resistors on page B-7

Instruction register on page B-8

Public instructions on page B-9

Test data registers on page B-14

The ARM7TDMI core clocks on page B-21

Determining the core and system state in debug state on page B-23
Behavior of the program counter in debug state on page B-28
Priorities and exceptions on page B-31

Scan chain cell data on page B-32

The watchpoint registers on page B-39

Programming breakpoints on page B-44

Programming watchpoints on page B-46

The debug control register on page B-47

ARM DDI 0210C
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. The debug status register on page B-50

. The abort status register on page B-52

. Coupling breakpoints and watchpoints on page B-53
. EmbeddedICE-RT timing on page B-55

. Programming restriction on page B-56.
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B.1 Scan chains and the JTAG interface

Three JTAG-style scan chains within the ARM7TDMI core enable debugging and
configuration of EmbeddedICE-RT logic.

Support is also provided for an optional fourth scan chain. This is intended to be used
for an external boundary-scan chain around the pads of a packaged device. The control
signals provided for this scan chain are described in Scan chain 3 on page B-20. Two
additional scan chains exist (numbered four and eight), but these are reserved for ARM
use only.

See Table B-2 on page B-16 for a summary of scan chain number allocation.

The following sections describe:
. Scan chain implementation
. TAP state machine on page B-5.

B.1.1  Scan chain implementation

A JTAG-style Test Access Port (TAP) controller controls the scan chains. For further
details of the JTAG specification, see IEEE Standard 1149.1 - 1990 Standard Test
Access Port and Boundary-Scan Architecture.

The scan chains are shown in Figure B-1 on page B-4.

Scan chains 0, 1, and 2 are described in the following sections:
. Scan chain 0 on page B-4
. Scan chain 1 on page B-4
. Scan chain 2 on page B-5.

ARM DDI 0210C
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ARM7TDMI processor

Scan chain 0

EmbeddedICE-RT
logic ARM CPU

main processor

_|

Scan chain 2 le— logic

BREAKPT

—>| Scan chain 1

TAP controller |«

Figure B-1 ARM7TDMI core scan chain arrangements

Scan chain 0

Scan chain 0 enables access to the entire periphery of the ARM7TDMI core, including
the data bus. The scan chain functions enable inter-device testing (EXTEST) and serial
testing of the core (INTEST). The order of the scan chain, from search data in to out, is:

1.

2.
3.
4

Data bus bits O to 31.

The core control signals.

Address bus bits 31 to 0.
EmbeddedICE-RT control signals.

The EmbeddedICE-RT control signals (specifically DBGRQI) are scanned out
first.

Scan chain 1

Scan chain 1 is a subset of scan chain 0 and BREAKPT. It provides serial access to the
core data bus D[31:0] and the BREAKPT signal.

There are 33 bits in this scan chain, the order from serial data in to serial data out, is:

1.
2.

Data bus bits O to 31.
The BREAKPT bit, the first to be shifted out.

B-4
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Scan chain 2

Scan chain 2 enables access to the EmbeddedICE-RT logic registers. See Test data
registers on page B-14 for details.

B.1.2 TAP state machine

The process of serial test and debug is best explained in conjunction with the JTAG state
machine. Figure B-2 shows the state transitions that occur in the TAP controller.

Test-Logic Reset \ 4
OxF -

tms=1

Run-Test/Idle
0xC

tms=0 A

n ~ Select-DR-Scan \itms=1 -~ Select-IR-Scan tms=1
g 0x7 g 0x4

tms=0

Pause-DR
0x3

tms=0

Figure B-2 Test access port controller state transitions

From IEEE Std 1149.1-1990. Copyright 1999 IEEE. All rights reserved.
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B.2 Resetting the TAP controller

The boundary-scan (JTAG) interface includes a state machine controller named the TAP

controller. To force the TAP controller into the correct state after power-up, you must

apply a reset pulse to the nTRST signal:

. when the boundary-scan interface or EmbeddedICE-RT is to be used, nTRST
must be driven LOW and then HIGH again

. when the boundary-scan interface or EmbeddedICE-RT is not to be used, the
nTRST input can be tied permanently LOW.

Note

A clock on TCK is not necessary to reset the device.

The nTRST signal:

1. Selects system mode. This means that the boundary-scan cells do not intercept
any of the signals passing between the external system and the core.

2. Selects the IDCODE instruction.
When the TAP controller is put into the SHIFT-DR state and TCK is pulsed, the
contents of the ID register are clocked out of TDO.

3. Sets the TAP controller state machine to the TEST-LOGIC RESET state.

4. Sets the scan chain select register to 0x3, which selects the external boundary-scan
chain, if present.

Note

You must use nTRST to reset the boundary-scan interface at least once after power up.

After this the TAP controller state machine can be put into the TEST-LOGIC RESET

state to subsequently reset the boundary-scan interface.
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B.3 Pullup resistors

The IEEE 1149.1 standard implies that n'TRST, TDI, and TMS must have internal
pullup resistors. To minimize static current draw, these resistors are not fitted to the
ARM7TDMI core. Accordingly, the four inputs to the test interface, the nTRST, TDI,
and TMS signal plus TCK, must all be driven to good logic levels to achieve normal
circuit operation.

ARM DDI 0210C
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B.4 Instruction register
The instruction register is 4 bits in length.
There is no parity bit.

The fixed value b0001 is loaded into the instruction register during the CAPTURE-IR
controller state.

The least significant bit of the instruction register is scanned in and scanned out first.
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Table B-1 lists the public instructions.

Debug in Depth

Table B-1 Public instructions

Instruction Binary Hexadecimal
EXTEST b0000 0x0
SCAN_N b0010 0x2
SAMPLE/PRELOAD  b0011 0x3
RESTART b0100 0x4
CLAMP b0101 0x5
HIGHZ b0111 0x7
CLAMPZ b1001 0x9
INTEST b1100 0xC
IDCODE b1110 O0xE
BYPASS bl111 OxF

In the following instruction descriptions, TDI and TMS are sampled on the rising edge
of TCK and all output transitions on TDO occur as a result of the falling edge of TCK.
The following sections describe:

EXTEST (b0000) on page B-10

SCAN_N (b0010) on page B-10
SAMPLE/PRELOAD (b0011) on page B-10
RESTART (b0100) on page B-10

CLAMP (b0101) on page B-11

HIGHZ (b0111) on page B-11

CLAMPZ (b1001) on page B-11

INTEST (b1100) on page B-12

IDCODE (b1110) on page B-12

BYPASS (b1111) on page B-13.

ARM DDI 0210C
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B.5.1 EXTEST (b0000)

The selected scan chain is placed in test mode by the EXTEST instruction.
The EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all of the scan
cells are placed in their test mode of operation:

. In the CAPTURE-DR state, inputs from the system logic and outputs from the
output scan cells to the system are captured by the scan cells.

. In the SHIFT-DR state, the previously captured test data is shifted out of the scan
chain using TDO, while new test data is shifted in using the TDI input. This data
is applied immediately to the system logic and system pins.

B.5.2 SCAN_N (b0010)

The SCAN_N instruction connects the scan path select register between TDI and TDO:
. In the CAPTURE-DR state, the fixed value b1000 is loaded into the register.

. In the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

. In the UPDATE-DR state, the scan register of the selected scan chain is connected
between TDI and TDO and remains connected until a subsequent SCAN_N
instruction is issued.

. On reset, scan chain 3 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite
length is specified. The least significant bit of the scan path select register is shifted in
and out first.

B.5.3 SAMPLE/PRELOAD (b0011)

This instruction is included for production test only and must never be used on the scan
chains provided by the ARM7TDMI core. It can be used on user-added scan chains such
as boundary-scan chains.

B.5.4 RESTART (b0100)

The RESTART instruction restarts the processor on exit from debug state. The
RESTART instruction connects the bypass register between TDI and TDO. The TAP
controller behaves as if the BYPASS instruction had been loaded.

The processor exits debug state when the RUN-TEST-IDLE state is entered.

B-10

Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C



Debug in Depth

B.5.5 CLAMP (b0101)

This instruction connects a single-bit shift register, the BYPASS register, between TDI
and TDO. When the CLAMP instruction is loaded into the instruction register, the state
of all the scan cell output signals is defined by the values previously loaded into the
currently loaded scan chain. This instruction must only be used when scan chain 0 is the
currently selected scan chain:

. In the CAPTURE-DR state, a 0 is captured by the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass register using TDI and
out using TDO after a delay of one TCK cycle. The first bit shifted out is a 0.

. In the UPDATE-DR state the bypass register is not affected.

B.5.6 HIGHZ (b0111)

This instruction connects a single-bit shift register, the BYPASS register, between TDI
and TDO. When the HIGHZ instruction is loaded into the instruction register, the
Address bus, A[31:0], the data bus, D[31:0], nRW, nOPC, LOCK, MAS[1:0], and
nTRANS are all driven to the high impedance state and the external HIGHZ signal is
driven HIGH. This is as if the signal TBE had been driven LOW:

. In the CAPTURE-DR state, a 0 is captured by the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass register using TDI and
out using TDO after a delay of one TCK cycle. The first bit shifted out is a 0.

. In the UPDATE-DR state, the bypass register is not affected.

B.5.7 CLAMPZ (b1001)

This instruction connects a single-bit shift register, the BYPASS register, between TDI
and TDO.

When the CLAMPZ instruction is loaded into the instruction register, all the tristate
outputs are placed in their inactive state, but the data supplied to the scan cell outputs is
derived from the scan cells. The purpose of this instruction is to ensure that, during
production test, each output can be disabled when its data value is either O or 1:

. In the CAPTURE-DR state, a 0 is captured by the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass register using TDI and
out using TDO after a delay of one TCK cycle. The first bit shifted out is a 0.

. In the UPDATE-DR state, the bypass register is not affected.

ARM DDI 0210C
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B.5.8

B.5.9

INTEST (b1100)

The INTEST instruction places the selected scan chain in test mode:

The INTEST instruction connects the selected scan chain between TDI and TDO.

When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells and the value of the data applied from the system logic to the
input scan cells is captured.

In the SHIFT-DR state, the previously-captured test data is shifted out of the scan
chain through the TDO pin, while new test data is shifted in through the TDI pin.

Single-step operation of the core is possible using the INTEST instruction.

IDCODE (b1110)

The IDCODE instruction connects the device identification code register or ID register
between TDI and TDO. The register is a 32-bit register that enables the manufacturer,
part number, and version of a component to be read through the TAP. See ARM7TDMI
core device IDentification (ID) code register on page B-14 for details of the ID register
format.

When the IDCODE instruction is loaded into the instruction register, all the scan cells
are placed in their normal system mode of operation:

In the CAPTURE-DR state, the device identification code is captured by the ID
register.

In the SHIFT-DR state, the previously captured device identification code is
shifted out of the ID register through the TDO pin, while data is shifted into the
ID register through the TDI pin.

In the UPDATE-DR state, the ID register is unaffected.

B-12
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B.5.10 BYPASS (b1111)

The BYPASS instruction connects a single-bit shift register, the bypass register,
between TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells
assume their normal system mode of operation. The BYPASS instruction has no effect
on the system pins:

. In the CAPTURE-DR state, a 0 is captured the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass register through TDI
and shifted out through TDO after a delay of one TCK cycle. The first bit to shift
outisa0.

. In the UPDATE-DR state, the bypass register is not affected.

All unused instruction codes default to the BYPASS instruction.

—— Note

BYPASS does not enable the processor to exit debug state or synchronize to MCLK for
a system-speed access while in debug state. You must use RESTART to achieve this.

ARM DDI 0210C
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B.6 Test data registers

There are seven test data registers that can connect between TDI and TDO:

. Bypass register

. ARM7TDMI core device IDentification (ID) code register
. Instruction register on page B-15

. Scan path select register on page B-15

. Scan chains 0, 1, 2, and 3 on page B-16.

In the following test data register descriptions, data is shifted during every TCK cycle.

B.6.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path
between TDI and TDO.
Length 1 bit.

Operating mode  When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred from TDI to TDO in
the SHIFT-DR state with a delay of one TCK cycle. There is no
parallel output from the bypass register.

A 0 is loaded from the parallel input of the bypass register in the
CAPTURE-DR state.

B.6.2 ARM7TDMI core device IDentification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 bits. The format of the register is as shown in Figure B-3.

31 28 27 1211 10

of1/0|0j0j0f0OfO|O|1|1[1[{O0(O|O|O[O[Of(O|O|1|1[1[1|0)0jO|Of1[1]1]1

< > »
< L} >

Version Part number Manufacturer identity

v

Figure B-3 ID code register format

Figure B-3 shows the default version and part number. If necessary, contact your
supplier for the correct device identification code.
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B.6.3 Instruction register
Purpose
Length

Operating mode

B.6.4 Scan path select register
Purpose
Length

Operating mode

Debug in Depth

When the IDCODE instruction is current, the ID register is
selected as the serial path between TDI and TDO. There is no
parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register
from its parallel inputs during the CAPTURE-DR state.

The least significant bit of the register is scanned out first.

Changes the current TAP instruction.
4 bits.

In the SHIFT-IR state, the instruction register is selected as the
serial path between TDI and TDO.

During the UPDATE-IR state, the value in the instruction register
becomes the current instruction.

During the CAPTURE-IR state, b0001 is loaded into this register.
This value is shifted out during SHIFT-IR. On reset, IDCODE
becomes the current instruction.

The least significant bit of the register is scanned in and out first.

Changes the current active scan chain.
4 bits.

SCAN_N as the current instruction in the SHIFT-DR state selects
the scan path select register as the serial path between TDI and
TDO.

During the CAPTURE-DR state, b1000 is loaded into this
register. This value is loaded out during SHIFT-DR, while a new
value is loaded in.

During the UPDATE-DR state, the value in the register selects a
scan chain to become the currently active scan chain. All further
instructions, such as INTEST, then apply to that scan chain. The
currently selected scan chain changes only when a SCAN_N
instruction is executed, or when a reset occurs. On reset, scan
chain 0 is selected as the active scan chain.

The least significant bit of the register is scanned in or out first.

ARM DDI 0210C
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B.6.5

The number of the currently selected scan chain is reflected on the SCREG[3:0]
outputs. The TAP controller can be used to drive external scan chains in addition to
those within the ARM7TDMI macrocell. The external scan chain must be assigned a
number and control signals for it can be derived from SCREGI[3:0], IR[3:0],
TAPSM[3:0], TCK1, and TCK2. The list of scan chain numbers allocated by ARM are
shown in Table B-2. An external scan chain can take any other number. The serial data
stream to be applied to the external scan chain is made present on SDINBS, the serial
data back from the scan chain must be presented to the TAP controller on the
SDOUTBS input. The scan chain present between SDINBS and SDOUTBS is
connected between TDI and TDO whenever scan chain 3 is selected, or when any of
the unassigned scan chain numbers is selected. If there is more than one external scan
chain, a multiplexor must be built externally to apply the desired scan chain output to
SDOUTBS. The multiplexor can be controlled by decoding SCREG[3:0].

Table B-2 lists the scan chain number allocation.

Table B-2 Scan chain number allocation

Scan chain .

number Function

0 Macrocell scan test

1 Debug

2 EmbeddedICE-RT logic programming
3a External boundary-scan

4 Reserved

8 Reserved

a. To be implemented by ASIC designer.

Scan chains 0, 1,2, and 3
These enable serial access to the core logic and to the EmbeddedICE-RT logic for
programming purposes. They are described in detail in the following sections.
Scan chain 0 and 1
Purpose Enables access to the processor core for test and debug.

Length Scan chain 0: 113 bits.
Scan chain 1: 33 bits.
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Each scan chain cell is fairly simple and consists of a serial register and a multiplexor
as shown in Figure B-4. The scan cells perform two basic functions:

. CAPTURE
. SHIFT.

For input cells, the capture stage involves copying the value of the input to the core into
the serial shift register. During shift, this value is output serially. The value applied to
the core from an input cell is either the system input or the contents of the serial register,
and this is controlled by the multiplexor.

For output cells (see Figure B-4), the capture stage involves placing the output value of
a core into the serial shift register. During shift, this value is output serially. The value
applied to the system from an output cell is either the core output, or the contents of the
serial register.

Serial data out
A

To system pin

CAPTURE clock Shift Latch

SHIFT clock

Ll .
register

f !

Serial datain  Update clock

Figure B-4 Output scan cell

All the control signals for the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by the current instruction and the state
of the TAP state machine.

You use the TAP controller instructions to select one of the following basic modes of
operation of the scan chains:

INTEST mode The core is tested internally. The data serially scanned in is
applied to the core and the resulting outputs are captured in the
output cells and scanned out.

ARM DDI 0210C
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EXTEST mode Data is scanned onto the outputs of the core and applied to the
external system. System input data is captured in the input cells
and then shifted out.

SYSTEM mode The scan cells are idle. System data is applied to inputs and core
outputs are applied to the system.

Scan chain 0

Scan chain 0 is intended primarily for inter-device testing, EXTEST, and testing the
core, INTEST. Scan chain 0 is selected using the SCAN_N instruction as described at
SCAN_N (b0010) on page B-10.

INTEST enables serial testing of the core. The TAP controller must be placed in
INTEST mode after scan chain 0 has been selected:

. During CAPTURE-DR, the current outputs from the core logic are captured in the
output cells.

. During SHIFT-DR, this captured data is shifted out while a new serial test pattern
is scanned in, therefore applying known stimuli to the inputs.

. During RUN-TEST-IDLE, the core is clocked. Usually, the TAP controller only
spends one cycle in RUN-TEST-IDLE. The whole operation can then be repeated.

For a description of the core clocks during test and debug, see The ARM7TDMI core
clocks on page B-21.

EXTEST enables inter-device testing, useful for verifying the connections between
devices on a circuit board. The TAP controller must be placed in EXTEST mode after
scan chain 0 has been selected:

. During CAPTURE-DR, the current inputs to the core logic from the system are
captured in the input cells.

. During SHIFT-DR, this captured data is shifted out while a new serial test pattern
is scanned in, thus applying known values on the outputs of the core.

. During UPDATE-DR, the value shifted into the scan cells appears on the outputs.

Note
During RUN-TEST-IDLE, the core is not clocked.

The operation can then be repeated.
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Scan chain 1

The primary use for scan chain 1 is for debugging, although it can be used for EXTEST
on the data bus. Scan chain 1 is selected using the SCAN_N TAP controller instruction.
Debugging is similar to INTEST and the procedure described above for scan chain 0
must be followed.

Scan chain 1 is 33 bits long, 32 bits for the data value, plus the scan cell on the
BREAKTPT core input. This 33rd bit serves four purposes:

1. Under normal INTEST test conditions, it enables a known value to be scanned
into the BREAKPT input.

2. During EXTEST test conditions, the value applied to the BREAKPT input from
the system can be captured.

3. While debugging, the value placed in the 33rd bit determines if the ARM7TDMI
core synchronizes back to system speed before executing the instruction. See
System speed access on page B-30 for further details.

4., After the ARM7TDMI core has entered debug state, the first time this bit is
captured and scanned out, its value tells the debugger if the core entered debug
state because of a breakpoint (bit [33] clear) or a watchpoint (bit [33] set).

Scan chain 2

Purpose Enables the EmbeddedICE-RT macrocell registers to be accessed. The
order of the scan chain, from TDI to TDO is:

1. Read/write, register address bits 4 to 0.
2. Data value bits 31 to 0.

See EmbeddedICE-RT block diagram on page B-40.
Length 38 bits.

To access this serial register, scan chain 2 must first be selected using the SCAN_N TAP
controller instruction. The TAP controller must then be placed in INTEST mode.

. During CAPTURE-DR, no action is taken.

. During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36
specify the address of the EmbeddedICE-RT logic register to be accessed.

. During UPDATE-DR, this register is either read or written depending on the state
of bit [37], as follows:
Bit [37] set Register is written.
Bit [37] cleared Register is read.
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Scan chain 3

Purpose Enables the ARM7TDMI core to control an external boundary-scan
chain.

Length User defined.

Scan chain 3 control signals are provided so that an optional external boundary-scan
chain can be controlled through the ARM7TDMI core. Typically, this is used for a scan
chain around the pad ring of a packaged device.

The following control signals are provided which are generated only when scan chain
3 has been selected. These outputs are inactive at all other times:

DRIVEBS This is used to switch the scan cells from system mode to test mode. This
signal is asserted whenever either the INTEST, EXTEST, CLAMP, or
CLAMPZ instruction is selected.

PCLKBS  This is an update clock, generated in the UPDATE-DR state. Typically
the value scanned into a chain is transferred to the cell output on the rising
edge of this signal.

ICAPCLKBS, ECAPCLKBS

These are capture clocks used to sample data into the scan cells during
INTEST and EXTEST respectively. These clocks are generated in the
CAPTURE-DR state.

SHCLKBS, SHCLK2BS

These are non-overlapping clocks generated in the SHIFT-DR state used
to clock the master and slave element of the scan cells respectively. When
the state machine is not in the SHIFT-DR state, both these clocks are
LOW.

The following scan chain control signals can also be used for scan chain 3:

nHIGHZ  This signal can be used to drive the outputs of the scan cells to the HIGH
impedance state. This signal is driven LOW when the HIGHZ instruction
is loaded into the instruction register and HIGH at all other times.

RSTCLKBS This signal is active when the TAP controller state machine is in the
RESET-TEST LOGIC state. It can be used to reset any additional scan
cells.

In addition to these control outputs, SDINBS output and SDOUTBS input are also
provided. When an external scan chain is in use, SDOUTBS must be connected to the
serial data output of the external scan chain and SDINBS must be connected to the serial
data input of the scan chain.
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B.7 The ARM7TDMI core clocks

The ARM7TDMI core has two clocks:
. the memory clock, MCLK
. an internally TCK generated clock, DCLK (see Clocks on page 5-3).

During normal operation, the core is clocked by MCLK and internal logic holds DCLK
LOW.

When the ARM7TDMI core is in debug state, the core is clocked by DCLK under
control of the TAP state machine and MCLK can free-run. The selected clock is output
on the signal ECLK for use by the external system.

— Note
nWAIT must be HIGH in debug state.

In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.

B.7.1  Clock switch during debug

When the ARM7TDMI core enters halt mode, it must switch from MCLK to DCLK.
This is handled automatically by logic in the ARM7TDMI core. On entry to debug state,
the core asserts DBGACK in the HIGH phase of MCLK. The switch between the two
clocks occurs on the next falling edge of MCLK. This is shown in Figure B-5.

MCLK |

DBGACK

DCLK

ECLK \\b/—\\
\ Multiplexer

switching point

Figure B-5 Clock switching on entry to debug state

The ARM7TDMI core is forced to use DCLK as the primary clock until debugging is
complete. On exit from debug, the core must be synchronized back to MCLK as
follows:

1. The final instruction of the debug sequence must be shifted into the data bus scan
chain and clocked in by asserting DCLK.

2. RESTART must be clocked into the TAP instruction register.
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The ARM7TDMI core automatically resynchronizes to MCLK and starts fetching
instructions from memory at MCLK speed.

See Exit from debug state on page B-26.

Note
In monitor mode, the core continues to be clocked by MCLK, and DCLK is not used.

B.7.2 Clock switch during test

When under serial test conditions, that is when test patterns are being applied to the
ARMT7TM core through the JTAG interface, the ARM7TDMI core must be clocked
using DCLK. Entry into test is less automatic than debug and some care must be taken.
On the way into test, MCLK must be held LOW. The TAP controller can now be used
to serially test the ARM7TDMI core. If scan chain 0 and INTEST are selected, DCLK
is generated while the state machine is in the RUN-TEST-IDLE state. During EXTEST,
DCLK is not generated.

On exit from test, RESTART must be selected as the TAP controller instruction. When
this is done, MCLK can be enabled to resume.

Note

After INTEST testing, you must ensure that the core is in a sensible state before
switching back to standard operating mode. The safest ways to do this are as follows:

. select RESTART and then cause a system reset
. insert MOV PC, # into the instruction pipeline.
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B.8 Determining the core and system state in debug state

When the ARM7TDMI core is in debug state, you examine the core and system state
by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine if the
processor entered debug from Thumb state or ARM state, by examining bit [4] of the
EmbeddedICE-RT debug status register. When bit [4] is HIGH, the core has entered
debug from Thumb state, when bit [4] is LOW, the core has entered debug entered from
ARM state.

B.8.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of
action is for the debugger to force the core back into ARM state. The debugger can then
repeat the same sequence of instructions to determine the processor state.

To force the processor into ARM state while in debug, execute the following sequence
of Thumb instructions on the core:

STR RO, [RO]; Save RO before use
MOV RO, PC ; Copy PC into RO

STR RO, [RO]; Now save the PC in RO
BX PC ; Jump into ARM state
MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

— Note

Because all Thumb instructions are only 16 bits long, the simplest course of action,
when shifting scan chain 1, is to repeat the instruction. For example, the encoding for
BX RO is 0x4700, so when 0x47004700 shifts into scan chain 1, the debugger does not have
to keep track of the half of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions in Example B-1 and Example B-2 on
page B-24 to determine the state of the processor.

With the processor in the ARM state, the instruction to execute is shown in
Example B-1.

Example B-1 Instruction to determine core state

STM R@, {RO-R15}
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The instruction in Example B-1 on page B-23 causes the contents of the registers to
appear on the data bus. You can then sample and shift out these values.

Note

The use of r0 as the base register for the STM is only for illustration and you can use
any register.

After you have determined the values in the current bank of registers, you might want
to access the banked registers. To do this, you must change mode. Typically, a mode
change can occur only if the core is already in a privileged mode. However, while in
debug state, a mode change from one mode into any other mode can occur. The
debugger must restore the original mode before exiting debug state.

For example, if the debugger has been requested to return the state of the User mode
registers and FIQ mode registers and debug state was entered in Supervisor mode, the
instruction sequence can be as listed in Example B-2.

Example B-2 Determining the state of the User and FIQ mode registers

STM RO, {RO-R15}; Save current registers

MRS RO, CPSR

STR RO, RO; Save CPSR to determine current mode
BIC RO, Ox1F; Clear mode bits

ORR RO, 0x10; Select user mode

MSR CPSR, RO; Enter USER mode

STM RO, {R13,R14}; Save register not previously visible
ORR RO, 0x01; Select FIQ mode

MSR CPSR, RO; Enter FIQ mode

STM RO, {R8-R14}; Save banked FIQ registers

All the instructions shown in Example B-2 execute at debug speed. Debug speed is
much slower than system speed. This is because between each core clock cycle, 33
clock cycles are required to shift in an instruction or shift out data. Executing
instructions this slowly is acceptable for accessing the core state because the
ARM7TDMI core is fully static. However, you cannot use this method for determining
the state of the rest of the system.

While in debug state, only the following instructions can be scanned into the instruction
pipeline for execution:

. data processing operations
. load, store, load multiple, and store multiple instructions
. MSR and MRS.
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B.8.2 Determining system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously to it. The ARM7TDMI core must be forced to
synchronize back to system speed. This is controlled by bit [33] (BREAKPT) of scan
chain 1 (see Figure B-1 on page B-4).

Any instruction can be placed in scan chain 1, and its execution speed depends on the
state of bit [33] as follows:

Bit [33] clear Instructions are executed at debug speed.

Bit[ 33] set Instructions are executed at system speed, with the exception of
the instruction that is executing when the state of bit [33] is
changed.

After a system-speed instruction has been scanned into the data bus and clocked into the

pipeline, the RESTART instruction must be loaded into the TAP controller. This causes

the ARM7TDMI core to behave as follows:

1.  The ARM7TDMI core automatically synchronizes back to MCLK, the system
clock.

2. Tt executes the instruction at system speed.

3.  Itre-enters debug state.

4. Tt switches itself back to the internally-generated DCLK.

When the instruction has completed, DBGACK is HIGH and the core is switched back
to DCLK. At this point, INTEST can be selected in the TAP controller and debugging
can resume.

To determine that a system-speed instruction has completed, the debugger must look at
both DBGACK and nMREQ. To access memory, the ARM7TDMI core drives
nMREQ LOW, after it has synchronized back to system speed. This transition is used
by the memory controller to arbitrate if the ARM7TDMI core can have the bus in the
next cycle. If the bus is not available, the core can have its clock stalled indefinitely. The
only way to tell that the memory access has completed is to examine the state of both
nMREQ and DBGACK. When both are HIGH, the access has completed. Usually, the
debugger uses the EmbeddedICE-RT macrocell to control debugging. By reading the
EmbeddedICE-RT macrocell status register, the state of nMREQ and DBGACK can
be determined.

The debug host can determine the system memory state using:

. system-speed load multiple instructions

. debug-speed store multiple instructions.

When the core returns to debug state after a system-speed access, bit [33] of scan chain

1 is driven HIGH. This gives the debugger information about why the core entered
debug state the first time this scan chain is read.
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Restrictions on setting BREAKPT

The instruction types that can be executed with bit [33] of scan chain 1 (BREAKPT)
set are:

. load instructions

. store instructions

. load multiple instructions
. store multiple instructions.

B.8.3  Exit from debug state

The following sequence is performed on leaving debug state:
1. The internal state of the ARM7TDMI core is restored.
2. A branch is generated to the next instruction to be executed.

A branch instruction must be loaded into the pipeline. See Behavior of the
program counter in debug state on page B-28 for a description of how to calculate
the branch.

3. The ARM7TDMI core synchronizes back to MCLK.

Bit [33] of scan chain 1 is used to force the ARM7TDMI core to resynchronize back to
MCLK, as follows:

1. The penultimate instruction of the debug sequence is scanned in with bit [33] set
HIGH.
2. The final instruction of the debug sequence is the branch and this is scanned in

with bit [33] LOW.
The core is clocked to load the branch into the pipeline.
4. The RESTART instruction is selected in the TAP controller.

When the state machine enters the RUN-TEST-IDLE state, the scan chain reverts
back to system mode and clock resynchronization to MCLK occurs in the core.

The ARM7TDMI core resumes normal operation, fetching instructions from memory.

The delay, until the state machine is in the RUN-TEST-IDLE state, enables conditions
to be set up in other devices in a multiprocessor system without taking immediate effect.
Then, when the RUN-TEST-IDLE state is entered, all processors resume operation
simultaneously.

The function of DBGACK s to tell the rest of the system when the core is in debug
state. It is used to:

. inhibit peripherals such as watchdog timers that have real time characteristics
. mask out memory accesses that are caused by the debugging process.
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When the core enters debug state after a breakpoint, the instruction pipeline contains the
breakpointed instruction plus two other instructions that have been prefetched. On entry
to debug state, the pipeline is flushed, so on exit from debug state, the pipeline must be
refilled to its previous state. The transition into and out of debug state causes extra
memory accesses. You can use DBGACK to inhibit any system peripheral that is
sensitive to the number of memory accesses performed, as shown in Example B-3.

Example B-3 Using DBGACK to mask out memory accesses

Consider a peripheral that counts the number of memory cycles. This cycle counter
must return the same count whether a program is run with or without debugging.
Figure B-6 shows the behavior of the core on exit from debug state.

CLK
an;ES Internal cycles N s s Y X
A[31:0] { Ab YAb+4fAb+8) " X
D[31:0]

DBGACK <

Figure B-6 Debug exit sequence

As shown in Figure 5-3 on page 5-7, the final memory access occurs in the cycle after
DBGACK goes HIGH. This is the point at which the cycle counter must be disabled.

Figure B-6 shows that the first memory access that has not been counted before occurs
in the cycle after DBGACK goes LOW, so this is when the counter must be re-enabled.

Note

When a system-speed access from debug state occurs, the core temporarily drops out of
debug state, so DBGACK might go LOW. If there are peripherals that are sensitive to
the number of memory accesses, they must be forced to behave as though the core is
still in debug state. By programming the EmbeddedICE-RT macrocell control register,
DBGACK can be forced HIGH.
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B.9 Behavior of the program counter in debug state

The debugger must keep track of what happens to the program counter, so that the
ARMT7TDMI core can be forced to branch back to the place at which program flow was
interrupted by debug. Program flow can be interrupted by any of the following:

. Software breakpoints

. Watchpoints on page B-29

. Watchpoint with another exception on page B-29
. Debug request on page B-30

. System speed access on page B-30.

B.9.1 Software breakpoints

Entry into debug state from a breakpoint advances the PC by four addresses or 16 bytes.
Each instruction executed in debug state advances the PC by one address or four bytes.

The usual way to exit from debug state after a breakpoint is to remove the breakpoint
and branch back to the previously-breakpointed address.

For example, if the ARM7TDMI core entered debug state from a breakpoint set on a
given address and two debug-speed instructions were executed, a branch of minus seven
addresses must occur:

. four for debug entry
. two for the instructions
. one for the final branch.

The following sequence shows the data scanned into scan chain 1, most significant bit
first. The value of the first digit goes to the BREAKPT bit and then the instruction data
into the remainder of scan chain 1:

0 E0802000; ADD R2, RO, RO
1 E1826001; ORR R6, R2, R1
0 EAFFFFF9; B-7, two’s complement, seven instructions backwards

After the ARM7TDMI core enters debug state, it must execute a minimum of two
instructions before the branch, although these can both be NOPs (MOV R@, R@). For small
branches, you can replace the final branch with a subtract, with the PC as the
destination. In the above example, this could be:

SUB PC, PC, #28
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The return to program execution after entry to debug state from a watchpoint is done in
the same way as the procedure described in Software breakpoints on page B-28.

Debug entry adds four addresses to the PC and every instruction adds one address. The
difference from breakpoint operation is that the instruction that caused the watchpoint
has executed and the program must return to the next instruction.

B.9.3 Watchpoint with another exception

If a watchpointed access simultaneously causes a Data Abort, the ARM7TDMI core
enters debug state in abort mode. Entry into debug is prevented until the core changes
into abort mode and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM7TDMI core enters debug state in the mode of
the exception. The debugger must check to see if an exception has occurred by
examining the current and previous mode, in the CPSR and SPSR, and the value of the
PC. When an exception has taken place, you must give the user the choice of servicing
the exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented
by three instructions rather than four and this must be considered in the return branch
calculation when exiting debug state. For example, suppose that an abort occurs on a
watchpointed access and ten instructions have been executed to determine this
eventuality. You can use the following sequence to return to program execution:

0 E1A00000; MOV RO, RO
1 E1A00000; MOV R@, RO
0 EAFFFFFO; B -16

This code forces a branch back to the abort vector, causing the instruction at that
location to be refetched and executed.

—— Note

After the abort service routine, the instruction that caused the abort and watchpoint is
refetched and executed. This triggers the watchpoint again and the ARM7TDMI core
re-enters debug state.
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B.9.4 Debug request

Entry into debug state through a debug request is similar to a breakpoint. However,
unlike a breakpoint, the last instruction has completed execution and so must not be
refetched on exit from debug state. You can assume that entry to debug state adds three
addresses to the PC and every instruction executed in debug state adds one address.

For example, suppose that you have invoked a debug request and decided to return to
program execution straight away. You can use the following sequence:

0 E1A00000; MOV RO, RO
1 E1A00000; MOV R@, RO
0 EAFFFFFA; B -6

This code restores the PC and restarts the program from the next instruction.

B.9.5 System speed access

When a system-speed access is performed during debug state, the value of the PC
increases by three addresses. System speed instructions access the memory system and
so it is possible for aborts to take place. If an abort occurs during a system-speed
memory access, the ARM7TDMI core enters abort mode before returning to debug
state.

This is similar to an aborted watchpoint, but the problem is much harder to fix because
the abort was not caused by an instruction in the main program and so the PC does not
point to the instruction that caused the abort. An abort handler usually looks at the PC
to determine the instruction that caused the abort and also the abort address. In this case,
the value of the PC is invalid, but because the debugger can determine which location
was being accessed, the debugger can be written to help the abort handler fix the
memory system.

B.9.6 Summary of return address calculations

The calculation of the branch return address is as follows:

. for normal breakpoint and watchpoint, the branch is:
- (44N+3S)

. for entry through debug request (DBGRQ) or watchpoint with exception, the
branch is:
- (3+N+3S)

where N is the number of debug-speed instructions executed, including the final branch,
and S is the number of system-speed instructions executed.
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B.10 Priorities and exceptions

When a breakpoint or a debug request occurs, the normal flow of the program is
interrupted. Debug can be treated as another type of exception. The interaction of the
debugger with other exceptions is described in Behavior of the program counter in
debug state on page B-28. This section covers the following priorities:

. Breakpoint with Prefetch Abort

. Interrupts

. Data Aborts.

B.10.1 Breakpoint with Prefetch Abort

B.10.2 Interrupts

B.10.3 Data Aborts

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and
the breakpoint is disregarded. Usually, Prefetch Aborts occur when, for example, an
access is made to a virtual address that does not physically exist and the returned data
is therefore invalid. In such a case, the normal action of the operating system is to swap
in the page of memory and to return to the previously-invalid address. This time, when
the instruction is fetched and providing the breakpoint is activated, it can be
data-dependent, the ARM7TDMI core enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

When the ARM7TDMI core enters halt debug state, interrupts are automatically
disabled.

If an interrupt is pending during the instruction prior to entering debug state, the
ARMT7TDMI core enters debug state in the mode of the interrupt. On entry to debug
state, the debugger cannot assume that the ARM7TDMI core is in the mode expected
by the user program. The debugger must check the PC, the CPSR, and the SPSR to
accurately determine the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM7TDMI core
does remember that an interrupt has occurred.

If bit [4], monitor mode enable, of the Debug control register is set, FIQs remain
enabled. An entry to the abort exception routine disables IRQs, so in monitor mode the
abort exception routine must re-enable IRQs before they can be recognized and
serviced.

When a Data Abort occurs on a watchpointed access, the ARM7TDMI core enters
debug state in abort mode. The watchpoint, therefore, has higher priority than the abort,
but the ARM7TDMI core remembers that the abort happened.
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B.11 Scan chain cell data

This section provides data for:
. Scan chain 0 cells
. Scan chain 1 cells on page B-37.

B.11.1 Scan chain 0 cells

The ARM7TDMI core provides data for scan chain O cells as listed in Table B-3.

Table B-3 Scan chain 0 cells

Number Signal Type

1 DI[0] Input/output
2 DI[1] Input/output
3 DI[2] Input/output
4 D[3] Input/output
5 D[4] Input/output
6 DI[5] Input/output
7 D[6] Input/output
8 DI[7] Input/output
9 D[8] Input/output
10 D[9] Input/output
11 D[10] Input/output
12 D[11] Input/output
13 D[12] Input/output
14 DI[13] Input/output
15 D[14] Input/output
16 D[15] Input/output
17 D[16] Input/output
18 D[17] Input/output
19 D[18] Input/output
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Table B-3 Scan chain 0 cells (continued)

Number Signal Type

20 D[19] Input/output
21 D[20] Input/output
22 D[21] Input/output
23 D[22] Input/output
24 D[23] Input/output
25 D[24] Input/output
26 D[25] Input/output
27 DI[26] Input/output
28 DI[27] Input/output
29 DI[28] Input/output
30 D[29] Input/output
31 D[30] Input/output
32 D[31] Input/output
33 nENIN Input

34 nENOUT Output

35 LOCK Output

36 BIGEND Input

37 DBE Input

38 MASI0] Output

49 MAS[1] Output

40 BL[0] Input

41 BL[1] Input

42 BL[2] Input

43 BL[3] Input

44 nRW Output
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Table B-3 Scan chain 0 cells (continued)

Number Signal Type
45 nFIQ Input
46 nIRQ Input
47 nRESET Input
48 ISYNC Input
49 ABORT Input
50 nOPC Output
51 nCPI Output
52 nMREQ Output
53 SEQ Output
54 nTRANS Output
55 nM[4] Output
56 nM][3] Output
57 nM]|2] Output
58 nM[1] Output
59 nM[0] Output
60 nEXEC Output
61 INSTRVALID Output
62 ALE Input
63 ABE Input
64 APE Input
65 TBIT Output
66 nWAIT Input
67 A[31] Output
68 A[30] Output
69 A[29] Output

B-34 Copyright © 2001, 2004 ARM Limited. All rights reserved. ARM DDI 0210C



Debug in Depth

Table B-3 Scan chain 0 cells (continued)

Number Signal Type

70 A[28] Output
71 A[27] Output
72 A[26] Output
73 A[25] Output
74 Al24] Output
75 A[23] Output
76 A[22] Output
77 A[21] Output
78 A[20] Output
79 A[19] Output
80 A[18] Output
81 A[17] Output
82 A[16] Output
83 A[15] Output
84 A[14] Output
85 A[13] Output
86 Al12] Output
87 A[l1] Output
88 A[10] Output
89 A[9] Output
90 A[8] Output
91 A[7] Output
92 A[6] Output
93 A[5] Output
94 A[4] Output
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Table B-3 Scan chain 0 cells (continued)

Number Signal Type
95 A[3] Output
96 A[2] Output
97 A[l] Output
98 A[0] Output
99 DBGRQ Input
100 DBGEN Input
101 CPA Input
102 CPB Input
103 BUSEN Input
104 EXTERNO Input
105 EXTERN1 Input
106 BREAKPT Input
107 DBGACK Output
108 RANGEOUTO0 Output
109 RANGEOUT1 Output
110 nENOUT1 Output
111 COMMTX Output
112 COMMRX Output
113 DBGRQI Output
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B.11.2 Scan chain 1 cells

The ARM7TDMI core provides data for scan chain 1 cells as listed in Table B-4.

Table B-4 Scan chain 1 cells

Number Signal Type

1 DI[0] Input/output
2 D[1] Input/output
3 D[2] Input/output
4 DI[3] Input/output
5 D[4] Input/output
6 D[5] Input/output
7 DI[6] Input/output
8 D[7] Input/output
9 D[8] Input/output
10 D[9] Input/output
11 D[10] Input/output
12 D[11] Input/output
13 D[12] Input/output
14 D[13] Input/output
15 D[14] Input/output
16 D[15] Input/output
17 D[16] Input/output
18 D[17] Input/output
19 D[18] Input/output
20 D[19] Input/output
21 D[20] Input/output
22 D[21] Input/output
23 D[22] Input/output
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Table B-4 Scan chain 1 cells (continued)

Number  Signal Type

24 D[23] Input/output
25 D[24] Input/output
26 D[25] Input/output
27 D[26] Input/output
28 D[27] Input/output
29 D[28] Input/output
30 D[29] Input/output
31 D[30] Input/output
32 D[31] Input/output
33 BREAKPT Input
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The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three

pairs of registers:

. address value and address mask
. data value and data mask
. control value and control mask.

Each register is independently programmable and has a unique address. The function
and mapping of the registers is shown in Table B-5.

Table B-5 Function and mapping of EmbeddedICE-RT registers

Address Width Function

00000 6 Debug control

00001 5 Debug status

00010 1 Abort status

00100 6 Debug comms control register
00101 32 Debug comms data register
01000 32 Watchpoint 0 address value
01001 32 Watchpoint 0 address mask
01010 32 Watchpoint 0 data value
01011 32 Watchpoint 0 data mask
01100 9 Watchpoint O control value
01101 8 Watchpoint 0 control mask
10000 32 Watchpoint 1 address value
10001 32 Watchpoint 1 address mask
10010 32 Watchpoint 1 data value
10011 32 Watchpoint 1 data mask
10100 9 Watchpoint 1 control value
10101 8 Watchpoint 1 control mask
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B.12.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the EmbeddedICE-RT scan
chain, scan chain 2. The scan chain is a 38-bit shift register comprising:

. a 32-bit data field
. a 5-bit address field for watchpoint register writes
. a read/write bit.

This setup is shown in Figure B-7.

Scan chain
register
. Update
Read/write
4
Address [ | Address
/ decoder
: =i,
31
Value | Mask Comparator » + Break_pomt
condition
Data
A[31:0] —p|
D[31:0] —
Control —p
0
T Watchpoint registers and comparators

TDI TDO

Figure B-7 EmbeddedICE-RT block diagram

The data to be written is shifted into the 32-bit data field. The address of the register is
shifted into the 5-bit address field. The read/write bit is set.
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A register is read by shifting its address into the address field and clearing the read/write

bit.

—— Note

A read or write actually takes place when the TAP controller enters the UPDATE-DR
state.

The register addresses are shown in Table B-5 on page B-39.

Note

For DCC data register reads, the least significant bit of the shifted out address field is
used as a status bit, and reflects the value of bit [0] of the DCC control register. This
enables the debugger to confirm the status of the scan chain as valid read data, and the
data is read in by the debugger during a single pass of the scan chain. A separate read
of the DCC control register and the DCC data register is therefore unnecessary, and the
DCC bandwidth is increased.

B.12.2 Using the mask registers

For each value register in a register pair, there is a mask register of the same format. If
a bit is set in the mask register, the same bit in the corresponding value register is
disregarded during a comparison.

For example, when a watchpoint is required on a particular memory location, but the
data value is irrelevant, you can program the data mask register to OxFFFFFFFF. Setting
all bits in the data mask register causes the entire data bus field to be ignored.

Note

The mask is an XNOR mask rather than a conventional AND mask. When a bit in the
mask register is set, the comparator for that bit position always matches, irrespective of
the value register or the input value.

Clearing a bit in the mask register means that the comparator matches only if the input
value matches the value programmed into the corresponding bit of the value register.
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B.12.3 The control registers

The control value and control mask registers are mapped identically in the lower eight
bits, as shown in Figure B-8.

8 7

6 5 4 3 2 1 0

ENABLE | RANGE

CHAIN |EXTERN | nTRANS | nOPC | MAS[1] | MAS][0] nRW

Figure B-8 Watchpoint control value and mask format

Bit [8] of the control value register is the ENABLE bit and cannot be masked.

The bits have the following functions:

nRW

MASI1:0]

Compares against the write signal from the core to detect the
direction of bus activity. nRW is O for a read cycle and 1 for a
write cycle.

Compares against the MAS[1:0] signal from the core to detect the
size of bus activity.

The encoding is listed in Table B-6.

nOPC

nTRANS

EXTERN][1:0]

Table B-6 MAS[1:0] signal encoding

Bit [1] Bit [0] Data size

0 0 Byte

0 1 Halfword
1 0 Word

1 1 Reserved

Detects if the current cycle is an instruction fetch, with nOPC=0,
or a data access, with nOPC=1.

Compares against the not translate signal from the core to
distinguish between User Mode, with nTRANS=0, and non-user
mode, with nTRANS=1, accesses.

Is an external input to EmbeddedICE-RT that enables the
watchpoint to be dependent upon some external condition. The
EXTERN input for Watchpoint 0 is labeled EXTERNO. The
EXTERN input for Watchpoint 1 is labeled EXTERN]1.
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Can be referred to the chain output of another watchpoint to
implement, for example, debugger requests of the form:
breakpoint on address YYY only when in process XXX. In the
ARM7TDMI core EmbeddedICE-RT logic, the CHAINOUT
output of Watchpoint 1 is referred to the CHAIN input of
Watchpoint 0. The CHAINOUT output is derived from a register.
The address/control field comparator drives the write enable for
the register. The input to the register is the value of the data field
comparator. The CHAINOUT register is cleared when the control
value register is written, or when nTRST is LOW.

Can be referred to another watchpoint unit.

In the ARM7TDMI core EmbeddedICE-RT logic, the
RANGEOUT output of Watchpoint 1 is referred to the RANGE
input of Watchpoint 0. This enables the two watchpoints to be
coupled for detecting conditions that occur simultaneously, such
as range checking.

When a watchpoint match occurs, the internal BREAKPT signal
is asserted only when the ENABLE bit is set. This bit exists only
in the value register. It cannot be masked.

For each of the bits [7:0] in the control value register, there is a corresponding bit in the
control mask register. These bits remove the dependency on particular signals.

ARM DDI 0210C
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B.13 Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

Hardware breakpoints

Typically monitor the address value and can be set in any code, even in
code that is in ROM or code that is self-modifying.

Software breakpoints on page B-45

Monitor a particular bit pattern being fetched from any address. One
EmbeddedICE-RT watchpoint can therefore be used to support any
number of software breakpoints. Software breakpoints can normally be
set only in RAM because a special bit pattern chosen to cause a software
breakpoint has to replace the instruction.

B.13.1 Hardware breakpoints

To make a watchpoint unit cause hardware breakpoints on instruction fetches:

1. Program its address value register with the address of the instruction to be
breakpointed.

2. For an ARM-state breakpoint, program bits [1:0] of the address mask register to
bl1. For a breakpoint in Thumb state, program bits [1:0] of the address mask
register to bO1.

3. Program the data value register if you require a data-dependent breakpoint. (A
data-dependent breakpoint is one that matches the instruction code fetched as
well as the address.) Ensure that you clear all the bits in the data mask register.
If the data value is not required, program the data mask register to @xFFFFFFFF (all
bits set).

4.  Program the control value register with nOPC = 0.

5. Program the control mask register with nOPC = 0.

6.  When you have to make the distinction between User and non-User mode
instruction fetches, program the nTRANS value and mask bits appropriately.

7. Ifrequired, program the EXTERN, RANGE, and CHAIN bits in the same way.

8. Program the mask bits for all unused control values to 1.

Note

In monitor mode, you must set the EmbeddedICE-RT disable bit (bit [5] in the debug

control register) before changing the register values, and clear it on completion of the

programming.
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B.13.2 Software breakpoints

To make a watchpoint unit cause software breakpoints on instruction fetches of a
particular bit pattern:

1.

S U

7.

Program its address mask register to OxFFFFFFFF(all bits set) so that the address is
disregarded.

Program the data value register with the particular bit pattern that has been chosen
to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern
in both halves of the data value register. For example, if the bit pattern is OxDEEE,
program OxDEEEDEEE. When a 16-bit instruction is fetched, EmbeddedICE-RT
compares only the valid half of the data bus against the contents of the data value
register. In this way, you can use a single watchpoint register to catch software
breakpoints on both the upper and lower halves of the data bus.

Program the data mask register to 0x00000000.
Program the control value register with nOPC = 0.
Program the control mask register with nOPC = 0 and all other bits to 1.

If you wish to make the distinction between User and non-User mode instruction
fetches, program the nTRANS bit in the control value and control mask registers
accordingly.

If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

—— Note
You do not have to program the address value register.

Setting the breakpoint

To set the software breakpoint:

1.
2.

Read the instruction at the desired address and store it away.

Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
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B.14 Programming watchpoints

To make a watchpoint unit cause watchpoints on data accesses:

1.

Program its address value register with the address of the data access to be
watchpointed.

Program the address mask register to 0x00000000.

Program the data value register if you require a data-dependent watchpoint. (A
data-dependent watchpoint is one that matches the data value read or written as
well as the address.) Ensure that you clear all the bits in the data mask register.

If the data value is not required, program the data mask register to @xFFFFFFFF (all
bits set).

Program the control value register as follows:

. nOPC =1

. nRW = 0 for a read or nRW = 1 for a write

. program MAS[1:0] with the value corresponding to the appropriate data
size.

Program the control mask register as follows:

. nOPC =0

. nRW =0

. MAS[1:0] =0

. all other bits set.

You can set nRW, or MAS[1:0] when both reads and writes, or data size accesses

are to be watchpointed respectively.

If you wish to make the distinction between User and non-User mode data
accesses, program the n'TRANS bit in the control value and control mask
registers accordingly.

If required, program the EXTERN, RANGE, and CHAIN bits in the same way.

Note

The above are examples of how to program the watchpoint register to generate
breakpoints and watchpoints. Many other ways of programming the registers are
possible. For instance, you can provide simple range breakpoints by setting one or more
of the address mask bits.
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B.15 The debug control register

The debug control register is six bits wide. Writes to the debug control register occur
when a watchpoint register is written. Reads of the debug control register occur when a
watchpoint register is read. See Programming and reading watchpoint registers on
page B-40 for more information.

Figure B-9 shows the function of each bit in the debug control register.

5 4 3 2 1 0

EmbeddedICE-RT Monitor mode

disable enable SBZ/RAZ INTDIS DBGRQ DBGACK

Figure B-9 Debug control register format

The debug control register bit assignments are shown in Table B-7.

Table B-7 Debug control register bit assignments

Bit

Function

(5]

Used to disable the EmbeddedICE-RT comparator outputs while the watchpoint and breakpoint
registers are being programmed. This bit can be read and written through JTAG.

Set bit [5] when:

. programming breakpoint or watchpoint registers

. changing bit [4] of the debug control register.

You must clear bit [5] after you have made the changes, to re-enable the EmbeddedICE-RT logic.

Bit [5] is writable when the core is synchronized to MCLK, (when it is safe to mask the
comparator outputs), and readable when synchronized to TCK.

(4]

Used to determine the behavior of the core when breakpoints or watchpoints are reached:

. If clear, the core enters debug state when a breakpoint or watchpoint is reached.

. If set, the core performs an abort exception when a breakpoint or watchpoint is reached.
This bit can be read and written from JTAG.

(3]

This bit must be LOW.

(2]

Used to disable interrupts:

. If set, the interrupt enable signal of the core (IFEN) is forced LOW. The IFEN signal is
driven as shown in Table B-8 on page B-48.

. If clear, interrupts are enabled.

(1]
(0]

Used to force the value on DBGRQ.

Used to force the value on DBGACK.
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B.15.1 Disabling EmbeddedICE-RT

The breakpoint and watchpoint registers are programmed from the JTAG port at the rate
of TCK, but the core is synchronized to MCLK. MCLK and TCK are asynchronous,
so disabling EICE-RT (by setting bit [5]) prevents metastable signals from entering the
core.

Whenever the setting of bit [5] is changed, it must be read back again and polled until
the new value is read back correctly. This ensures synchronization from TCK to
MCLK, and from MCLK to TCK, regardless of the relative clock speeds.

Conditions for breakpoint and watchpoint generation are given in Monitor mode on
page 5-20.

B.15.2 Disabling interrupts

IRQs and FIQs are disabled under the following conditions:
. during debugging (DBGACK HIGH)
. when the INTDIS bit is HIGH.

The IFEN signal is driven as shown in Table B-8.

Table B-8 Interrupt signal control

DBGACK INTDIS IFEN Interrupts
0 0 1 Permitted

1 X 0 Inhibited

X 1 0 Inhibited

B.15.3 Forcing DBGRQ

Figure B-11 on page B-51 shows that the value stored in bit [1] of the debug control
register is synchronized and then ORed with the external DBGRQ before being applied
to the processor. The output of this OR gate is the signal DBGRQI which is brought out
externally from the macrocell.

The synchronization between debug control register bit [1] and DBGRQI assists in
multiprocessor environments. The synchronization latch only opens when the TAP
controller state machine is in the RUN-TEST-IDLE state. This enables an enter-debug
condition to be set up in all the processors in the system while they are still running.
When the condition is set up in all the processors, it can be applied to them
simultaneously by entering the RUN-TEST-IDLE state.

B-48
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B.15.4 Forcing DBGACK

Figure B-11 on page B-51 shows that the value of DBGACKI from the core is ORed
with the value held in bit [0] of the debug control register to generate the external value
of DBGACK seen at the periphery of the ARM7TDMI core. This enables the debug
system to signal to the rest of the system that the core is still being debugged even when
system-speed accesses are being performed (when the internal DBGACK signal from
the core is LOW).
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B.16 The debug status register

The debug status register is five bits wide. If it is accessed for a write, with the read/write
bit set, the status bits are written. If it is accessed for a read, with the read/write bit clear,
the status bits are read. The format of the debug status register is shown in Figure B-10.

4 3 2 1 0

TBIT cgenL IFEN DBGRQ DBGACK

Figure B-10 Debug status register format
The debug status register bit assignments are shown in Table B-9.

Table B-9 Debug status register bit assignments

Bit Function

[4] Enables TBIT to be read. This enables the debugger to determine the processor
state and therefore which instructions to execute.

[3] Enables the state of the NMREQ signal from the core, synchronized to TCK,
to be read.

[2] Enables the state of the core interrupt enable signal, IFEN, to be read. This

enables the debugger to determine that a memory access from the debug state
has completed.

[1] Enable the value on the synchronized version of DBGRQ to be read.

[0] Enable the value on the synchronized version of DBGACK to be read.

The structure of the debug control and status registers is shown in Figure B-11 on
page B-51.
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Bit 0
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Figure B-11 Debug control and status register structure
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B.17 The abort status register

Only bit [0] of this 32-bit read/write register is used. It determines whether an abort
exception entry was caused by a breakpoint, a watchpoint, or a real abort. The format is
shown in Figure B-12.

31:1 0
SBZ/RAZ DbgAbt

Figure B-12 Debug abort status register

This bit is set when the ARM7TDMI core takes a prefetch or data abort as a result of a
breakpoint or watchpoint. If, on a particular instruction or data fetch, both the debug
abort and the external abort signal are asserted, then the external abort takes priority, and
the DbgAbt bit is not set. When set, DbgAbt remains set until reset by the user. The
register is accessed by MRC and MCR instructions.
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B.18 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE
inputs. Using CHAIN enables Watchpoint O to be triggered only if Watchpoint 1 has
previously matched. The use of RANGE enables simple range checking to be
performed by combining the outputs of both watchpoints.

B.18.1 Breakpoint and watchpoint coupling example

Let:

Av[31:0] be the value in the address value register

Am[31:0] be the value in the address mask register

A[31:0] be the address bus from the ARM7TDMI core

Dv[31:0] be the value in the data value register

Dm[31:0] be the value in the data mask register

D[31:0] be the data bus from the ARM7TDMI core

Cv[8:0] be the value in the control value register

Cm[7:0] be the value in the control mask register

C[9:0] be the combined control bus from the ARM7TDMI core, other

watchpoint registers and the EXTERN signal.

CHAINOUT signal
The CHAINOUT signal is derived as follows:

WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],Cm[4:0]} == OXFFFFFFFFF)
CHAINOUT = ((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR {Dm[31:0],Cm[7:5]}) == Ox7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 provides the CHAIN input to
Watchpoint 0. This CHAIN input enables you to specify complicated configurations of
breakpoints and watchpoints.

—— Note
There is no CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint 0.

Consider, for example, the request by a debugger to breakpoint on the instruction at
location YYY when running process XXX in a multi-process system. If the current
process ID is stored in memory, you can implement the above function with a
watchpoint and breakpoint chained together. The watchpoint address points to a known
memory location containing the current process ID. The watchpoint data points to the
required process ID. The ENABLE bit is cleared.
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The address comparator output of the watchpoint is used to drive the write enable for

the CHAINOUT latch. The input to the latch is the output of the data comparator from
the same watchpoint. The output of the latch drives the CHAIN input of the breakpoint
comparator. The address YY'Y is stored in the breakpoint register and when the CHAIN
input is asserted, the breakpoint address matches and the breakpoint triggers correctly.

B.18.2 RANGEOUT signal

The RANGEOQOUT signal is derived as follows:

RANGEOUT = ((({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR {Am[31:0],(m[4:0]}) == OXFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dm[31:0],Cm[7:5]}) == OX7FFFFFFFF)

The RANGEOUT output of watchpoint register 1 provides the RANGE input to
watchpoint register 0. This RANGE input enables you to couple two breakpoints
together to form range breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if a breakpoint is to
occur when the address is in the first 256 bytes of memory, but not in the first 32 bytes,
program the watchpoint as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 0x00000000 and an address mask
of 0x0000001F.

2. Clear the ENABLE bit.

3. Program all other Watchpoint 1 registers as normal for a breakpoint. An address
within the first 32 bytes causes the RANGE output to go HIGH but does not
trigger the breakpoint.

For Watchpoint 0:

1. Program Watchpoint O with an address value of 0x00000000 and an address mask
of 0x000000FF.

2. Set the ENABLE bit.
3. Program the RANGE bit to match a 0.
4. Program all other Watchpoint 0 as normal for a breakpoint.

If Watchpoint O matches but Watchpoint 1 does not, that is the RANGE input to
Watchpoint 0 is 0, the breakpoint is triggered.
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B.19 EmbeddedICE-RT timing

EmbeddedICE-RT samples the EXTERN1 and EXTERNO inputs on the falling edge
of ECLK. Sufficient set-up and hold time must therefore be enabled for these signals.

See Chapter 7 AC and DC Parameters for details of the required setup and hold times
for these signals.
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B.20 Programming restriction

Because the monitor mode enable bit does not put the ARM7TDMI into debug state, it
is necessary to change the contents of the watchpoint registers while external memory

accesses are taking place, rather changing them when in debug state (where the core is
halted).

If there is a possibility of false matches occurring during changes to the watchpoint

registers (caused by old data in some registers and new data in others) you must:

1. Disable the watchpoint unit by setting EmbeddedICE-RT disable, bit [5] in the
debug control register.

2. Poll the debug control register until the EmbeddedICE-RT disable bit is read back
as set.

3. Change the other registers.
Re-enable the watchpoint unit by clearing the EmbeddedICE-RT disable bit in the
debug control register.

See The debug control register on page B-47 for more information about controlling
core behavior at breakpoints and watchpoints.
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Appendix C
Differences Between Rev 3a and Rev 4

This appendix describes the differences between Rev 3a and Rev 4 of the ARM7TDMI
processor. It contains the following sections:

. Summary of differences between Rev 3a and Rev 4 on page C-2
. Detailed descriptions of differences between Rev 3a and Rev 4 on page C-3.
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Differences Between Rev 3a and Rev 4

C.1 Summary of differences between Rev 3a and Rev 4

The changes incorporated in ARM7TDMI Rev 4 are as follows:

. improved low voltage operation
. addition of EmbeddedICE-RT logic
. enhancement to ETM interface

. ability to minimize power consumption (by disabling EmbeddedICE-RT)

. improvement in Debug Communications Channel (DCC) bandwidth
. support for access to DCC through JTAG
. alterations to TAP Controller Scan Chain.

These are described in detail in Detailed descriptions of differences between Rev 3a and
Rev 4 on page C-3.
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C.2 Detailed descriptions of differences between Rev 3a and Rev 4

This section describes the changes to ARM7TDMI Rev 4 in detail.

C.2.1 Improved low voltage operation

Reliable operation down to 1V is expected on most 0.18um processes.

C.2.2 Addition of EmbeddedICE-RT logic

EmbeddedICE-RT is an enhanced implementation of the EmbeddedICE logic that was
part of the ARM7TDMI Rev 3a. The extra feature provided by EmbeddedICE-RT is
that upon a breakpoint or watchpoint, the core can be forced to take an exception, rather
than simply entering debug state. Because the core does not enter debug state, it can
continue to service hardware interrupt requests as normal.

This feature is extremely useful where the core forms part of the feedback loop of a
mechanical system, where stopping the core could potentially lead to system failure.

The addition of two extra bits to the debug control register and the addition of a new
register (R2) in the coprocessor register map are the only alterations to the
programmer's model.

Bit [4] of the debug control register is monitor mode enable, and controls how the device
reacts on a breakpoint or watchpoint:

. when set, the core takes the instruction or data abort exception

. when clear, the core enters debug state.

Bit [5] of the debug control register is EmbeddedICE-RT disable. Setting this bit
temporarily disables breakpoints and watchpoints, enabling the breakpoint or
watchpoint registers to be programmed with new values. Clearing this bit makes the
new breakpoint or watchpoint values operational.

The new register (R2) in the coprocessor register map indicates whether the processor
entered the Prefetch or Data Abort exception because of either a real abort, or because
of a breakpoint or watchpoint.

Ability to disable EmbeddedICE logic

Improvements have been made to the EmbeddedICE logic to ensure that when DBGEN
is tied low, much of the EmbeddedICE logic is disabled to keep power consumption to
a minimum.
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C.2.3 Enhancement to ETM interface

An extra output signal has been added to the ETM interface on the ARM7TDMI Rev 4,
to improve program execution trace. This signal is INSTRVALID, and it connects
directly to the pin of the same name on ETM7 Rev 1.

C.2.4 Improvement in Debug Communications Channel bandwidth

In ARM7TDMI Rev 3a, two accesses to scan chain 2 were required to read the DCC
data. The first accessed the status bit, and the second accessed the data itself.

To improve performance, only one access is required to read both the data and the status
bit, in the ARM7TDMI Rev 4 because the status bit is now included in the LSB of the
address field which is read from the scan chain.

The status bit in the DCC control register is left unchanged to ensure backwards
compatibility.

C.2.5 Access to Debug Communications Channel through JTAG

The DCC control register can be controlled from the JTAG interface in ARM7TDMI
Rev 4. A write clears bit [0], the data read control bit.

C.2.6 Alterations to TAP controller scan chain
The alterations to the TAP controller scan chain are as follows:

TAP controller ID register
The TAP controller ID register value is now 0x40700F0F.

Scan chain 0 The output scan cells now include an update stage so that the
output pins of the ARM7TDMI do not toggle as shifted data is
scanned around the chain.

This scan chain also now includes all the I/O pins of the
ARM7TDMI (except for the TAP related ports that cannot be
scanned, for example TAPSM, TDI, and TDO). Previous
versions of the ARM7TDMI did not include pins associated with
the EmbeddedICE logic.

The additional I/O pins that are now included in scan chain 0 are:
. DBGRQI

. COMMRX

. COMMTX

. nENOUTI
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. RANGEOUT1
. RANGEOUTO0
. EXTERN1

. EXTERNO

. BUSEN

. DBGEN

. INSTRVALID.

The following pins are now no longer included in scan chain 0:

. IFEN
. CGENDBGACK
. DCTL

Scan chains 1, 2, 3, 4, and 8
Scan chains 1, 2, and 3 are unchanged.

Scan chains 4 and 8 are reserved for internal use by ARM Limited.

C.2.7 Change to pin positioning
Pin order remains the same, with only one new pin appearing at the upper left corner of
the device (see Enhancement to ETM interface on page C-4).

C.2.8 Increased number of metal layers
The ARM7TDMI Rev 4 requires four metal layers, compared to three for the
ARM7TDMI Rev 3a.

C.2.9 Increased power consumption

It is estimated that the ARM7TDMI Rev 4 will consume 10% less power than the
ARM7TDMI Rev 3a on the same process.
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Glossary

Abort

Addressing modes

Arithmetic Logic Unit

ALU
ARM state

Big-endian

Banked registers

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here is intended.

Is caused by an illegal memory access. Abort can be caused by the external memory
system, an external MMU, or the EmbeddedICE-RT logic.

A procedure shared by many different instructions, for generating values used by the
instructions. For four of the ARM addressing modes, the values generated are memory
addresses (which is the traditional role of an addressing mode). A fifth addressing mode
generates values to be used as operands by data-processing instructions.

The part of a computer that performs all arithmetic computations, such as addition and
multiplication, and all comparison operations.

See Arithmetic Logic Unit.
A processor that is executing ARM (32-bit) instructions is operating in ARM state.

Memory organization where the least significant byte of a word is at a higher address
than the most significant byte.

Register numbers whose physical register is defined by the current processor mode. The
banked registers are registers R8 to R14, or R13 to R14, depending on the processor
mode.
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Breakpoint

CisC

A location in the program. If execution reaches this location, the debugger halts
execution of the code image.

See also Watchpoint.

See Complex Instruction Set Computer.

Complex Instruction Set Computer

CPSR

Control bits

A microprocessor that recognizes a large number of instructions.
See also Reduced Instruction Set Computer.
See Program Status Register.

The bottom eight bits of a program status register. The control bits change when an
exception arises and can be altered by software only when the processor is in a
privileged mode.

Current Program Status Register

DCC

Debug state

Debugger

EmbeddedICE

EmbeddedICE-RT
Exception modes

Exception

External abort
FIQ
ICE

Idempotent

See Program Status Register.
Debug Communications Channel.

A condition that allows the monitoring and control of the execution of a processor.
Usually used to find errors in the application program flow.

A debugging system which includes a program, used to detect, locate, and correct
software faults, together with custom hardware that supports software debugging.

The EmbeddedICE Logic is controlled via the JTAG test access port, using a protocol
converter such as MultilCE: an extra piece of hardware that allows software tools to
debug code running on a target processor.

See also ICE and JTAG.
A version of EmbeddedICE logic that has improved support for real-time debugging.
Privileged modes that are entered when specific exceptions occur.

Handles an event. For example, an exception could handle an external interrupt or an
undefined instruction.

An abort that is generated by the external memory system.
Fast interrupt.
See In-circuit emulator.

A mathematical quantity that when applied to itself under a given binary operation
equals itself.
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In-circuit emulator

IRQ

Glossary

An In-Circuit Emulator (ICE), is a device that aids the debugging of hardware and
software. Debuggable ARM processors such as the ARM7TDMI have extra hardware
called EmbeddedICE to assist this process.

See also EmbeddedICE.

Interrupt request.

Joint Test Action Group

JTAG

Link register

Little-endian memory

LR

Macrocell

The name of the organization that developed standard IEEE 1149.1. This standard
defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices.

See Joint Test Action Group.

This register holds the address of the next instruction after a branch with link
instruction.

Memory organization where the most significant byte of a word is at a higher address
than the least significant byte.

See Link register

A complex logic block with a defined interface and behavior. A typical VLSI system
will comprise several macrocells (such as an ARM7TDMI, an ETM7, and a memory
block) plus application-specific logic.

Memory Management Unit

MMU
PC

Privileged mode

Allows control of a memory system. Most of the control is provided through translation
tables held in memory. The ARM7TDMI processor does not include a memory
management unit, but you can add one if required.

See Memory Management Unit
See Program Counter.

Any processor mode other than User mode. Memory systems typically check memory
accesses from privileged modes against supervisor access permissions rather than the
more restrictive user access permissions. The use of some instructions is also restricted
to privileged modes.

Processor Status Register

Program Counter

See Program Status Register

Register 15, the Program Counter, is used in most instructions as a pointer to the
instruction that is two instructions after the current instruction.
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Program Status Register

PSR
RAZ

Contains some information about the current program and some information about the
current processor. Also referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction between it and
the Saved PSR (SPSR). The SPSR holds the value the PSR had when the current
function was called, and which will be restored when control is returned.

See Program Status Register.

Read as zero.

Reduced Instruction Set Computer

RISC

A type of microprocessor that recognizes a lower number of instructions in comparison
with a Complex Instruction Set Computer. The advantages of RISC architectures are:

. they can execute their instructions very fast because the instructions are so simple

. they require fewer transistors, this makes them cheaper to produce and more
power efficient.

See also Complex Instruction Set Computer.

See Reduced Instruction Set Computer

Saved Program Status Register

SBO
SBZ
Should Be One fields

Should Be Zero fields

The Saved Program Status Register which is associated with the current processor mode
and is undefined if there is no such Saved Program Status Register, as in User mode or
System mode.

See also Program Status Register.
See Should Be One fields.
See Should Be Zero fields.

Should be written as one (or all ones for bit fields) by software. Values other than one
produces unpredictable results.

See also Should Be Zero fields.

Should be written as zero (or all Os for bit fields) by software. Values other than zero
produce unpredictable results.

See also Should Be One fields.

Software Interrupt Instruction

This instruction (SWI) enters Supervisor mode to request a particular operating system
function.
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SPSR

Stack pointer

Status registers
SP

Swi

TAP

Test Access Port

Thumb instruction

Thumb state
UND
Undefined
UNP

Unpredictable

Unpredictable fields

Watchpoint

Glossary

See Saved Program Status Register.

A register or variable pointing to the top of a stack. If the stack is full stack the SP points
to the most recently pushed item, else if the stack is empty, the SP points to the first
empty location, where the next item will be pushed.

See Program Status Register.

See Stack pointer

See Software Interrupt Instruction.
See Test access port.

The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
are TDI, TDO, TMS, and TCK. The optional terminal is nTRST.

A halfword which specifies an operation for an ARM processor in Thumb state to
perform. Thumb instructions must be halfword-aligned.

A processor that is executing Thumb (16-bit) instructions is operating in Thumb state.
See Undefined.

Indicates an instruction that generates an undefined instruction trap.

See Unpredictable

Means the result of an instruction cannot be relied upon. Unpredictable instructions
must not halt or hang the processor, or any parts of the system.

Do not contain valid data, and a value can vary from moment to moment, instruction to
instruction, and implementation to implementation.

A location in the image that is monitored. If the value stored there changes, the debugger
halts execution of the image.

See also Breakpoint.
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