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Compression by Content Curation: An Approach to Audio
Summarization Driven by Cognition

[AUTHOR INFORMATION REDACTED]

As we move towards an increasingly IoT-enabled ecosystem, we find that it is easier than ever before to capture vast amounts
of audio data. However, there are many scenarios in which we may seek a “compressed” representation of an audio stream,
consisting of an intentional curation of content to achieve a specific presentation outcome – a background soundtrack for
studying or working; a summary of salient events over the course of a day; or an aesthetic soundscape that evokes nostalgia
of a time and place. In this work, we present a novel, automated approach to the task of “compression” by content curation,
built upon the tenets of auditory cognition, attention, and memory. We first expand upon the experimental findings in [1] and
[21] – which demonstrate the relative importance of higher-level gestalt and lower level spectral principles in determining
auditory memory – to design corresponding computational feature implementations enabled by auditory saliency models,
deep neural networks for audio classification, and spectral feature extraction. We then develop a tool to form several 30-second
binaural presentations from eight-hour ambient audio recordings captured at our institution by surfacing and mixing clips
that fall at the extrema of the aforementioned feature axes. We finally conduct an evaluation with n=50 participants to
illustrate the relationship between our cognitively-inspired feature space and a user’s perception of the resulting presentation.
Through this work, we suggest rethinking traditional paradigms of compression in favor of a content selection approach that
is goal-oriented and modulated by principles of auditory cognition.
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1 INTRODUCTION
In a crowded room, the whisper of our name has the power to immediately grab our attention. Fascinatingly, this
occurs despite our inability to recall anything the whisperer had uttered just before.

This anecdote belies a powerful feature of cognition– the lowest levels of our pre-conscious auditory processing
rely on high-level, gestalt semantics of the auditory objects we encounter. Studies of Event Related Potentials
(ERPs) demonstrate this, as pre-attentive characteristics of these neurological signals are invoked in response to
changes in both low-level acoustic changes (like a sudden loud noise) as well as high-level semantic ones (like an
animal name unexpectedly appearing in a list of fruits) [12, 22, 23, 25].
A review of auditory perception and taxonomy research reveals that people do indeed conceive of sounds

they encounter in the language of higher level semantics first, and only when a sound’s source object becomes
ambiguous– or causally uncertain– do they tend to resort to acoustic features for distinction [9]. In previous work,
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the authors of [1] collected thousands of human labels about the high-level concepts that affect perception (such
as a sound’s emotionality, ease of visualization, or causal uncertainty (Hcu)) for 400 sounds. These sounds were
intentionally curated to span from the easily recognized (low Hcu) to the extremely ambiguous (high Hcu). In
[21], they mapped out the relative ease with which each of these sounds is recalled as a function of the high-level
feature labels obtained in [1] and low-level spectral features, to analyze the roles of these features in auditory
memory formation. The authors’ results underscore the complexity of auditory cognition and the importance of
high-level semantic features when modeling attention and memory.
Models that can extract these high-level features from raw audio in the general case have traditionally been

intractable. It follows that general computational models of auditory attention and memory have been out of
reach. Fortunately, recent advances in deep learning have demonstrated success at representing large, general
classes of human knowledge with compressed embeddings [17, 18]. We’ve also seen the emergence of deep
learning models that extract hundreds of labeled classes from raw audio [11]; sentiment models that successfully
classify sentiment in images and text [24, 26]; and optimization techniques that allow these sophisticated models
to run with a small memory and power impact on affordable hardware in near real-time [2, 16]. Combined with
low-level acoustic salience models also common in the literature (see Section 2), these tools give us the ability to
build a complete palette of cognitively meaningful analysis tools for audition.
In this paper, we extend the earlier exploration of auditory cognition with state-of-the-art machine learning

techniques to enable a novel audio summarization approach that is based on both high-level and low-level
cognitive principles. Specifically, our contributions in this work are as follows:
(1) We develop computational feature implementations of the human-annotated higher-level and lower-level

principles of audition detailed in [1, 21], employing machine learning techniques to represent higher-level
principles for the first time.

(2) We build these features into an automated tool designed to surface clips from hours of ambient audio
recordings that are, for example, semantically notable (a new sound object), acoustically salient (loud or
dissonant), emotional, or more or less memorable (based on the work in [1, 21]).

(3) We evaluate the approach by collecting three sets of 8-hour ambient audio recordings from contrasting
locations at our institution, and apply the tool to this data to generate several 30-second binaural presen-
tations according to the feature strategies mentioned in (2). We test an assortment of the presentations
in a user evaluation study with n=50 participants, who are asked to rank the mixes according to several
perceptual classes – i.e., whether a mix is appropriate for socializing, might be distracting from focused
work, or serves as a remembrance for an entire day. We demonstrate a statistically significant relationship
between our feature strategy space and a user’s perception of a generated presentation.

Drawing from our results, we suggest that this cognitively-inspired approach enables us to re-think the way
that extensive audio captured in changing environments (such as for lifelogging, ecological monitoring, etc)
is condensed or summarized, and demonstrate a content curation-oriented methodology to achieve aesthetic
presentations for a variety of intents: from a summary of memorable events to an aid that recovers forgettable
but semantically novel moments; from background ambiance devoid of distraction to a foreground filled with
emotion.

2 RELATED WORK
Automated “compression” of multimedia content is certainly not a new problem, especially under the framing of
audio summarization. Several prior contributions in this space have used simple time and frequency features
(such as pitch and pause) [10] or more complex spectral decomposition and filtering [7, 8, 27] to select excerpts of
interest from a larger recording, which are then assembled together. In the realm of music, thumbnail generation
has often been considered a holy-grail task; work by [5], for example, tackles this problem by performing
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self-similarity analysis on a spectral representation. This class of work has typically capitalized on statistical
variations in distributions of audio features to identify excerpts that should be present in a summary; they do not,
however, exploit our knowledge of human perception, attention, and memory to drive the selection process.

The task of forming acoustical summaries using cognitive salience models is first attempted in [19]. The authors
employ the approach first suggested in [15] and further explored in [6, 13, 14], which entails the generation of
salience time-frequency maps from perceptually motivated kernels convolved with a spectrogram at different
resolutions, to select samples from urban and environmental recordings that are most easy for users to associate
with a specific location. While this is a significant initial step, our work expands the boundaries of this problem
in two ways: first, we aim to reach beyond the space of spectral features or low-level salience to tap into human
gestalt processing, through the use of deep networks for audio event classification. Secondly, and more broadly,
we aim to explore the relationship between our feature space and the response elicited in users when these
features are used to curate content. We posit that manipulating these gestalt and acoustic features in accordance
with our understanding of attention and memory (shaped by [21]) might allow us to generate a “compressed”
audio presentation that, for example, serves as a background track for studying, an ambient audio for socializing,
evokes nostalgia, or simply records salient auditory events over the course of a day. Over the course of this work,
we discuss both the novel suite of feature analysis techniques that enable these aims and the causal relationships
between the generated content and a user’s perception.

3 COGNITIVELY-INSPIRED CONTENT CURATION
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Fig. 1. An illustration of the cognitive analysis and summary generation tool.

3.1 Overview
An overview of our approach is as follows: from an uninterrupted audio recording, we select 3-second audio
excerpts at equally-spaced time intervals throughout the recording, each with the same pre-determined duration.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 154. Publication date: December 2018.



154:4 • [Author Information Redacted]

We then extract the value of each of our features (detailed below) for each excerpt in the set. Our implementation
outputs a ranking ordered by feature value assigned, and a set of configuration parameters optionally determine
the relative weighting of each feature ranking, which are combined to select the subset of excerpts forming
the final audio presentation (see Section 3.3 for more details). The selected excerpts are finally cross-faded in
chronological order and output as a single track. Figure 1 provides a detailed illustration of the data flow in the
system.

3.2 Feature Implementations

Fig. 2. Examples of saliency maps for two different audio samples; Top to bottom: Original spectrogram, temporal map,
frequency map, intensity map. An increase in saliency is indicated by a lighter coloring.

3.2.1 Auditory Salience. To obtain a measure of auditory salience, we build upon the implementation mentioned
in [21], inspired by the original model proposed by [15]. The saliency model consists of temporal, frequency, and
intensity kernels convolved against a melspectrogram at multiple resolutions to obtain three time-frequency
maps. We summarize the information from the saliency maps by computing the peak energy, the total energy,
and the number of 2D peaks (local maxima obtained from a wavelet-based peak finder) appearing in each map
for every sample. A final ranking for each of these three features is obtained by applying an equal weighting to
the statistics computed for each kernel type. Figure 2 provides an example of the resulting salience maps for two
different audio excerpts.

3.2.2 Spectral Self-similarity. Though not an explicit component of the previous work in [21] or [1], we infer
from literature in the cognitive sciences [4, 9] that the notion of repetition (often framed as ecological frequency)
is a driving force in determining the way an audio presentation is received or attended to. From a low-level
standpoint, we assess repetition through a measure of self-similarity, first employed the context of audio by
[5]. To obtain a score revealing how similar an audio excerpt is relative to itself and all other sampled audio
excerpts, we first compute a magnitude STFT for each excerpt with a 512 FFT bins and a hop size of 512 samples.
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Fig. 3. An example of the self-similarity analysis procedure; we show two different sets of multiple excerpts resulting from
the uniform sampling procedure, which are downsampled and concatenated along the time dimension as detailed in Section
3.2.2. Top: A concatenation of the spectrograms of each of the excerpts in the set; Middle: self-similarity matrix computed
from the concatenated representation; Bottom: novelty curve derived from the self-similarity matrix.

To decrease the computational overhead, each STFT is then smoothed along the time axis with a width of 10 units,
and down-sampled along the same axis by a factor of 10. After concatenating the magnitude STFTs from all of the
excerpts along the time dimension to create a single 2-dimensional representation, we compute a self-similarity
matrix as the cosine distance between each pair of 512 unit time vectors in the new representation. More formally,
for a concatenated STFT representation S with time dimension T and frequency dimension F , the self-similarity
matrix is defined as:

SSM(n,m) =
®S(n) · ®S(m)

| |S(n)| | | |S(m)| |
,n,m ∈ T (1)

We then obtain a novelty curve by summing along the time or frequency axis; the total novelty within the
bounds of a single excerpt is assigned as the self-similarity score to that excerpt. This process is illustrated by
Figure 3.

3.2.3 Spectral Feature Extraction. We additionally include the low-level spectral features found in [21] as features
in our suite. These cover (1) the ratio of harmonic to percussive energy; (2) the bass/mid and treble/mid energy
ratios; and (3) the variation and range of the pitch contour identified using a low-pass filtered f0 extraction
technique.

3.2.4 Gestalt Features via Deep Learning. As determined in [21], there are many high level descriptors of sound
objects that dominate our perception, attention, and memory. In this paper, we develop computational equivalents
of three of these features using deep learning techniques– Causal Uncertainty (Hcu), Sentiment, and High-Level
Repetition.
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In order to quantify these high-level descriptors, the first step must be to identify and label sound objects from
the raw audio stream. This is possible using Google’s AudioSet network, which is trained on a large YouTube
corpus to classify hundreds of sound sources. Unfortunately, Google has not yet released a full end-to-end version
of this network, opting instead to release the first half of it– called VGGish– which simply embeds incoming raw
audio as a 128-dimension vector. This vector is designed to capture and disambiguate features that correspond to
semantically meaningful information. We use it to transform the raw audio into a representation that should
primarily capture when the objects or sound sources in a scene change (and by how much) as opposed to when
and how much the sounds themselves change.

We additionally used DataArt’s state-of-the-art publicly available implementation of the full AudioSet network
that is trained using Google’s VGGish and Youtube-8M dataset [20]. However, we found that this classifier was not
always robust, and struggled to correctly label the sounds in our environmental recordings. Given this limitation,
we decided to use the native VGGish embedding where possible.

Employing this infrastructure, our final high-level features are as follows:
(1) Hcu, calculated using the L2 spread between VGGish embeddings of dozens of overlapping segments in a

3-second excerpt. The more diverse the semantic information in a short period of time, the higher the Hcu.
(2) High level semantic novelty (or High-level repetition), calculated with the same algorithm as for low-level

spectral self-similarity, except based on the centroid of each frame’s VGGish embeddings. Frames whose
embeddings stand out in this context represent novel semantic information about the sounds in the raw
audio.

(3) Sentiment or affect in the audio. This is the most speculative, as it requires accurate classification labels
from the DataArt AudioSet model. In this instance, we take all of the possible classes from our the model,
feed the text label for each into the senti-wordnet model to identify its sentiment score [3], and scale that
score by the model’s class probability for that label to get a final sentiment estimate. In this way, we average
over many noisy observations, incorporate many uncertain classifications into the model, and derive a
simple probabilistic score for the likely affect in each frame.

3.3 Excerpt Ranking and Selection
In our setup, we extract low- and high-level features from about 4,800 3-second excerpts in a given 8 hour
recording (resulting in an analysis of approximately 4 hours of audio per recording). The tool is then tasked with
the selection of 15-20 excerpts to make a 30 second auditory presentation, where the excerpts are assembled
together with crossfades.
To make the selections, the excerpts are ranked with respect to a feature or set of features that a user may

specify. In the case that any single higher or lower-level feature from our suite is specified, excerpts are simply
drawn from the top or bottom of the ordered ranking (i.e. taking the top 15 most salient or the top 15 most
semantically novel clips); in the case that assessing excerpts by overall “memorability” is specified, the tool
performs a linear weighted average of the relevant features, following the model presented in [21]. We use the
shapely coefficients from this work as the weights and give high- and low-level features equal value, with a small
modification wherein our metric for Hcu is exclusively used to represent the high-level principles to ensure
robust predictions.
Finally, we incorporate a “baseline” strategy into the tool, where 15-20 excerpts are simply chosen at equally

spaced intervals in time from the set of excerpts being analyzed, without any feature extraction and ranking.
This serves as a benchmark for comparison in our evaluation study (see Section 5).
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4 DATASET
To evaluate our approach, we first form our dataset by recording 8 hours of audio (from 9am to 5pm) at 3 different
locations across our institution. The recording venues included a laboratory space inhabited by approximately 15
students spread across desks, workbenches, and a meeting space; a public “atrium” space with heavy traffic and
conversation during the mid-morning and afternoon; and a setting just outside of an academic building, at a
street intersection with frequent vehicle traffic and construction activity.
The raw audio is recorded in each location using a single microphone capturing 4 channels of audio in

an Ambisonic-A format. We then convert this audio to a binaural rendering using Facebook’s Spatial Audio
Workstation, to create spatial presentations that can be evaluated over personal headphones. Throughout our
evaluation, we perform the feature ranking analysis on the audio from a single omni-directional channel taken
from the raw ambisonic configuration; to create the final mixes, however, we choose the corresponding, time-
aligned excerpts from the binaural rendering, to eliminate the possible distortion effects of a generic Head-related
Transfer Function on the spectral content used for feature extraction.

5 EVALUATION

Fig. 4. Screenshot of the evaluation survey.

To understand the relationship between the cognitive features implemented in our tool and the various
perceptual goals that the generated audio might align with, we conduct a survey requiring participants to rank
audio mixes from each of the three recording locations according to a set of questions. More specifically, we
choose the set of questions summarized by the keywords given in Table 1 (the full questionnaire is given in Table
3) and hypothesize as to the dominant feature strategies that might produce mixes most in line with the questions.
We then take inspiration from these hypotheses to select a set of 7 binaural mixes per recording location, which
participants must rank from most to least likely in terms of accordance with each question. It is important to
note that the set of mixes is intentionally not identical across recording locations; this is largely motivated by a
trade-off between audio summaries generated accurately from a computational standpoint and the need for more
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diverse, relevant presentations given the location. We present a detailed discussion of this experimental design
decision in Section 7.1.

Goal Feature Hypothesis
Remembrance Most Memorable

Notable Most Memorable, Most Semantically Novel
Relaxing Least Salient Energy

Distracting Most Salient Energy
Socializing Most Affect
Evolution Baseline

Table 1. The feature strategies we hypothesize are mostly likely to produce the binaural presentations that are suitable for
the listed goals (see Table 3 for the corresponding survey questions); these inspire our final per-location mix selections, given
in Table 2

.

“Atrium” Space Outside Laboratory Space
Most Memorable Most Memorable Most Memorable

Most Semantically Novel Most Semantically Novel Most Semantically Novel
Most Acoustically Self-similar Most Acoustically Self-similar Most Acoustically Self-similar
Least Acoustically Self-similar Most Semantically Novel Most Semantically Novel
Most Salient Energy (Total) Most Salient Energy (Peak) Most Salient Energy (Total)

Most Affect Least Salient Energy (Peak) Most Affect
Table 2. The final selections of the feature strategies corresponding to the binaural presentations corresponding to each
recording venue.

Keyword Survey Question
Remembrance Which of these audio presentations would you most likely use as a remembrance of a day?

Notable Which of these audio presentations would you most likely use as a compilation of notable events in a space?
Relaxing Which of these audio presentations would you most likely use as a background track for sleeping/ relaxing?

Distracting Which of these audio presentations would be most distracting to focused work?
Socializing Which of these audio presentations would be most comfortable for socializing?
Evolution Which of these audio presentations best captures the evolution of the environment over the course of the day?

Table 3. A reference mapping between the goal keywords we use throughout the work and the survey questions to which
they correspond.

Table 2 shows the final set of mixes (defined by feature strategy) chosen per recording location, and a screenshot
of the evaluation interface can be found in Figure 4. We recruited 75 participants to complete the evaluation – a
small number (<10) were recruited from our institution on a voluntary basis, and the remaining were recruited
from Amazon Mechanical Turk for a small fee per survey. The audio mixes pertaining to each feature strategy
and recording location and an interactive demo can be found at .
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“Atrium” Space Outside Laboratory Space
Remembrance Most Memorable Baseline Most Salient Energy

Notable Least Acoustically Self-Similar Most Semantically Novel Most Acoustically Salient Energy
Relaxing Most Acoustically Self-Similar Least Semantically Novel Least Semantically Novel

Distracting Least Acoustically Self-Similar Most Semantically Novel Most Acoustically Salient Energy
Social Most Memorable Smallest Acoustically Salient Peaks Most Memorable

Evolution Least Acoustically Self-Similar Most Semantically Novel Most Semantically Novel
Table 4. Top-ranked feature strategy for a given goal and recording space; bold if the p-value corresponding to the set of
rankings is less than 0.025

“Atrium” Space Outside Laboratory Space
Remembrance Baseline Least Semantically Novel Most Acoustically Self-Similar

Notable Most Acoustically Self-Similar Least Semantically Novel Most Acoustically Self-Similar
Relaxing Most Acoustically Salient Energy Most Semantically Novel Least Affect

Distracting Least Semantically Novel Smallest Acoustically Salient Peaks Most Acoustically Self-Similar
Social Least Semantically Novel Largest Acoustically Salient Peaks Most Acoustically Self-Similar

Evolution Most Acoustically Self-Similar Most Memorable Baseline
Table 5. Bottom-ranked feature strategy for a given goal and recording space; bold if the p-value corresponding to the set of
rankings is less than 0.025

6 RESULTS
Collected survey responses were first filtered by duration and completion percentage (users who took less time
than was required to listen through all audio samples were eliminated). We then examined the data for outliers
using clustering techniques based on the kendall distance (a pair-wise technique used in ranking analysis). We
were left with 50 trustworthy participants.

Our analysis first consisted of a few basic statistics– the average rankings of each feature strategy for a
particular goal in a particular space, and the pair-wise probability table to show how frequently one type of
feature strategy outperforms another for a goal/location pair. We then further examine the data through marginal
plots which show the percentage of times a particular mix was chosen for each rank. We examined data broken
out across all seven original rank options; for ease of analysis, we also look at consolidated marginal ranking
plots where counts in positions 1-2, 3-5, and 6-7 are grouped together. We use a χ 2 test to make sure the marginal
data is significantly different than pure chance.

In Table 4 and Table 5, we show the feature type that best describes the differences in the highest and lowest
average rankings. Bold feature types have a p value of < 0.025 compared with random selection. Additionally, we
provide several examples of marginal plots to aid our discussion of trends in perception (see Section 7), shown in
Figures 5, 6, and 7.

7 DISCUSSION

7.1 Mix Selection and Edge Cases
Before discussing the survey data, we start with our selection criteria for the per-location mixes presented in the
questionnaire (Table 1 and Table 2). We immediately found with our tool interesting edge cases that were not
useful for our survey– for instance, the “least semantically novel” summary of the laboratory space was composed
entirely of doors opening and closing. While this objectively matches expectations of a properly functioning
tool (door closing is an extremely common background sound with a clear semantic label), the mix subjectively

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 154. Publication date: December 2018.



154:10 • [Author Information Redacted]

Fig. 5. Marginal Ranking plots for the Relaxing and Distracting goals. These show the percentage that each mixing strategy
appears in the top, middle, and bottom ranks as evaluated by users.

Fig. 6. Marginal Ranking plots for the Relaxing and Distracting goals outside. These show expanded views of the plots in
Figure 5 for every rank.

does not serve as a summary or representation of an audio environment along any of the examined perceptual
dimensions and was likely to skew the results of the study for that particular recording location.

We also found several cases where the “uninteresting” end of the spectrum of low-level features values (i.e. the
most acoustically self-similar, least salient, least pitched, etc) tended to converge to the same subset of excerpts
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Fig. 7. Full marginal rankings for the “Social” and “Remembrance” goals, in the atrium space. No strong trends are evident
outside of a preference for memorability score.

from the analysis set. Interestingly, these scales diverge as they move towards the positive end (the most salient
or least acoustically similar sounds) of the feature spectrum. To maintain diversity in the selected mixes per
recording location and to be able to disambiguate between feature strategies, we intentionally limited overlap in
the negative cases for these lower-level features.

Finally, for the “outside” location, there were very few sound sources that were pitched or organically generated–
this soundscape was made almost entirely of cars and trucks. For this case, the sentiment or affect feature strategies
did not provide mixes representative of corresponding cognitive principles, and were discarded in favor of other
feature strategies.

7.2 Trends in Mix Rankings
As demonstrated by Table 4 and Table 5, not every mix resulted in a χ 2 p-value that suggested non-random
selection– most notably, none of the “remembrance” rankings for any environment showed a strong p-value. This
hints at the complexity behind an ideal model of memorability, which was likely not captured in entirety with a
sparse and simple linear combination of our features. We also generally see from these tables that self-similarity
in low-level acoustic feature space as well as high-level semantic feature space are the two most important and
most useful feature strategies that can be applied to the dataset.
Figure 5 shows the rank-consolidated marginal plots for the two perceptual objectives with the clearest

statistical trends– “relaxing” and “distracting”. For these objectives, we see the strongest trends in high-level
semantic similarity (mixes with consistent sound sources are relaxing), and weaker trends in low-level acoustic
similarity (consistent sound sources have similar sound textures, which is also relaxing). Interestingly, in the
“outside” condition, we find that the correlation between low- and high- level similarity diverges (some mixes
have similar sources but different textures and vice versa) and in these cases high-level semantic similarity (or
dis-similarity) emerges as the most useful way to create a relaxing or distracting mix. In environments where
many sound objects share low-level features– or in environments where the same sound source may appear
with varied texture– high-level semantic features become the only way to disambiguate the interesting from the
mundane. The strength of these trends demonstrates that our tool creates clearly superior and inferior mixes
along the “relaxing” and “distracting” axes, and we find that high level semantic similarity is the most important
driver of that difference.
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In Figure 6 we see the full marginal plot of the “relaxing” and “distracting” rankings from the “outside” recording
– this confirms in more detail the primacy of semantic similarity or dissimilarity over acoustic features. We also
see a hint that our memorability score has captured something useful (though secondarily), with clear boost in
the top and bottom three ranks of “distracting” and “relaxing” mixes respectively.

In our analysis of mix rankings in response to the “social” and “remembrance” questions in the study, we see
some of the weakest trends (Figure 7. Social rankings seem to favor a diversity of salient, semantically relevant
events– in the case of the atrium ranking, we see some evidence for a trend in the memorability mix. In general,
these results suggest a complicated relationship we have yet to effectively decompose; however the dominant
features have the most clearly direct cognitive parallels (i.e. salience, semantic similarity, memorability, etc).

Finally, the “baseline” mix strategy of equally spaced samples was not a common selection for the “evolution
of a space” perceptual objective, despite our hypothesis. It seems– particularly in a short 30 second format– that
people are attuned to changes in the soundscape more readily captured by acoustic and semantic self-similarity,
despite the fact that a naive sampling strategy is statistically most representative of a recording.

8 CONCLUSION AND FUTURE WORK
In this work, we demonstrate a novel approach to audio “compression” or “summarization” bymeans of cognitively-
inspired content curation.We develop a suite of computational features that mimic the higher-level and lower-level
principles of auditory memory and attention as outlined in prior work, employing deep learning techniques
to achieve the former for the first time. We apply these features to form short presentations from lengthy
environmental recordings and demonstrate a correlation between our feature space and the perceptual attributes
of the auto-generated presentations.
We acknowledge that the approach can benefit from further research in two dimensions – (1), in which the

fundamental research pertaining to statistical models of auditory memory and attention presented in [21] is
expanded to incorporate and investigate spatialized audio, audio presented in an uncontrolled context, and
user-driven input such as bio-sensory signals or an assessment of auditory exposure; and (2), in which the feature
design is more explicitly constrained by computation requirements. Given the measures of self-similarity, for
example, the current implementation does not immediately lend itself to an on-line, real-time curation process
for streaming audio – future work in this regard is necessary to extend the realm of application of this work from
tens of hours of audio to hundreds or thousands of hours.
Despite the work to come, we believe that this work presents an important contribution to the research

problem of large-scale audio consumption – that given an experience-oriented audio capture context instead
of a task-oriented one (such as lifelogging or ecological monitoring instead of surveillance), we might consider
compressed or summarized representations with aesthetic aims over objective ones; that exploring content along
subjective, perceptual dimensions might provide a novel, valuable means of interfacing with hours of recorded
audio.
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