Pushpin Computing System Overview:
a Platform for Distributed, Embedded,
Ubiquitous Sensor Networks

Joshua Lifton!, Deva Seetharam?, Michael Broxton!, and Joseph Paradiso?

L MIT Media Lab, Responsive Environments Group, 1 Cambridge Center 5FL,
Cambridge, MA 02142 USA
{lifton, mbroxton, joep}Omedia.mit.edu
http://www.media.mit.edu/resenv/
2 MIT Media Lab, Physics & Media Group, 20 Ames Street,
Cambridge, MA 02139 USA
deva@media.mit.edu
http://www.media.mit.edu/physics/

Abstract. A hardware and software platform has been designed and im-
plemented for modeling, testing, and deploying distributed peer-to-peer
sensor networks comprised of many identical nodes. Each node possesses
the tangible affordances of a commonplace pushpin to meet ease-of-use
and power considerations. The sensing, computational, and communica-
tion abilities of a ”Pushpin”, as well as a ”Pushpin” operating system
supporting mobile computational processes are treated in detail. Exam-
ple applications and future work are discussed.

1 Introduction

“A cochroach has 30,000 hairs, each of which is a sensor. The most
complex robot we’ve built has 150 sensors and it’s just about killed us.
We can’t expect to do as well as animals in the world until we get past
that sensing barrier.”

Rodney Brooks in Fast, Cheap & Out of Control [6]

Sensors to transduce physical quantities from the real world into a machine-
readable digital representation have advanced to the point where size, quality
of measurement, manufacturability, and cost are no longer the major stumbling
blocks holding us back from creating machines equipped with as much sensory
bandwidth as some animals, if not people. Rather, we are faced with a problem
of our own devising — how do we communicate, coordinate, process, and react
to the copious amount of sensory data now available to the machines we build?
Certainly, some success in harvesting and responding to multiple data streams
originating from a quantity of sensors has been demonstrated (e.g. [7]), but such
examples do not scale; using traditional sensing methods, even adding one more
sensor to an array of a couple dozen sensors presents a formidable challenge on

2 Joshua Lifton et al.

both the hardware and software fronts. As the number of sensors increases to the
thousands, hundreds of thousands and beyond, any tractable solution will have
to rely on principles of self-organization at the level of the sensors themselves in
order to guarantee the proper scaling properties. In this sense, it behooves us
to begin treating sensor systems as distributed networks wherein each node is
a self-sufficient sensing unit and coordination among nodes takes place locally,
automatically, and without centralized supervision.

Distributed sensor networks are immediately applicable to many real world
applications; high-energy particle detectors, robot skins, smart floors, battle-
field reconnaissance, environmental monitoring, HVAC (heating, ventilation, air-
conditioning) control, and space exploration are among the many applications
that could benefit from distributed sensor networks. Perhaps the greatest use
of distributed sensor networks, however, lies not in the preexisting applications
they augment, but rather in the future applications they enable. Obviously, it
is impossible to fully enumerate these future applications, but it is not hard to
speculate that any advances in fields such as nanotechnology will only make that
list longer.

In this paper we introduce the Pushpin Computing platform as a general pur-
pose hardware and software toolkit for studying, designing, prototyping, and de-
ploying dense sensor networks. Details of the hardware and programming model
are given, as well as the design considerations that lead up to the current imple-
mentation. A simple example is illustrated step by step.

2 Related Work

Depending on the particular circumstances, the term distributed sensor network
can meaningfully be attached to a large number of systems varying widely across
many distinct parameters, such as physical layout, network topology, memory
resources, computational throughput, sensing capabilities, communication band-
width, and usability. Accordingly, what qualifies as research into distributed sen-
sor networks is just as general. In such a general context, everything from tracing
TCP/IP packet flow through the Internet to quantifying collective ant behav-
ior can be considered as examples of research into distributed sensor networks.
Nonetheless, there are very specific bodies of research that either have directly
inspired or are very closely related to the work presented here.

The direct inspiration for this work is Butera’s Paintable Computing simu-
lation work [1]. Pushpin Computing started out as an attempt to instantiate in
hardware as closely as possible the Paintable simulations. This will be discussed
more in the coming sections.

Resnick’s StarLogo programming language [9] provides an accessible but rich
simulation environment for exploring decentralized emergent systems. The Push-
pin programming model is influenced by StarLogo’s intuitive approach.

Although there are surely many more examples of computer simulation re-
search that have some bearing on distributed sensor networks, Berkeley’s (now
Intel Research Lab at Berkeley) SmartDust and its associated TinyOS software

Lecture Notes in Computer Science 3

environment is the only known hardware platform developed in a spirit at all
similar to that of the Pushpins. The SmartDust/TinyOS platform was devel-
oped from the bottom up, shaped by the real-world energy limitations placed
upon nodes in a distributed sensor network [2,4]. As such, each node is rela-
tively resource poor in terms of bandwidth and peripherals. Furthermore, the
assumption is made that almost all communication within a distributed sensor
network is for the purpose of communicating with a a centralized base station
[10]. In contrast, the Pushpin platform was built more from the top down, pro-
vides each node with a richer set of hardware, bandwidth, and software, and
consumes correspondingly more energy per node.

3 Design Points

The primary motivator for the Pushpin Computing project is to achieve the one
goal inaccessible to computer simulations of distributed sensor networks — to
sense and react to the physical world. The goal is to devise sensor networks that
self-organize in such a way so as to preprocess and condense sensory data at the
local sensor level before (optionally) sending it on to more centralized systems.
This idea is somewhat analogous to the way the cells making up the various
layers of a retina interact locally within and across layers to preprocess some
aspects of contrast and movement before passing the information on to the optic
nerve and then on to the visual cortex [3].

The compelling architecture articulated and demonstrated in simulation by
the Paintable Computing project provides a base set of design points for the
hardware, operating system, and programming environment from which it is
possible to build a distributed sensor network to achieve the goal of a self-
organizing sensor network. Where practical, the Pushpin platform follows this
blueprint closely. To paraphrase [1]:

— Each Pushpin (node) has the ability to communicate locally with its spatially
proximal neighbors, the neighborhood being defined by the range of the mode
of communication employed.

— Each Pushpin must reliably handle the fact that the number of addressable

neighbors in the communication neighborhood can vary unpredictably.

Each Pushpin must reliably handle the fact that messages sent to the its

neighbors may exhibit a probabilistic transit times and are not explicitly

acknowledged.

Each Pushpin must provide for a mechanism for installing, executing, and

passing on to its neighbors code and data received over the communication

channel.

In addition, the Pushpin platform is designed specifically for ease of proto-
typing a wide range of digital and analog applications in the hope that it will
receive a broad and active audience.

4 Joshua Lifton et al.

4 Hardware

The Pushpin project embeds a 20 MIPS mixed-signal microcomputer system
into the form factor of a bottle cap with the tangible affordances of a thumb
tack or pushpin. The Pushpin hardware platform is designed around a balanced
optimization of small physical footprint, functional modularity, expandability,
generality, and computational power. To this end, each Pushpin consists of four
modules; power, communication, processing, and expansion modules. Each mod-
ule is contained on a printed circuit board (PCB) measuring roughly 18mm x
18mm and stacks together with other modules vertically from bottom to top in
the order listed. The total stacked height of a Pushpin varies depending on the
modules used, but is typically on the order of 18mm as well. A description of
each module and the connections between them follow.

1 mm 10 =i

Fig. 1. Modules of a Pushpin

4.1 Power Module

The Pushpin moniker derives from the original power scheme implementation in
which protruding from the underside of each Pushpin device are a pair of pins
of unequal length that can be easily pushed into a flexible power plane made
from two layers of conductive silicone rubber sandwiched between insulating
layers of silicone. One of the conductive planes provides power and the other
ground. This novel setup satisfies power and usability requirements (no chang-
ing of batteries or rewiring of power connections, simply push the Pushpin into
the substrate) and hints at the idea of both physically and functionally merging
sensing and computing networks with their surroundings. While this solution
blatantly sidesteps the important issue of power consumption (the powered sub-
strate is plugged into a power supply), it allows for very quick prototyping and
minimal maintenance overhead.

Other power sources can easily take the place of the pins and substrate
as long as they provide 2.7VDC to 3.3VDC. Two AAA batteries in series is
a simple, if bulky alternative. The total power consumed depends strongly on
the particular expansion, processing, and communication modules employed and

Lecture Notes in Computer Science 5

insulation
ground
power

insulating coating
electrical contact

Fig. 2. Pushpin power scheme

how they are used. For example, the processing module has several different
modes of operation, each requiring a different amount of power. Typical current
consumption of the processing module running at 22MHz with all necessary
peripherals enabled is roughly 10mA, whereas the processing module running
in low power mode requires roughly 10uA. Accordingly, the lifespan of a power
source can vary from hours to years depending on the particular circumstances.

4.2 Communication Module

Anything containing all the necessary hardware for effectively transmitting from
and receiving to a typical hardware UART qualifies as a communication module.
That is, the communication board consists of all communication hardware except
the UART itself, which is built into the processor on the processing module.
Currently, several communication modules are available for Pushpins, including
a capacitive coupling module and an infrared module which both run at up to
166kbps. A radio module is under development. There is also an interface for
RS232 communication with a PC over a serial port.

4.3 Processing Module

The Pushpins are designed around the Cygnal C8051F016 — an 8-bit, mixed
signal, up to 25 MIPS, 8051-core microprocessor. The Cygnal chip is equipped

6 Joshua Lifton et al.

with 2.25-Kbytes of RAM and 32-Kbytes of in-system programable (ISP) flash
memory. All hardware supporting the operation of the microprocessor as well
as the microprocessor itself is contained on the Pushpin processing module. The
microprocessor runs off of a 22.1184MHz external crystal but also has its own
adjustable internal clock for lower power modes. A simple LED indicates the
status of the microprocessor. Connectors providing access to the microprocessor’s
analog and digital peripherals comprise the remainder of the processing module.
See Fig. 3.

4.4 Expansion Module

The the expansion module is where most of the user hardware customization
takes place for any given Pushpin. The expansion module has access to all the
processing modules analog and digital peripherals not devoted to the communi-
cation module. This includes general purpose digital I/O, comparators, analog-
to-digital converters, capture compare counters, and IEEE standard JTAG pro-
gramming and debugging pins, among others. The expansion module contains
application specific sensors, actuators, and external interrupt sources. Exam-
ples include sonar transducers, LED displays, microphones, light sensors, and
supplementary microcontrollers.

5 Programming Model

The Pushpin programming model is heavily informed by the Paintable Com-
puting programming model and attempts to follow it as closely as possible. The
occasional deviations from that model are due to somewhat limited computa-
tional resources and reasons of practicality. In essence, the programming model
is based on algorithmic self-assembly, the idea that small algorithmic process
fragments with simple local interactions with other process fragments can result
in complex global algorithmic behavior. In a sense, algorithmic self-assembly
treats algorithms in the same way thermodynamics treats gas particles; when
the number of particles is large, pV = nRT becomes more useful than knowing
the position and momentum of each particle.

The Paintable Computing project successfully demonstrated algorithmic self-
assembly in simulation. The goal of the Pushpin programming model is to create
a suitable tool for exploring algorithmic self-assembly as it relates to sensory data
extracted from the real world. To this end, an operating system, networking
protocol, and process fragment integrated development environment (IDE) have
been implemented.

5.1 Process Fragments

A process fragment is the atomic algorithmic unit in algorithmic self-assembly.
Carrying the thermodynamics analogy further, a process fragment corresponds
to a single gas particle. A process fragment (‘pfrag’) is defined as the coupling of

Lecture Notes in Computer Science

Expansion Module
- user-defined sensors, actuators, and JTAG interface

power & ground

7 multiplexed 10-bit 200ksps ADC channels

12-bit digital-to-analog converter

2 comparators

4 JTAG programming pins

8 digital I/0O pins capable of becoming:
comparator outputs, system clock, external interrupts,
programmable counters (PWM, capture/compare, etc.)

Processing Module
- Cygnal C8051F016, status LED, 22.1184MHz crystal

UART transmit & receive

12-bit digital-to-analog converter
ground 10-bit 200ksps ADC channel
16 digital I/O pins w/ 4 external interrupts

power

—

Communication Module
- infrared, capacitive coupling, serial port, radio, etc.

power
ground
Power Module

- pushpins, batteries, wired, etc.

Fig. 3. The Pushpin hardware specification. The shaded boxes represent different hard-
ware modules. The arrows represent resources that the module at the tail of the arrow
provides to the module at the head of the arrow

8

Joshua Lifton et al.

4 N 4
8051 Special Function Extended RAM ISP Flash Memory
Registers (128-bytes) (2-Kbytes) (32-Kbytes)
_ /
(' OS Scratch)
e N Bertha OS Code
Native RAM (\
(256-bytes) Neighborhood
Watch
__
| |
: PFrag #1 Code
Current PFrag gFrai }gulltetm £
. oard System
State Pointer (BBS) PFrag #2 Code
(
)) °
Neighborhood PFrag State °
Watch Table
\ / \ / PFrag #14 Code
g NG /N)

\ Pushpin Memory Organization

J

Fig. 4. A Pushpin’s memory is carefully divided between process fragments and the
operating system

Lecture Notes in Computer Science 9

state information (‘state’) and executable code (‘code’). A pfrag’s code acts on or
according to the pfrag’s state and has the ability to modify it. A process fragment
is entirely contained and executed within a single Pushpin, but may transfer or
copy itself to neighboring Pushpins and begin execution there. In order to ensure
interoperation between process fragments and the Pushpin operating system
(Bertha), process fragments must conform to the following constraints:

— Implement an install function to be called by Bertha when the process
fragment is first executed in a given Pushpin.

— Implement a deinstall function to be called by Bertha when the process
fragment is to be removed from a given Pushpin.

— Implement a trans fer — granted function to be called by Bertha when a pro-
cess fragment has successfully lobbied Bertha to be copied to a neighboring
Pushpin.

— Implement a transfer — refused function to be called by Bertha when a
process fragment has unsuccessfully lobbied Bertha to be copied to a neigh-
boring Pushpin.

— Implement an update method to be repeatedly called by Bertha as long as
the process fragment resides within a Pushpin. There is no guarantee how
often the update function will be called, only that it will be called. This is
where most of the functionality of a process fragment resides.

— Total process fragment code size limit of 2-Kbytes.

— Total process fragment state size limit of 256-bytes.

Aside from the required functions, process fragments may also contain as
much private code as the 2-Kbyte limit allows.

5.2 Bertha: The Pushpin OS

Underlying system operation is handled by Bertha — a small, lightweight oper-
ating system developed especially for the Pushpins. Each Pushpin has its own
instance of Bertha to manage processor startup, memory, access to hardware pe-
ripherals and system services, communication with neighboring Pushpins, and,
its primary charge, resident process fragments.

Bertha can accommodate up to 14 process fragments at any given time. Pro-
cess fragments enter a Pushpin through the communication port either wirelessly
via a neighboring Pushpin or from a device pretending to be a Pushpin. The pro-
cess fragment is written to memory (code to flash memory and state to RAM),
checked for errors by means of a simple checksum, added to the list of resident
process fragments (assuming the checksum passes), and initialized by calling its
install function. Bertha executes the update function of resident process frag-
ments using a simple round-robin scheme. Each process fragment is allowed to
run its update function to completion each time it is called. Bertha provides
various utility system functions to process fragments, such as those that return
the current system time or a pseudo-random number.

Bertha also negotiates all communication on the behalf of process fragments.
Specifically, it provides for communication between process fragments in the

10 Joshua Lifton et al.

same Pushpin by means of a bulletin board system (BBS). By making system
calls to Bertha, process fragments can post arbitrary messages of limited size
to the BBS and read messages posted by other process fragments. A Pushpin’s
BBS can be posted to and read from only by process fragments within that
Pushpin. Bertha does, however, maintain a Neighborhood Watch — a list of
neighboring Pushpins (those within communication range) and brief synopses
of their BBSs. The information contained in each neighbor synopsis is culled
from that neighbor’s own BBS. Due to memory constraints, it is not possible
to mirror the entirety of all neighboring Pushpins’ BBSs. Instead, whenever a
process fragment posts to the local BBS, it has the option of marking that
post to be included in the synopsis sent out to neighboring Pushpins. Bertha
is responsible for arbitrating which of these posts get included in the synopsis
in the case of the synopsis filling up. Currently, Bertha gives priority to newer
posts, although this does not have to be the case and process fragments should
not assume any particular method for choosing what is included in the synopsis.

Process fragments can make a request to Bertha to transfer them to one
of the Pushpins listed in the Neighborhood Watch. When such a request is
made, Bertha adds the request to the queue, waits until all resident process
fragments have been updated, and then negotiates each transfer request with the
appropriate neighbor. No guarantee is made that the transfer will be granted.

At a low level, Bertha manages the Pushpin’s half-duplex communication
channel with its neighbors using a simple exponential back-off protocol for colli-
sion avoidance. Bertha attempts to detect collisions with a simple checksum. To
help alleviate the hidden node problem, Bertha is able to listen for transmissions
from neighbors at a variable threshold (at least when using the infrared or ca-
pacitive coupling communication module). Bertha listens at a very low threshold
before transmitting and a very high threshold when receiving.

An analog-to-digital converter channel in conjunction with a simple voltage
divider allows the Pushpin operating system to detect which communication and
expansion modules make up the Pushpin, making for plug-and-play functionality.
Once Bertha knows what kind of hardware it is dealing with, it provides mediated
access of those resources to resident process fragments. Thus, a process fragment
can request to be informed during its next update cycle of a given interrupt
being triggered or of a certain condition occurring. Process fragments can also
take control of certain hardware peripherals such as general purpose I/O pins,
comparators, and analog-to-digital converter channels.

Since even some of the simplest algorithms already mentioned (e.g. exponen-
tial back-off) require randomness, Bertha maintains a 1024-bit seed for use in a
pseudo-random number generator. (The size of this seed is unnecessarily large
due to an artifact of the hardware organization of the flash memory). This seed
can be changed during runtime.

See Fig. 4 for a schematic view of the memory layout of a Pushpin and its
operating system.

Lecture Notes in Computer Science 11

5.3 Pushpin IDE

Users can create custom process fragments using the Pushpin integrated devel-
opment environment (IDE). The Pushpin IDE is a Java program that runs on
a desktop PC. Process fragment source code is authored within the IDE using
a subset of ANSI C supplemented by the system functions provided to process
fragments by Bertha, preprocessor macro substitutions, and IDE pre-formatting.
The IDE coordinates the formatting of source code, compilation of source code
into object files, linking of object files, and transmission of complete process
fragments over a serial port to an expectant Pushpin with Bertha installed and
running. The IDE also enforces the process fragment structure requirements
outlined in §5.1.

Currently, the Pushpin IDE calls upon a free evaluation version of the Keil
C51 compiler and Keil BL51 linker to compile and link process fragments. Bertha
is initially installed on a Pushpin by way of an IEEE standard JTAG interface.
Note that Bertha need not be compiled with any specific knowledge of the process
fragments to be used; arbitrary process fragments can be introduced to Pushpins
during runtime.

Of course, Pushpins can be programmed directly as a regular 8051-core mi-
croprocessor without using either Bertha or the Pushpin IDE. One of the many
advantages of Bertha and Pushpin IDE, however, is that the details of the anti-
quated Intel 8051 architecture are hidden from the user.

5.4 Security

One of the first observations that can be made about the Pushpin programming
model is that it is incredibly insecure by almost any definition of insecure —
Bertha runs any well-formed process fragment as raw bytecode without any su-
pervision. The only attempt at security is locking the flash memory containing
the Bertha code so that it can’t be overwritten by a process fragment. Every-
thing else is fair game. Furthermore, there is no built-in protection against rogue
process fragments with malicious intent. While security is certainly a valid con-
cern for any system deployed in the world outside of a research lab, it is assumed
for now that everyone authoring process fragments received the “plays well with
others” stamp of approval. Although security for sensor networks is essentially
ignored here, some work has been done on the subject. For an example, see [8].

6 Example: Network Gradient

To make the idea of process fragments and how to use the Pushpin platform
concrete, we present here a very simple example. The following code fragment
simply copies itself to all its neighbors, keeping track of how many hops away
it is from its Pushpin of origin. Its install routine does almost all the work. Its
update routine copies the process fragment to neighboring Pushpins. All other
required routines are implemented with default routines provided by the Pushpin

12 Joshua Lifton et al.

IDE. The Pushpin IDE also registers this process fragment as GRADIENT with
a local process fragment registry it keeps. What follows is the process fragment
source code as it would appear in the IDE.

State {
unsigned int hopsFromOrigin;
unsigned int origin;

}

GloballD {
GRADIENT;

}

unsigned int update(unsigned int eventCode, unsigned int eventValue) {
requestTransfer (TO_ALL_NEIGHBORS) ;
b

unsigned int install() {
BBSMessage message = getBBSMessagePostedBy(GRADIENT) ;
if (isValidBBSMessage(message)) {
if (message.poster != getLocallD()) {
if ((message.content[0] > State.hopsFromOrigin + 1)
&& (message.content[1] == State.origin)) {
message.content[0] = State.hopsFromOrigin + 1;
updateBBSMessage (message) ;
}
deinstall();
}
X
else {
message.content[0] = State.hopsFromOrigin + 1;
if (!isValidMessage(getNeighborMessagePostedBy (GRADIENT))) {
message.content[1] = getPushpinID();
X
else {
message.content[1] = origin;
}
postToBBS (message) ;
}
X

Note that for the sake of brevity this process fragment is implemented in
quite an inefficient manner in terms of bandwidth usage and could be improved
upon with some effort.

Lecture Notes in Computer Science 13

7 Conclusions & Future Work

This paper describes the basic elements of the Pushpin Computing platform, the
first hardware instantiation of an environment specifically designed to support
algorithmic self-assembly for use in dense sensor networks. In particular, we
have introduced the underlying Pushpin hardware and Bertha, a fully functional
embedded operating system that supports mobile process fragments.

The work presented is more of a look at things to come than a culmination or
conclusion of things that were. In the immediate future, there are plans to imple-
ment a Logo virtual machine on for the Pushpins, improve error correction and
detection, and build several complete networking and sensing applications using
on the order of 100 Pushpin nodes. Longer term goals include characterizing ba-
sic algorithmic elements vital to algorithmic self-assembly in the context of dense
sensor networks and providing a theoretical foundation to describe self-assembly
as a general phenomenon.

Detailed information about the Pushpin Computing project can be found at
http://www.media.mit.edu/ lifton/Pushpin/.

References

1. Butera, W.: Programming a Paintable Computer, MIT Media Laboratory, doctoral
dissertation, 2002.

2. Culler, D; Hill, J; Buonadonna, P.; Szewczyk, R.; Woo, A.: A Network-Centric
Approach to Embedded Software for Tiny Devices, to appear in DARPA workshop
on Embedded Software.

3. Dowling, J.: Neurons and Networks: An Introduction to Neuroscience, Chapter 14,
Harvard University Press, 1992.

4. Hill, J; Szewczyk, R; Woo, A.; Hollar, S.; Culler, D. Pister, K: System Architecture
Directions for Networked Sensors, 27 April 2000.

5. McLurkin J.: Algorithms for Distributed Sensor Networks, University of California
at Berkeley, Berkeley Sensor and Actuator Center, Master of Science thesis, 19997

6. Morris, E.: Fast, Cheap €& Out of Control, Sony Pictures Classics, 1997.

7. Paradiso, J.: FootNotes: Personal Reflections on the Development of Instrumented
Dance Shoes and their Musical Applications, presented at the ISEA 2000 Conference,
Paris France, 10 December 2000.

8. Perrig, A.; Szewczyk, R.; Wen, V.; Culler, D.; Tygar, J.: SPINS: Security Protocols
for Sensor Networks, Mobicom 2001.

9. Resnick, M.: Turtles, Termites, and Traffic Jams: Ezplorations in Massively Parallel
Microworlds, The MIT Press, 1994.

10. Woo, A.; Culler, D.: A Transmission Control Scheme for Media Access in Sensor
Networks, Mobicom 2001.

