
Localization on the Pushpin Computing Sensor Network
Using Spectral Graph Drawing and Mesh Relaxation

Michael Broxton Joshua Lifton Joseph A. Paradiso
mbroxton@media.mit.edu lifton@media.mit.edu joep@media.mit.edu

Responsive Environments Group, MIT Media Lab, Cambridge, MA 02139, USA

This work approaches the problem of localizing the nodes of a distributed sensor net-
work by leveraging distance constraints such as inter-node separations or ranges between
nodes and a globally observed event. Previous work has shown this problem to suffer from
false minima, mesh folding, slow convergence, and sensitivity to initial position estimates.
Here, we present a localization system that combines a technique known as spectral graph
drawing (SGD) for initializing node position estimates and a standard mesh relaxation
(MR) algorithm for converging to finer accuracy. We describe our combined localization
system in detail and build on previous work by testing these techniques with real 40-kHz
ultrasound time-of-flight range data collected from 58 nodes in the Pushpin Computing net-
work, a dense hardware testbed spread over an area of one square meter. In this paper, we
discuss convergence characteristics, accuracy, distributability, and the robustness of this
localization system.

I. INTRODUCTION

Location services are a fundamental tool in any wire-
less sensor network. In most applications, the time
and location of sensor data are relevant, and many
classes of applications require each node to know its
location in a globally shared coordinate system. Re-
cent research has leveraged location-rich information
such as network adjacency[16], radio proximity[17],
relative angles[13], or distance to a global sensory
stimulus[3, 18] to achieve localization across many
sensor nodes. These methods all place distance con-
straints on the locations of node coordinates, forming
a (usually) non-linear optimization problem.

Localization can be boiled down to the general
problem of drawing a graph given a set of vertices
V and a set of edges E that connect certain vertices.
A vertex may represent the location of a sensor node
or it may represent the location of a distinct global
event detected by a subset of nodes in the network
(e.g. the distance to a lightning strike or beacon).
Edges represent the distances between vertices in the
graph. These distances may be relatively precise (e.g.,
a sonar time of flight measurement) or coarse (e.g. a
binary value denoting whether two nodes are adjacent
in the network). The goal of a localization algorithm
is to determine the spatial coordinates of the vertices
V given a set of edges E that provide constraints.

Under certain simplifying assumptions, linear solu-
tions to this localization problem exist. For example,
if certain ”anchor” nodes have a priori knowledge of

their position in the network, then another node can
localize itself with a linear algorithm that takes its
distance to the anchor nodes as input. Such anchor-
based schemes include lateration[3] and bounding box
methods such as APIT[8] and min-max[21].

In contrast, anchor-free localization schemes are
generally non-linear but do not rely on such
strong assumptions. Common non-linear tech-
niques for sensor node localization include semi-
definite programming[1], gradient descent[19], mesh
relaxation[9], and metric multi-dimensional scaling
(MDS)[22]. However, while these techniques can
handle a more general set of constraints, they do not
guarantee unique or even correct solutions. For ex-
ample, a non-linear optimization algorithm may con-
verge to a solution that does not reflect the true phys-
ical topology of the sensor nodes, but corresponds in-
stead to a local minimum in the optimization land-
scape. See [20] and [14] for a more complete descrip-
tion of the degeneracy problem. In such cases, addi-
tional constraints, such as network distance between
nodes[6, 20], can be used to disambiguate the solu-
tion. One way to speed up convergence and avoid bad
solutions due to false minima is to pick a good initial
guess of the nodes’ actual coordinates and use this as
a starting point for the optimization algorithm.

In this paper, we incorporate a method called spec-
tral graph drawing that produces a set of initial co-
ordinate estimates given only a set of distance con-
straints between nodes[10]. The resulting initial es-
timates closely approximate the actual spatial coordi-

Mobile Computing and Communications Review, Volume 10, Number 1 1

Figure 1: Pushpins are placed by hand on a 1.2-m by 1.2-
m planar substrate that provides connections for power and
ground. Placing a Pushpin node is as simple as pressing a
thumbtack into a cork-board.

nates. These initial coordinate estimates subsequently
serve as the starting point for a combination mesh re-
laxation/lateration algorithm, which in turn arrives at
a final estimate of the position of each node in the net-
work. In addition, our localization scheme includes
pre- and post-processing steps for rejecting spurious,
outlying measurements in the sensor data.

In principle, the distance constraints used in both
the spectral graph drawing and mesh relaxation algo-
rithms can originate from any ranging technique (e.g.
nearest neighbor received radio signal strength). The
work presented here uses time-of-flight measurements
between each node and a globally observable ultra-
sonic “ping” event as distance constraints. Ping events
are generated by a special handheld hardware device
(the “Pinger”) that simultaneously generates a flash of
light and pulse of 40-kHz ultrasound at the press of a
button. Distance is measured as the time difference of
arrival between these two signals divided by the speed
of sound.

Although the Pinger is an artificial signal source,
it is meant to emulate a global sensor stimulus that
might appear in a natural setting. For example,
lightning and thunder provide a similar pair of stim-
uli that could be used to localize a sensor network
spread over the area of several square kilometers
This would be similar in principal to localizing light-
ning strikes, which has been demonstrated using a
several-kilometer baseline array of sensors at NASA’s
Kennedy Spaceflight Center[24]. In principal, any
pair of signals with coincident time and space origins
and differing propagation speeds could be used to gen-
erate time-of-flight distance constraints. Munitions,
fireworks, and gunshots are examples of phenomena
that generate flashes of light and audible wavefronts.
Signals also propagate at different speeds through dif-
ferent materials. For example, it might be possible to

measure the distance to an explosion by detecting it
both in the air and through the ground. Additionally,
since the first pulse primarily serves to synchronize
the sensor nodes, it is possible to localize by measur-
ing the time of arrival of a single signal if the clocks
of the sensor nodes are synchronized by some other
means.

The remainder of this paper describes the exper-
imental setup, the constituent individual algorithms
used in our localization scheme, the workings of the
localization scheme as a whole, a quantitative char-
acterization of the results of our localization scheme,
and directions for future work, including improve-
ments, possible modifications, and open questions.

II. EXPERIMENTAL SETUP

Developing an algorithm on a sensor network is much
like designing an electronic integrated circuit – much
of the design process is spent either in simulation or
on a physical prototype. Simulations can rapidly de-
termine optimal system parameters and facilitate ex-
haustive testing over a wide range of inputs without
invoking an expensive fabrication process. Such tests
are impractical or too time-consuming to implement
in a physical system. On the other hand, prototyping
is essential for verifying that the design is robust to
noise, non-isotropic signal propagation, part variabil-
ity, processing and power limitations, and other non-
ideal characteristics of the real world. We have capi-
talized on the strengths of both of these approaches in
our development of the Pushpin localization system.
In this section, we give an overview of our platforms
for hardware prototyping and simulation.

II.A. Hardware Testbed

The Pushpin Computing testbed[12] is a dense wire-
less sensing platform with facilities for fast prototyp-
ing of hardware and algorithms. See Figure 1. The
experiments and results presented in this paper made
use of 58 Pushpin sensor nodes distributed randomly
over an 1-m2 planar area. A single Pushpin node is
shown in Figure 2. The Pushpin name originates from
the two metal pins protruding from the underside of
each node from which the node derives its power and
ground connections. These pins are pressed into a 1.2-
m by 1.2-m board, where they make contact with two
parallel sheets of metal foil (which carry power and
ground) that are sandwiched between layers of insu-
lating foam. A single Pushpin node measures 3-cm
in diameter by 3-cm in height and consists of a mod-
ular stack of four circuit boards, one for each basic

2 Mobile Computing and Communications Review, Volume 10, Number 1

Figure 2: A single Pushpin node, shown fully assembled
with the ultrasound time-of-flight expansion module. Each
node is approximately 3-cm in diameter.

function of a wireless sensor node: power, communi-
cations, processing (each node is driven by a 22-mips,
8-bit 8051-core micro-controller), and sensing.

The ultrasound time-of-flight (TOF) expansion
module is a sensing layer designed specifically for
Pushpin localization experiments. It contains three
sensors (a phototransistor, a sonar transducer, and an
electret microphone) and one actuator (an RGB LED).
Of these, the phototransistor and ultrasound trans-
ducer are used for localization, while the microphone
and LED serve as additional I/O. The module is shown
attached to a Pushpin in Figure 2.

The Pushpin platform is an unusually dense real-
ization of a wireless sensor network; a feature made
possible by its use of infrared (IR) communication,
which is easier to constrain to short distance than ra-
dio frequency (RF) signals. Despite their high density,
the Pushpins have only 10 network neighbors on av-
erage (approximately 17% of the network), hence the
Pushpins have a similar network topology to a much
sparser sensor network such as might be deployed
“in the wild.” However, whereas access to individual
nodes in a large sensor network may be limited by the
very large area over which it is distributed, the entire
Pushpin network sits within arms reach of the sensor
network developer, making it ideal for rapid prototyp-
ing and testing of distributed, ad hoc algorithms and
applications. For example, new code can be simulta-
neously uploaded to every node in the network in less
than a minute via an IR spotlight connected to a PC.

Figure 3: The “Pinger” delivers a simultaneous flash of
light and burst of 40-kHz ultrasound. Each Pushpin can
measure the difference in time of arrival of these two sig-
nals and thus calculate the distance between itself and the
Pinger.

II.B. The Pinger

Using the localization system developed in this pa-
per, a sensor network deployed in the field might use
global phenomena detected in common across several
nodes, such as lightning strikes or exploding muni-
tions, to aid it in ad hoc localization. In order to test
these algorithms on the Pushpin network, we devel-
oped a device that generates similar stimuli on a much
smaller scale. This aptly-termed “Pinger” generates a
simultaneous flash of light and burst of 40-kHz sonar,
which are detected by the phototransistor and sonar
receiver on the TOF Expansion module on each Push-
pin. A Pushpin estimates its distance to the Pinger
as the time difference of arrival of these two signals
divided by the speed of sound in air (343.6 m/s at
20oC). To generate a global stimulus for localization,
the Pinger is held somewhere (anywhere) above the
Pushpin network and triggered with the press a but-
ton. The Pinger is shown in Figure 3.

II.C. The Pushpin Simulator

The Pushpin Simulator is custom software that emu-
lates a Pushpin network of between 10 and 100 nodes.
Each virtual Pushpin is given its own memory and
a thread of execution on the host machine. Pushpin
threads interact by passing data packets to their near-
est neighbors on the virtual network. This architec-
ture closely resembles the distributed nature of real
Pushpins, therefore code written for simulated Push-

Mobile Computing and Communications Review, Volume 10, Number 1 3

pins is very similar to code for Pushpins in the hard-
ware testbed. In essence, simulated Pushpins collab-
orate, share state, and respond to sensor data by pass-
ing and processing network messages. In this respect,
the Pushpin Simulator is a high-level simulator, as
opposed to low-level simulators such as Avrora[23],
which provides a cycle-accurate, processor instruction
level simulation.

The simulator allows easy control over the input
to the localization algorithm; namely the ultrasound
time-of-flight measurements. The simulator can either
use real measurements recorded from the hardware
testbed or simulated measurements generated accord-
ing to some statistical model. Similarly, the placement
of the simulated Pushpins in the virtual environment
can be random, or set to the actual “ground truth” po-
sitions of the real Pushpins in the hardware testbed.

III. LOCALIZATION ALGORITHMS

There are three principal algorithms in the Pushpin
localization system: spectral graph drawing, mesh
relaxation, and lateration. We focus here primarily
on spectral graph drawing and mesh relaxation, since
they have received relatively little attention in the cur-
rent localization literature. Lateration, which is a form
of triangulation, is a comparatively well-known tech-
nique for sensor network localization[11].

III.A. Spectral Graph Drawing

Spectral Graph Drawing (SGD) is a technique for pro-
ducing a set of vertex coordinates in k dimensions
given only a set of edge lengths between vertices. The
resulting coordinates closely adhere to the constraints
imposed by the edge lengths. Like multi-dimensional
scaling, force-directed graph drawing, and principal
component analysis, SGD was conceived as a tech-
nique to help visualize high dimensional data in a low
dimensional space. The technique itself is quite old,
dating back to the work of Hall[7] in 1970. How-
ever, it has seen little use since that time and has
only recently been proposed as a technique for sen-
sor node localization by Yehuda Koren[10] and Craig
Gotsman[6]. These techniques are summarized be-
low.

A sensor network can be described abstractly as
a set of vertices V = {V1, ..., Vn} and edges E =
{〈i, j〉} that make up a graph G(V,E). Edges have
associated weights wij proportional to the adjacency
of two vertices Vi and Vj . The weight is larger if the
vertices are more closely connected (e.g. if they are
physical closer to each other). If two vertices are not

connected, wij = 0. In practice, Koren recommends
that a measured distance between two nodes be con-
verted to an adjacency weight via wij = exp(−dij)
or wij = 1

1+dij
(we use the former mapping in our

implementation)[10].
To clarify, sensor nodes and Pinger locations are

both represented as vertices in the graph. The
lengths dij between sensor nodes and pings (derived
from TOF measurements) are used to compute these
weights. Since the distances between pairs of sensor
nodes or pairs of pings is not directly measured, these
weights are set to zero1.

The connectedness of the graph can be summarized
by placing these weights in an adjacency matrix A,
where

Aij =
{

0 i = j
wij i �= j

Next, we define the degree of a node to be the sum the
weights between itself and other nodes:

deg(i) =
∑

j

wij

The values of deg(i) are placed into a diagonal matrix
D such that Dii = deg(i).

These definitions allow us to formulate a 1-
dimensional graph drawing problem. Specifically, we
would like to find a n-dimensional vector called x
that contains the 1-dimensional coordinates of n ver-
tices by solving the following constrained optimiza-
tion problem:

x = arg min
x′ S(x′) (1)

given: xT Dx = 1,xT D1n = 0

where: S(x) =
∑

<i,j>∈E

wij(xi − xj)2

Here, 1n is a vector of length n that contains only
1’s. There are two forces at play in this minimiza-
tion problem. Minimizing S(x) tends to shorten the
lengths between the vertices proportionally according
to the weights wij , thereby pulling the graph into the
correct shape. At the same time, the constraint that
xT Dx = 1 provides a repulsive force, preventing this
minimization process from collapsing into a degener-
ate solution in which all edge lengths are all equal to

1Logical distance over the network can be used to approxi-
mate the distance between pairs of sensor nodes. These distance
estimates can be used to compute approximate weights, and ul-
timately, an approximate SGD solution. Section V.B.1 contains
SGD results where node-to-node distances are estimated to be
proportional to logical distance over the network.

4 Mobile Computing and Communications Review, Volume 10, Number 1

zero. The second constraint, xT D1n = 0, is equiva-
lent to saying that x should have a mean of zero. That
is, it removes translational ambiguity from the solu-
tion vector by forcing x to be zero-centered.

The presence of D in the constraints achieves what
is called degree normalization of the solution vector
x. Without it, a vertex that has a much lower degree
than the rest (e.g. if it had missing measurements or
had fewer constraints to begin with) has significantly
less attractive force acting on it in the minimization
of S(x). As a result, it will be overly separated from
its neighbors when its final coordinates are computed,
and the remainder of the nodes will be closely clus-
tered in comparison. A degree normalized solution
corrects for this, adding an extra repulsive force to
nodes with higher degrees, thus preventing them from
bunching up at the origin while one vertex with a sub-
stantially lower degree is left as an outlier. Degree
normalization, one of Koren’s primary contributions
in [10], is essential for creating a well-distributed lay-
out of vertices that is useful as an initial guess for
mesh relaxation.

The power of spectral graph drawing lies in the
fact that this minimization problem has a very con-
venient solution: The vector of coordinates x that
minimizes equation (1) according to the given con-
straints is the eigenvector v2 associated with the sec-
ond largest eigenvalue of the matrix

Z =
1
2
(I + D−1A) (2)

A lengthy, though not complicated, proof of this can
be found in the appendix of [10]. The method for find-
ing coordinates in a second dimension is identical ex-
cept that x is forced to be orthogonal to both v1 and
v2. In this case, the solution is the eigenvector v3 that
is associated with the third largest eigenvalue of (2).
Coordinates in a third dimension can be found if x is
forced to be orthogonal to v1, v2, and v3, and so on.

In essence, the problem of determining a geo-
metrical layout for a set of vertices has been re-
duced to an ordinary eigenvector computation. Many
well-understood algorithms exist for finding eigen-
vectors. In this case, power iteration is an appropri-
ate choice, since it is convenient to apply the con-
straints at each step in the iteration (xT Dx = 1
via normalization, xT D1n = 0 via Gram-Schmidt
Orthogonalization)[5].

An attractive property of spectral graph drawing is
that it can be formulated as a fully distributed algo-
rithm that requires only neighbor-to-neighbor com-
munication transactions. Gotsman and Koren demon-
strate in [6] that the power iteration technique is math-

ematically equivalent to directing a node to repeat-
edly move its estimated coordinates to the centroid
of the estimated coordinates of its neighbors. This
technique, sometimes referred to as the diffusion tech-
nique for localization, has also been developed by Bu-
lusu et. al.[4]. However, these researchers do not ex-
plicitly draw a connection to spectral graph drawing
in their implementations, and therefore do not benefit
from the deeper theoretical insight of the more math-
ematical formulation given by Gotsman and Koren.

We have opted to implement a centralized version
of this algorithm on a single node in our work because
in our case, there is global state (the locations of the
pinger events) that cannot be shared using only neigh-
bor to neighbor interactions. However, regardless of
whether it is centralized or distributed, the result of
running the algorithm is the same.

III.B. Mesh Relaxation

A mesh relaxation algorithm aims to simulate a physi-
cal system of masses connected by springs. It is a use-
ful approach in a distributed system, since information
passing need only occur between nodes connected by
a distance constraint. This can greatly reduce com-
munication overhead, especially when distance con-
straints only exist between neighbors on the network.

Consider a graph, or mesh, with n vertices. Each
vertex Vi maintains an estimate Xi[t] of its own 3-
dimensional spatial coordinates. The goal of mesh re-
laxation is to incrementally improve the estimate dur-
ing each discrete time step t. Distances between some,
but not necessarily all, vertices have been measured
and recorded such that each vertex Vi retains a set of
measurements between itself and other nodes in the
mesh, Di = {dij}. Estimated coordinates can initially
be chosen randomly, selected using the results of the
spectral graph drawing technique described in Section
III.A, or chosen based on additional information that
may be available, such as inertial measurements inte-
grated over time[9] or an approximate coordinate sys-
tem built using logical distance over the network[20].

During each discrete time step in the relaxation
process, every node computes the force acting on it
due to the constraints imposed by the positions and
relative distances of its neighbors. The force due to
each neighbor is proportional to the difference be-
tween the estimated distance and the measured dis-
tance to the neighbor. This is a vector with a magni-
tude and direction equal to

|fij [t]| = k(||Xi[t] − Xj[t]|| − dij)
� fij [t] = � (Xi[t] − Xj[t])

Mobile Computing and Communications Review, Volume 10, Number 1 5

In the equation above, || · || is the Euclidean norm and
k is the spring constant that controls the speed of con-
vergence of the algorithm. We found the value of k
must be tuned depending on the number of vertices
and the lengths of the distance constraints. If k is too
large, the system will be unstable and oscillations will
result. If it is too small, convergence will be slow. We
found that k = 0.15 was appropriate in our simulation
with 15 vertices (10 anchor Pushpin nodes and 5 ping
events) and average distance constraints of 1.0-m (dis-
tance between Pushpin nodes and ping events). The
sensitivity of k to the number of vertices and edges in
this type of mesh relaxation should be carefully con-
sidered in a system without a fixed number of vertices
and edge constraints, as we have.

The total force acting on a vertex is the sum of these
individual forces; Fi[t] =

∑
j fij[t]. A node’s new

coordinate estimate is the sum of the old estimate plus
this force; Xi[t + 1] = Xi[t] + Fi[t].

IV. LOCALIZATION SYSTEM

The Pushpin localization system combines non-linear
and linear techniques, capitalizing on both the versa-
tility of the “anchor-free” spectral graph drawing and
mesh relaxation approaches as well as the efficiency
and ease of use of the “anchor-based” lateration algo-
rithm. In addition, the system includes pre and post-
processing steps for sensor calibration and outlier re-
jection. The complete, end-to-end system is described
below.

IV.A. Calibration

Error in ultrasound time-of-flight measurements can
originate from dispersion, speckle, changing air cur-
rents, interference among ultrasound transmitters, part
variability, discretization, and analog conditioning cir-
cuitry. Our tests indicate that the largest source of sys-
tematic error is due to a limitation of the TOF module
sonar detection circuitry, which consists of a fixed-
threshold, uni-polar rising-edge discriminator. Ideally
this circuit should detect the sonar signal at some point
within the first full cyle of when it arrives at the Push-
pin. This places the fundamental limit on the precision
of detecting a sonar signal at roughly one full cycle of
the sonar wave, or 1-cm. In practice, we have found
that the receiving transducer takes several cycles to
“ring up” to the discriminator threshold. This induces
a delay that is proportional to the distance between the
Pinger and the TOF module. We believe this phenom-
enon to be the result of increasing dispersion of the

ultrasound ping as the distance between the Pushpins
and the Pinger is increased.

Based on a characterization of the error in mea-
surements made over a range of distances between the
Pinger and a single Pushpin, we have devised a sim-
ple linear calibration scheme that removes distance
dependent systematic error in time-of-flight measure-
ments. This calibration model is fairly simplistic –
it accounts for neither the additional sonar signal at-
tenuation (and corresponding time delay) that may re-
sult at different Pinger angles, nor the variability of
ring-up characteristics across different sonar receiver
parts. Nonetheless, the statistical distribution of the
remaining TOF measurement error after calibration
has been applied is closely compatible with a zero-
mean gaussian with a standard deviation of 0.57-cm,
though the plot did show some evidence for broad tails
and small asymmetry that suggest other un-modeled
sources of error[2].

IV.B. Pre-processing

Spurious outliers are caused by interference and
multi-path (reflections) of the sonar signal. Bad mea-
surements can foul the localization results if they are
not detected and rejected. In a sensor network, this
must occur in a distributed manner. We have formu-
lated a distributed method for rejecting outliers based
on exchanging distance measurements between nodes
in a one-hop communication neighborhood. A mea-
surement is rejected if it differs by more than a cer-
tain number of standard deviations from the median of
measurements made at neighboring nodes. This tech-
nique capitalizes on the implicit notion that communi-
cation range roughly correlates to physical distance in
a wireless sensor network. Using this technique, we
have found that roughly 10 nodes out of 58 will reject
at least one of five measurements during a localization
run. If a node rejects too many measurements, it may
no longer have enough constraints for localization. If
this is the case, the node will withdraw from the local-
ization process. On an average trial, 2 nodes out of 58
will withdraw for this reason.

IV.C. Primary localization

During primary localization, a small subset of nodes
on the network called anchor nodes cooperate to es-
timate their own coordinates as well as the coordi-
nates of the global events generated by the Pinger.
A distributed, ad hoc election process selects ten an-
chor nodes and one origin node that have five good

6 Mobile Computing and Communications Review, Volume 10, Number 1

(not outlying) range measurements2 . The origin node,
which is so named because it is arbitrarily assigned
the coordinates (0, 0, 0), plays the unique role of col-
lecting and storing the range measurements of all the
anchor nodes in into an adjacency matrix3. This is
then used by the spectral graph drawing and mesh re-
laxation algorithms, which run in centralized form on
the origin node. This computation is fairly efficient
for an adjacency matrix built from 10 anchors and
5 global events. An 8-bit microcontroller with 128-
kB of memory (for the adjacency matrix and tempo-
rary variables) and a 22-MIPS processor would be ca-
pable of running both algorithms in under a minute.
Hence, although the origin node does the majority of
the processing at this stage, it need not be endowed
with more processing power than any other sensor
node in the network.

IV.D. Secondary localization

During primary localization, most of the nodes are
passive; i.e. they collect time-of-flight measurements
and reject outliers, but they do not participate in the
primary localization process. However, the origin
broadcasts the coordinates of the global Pinger events
to all passive nodes at the end of the primary phase
of localization. This information, along with the dis-
tances a passive node had previously measured to the
global events, is sufficient to compute a position via
lateration[11].

IV.E. Post-Processing

After both primary and secondary localizations have
completed, the nodes must perform a final check to
ensure that their estimated coordinates are reasonable.
Once again, the implied physical proximity of nodes
that are neighbors on the network is used to detect
nodes that have computed coordinates in gross dis-
agreement with the coordinates of their neighbors. If
a node’s coordinates are more than a certain threshold
from the median of it neighbors’ coordinates, it with-
drawals from localization. As with the pre-processing
technique, outlier rejection requires only neighbor-to-
neighbor communication transactions.

2Ten nodes ensures that there is sufficient information to find
a unique localization solution. See [2] for more details.

3Alternatively, the adjacency matrix could be filled with node-
to-node constraints generated by logical distance over the network
(hop count) in addition to or in lieu of TOF measurements.

V. RESULTS

We now present a characterization of the Pushpin lo-
calization system described in Section IV. Ultrasound
events were generated by the Pinger device (Section
II.B), which was manually triggered at random loca-
tions within a hemisphere above the plane of the Push-
pin network. All pings occurred within 2-m of some
Pushpin in the network. We collected 10 data sets,
each consisting of five time-of-flight measurements
per Pushpin. Data sets were downloaded through the
network to a PC, imported into the Pushpin Simula-
tor, and played back for a set of 58 simulated Push-
pins. In each of the test configurations described in
the sections below, a total of 10 localization trials were
run per data set, yielding 100 sets of estimated coor-
dinates.

V.A. Measuring Localization Error

In our case, “ground truth” coordinates are obtained
by photographing the array of Pushpins using a digi-
tal camera with a telephoto lens (to reduce the effects
of image warping), and digitally extracting the coor-
dinates with custom image manipulation software. A
0.1-m by 0.1-m square is included in the image for
scale. In order to assess the accuracy of our local-
ization system, we considered two methods for align-
ing the the coordinates produced by the localization
algorithms (estimated coordinates) with the “ground
truth” coordinates (ground coordinates): (1) A trans-
form comprised of only a translation, rotation, and
possible reflection (RTR); and (2) a more general ho-
mogeneous projective transformation that can also in-
clude scaling and shearing. When the fit is computed
as in (1), we refer to it as an RTR fit. The fit com-
puted as in (2) is referred to as an LLSE fit because
the projective transformation can be found most eas-
ily by computing a linear least squares estimate. More
details of the fitting process can be found in [2].

After the estimated coordinates have been fit to the
ground coordinates using one of the above methods,
the localization error can be assessed. The objec-
tive is to determine the average error between the
transformed estimated coordinates (x̂′, ŷ′, ẑ′) and a
set of ground coordinates (x, y, z) obtained manually
by photographing the array as described above. The
following mean absolute error metric can be used to
compute the localization error for n sensor nodes:

ēmae =
∑n

i=1

√
(xi − x̂′

i)2 + (yi − ŷ′i)2 + (zi − ẑ′i)2

n
(3)

Mobile Computing and Communications Review, Volume 10, Number 1 7

Network SGD TOF SGD Mesh Rlx.
Mean 5.53 3.07 2.12

Median 5.26 2.76 1.83
Std Dev 2.84 1.87 1.42

Min 1.73 0.75 0.49
Max 10.5 6.47 4.82

Table 1: Summary statistics of the error between estimated
and ground truth coordinates at the end of primary local-
ization for the 10 anchor nodes only. Statistics are accu-
mulated over 100 localization trials that span 10 different
Pinger configurations. All data is fit using the LLSE. Mea-
surements are in centimeters.

Other statistics including the variance, median, mini-
mum, and maximum values are computed in a similar
manner using other standard statistical formulae.

V.B. Localization Accuracy

We begin our characterization with a look at the ac-
curacy of the spectral graph drawing and mesh relax-
ation algorithms when localizing the 10 anchor nodes.
Next, we characterize the accuracy of the combined
spectral graph drawing, mesh relaxation, and latera-
tion algorithm when localizing all 58 nodes. Recall
that the localization of all 58 nodes builds upon the
localization of the 10 anchor nodes.

V.B.1. Accuracy over Anchor Nodes

This test assesses the accuracy of anchor placement
using the spectral graph drawing and mesh relaxation
algorithms during the primary phase of localization
(Section IV.C). Two variants of spectral graph draw-
ing have been considered. One uses only the hop
count between anchor nodes on the network as a dis-
tance metric in the adjacency matrix (we refer to this
as network SGD), while the second variant uses more
precise time-of-flight distance measurements (this is
TOF SGD). In a third scenario, TOF SGD results were
refined using mesh relaxation. One hundred localiza-
tion trials (ten for each data set from the hardware test
bed) were run for each of the three variants. Localiza-
tion statistics were computed after each localization
trial. The average statistics over all trials appear in
Table 1.

One notable result in the table is that TOF SGD
on its own is only one centimeter less accurate than
TOF SGD refined by mesh relaxation. This suggests
that spectral graph drawing is useful as a stand alone
method for localization. Omitting mesh relaxation en-
tirely would lead to a simpler, though slightly less ac-
curate solution. Furthermore, network SGD achieves

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localized Coordinates which have been fit to actual coordinates
using a least mean squares approximation.
Average Absolute Error = 1.14e 02 meters

X Coordinate (meters)

Y
 C

o
o
rd

in
a
te

 (
m

e
te

rs
)

Figure 4: Estimated Pushpin coordinates generated us-
ing the Pushpin localization system that have been aligned
with ground coordinates via a LLSE fit. The crosses denote
ground truth coordinates and the circles denote coordinates
estimated by the localization system. The lines indicates
the correspondence between estimated and ground coordi-
nates. Cyan colored nodes have been rejected as outliers.

an accuracy that is roughly half the average inter-node
spacing of the Pushpins – a level sufficient for appli-
cations requiring only coarse localization.

V.B.2. Accuracy over all Nodes

The subsequent tests assess the accuracy of the over-
all localization system described in Section IV. Fig-
ure 4 shows the results of a typical localization trial
on the Pushpin localization system as fit to the ground
coordinates using the LLSE. The plot shows that the
majority of nodes achieve very high localization ac-
curacy, though five nodes were not able to localize at
all. Taken on its own, however, this plot does not give
much insight into how consistent localization results
are from trial to trial, an issue examined in the follow-
ing tests.

Next, we considered how our localization system
performed given simulated time-of-flight data gener-
ated from three different error models.

• No Error: Used to determine the baseline accu-
racy of the localization system in the ideal case.

• Gaussian Error: A zero mean, 0.57-cm std.
dev. gaussian based on the characterization of
the time-of-flight sonar measurements that was
briefly discussed in Section IV.

8 Mobile Computing and Communications Review, Volume 10, Number 1

Real Pings Simulated Pings
Pinger No Error Gaussian Error GM Error

Mean 2.30 0.06 1.26 3.65
Median 1.69 0.04 1.08 2.66
Std Dev 2.36 0.07 0.82 2.99

Min 0.20 0.01 0.11 0.30
Max 13.5 0.47 4.39 13.1

% Unlocalized 10% 0% 5% 3%

Table 2: Summary statistics for the error between estimated and ground truth coordinates for all 58 nodes after the complete
localization system has run to completion. Statistics are accumulated over 100 localization trials that span 10 different Pinger
configurations. All data is fit using the LLSE. Measurements are in centimeters.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Error (meters)

P
ro

b
a
b
ili

ty

Real Pings Pinger

Simulated Pings No Error

Simulated Pings Gaussian Error

Simulated Pings Gaussian Mixture Error

Figure 5: Statistical distribution of localization error
over 100 localization trials. Various sources of time-
of-flight measurements are represented.

• Gaussian Mixture Error: The distribution of
time-of-flight measurement error described in
Section IV showed evidence of heavy tails and
a slight asymmetry that is was better fit using a
mixture of gaussians.

Figure 5 shows the error distribution for various mea-
surement sources over 100 localization trials. Outlier
rejection was active throughout these tests. Table 2
shows various statistics averaged over the trials. Note
that the distribution of localization error is asymmet-
ric: the localization error for most nodes is very low,
but the average is inflated by a few nodes that have un-
usually high error. In general, these are minor outliers
that are missed by the outlier detection mechanisms.

As expected, simulated pings with no measurement
error lead to extremely low localization error (0.06-
cm)4. Our expectation that the localization error using

4We believe that the unusual shape of the error distribution
for the “no error” error model may be due to instability in the
mesh relaxation process that occurs when the solution is very near

real pings is generally greater than it is under the sim-
ple gaussian error model is also confirmed in the Fig-
ure. Furthermore, the difference in the mean values of
these distributions is less that one standard deviation.
Finally, the error distribution observed using real data
falls in between the distributions for simulated pings
under the Gaussian and Gaussian Mixture error mod-
els. This suggests that we have achieved a reasonable
understanding of the error sources in our system.

Finally, we direct the reader to compare these re-
sults to those in [3], where we characterize a similar
localization system on the Pushpin system that uses
a simple Lateration-based algorithm rather than SGD
and MR. With Lateration alone, we achieved a mean
localization error of 4.93-cm and an average std. dev.
of 3.04-cm, which is clearly higher than our results
here. For a more detailed comparison of these two
systems, see [2].

V.C. Outlier Rejection

In this section we quantify the effectiveness of the
outlier rejection techniques introduced in Section IV.
Outlier rejection allows the Pushpins to maintain high
localization accuracy in the face of spurious errors
in sensor measurements. We separately consider two
types of outlier rejection used in the Pushpin local-
ization system: (1) Rejection of outlying time-of-
flight measurements prior to localization, and (2) re-
jection of outlying coordinate estimates after local-
ization. However, we emphasize that both of these
schemes should be used in concert for best results.

V.C.1. Outlying TOF measurements

Nodes reject measurements that grossly disagree with
the measurements made by their neighbors on the net-
work. The threshold for rejection of a ping event
is given in terms of a number of standard deviations

convergence.

Mobile Computing and Communications Review, Volume 10, Number 1 9

1 2 3

0

0.05

0.1

0.15

(a) Error for anchor nodes

Threshold

M
ea

n
A

bs
ol

ut
e

E
rr

or
(m

et
er

s)

1 2 3

0

0.05

0.1

0.15

0.2

0.25

(b) Error for all localized nodes

Threshold

M
ea

n
A

bs
ol

ut
e

E
rr

or
(m

et
er

s)

0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35
(c) Percentage of nodes with too many outliers to localize

Threshold

%
un

lo
ca

liz
ea

bl
e

no
de

s

Figure 6: The effects of a preprocessing step that rejects
outlying time-of-flight measurements (Section IV.B). The
threshold for rejection is the number of standard deviations
from the norm of a node’s neighobors’ time-of-flight mea-
surements. (a) shows the average localization error of ten
anchor nodes only for various threshold values. (b) shows
the average localization error of all 58 nodes (in (a) and
(b), the x marks the mean for the ten trials, and the error
bars show one standard deviation). (c) shows the num-
ber of nodes that were unable to localize because too many
of their distance constraints were rejected as outliers. We
found a threshold of 1.8 to be a reasonable trade-off be-
tween overall accuracy and the number of rejected nodes.
The post-processing step of coordinate outlier rejection was
disabled for these tests.

from the median of neighboring nodes’ measurements
for the same event. In our test, we tried 10 different
threshold values that varied between 0.5 and 3.2. Ten
localization trials were run for each threshold value.
For these tests, only outlying measurements, not out-
lying coordinate estimates, were rejected. The results
for various threshold values are plotted in Figure 6.

Frame (a) in the figure shows the localization er-
ror for the anchors nodes only. The plot indicates that
mean localization error can be drastically reduced if
the rejection threshold is sufficiently low. The stan-
dard deviation of localization error is also dramati-
cally reduced when outlier rejection is active. Frame
(b) shows a similar but less pronounced trend when
error is considered over all 58 nodes. However, frame
(c) of Figure 6 shows that there is a trade-off to be
made between the desired localization accuracy and
the number of nodes that cannot localize because they
have rejected too many measurements as outliers.

0.5 1 1.5 2 2.5 3
0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) Error for localized nodes

Threshold

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(m
e
te

rs
)

0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90
(b) Percentage of rejected nodes

Threshold

%
 R

e
je

c
te

d

Figure 7: The effects of a post-processing step that rejects
nodes with outlying coordinates (Section IV.E). The thresh-
old for rejection is the number of standard deviations from
the median of a node’s neighbors’ coordinates. (a) shows
average localization error for various threshold values (x
denotes the mean and the error bars show one standard de-
viation) (b) plots the number of nodes that were unable to
localize because they were rejected as outliers. We found a
threshold of 1.7 to be a reasonable trade-off between over-
all accuracy and the number of rejected nodes.

V.C.2. Outlying coordinate estimates

The goal of coordinate outlier rejection is to remove
nodes that have been assigned coordinates that grossly
disagree with the coordinates of their neighbors. This
test assesses how localization accuracy and the num-
ber of un-localized sensor nodes vary as a function of
the coordinate outlier rejection threshold. The thresh-
old was varied from 0.5 to 2.9 in increments of 0.3
standard deviations. Ten localization trials were run
for each threshold value. Figure 7 shows the results.
An increase in localization error and decrease in the
percentage of unlocalized nodes can once again be
seen as the threshold is increased.

V.D. Shearing and Scaling of the
Coordinate System

As discussed in Section V.A, the error of the Pushpin
localization system was measured in two ways – 1)
fitting the estimated coordinates to the ground coordi-
nates using a rotation-translation-reflection (RTR) fit
and then calculating the average error, and 2) fitting
the estimated coordinates to the ground coordinates
using a linear least squares estimate (LLSE) fit and
then calculating the average error. The results thus far
given concern only the LLSE fit. We found that the
RTR fit results in a consistently larger average error
than the LLSE fit, implying there is a uniform scal-
ing and shearing of the estimated coordinates arrived
at by the Pushpin localization system. See Figure 8.
The LLSE fit compensates for such scaling and shear-
ing, whereas the RTR fit cannot, giving an average
error for the trial depicted in Figure 8 of 0.09-cm and
32.38-cm, respectively.

10 Mobile Computing and Communications Review, Volume 10, Number 1

0 0.5 1 1.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X Coordinate (meters)

Y
 C

o
o

rd
in

a
te

 (
m

e
te

rs
)

(b) Coordinates after LLSE Fit

0.5 0 0.5 1 1.5

0

0.5

1

1.5

X Coordinate (meters)

Y
 C

o
o

rd
in

a
te

 (
m

e
te

rs
)

(a) Original (unfit) coordinates

Figure 8: The Pushpin localization system produces esti-
mated coordinates with uniform shearing and scaling that
cannot be corrected by a rotation-translation-reflection fit
(left), but is compensated for by a linear least squares esti-
mate fit to the ground coordinates (right). This implies that
the system is underconstrained – i.e. there are numerous
solutions that satisfy the edge constraints generated from
five Pinger events. The original data were simulated pings
without added error.

Although the average error of a RTR fit of the es-
timated coordinates is rather large, the distance con-
traints imposed by the time-of-flight measurements to
Pinger events are satisfied nonetheless. For example,
although the average error of a RTR fit of estimated
coordinates for the trial depicted in Figure 8 is 32.38-
cm, the largest disagreement between a time-of-flight
measurement of a Pinger event and the estimated dis-
tance to the same event is only 0.01-cm.

This implies the system is underconstrained; there
are numerous solutions that satisfy all the constraints.
Obtaining a stricter set of constraints so as to elimi-
nate this degeneracy is the domain of graph rigidity
theory [20]. Both [20] and [14] also explicitly address
the problem of degenerate solutions in sensor network
localization by selecting anchor nodes using heuristic
and geometric constraints. Nonetheless, the estimated
coordinates arrived at by the Pushpin localization sys-
tem are still valid so long as a LLSE fit can be made,
for example, by knowing a priori the global coordi-
nates of a small number of ground control points that
have been identified and localized in the frame of ref-
erence of the sensor network.

VI. FUTURE WORK

There are obvious avenues for improving our local-
ization results. First, the ability to make use of more
than five Pinger events could improve overall local-
ization accuracy. This would be a simple extension,
since the algorithms we have used readily incorpo-
rate additional pings by increasing the size of the
adjacency matrix or by averaging results for differ-
ent combinations of pings. Utilizing extra pings, it
should be possible to reduce average localization er-

ror to roughly 1-cm, which is the theoretical limit on
the accuracy for detecting an ultrasound signal us-
ing a unipolar rising-edge discriminator with a fixed
threshold. While mesh relaxation has worked well
in our tests, it converges relatively slowly compared
to other methods. In our tests, it took an average of
5,000 iterations of relaxation before the mesh con-
verged. Several more efficient approaches are well
known in the field of optimization, and some of these
have recently been applied to the problem of lo-
calizing sensor nodes. Some work in this area in-
cludes semi-definite programming[1], non-linear least
squares[15], and distributed Kalman filters[21].

A logical extension of our current approach of bas-
ing localization constraints on the distances to global
sensor phenomenon might be called “ambient local-
ization.” The key idea here is that the localization
system should rely as little as possible on the mech-
anism for generating global stimuli and instead treat
such stimuli as parts of the environment rather than
additional infrastructure. This work at least shows
progress toward this goal by obviating the need for
prior knowledge of the absolute position of the source
of a pair of global stimuli. However, we would like
to generalize our approach further by instead measur-
ing the time of arrival of a global signal. In this sce-
nario, the absolute time origin of the signal becomes
another parameter to be estimated. The solution to
this higher dimensional search problem requires addi-
tional constraints and more computation, but these are
readily available either from additional participating
nodes, or from additional global events. The spec-
tral graph drawing, mesh relaxation, and lateration al-
gorithms all readily generalize to higher dimensional
search spaces.

VII. CONCLUSION

We have demonstrated a unified localization system
comprising several algorithms that produces consis-
tent results with low localization error, even when us-
ing noisy real-world sensor data. Our approach em-
ploys two non-linear localization techniques, namely
spectral graph drawing and mesh relaxation, as well
as a linear lateration algorithm. Overall, the Push-
pin localization system achieves a mean absolute error
of 2.3-cm and an error standard deviation of 2.36-cm
when using ultrasound time-of-flight measurements
with a simple rising-edge detector. Supplemental
techniques for outlier rejection have been shown to
be very effective at decreasing localization error when
constraints are generated using data from real sensors.

Mobile Computing and Communications Review, Volume 10, Number 1 11

VIII. Acknowledgments

We wish to thank the Things That Think Consortium
and other sponsors of the MIT Media Lab for their
generous support. Portions of this work are supported
by NSF grant #ECS-0225492.

References

[1] P. Biswas and Y. Ye. Semidefinite programming for
ad hoc wireless sensor network localization. In Proc.
of the 2nd ACM int’l conference on wireless sensor
networks and applications, pages 46 – 54, 2004.

[2] M. Broxton. Localization and sensing applications
in the pushpin computing network. Master’s thesis,
EECS Department, Massachusetts Institute of Tech-
nology, 2005.

[3] M. Broxton, J. Lifton, and J. Paradiso. Localizing
a Sensor Network via Collaborative Processing of
Global Stimuli. In Proc. of the European Conference
on Wireless Sensor Networks, 2005.

[4] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heide-
mann. Scalable, ad hoc deployable rf-based localiza-
tion. In Grace Hopper Celebration of Women in Com-
puting Conference, Vancouver, British Columbia,
Canada., October 2002.

[5] J. W. Demmel. Applied Numerical Linear Algebra.
SIAM, 1997.

[6] C. Gotsman and Y. Koren. Distributed graph layout
for sensor networks. In Proc. of the International
Symposium on Graph Drawing, 2004.

[7] K. M. Hall. An r-dimensional quadratic placement
algorithm. Management Science, 17:219 – 229, 1970.

[8] T. He, C. Huang, B. Blum, J. Stankovic, and T. Ab-
delzaher. Range-Free Localization Schemes in Large
Scale Sensor Networks. In Proc. of the 9th annual
int’l conference on Mobile computing and network-
ing, pages 81–95, 2003.

[9] A. Howard, M. J. Mataric, and G. Sukhatme. Relax-
ation on a Mesh: a Formalism for Generalized Lo-
calization. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct 2001.

[10] Y. Koren. On spectral graph drawing. In Proc. of
the 9th International Computing and Combinatorics
Conference (COCOON), 2003.

[11] K. Langendoen and N. Reijers. Distributed local-
ization in wireless sensor networks: a quantitative
comparison. The International Journal of Com-
puter and Telecommunication Networking, 43(4):499
– 518, November 2003.

[12] J. Lifton, M. Broxton, and J. Paradiso. Experiences
and direction in pushpin computing. In Information
Processing in Sensor Networks, Special track on Plat-
form Tools and Design Methods for Network Embed-
ded Sensors (SPOTS), 2005.

[13] S. Lindebner, H. H. Fruehauf, J. Heubeck, R. Wansch,
and M. Schuehler. Evaluation of direction of arrival
location with a 2.45 ghz smart antenna system. to
appear.

[14] D. Moore, J. Leonard, D. Rus, and S. Teller. Ro-
bust distributed network localization with noisy range
measurements. In Proc. of the ACM SenSys, 2004.

[15] R. L. Moses, D. Krishnamurthy, and R. M. Patterson.
A Self-Localization Method for Wireless Sensor Net-
works. EURASIP Journal on Applied Signal Process-
ing, pages 348 – 358, 2003.

[16] R. Nagpal, H. Shrobe, and J. Bachrach. Organizing
a Global Coordinate System from Local Information
on an Ad Hoc Sensor Network. In 2nd International
Workshop on Information Processing in Sensor Net-
works (IPSN), April 2003.

[17] N. Patwari and A. O. Hero. Using Proximity and
Quantized RSS for Sensor Localization in Wireless
Networks. In Proc. of the 2nd ACM int’l conference
on Wireless sensor networks and applications, pages
20 – 29, 2003.

[18] N. Patwari and A. O. Hero. Manifold learning algo-
rithms for localization in wireless sensor networks. In
Proc. of the IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), May 2004.

[19] N. Patwari, A. O. Hero, M. Perkins, N. Correal, and
R. O’Dea. Relative location estimation in wireless
sensor networks. IEEE Trans. on Signal Process-
ing, Special Issue on Signal Processing in Networks,
51(8):2137 – 2148, August 2003.

[20] N. B. Priyantha, H. Balakrishnan, E. Demaine, and
S. Teller. Anchor-Free Distributed Localization in
Sensor Networks. Tech Report 892, MIT Laboratory
for Computer Science, 2003.

[21] A. Savvides, H. Park, and M. Srivastava. The Bits
and Flops of the N-Hop Multilateration Primitive for
Node Localization Problems. In Proc. of the 1st ACM
int’l workshop on Wireless sensor networks and ap-
plications, pages 112–121, 2002.

[22] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz.
Localization from Mere Connectivity. In Proc. of the
4th ACM int’l symposium on mobile ad hoc network-
ing and computing, pages 201 – 212, 2003.

[23] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora: Scal-
able sensor network simulation with precise timing.
In Proc. of the Fourth International Conference on
Information Processing in Sensor Networks (IPSN),
2005.

[24] Unknown Author. Efficient Processing of Data for
Locating Lightning Strikes. Technical Brief KSC-
12064/71, NASA Kennedy Space Flight Center.

12 Mobile Computing and Communications Review, Volume 10, Number 1

