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Abstract
This paper presents a framework for power-efficient de-

tection in embedded sensor systems. State detection is struc-
tured as a decision tree classifier that dynamically orders
the activation and adjusts the sampling rate of the sensors
(termed groggy wakeup), such that only the data necessary
to determine the system state is collected at any given time.
This classifier can be tuned to trade-off accuracy and power
in a structured, parameterized fashion. An embedded instan-
tiation of these classifiers, including real-time sensor control,
is described.

An application based on a wearable gait monitor provides
quantitative support for this framework. The decision tree
classifiers achieved roughly identical detection accuracies to
those obtained using support vector machines while drawing
three times less power. Both simulation and real-time opera-
tion of the classifiers demonstrate that our multi-tiered clas-
sifier determines states as accurately as a single-trigger (bi-
nary) wakeup system while drawing as little as half as much
power and with only a negligible increase in latency.
Categories and Subject Descriptors

I.5.2 [Pattern Recognition]: Design Methodology; C.3
[Computer Systems Organization]: Special-Purpose and
Application-Based Systems
General Terms

Algorithms, Design, Performance
Keywords

tiered wakeup, power-efficient detection, dynamic power
management, wearable sensors
1 Introduction

Embedded sensor nodes are currently being used in a
wide array of applications. These include, but are certainly
not limited to, detecting degenerative diseases [3], monitor-
ing remote regions [29], and ensuring the safety of house-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’07, November 6–9, 2007, Sydney, Australia.
Copyright 2007 ACM 1-59593-763-6/07/0011 ...$5.00

bound elders [15]. Such systems are part of a new class of
sensor-driven applications, leveraging the decrease in both
price and size of components to allow rich, multimodal data
streams to be captured by very compact systems.

However, as sensors nodes increase in functionality, they
require more frequent activation and therefore more frequent
replacement or recharging of batteries. This creates an in-
creasing gap between the capabilities of a device and its lifes-
pan under normal use. Thus, current applications of embed-
ded sensor systems are mostly limited to prototype and ex-
perimental usage or very simple implementations. The most
common solutions to limited lifespan are to tether the sys-
tem to wall power [21] or to confine the system to sampling
at such a low rate that the lifespan is satisfactory [34]. Ob-
viously, the full potential of wireless and wearable sensors
is not being achieved through such systems, as their limited
lifespans, sensing capabilities or update rates greatly reduce
the utility to the end-user.

By concentrating our design efforts on the sensors them-
selves, rather than on the networks, it is possible to construct
a class of embedded systems which achieve their sensing
goal(s) while drawing significantly less power. This will
increase the lifespan of embedded sensor nodes, allowing
many more applications to make the transition from labo-
ratory to marketplace and thereby benefit a much wider pop-
ulation.
1.1 Approach

This work improves the capability/lifespan gap in em-
bedded sensor nodes through high-level algorithmic means
rather than low-level technical ones. We started from a fun-
damental: the raison d’etre of these devices is to collect and
process data and therefore the design of the sensors them-
selves should be central. We concentrated on reducing the
energy usage of the sensors within the nodes. This metric
was chosen since it is both general and tractable, though
it is important to note that any power savings in the form
of reduced sensing also correspond to further power sav-
ings through a reduction in the data to process, the data to
transmit or store and the data to analyse. Further, any gains
through this work can be considered independently from the
large body of work exploring power savings through im-
provements to the software [31], hardware [1], and RF ef-
ficiency [23] in wireless sensor networks.

Our goal is to determine the system state at any given
point in time for the smallest outlay of energy. Specifically,



Baseline Sensing

System Processor RF
Monitoring Type Power % Power for Sensing

Gait Shoe [3] 35mW N/A IMU every 5ms 65mW 65
ZebraNet [38] 15mW 13mW GPS every 8min 30mW 52

Great Duck Island [32] 118µW 465µW Ambient every 5min 118µW 17
Table 1. Power usage breakdown of selected embedded nodes/networks

the power drawn by the sensor node is reduced by dynami-
cally adjusting the activation and sampling rate of the sen-
sors, such that only the data necessary to decide the sys-
tem state is collected at any moment. Overall, the amount
of data gathered by the system is reduced without affecting
the amount of useful information collected.

The form of our solution is such that the sensor sampling
rates, as well as the transitions between them, are generated
in a semi-autonomous fashion and can easily be embedded
in hardware. The solution is also parameterized to allow
for tuneable power/accuracy trade-offs. Therefore, this work
should be applicable to a wide variety of applications.

1.2 Relevance
While the processor and RF transceiver are by far the

largest power drains in long-range wireless sensor networks,
sensor power usage is often on par with them in light-weight
and wearable instantiations [28]. The power usage of three
field-tested wireless sensor systems is examined.

The Gait Shoe is a wearable medical sensor for collecting
information about a patient’s manner of walking. It is centred
on an inertial measurement unit (IMU) sampled at 200Hz,
with the collected data streamed wirelessly to a basestation.
ZebraNet is a wireless sensor network composed of collared
zebras. The core components of each collar are a long-range
radio and a GPS unit sampled once every eight minutes. The
zebras themselves comprise a mobile peer-to-peer network
whose goal is to aggregate the sensor readings from all the
units at each node. Finally, the Great Duck Island habitat
monitoring project (GDI) was a wireless sensor network de-
signed to track the Storm Petrels which populate the epony-
mous island. Sensor nodes were placed at the entrance of the
birds’ nests to record their comings and goings through mea-
surement of the humidity and ambient temperature every five
minutes. This data was sent to a gateway node which was the
first level of a hierarchical network which eventually trans-
mitted the data off the island.

For each project, power usage is broken down into two
categories – the baseline power to run the processor and the
wireless link and the power expended in sensing – and is
summarized in Table 1. The baseline power varies with the
level of networking in each application. Since the Gait Shoe
is part of a hub and spoke network, it does not monitor an
RF channel and therefore has low baseline power usage. Ze-
braNet uses a moderate amount of energy for networking —
although the radio consumes high power, it is rarely used.
By contrast, the GDI radio is relatively low power but is
very frequently powered up to listen for messages, and there-
fore uses almost four-fifths of the static power draw. As for
the power usage of the sensing, the gait shoe samples a half
dozen sensors at a high rate and ZebraNet samples a single

high power sensor at a low rate, drawing approximately half
the total power in each case. By contrast, the Great Duck Is-
land project collects small amounts of data at a low rate, and
therefore dedicates only one sixth of its power to sensing.

Overall, each system devotes a significant percentage of
its power usage to collecting sensor data. Further, the power
used to monitor the radio channel in the two network appli-
cations is partially proportional to the amount of sensor data
transmitted over the network (nodes also listen for instruc-
tions and network maintenance). Therefore, a reduction in
sensing should lead directly to a reduction in both RF trans-
mitter and receiver power usage.
2 Solution Overview
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Figure 1. Flowchart of hardware solution

The general design for our system, shown in Figure 1, is
centred around the concept of tiered, or ”groggy”, wake up.
This stands in contrast to the more common binary wake up
systems, which have only two modes: fully active, collecting
all possible data and drawing maximal power, or fully asleep,
collecting no data and drawing virtually no power. Instead,
we envision a system with a number of different levels of
activity and associated power usages. Each level comprises
the currently active sensors for state determination as well
as their sampling rate, together with algorithms to describe
the level transitions. At each time step, the current activity
level will specify how to use as little energy as possible to
determine the current state and whether a level transition is
necessary.

For a given application, the system states are designated
by the designer. Each state represents an interesting condi-
tion of the system — e.g. a certain gait for a wearable med-
ical device or the presence of certain fauna for an environ-
mental node. Further, the application designer can associate
specific responses, such as data capture and storage, with in-
dividual states.

The design process (and this document) proceed as fol-
lows. First, hardware for the desired application is config-
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Figure 2. Framework workflow (automated steps unshaded)

ured for testing (section 4). A training data stream is col-
lected with this hardware, and is annotated by the application
designer. These annotated examples are used to construct
a classifier that will determine the system state (section 5).
The sensor set used by the classifier allows the final, pos-
sibly pared down, form of the hardware to be built and the
state classifier to be implemented on it (section 6). Figure 2
shows the major steps in the framework. Those requiring
intervention by the application designer are shaded.

3 Related Works
There are a number of related projects with the same over-

arching goal as our own — the reduction of power usage in
embedded nodes by controlling sensor sampling. They can
be divided based on their application: data collection, state
determination, or tracking.

Most concentrate on the measurement and collection of
data from a single phenomenon. Jain and Chang [17], Liu et
al. [22] and Rahimi et al. [29] each use a different model of
the sensor data to adjust the sampling rate of a sensor on a
single node. Jain and Chang use the innovation of a Kalman
filter [13] as a measure of the entropy rate of the data stream
and adjust the sampling rate accordingly. Liu et al. model the
system as a random walk and vary the sampling rate when
subsequent measurements fall outside of the expected range.
Finally, Rahimi et al. measure a phenomenon over a fixed
area and use the spatial rate of change of the data to adjust the
spacing of the samples. These are unsupervised approaches
— more data is collected because the phenomena is varying
at a faster rate. While these techniques generated good re-
sults in sample applications, they assume that data should be
collected in all states and cannot differentiate between them.
Further, in the case of Jain and Chang, the Kalman filter is
a fairly structured and computationally expensive model that
would not be appropriate for all systems.

He et al. [14] and Zhao et al. [39] consider power sav-
ings in tracking networks with the goal of reducing the to-
tal power usage of the nodes. He et al. solve the problem
through the use of sentry nodes — a subset of the network
that continuously monitors for events — which awaken the
other nodes when there is an interesting phenomenon in the
vicinity. Zhao et al. examine the problem in the context of
a query from an individual node, which then queries other
nodes along a gradient to acquire more accurate data. In se-
lecting the path for the request to travel, the system takes
into account both the expected utility of the information to
be collected and the power necessary to collect the data and
transmit the results back to the requesting node. While these
techniques save significant power by leaving most of the net-
work asleep at any given time, they respond to information
in a strictly binary fashion. He et al. turn on all the neigh-
bouring nodes on an event trigger, without consideration of

the amount of additional data necessary to accurately track
the phenomenon. Similarly, in Zhao et al.’s network, nodes
selected as the next hop along the gradient do not use any
knowledge of their circumstances to determine whether it is
worthwhile for them to collect data or if the request should
simply be passed along to a more suitable node.

Yu et al. [37] and Dutta et al. [11] consider power sav-
ings in the more general context of state detection. Yu et al.
examine the case of a set of independent nodes in a network
dedicated to making a binary state decision. Each node col-
lects samples until a decision can be made with sufficient ac-
curacy, with these decisions fused at a central node. Dutta et
al. examine the case of a multi-sensor node tasked to deter-
mine the form (civilian, soldier or vehicle) of nearby objects.
These nodes use a binary wakeup scheme, where a thresh-
olded infrared sensor triggers the more expensive acoustic
and magnetic sensors to collect enough information to make
a decision. Both projects reduce power usage for state de-
tection using the concept suggested in this framework — ac-
tively considering in real-time which information is neces-
sary to make a decision — though in a more limited fashion.
The sequence of measurements in Yu et al. is always taken
with the same sensors set at the same rate, without consider-
ing the information necessary from each sensor or a model
of the time evolution. The system in Dutta et al. wakes all
sensors based on a single trigger, when a subset of the sen-
sors is enough to make certain determinations. Incorporating
more information about the system of interest could result in
power savings in each case.

Other system properties bear discussion. First, as men-
tioned above, most of the projects either do not model the
phenomena of interest or use a trivial model thereof, es-
chewing possible power savings. Second, most systems do
not vary sensor usage beyond an all-or-nothing approach.
Only Dutta et al. construct a hierarchy of sensors, and only
the data collection applications consider varying the sensor
sampling rate. Finally, there is a paucity of published de-
tails both regarding derivations of the devised algorithms and
about how to generate an instantiation for a specific problem.
Since the works referenced were published either in confer-
ence proceedings or magazines, it is difficult to determine
whether this is an omission for space or if the construction
was in fact ad-hoc.

A number of important works do not fall neatly into the
categories above. Many projects consider power/accuracy
trade-offs as part of the offline decision process. For in-
stance, looking at wearable examples, Bao and Intille [4]
demonstrate that for human activity recognition based
on body-worn accelerometers, only sensors on the thigh
and wrist are necessary, with other positions giving only
marginal increase in accuracy (Lester et al. [20] confirms



this result). In terms of model-based systems, Deshpande et
al. [9] present a very detailed solution where queries from a
root node are designed to minimize power usage when exe-
cuted in the network. The observation plan specifies not only
the nodes to visit but the individual sensor(s) to be sampled
at each, and the optimization is based on both the cost of the
sensing and of data transmission. This work is excluded from
the above discussion because the observations are centrally
planned and do not vary based on measured data.

4 Hardware Platform
To simplify the rapid prototyping and testing of embed-

ded sensor nodes, we designed a modular sensor platform.
This platform is based around a series of circuit boards, each
of which instantiates a specific sensing modality — e.g. iner-
tial sensing, tactile sensing or ambient sensing — or portion
of the sensing infrastructure — e.g. data collection, data pro-
cessing or wireless communication. These boards can be ar-
bitrarily combined and recombined, allowing for the design
to quickly consider various proposed sensor combinations.
Full details of this system can be found in [6]. Only two new
design techniques used to improve the power efficiency of
the boards for use with this framework are considered here.

The first technique is the use of parts with short wake
up time. Since much of the power savings from the hard-
ware design is predicated on power-cycling the various com-
ponents, reducing the wake up time is key to minimizing
the power wasted during that interval. This parameter can
vary widely both between different sensing mechanisms for
a given phenomenon (e.g. effectively nil for a phototransis-
tor to 40ms for a IR rangefinder) and individual parts (e.g.
8ms for the ADXL202 MEMS accelerometer to 100ms for
the pin compatible MXR2312 thermal accelerometer). The
wake up time sets the upper limit on how quickly a sensor
can be cycled while still offering power savings over contin-
uous activation. It should be noted that the availability of this
information is spotty at best — provided on some data sheets
while completely ignored on others. Further, no information
is given about the power draw during wakeup. In many cases
it is likely the same as during normal operation, though for
some sensors (e.g. those that need to charge internal capaci-
tors or equilibrate filters), it may well be significantly more.

A second key design technique is the use of multiple sen-
sors to measure a single parameter of interest. The vast ma-
jority of sensor systems limit themselves — usually in the
interests of simplicity or compactness — to a single sensor
for each modality of interest. No matter how efficient such an
implementation is for extracting information, it is guaranteed
to be power inefficient in states where less (or more) data is
necessary to determine the transitions. A system which can
tailor its sensing in real-time to the current state of the device
can draw far less power on average. While it seems counter-
intuitive to make a system more power-efficient by adding
complexities (and/or redundancy), the key is that the system
has been given a new, lower energy source of information.

5 Selection and Design of Classifier
5.1 Data Collection

Prior to training the classifiers, a set of examples must be
collected. Each example is a series of values with a given

label (in this case, the state). The goal of the classifier is
to create a mapping between the values and the states. For
the classifier to do so as accurately as possible, it should be
trained with examples spanning both the range and variation
of the possible states. Further, those states need to be labelled
as accurately as possible. Any sensors which could possibly
be useful to the classification process should be included, as
those not used by the classifier can always be removed in a
later revision of the hardware. Data streams are captured at
their maximum useful data rate.

To avoid data collection becoming an open-ended pro-
cess, a scripted sequence is used to quickly acquire the most
relevant data. The sequence is reasonably short and collects
a suitable set of training data (dependant on the application)
containing the active (high energy/variance) states, both in-
teresting and uninteresting, that are known to the designer.
Rather than wait for these states to occur naturally in the
operation of the system, it is most often easier to simply
manufacture them. This guarantees their presence, quality
and labelling. If desired, long-term background recording
can also be captured to provide a baseline for the uninterest-
ing cases and to catch states which were not considered by
the designer. This stream would therefore provide a measure
of completeness which is lacking from the scripted stream.
While it is possible to use such a stream as the sole source of
the training data, this tends to be inefficient since the length
of the recording necessary to acquire sufficient good exam-
ples of all complex states would be quite long and the vast
majority of the remaining data will be of little to no value in
the classifier training. Studies by Intille et al. [16] support
this type of data collection scheme.

We have chosen this offline supervised training approach
based on the assumption of fairly constrained applications
and clarity of designer intent. The application designer will
hand annotate the data streams, labelling the areas contain-
ing different types of interesting data. The remaining data is
assumed to not be of interest and is grouped together. This
allows the designer to explicitly choose to combine, separate
or ignore states as desired. For example, the designer could
combine different forms of walking (fast, slow, pathologi-
cal), if the sole interest was distinguishing level gait from
ascending or descending stairs. This limits the complexity
of the classifier by obviating the need to make irrelevant
distinctions. However, systems where the states of interest
are either large in number or ill-defined may result in clas-
sifiers which are either too complex or classify poorly, re-
spectively. Also, while designed for efficiency, the data col-
lection scheme may have difficulty in situations where states
are not easily generated (such as environmental monitoring).
With knowledge of the time evaluation it may be possible to
synthesize this missing data. Otherwise, the available data
can be used as a starting point with the assumption that the
system will be updated using techniques such as those con-
sidered in section 8.3. Finally, while hand-annotation can
be time consuming, the use of scripted training sequences
should reduce the workload to a manageable level.
5.2 Feature Extraction

Before training the classifier based on the marked exam-
ples, a set of features is extracted from the data. These fea-



tures should be both compact and descriptive. For most em-
bedded sensor systems, the data from which we will be ex-
tracting features will be in the form of a time series. While it
is possible to simply use the values at each point in time, this
would be less than robust because of variations both from
the structure of the time series and from the noise in the indi-
vidual data points. To take this variation within single states
into account, windowed functions are used to calculate the
features.

A set of simple first order functions were chosen as the
features — specifically, the windowed mean, variance, min-
imum and maximum. These features have been used suc-
cessfully on time series of inertial [2] and video [19] data.
They are also mathematically simple, requiring O(1) calcu-
lations and O(n) memory (for a window of size n) to update
their values at each time step. This simplicity provides two
benefits. First, while the classifier training is offline and can
therefore be as complicated as necessary, the features must
be calculated in real-time and therefore should fall within
the limited processing and storage capabilities of embedded
microcontrollers. Second, the energy expended to calculate
these functions will typically be two or more orders of mag-
nitude less than that necessary to collect the data, allowing
us to treat it as negligible.

These are good general statistics for two reasons. Intu-
itively, the mean is the baseline, the maximum and minimum
provide the limits or range and the variance is a measure of
energy expended by the subject. Analytically, the mean and
variance are the first and second moments (respectively) of a
random process. If the window size is chosen to be the pe-
riod (for cyclic data) or greater than the phenomenon’s cor-
relation length (for non-cyclic data), the data stream will be
wide sense stationary within any given state, and these val-
ues will be constant (with the exception of additive noise).
This converts a sequence of time varying values to one which
varies with state alone, allowing the use of most supervised
classification algorithms.

To extract as many uncorrelated examples from the data
stream as possible, a sliding offset of a quarter window
length for each example is used (which has been shown to
give good results [4]). Also, since power use is correlated
to sampling frequency, examples are generated at a number
of different rates, allowing the classifier to choose the lowest
power example containing the necessary information. The
maximum rate for generating examples is the sampling fre-
quency of the training stream and examples are generated at
this rate and at power of two divisions thereof (down to some
reasonable minimum value).
5.3 Classifier Form

Having collected the data streams and used them to pro-
duce training examples, we are now ready to design and con-
struct a classifier to separate the various labelled states. To
determine the necessary properties of the classifier, we note
that this work seeks to reduce the power usage of sensor
nodes through the reduction of sensor usage. Specifically,
we seek a collection of hierarchical activation levels to allow
the system to make a state determination using as little en-
ergy as possible. Hence, the classifier used should be able
to make decisions in the same fashion — using more or less

data as needed — exploiting the well established training al-
gorithm to produce a classifier which explicitly produces the
tiered wake up structure desired.

Therefore, decision trees are used in this framework. De-
cision trees structure classification in the form of a series of
successive queries (usually a threshold on a single feature),
with each response leading to a following query until a state
is determined [36, Chap. 7.2]. In this way, the tree uses dif-
ferent sets of features to classify different states (or subsets
thereof). In the case of an unbalanced tree, some classifica-
tions are made with far fewer decisions (and therefore far less
energy) than others. Also, the recursive structure makes for
a fairly inexpensive classifier suitable for embedded usage,
with an average computational complexity of classification
of O(logn) comparisons and a space complexity of O(n)(for
n training examples) [10, Chap. 8.3]. Overall, the desire for
hierarchical activation requires a hierarchical classifier. Sim-
ilar arguments have been made in both medical [25, Chap.
16] and general [35] contexts.

It is important to note that decision trees can only subdi-
vide the feature space perpendicular to the feature axes, lead-
ing to poor performance when a linear (or otherwise) com-
bination of features is necessary to accurately subdivide the
space. This limitation can be overcome by careful choice of
sensors and their axes of measurement, to create a state space
where the single variable cuts made by the classifier are more
meaningful. Note that techniques for building decision trees
which use combinations of features in their queries have not
been particularly successful [7].

5.4 Classifier Implementation
We use the CART decision tree construction algorithms

codified by Breiman et al. [8]. This technique, known as
top-down induction of decision trees, is a simple divide and
conquer algorithm which, at each node of the tree, divides
the labelled examples in such a way as to maximize a se-
lected criterion. This process continues until each node only
contains examples of a single state. Breiman et al. proposed
the Gini criterion for selecting binary splits of two-class sys-
tems:

CGini(s) = ∑
i ∈ left,right

P(i)P(+|i)P(−|i) (1)

where s represents a division of the examples, P(i) is the pro-
portion of the total examples assigned to the child node and
P(+|i) and P(−|i) are the proportion of positive and neg-
ative examples (respectively) in that node. The split with
the smallest value is chosen. Since growing the tree until
all of the nodes are pure tends to greatly overfit the data,
pruning is performed to find the right-sized tree. We use the
technique suggested by the CART algorithms — known as
cost-complexity pruning — which selects the tree with the
minimal error on a separate testing data set.

The above process is designed to construct the most accu-
rate tree. However, in our case, we are not solely concerned
with finding the tree that separates the examples most accu-
rately, but also that does so for the lowest average power.
Therefore, we wish to trade off accuracy and power usage in
a structured way. We begin by defining the quantity we wish



to affect the growth of the tree:

TC = (TCs +TC f ) (2)

where TC is the total test cost of the sensor (in units of
power), TCs is the power used to collect a sample and TC f
is the power used to calculate a single feature based on
that sample. For the features chosen, in almost all cases
TCs � TC f and therefore TC ∼= TCs. The exception is very
low power and passive sensors. Since this is a sequential
classifier, once a feature has been used to make a decision,
the sensor from which that feature was calculated should
then be available to all children of that node for a discounted
cost. The use of a sensor which is already being sampled at
the desired rate will not require additional energy and there-
fore should not invoke additional cost (TC = 0). An increase
in sampling rate should only bear the cost of the increased
power usage. Sensors which share a common cost (such as
an amplifier) can also be easily accommodated. Any acti-
vated sensor that follows one with which it shares a cost is
simply discounted by that amount.

To be able to take test cost into account when building the
tree, the splitting criterion must be a function thereof. There-
fore, we add a generalized multiplicative weighting function:

C′(s) =
C(s)

(α+β(TC))W (3)

The intent is to reorder C′(s), relative to C(s), based on the
test cost. Two separate operating ranges are desired. For
activated sensors (TC = 0), the weighting function should
have no effect whatsoever. For unused sensors, the weighting
should be proportional to the power usage. W will be used
to control the extent of the reordering and α,β are fixed as
described below.

We first set α = 1 without loss of generality, since it can
simply be divided out without altering the ordering of the
function. For TC = 0, this makes the weighting identically 1
for all W . The value for β is then set based on the specific
values of the test cost. Define γ≡ βmin(TC). For γ = 10� 1
and TC 6= 0, the α term of the sum can be ignored, and the
weighting is proportional to TC as desired.

The parameter W adjusts the relative importance of power
in the classifier construction, with W = 0 having no effect
and W = ∞ forcing only the sensor(s) with the lowest test
cost to be chosen. Since this is a greedy process, it is most
likely that the effect of this parameter will not be smooth, but
rather that a range of values will all result in identical trees
being grown. As long as the total test cost for classification
is roughly monotonically non-decreasing with increasing W
and the number of different trees is non-degenerate, this step-
wise behaviour is not of particular concern. The overall goal
is simply to be able to grow a population of different trees by
varying W . The exact relationship between W and total test
cost is not important.

In [5], it is shown, using three standard data sets, that this
test cost weighting achieves the goals described above and
creates a population of classifiers at different points in the
power/accuracy plane. We quickly note two results. First,
the most accurate trees were often not those grown with W =
0. Second, the depth of the tree (roughly equivalent to the

evaluation latency) peaked for middling values of W . The
reader is directed to the above work for further details.

Several other weighting function have been used in the
literature. The functions of Tan [33] and Norton [26]:

C′(s) =
[C(s)]2

TC
and C′(s) =

C(s)
TC

are equivalent to ours for α = 0, β = 1 and W = 0.5 and 1,
respectively. Neither function allows sensor costs to be set to
zero in the case of repeated use of the feature as this would
make C′(s) undefined. Further, their choice of parameters
(α,β,W ) are not justified beyond unsupported claims of op-
timality and W cannot be varied to alter tree construction.
Núñez [27] models the system as a Shannon transmission
line [30] and finds a signal to noise ratio of:

C′(s) =
2C(s)−1

(1+TC)W

where C(s) is the entropy of the split and TC � 1. However,
since 0 < C(s) < 1, it is difficult to gauge the similarity be-
tween this form and our own. Costs are allowed to be zero,
though Núñez does not consider the case of costs which vary
within the tree.
6 Embedded Implementation
6.1 Overview

Algorithm 1: Overview of Program Flow
while true do1

Collect data;2
Run classifier;3
if classifier returns answer then4

Execute desired response;5
else6

Turn on necessary sensor;7
end8
Turn off unnecessary sensors;9
Sleep until next cycle;10

end11

The basic flow of the embedded code is shown in algo-
rithm 1. This loop is repeated as long as the node is active,
based on the assumption that the main purpose of the system
is to determine the current state and respond to it.

Data collection is determined by the instantaneous activ-
ity level of the system (specified by the last non-leaf node
encountered in the decision tree), which selects the sensors
to activate and sets their sampling rate. In most cases, the
sensors are powered down between cycles to save energy
and therefore need to be activated before a sample can be
taken. To a first order, the processor wakes up and activates
the appropriate sensors. Once their output becomes valid, the
processor collects the data (almost always using the ADC)
and then turns them off. The main constraint is that the turn
on time of the sensors be shorter than the cycle time of the
system. If violated, it is necessary to leave the sensors on
continuously, which reduces the achievable power savings.

Given the sensor data, it is now possible to attempt to de-
termine the current system state. The evaluation of the clas-
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sification tree itself is straight-forward. The process is sim-
ply a series of comparisons of a feature calculated from a
window of sensor data to a fixed threshold, with each result
either determining the next test or returning the state. If the
returned state has a response associated with it by the appli-
cation designer (e.g. collecting data, or cuing the user), it
is executed at this point. Tree evaluation can fail when the
data necessary to determine the features are not available, ei-
ther because the sensor is currently inactive or has not been
active long enough to the fill the data window (since this is
a tiered wakeup system, this may not be a rare occurrence).
In this circumstance, the only solution is to activate the sen-
sors and wait for one window length to be able to proceed.
During this time, the system is said to be in an indetermi-
nate state, and no responses are executed. Separately, the
sensors which were active but were not used in the decision
process are deactivated. In both cases, sensor noise can lead
spurious de/activation requests by sending the tree evalua-
tion along the incorrect path. Adding some hysteresis can
help alleviate this problem, and is discussed in below.

Finally, the system is put to sleep until the next cycle.
The processor is set to awaken the next time data collection
is required, which is determined by the update rate of the
active sensors. The only components active during this phase
should be the sensors that are not duty cycled.
6.2 Power Cycling and Hysteresis

A key implementation issue to consider is that of noise,
specifically with respect to sensor de/activation. The con-
cern is simple — that a spurious transition to a higher/lower
node in the tree (i.e. lower/higher activity level) from sen-
sor or sampling noise not result in the needless de/activation
of a sensor. Therefore, it is required that the de/activation
of a sensor be requested (by arriving at a tree node which
does/doesn’t use it) some fixed number of times before the
state change takes place. While the problem appears sym-
metric, this is not the case. Because of the windowed nature
of the features calculated, a newly activated sensor must be
on for the full length of the data window before it can be
used. The cost of accidentally turning off a sensor is the loss
of all of that data and therefore results in a large latency while
the delay caused by waiting for confirmation results in only
a small amount of wasted power. By contrast, the cost of ac-
cidentally turning on a sensor is the power wasted until the
mistake can be corrected, while the waiting for confirmation
only causes a slight increase in latency (especially compared
to the length of the data window). The two cases are shown
in Figure 3, where � and � represent the need for a sensor
and the lack thereof, respectively. The de/activate markers
are generated for a threshold of five requests in this figure.

It is apparent that the system should be quick to activate a

sensor but loathe to turn one off. The on latency will there-
fore be set rather low, on the order of one tenth of the win-
dow size. The off latency, by contrast, will should be much
higher, on the order of a half of the window size.

Smoothing of the output state is also desired to avoid spu-
rious execution of the response function, which could in-
crease power usage and reduce the utility of the system. This
smoothing will take the form of hysteresis, where the system
requires that the tree output the same state for a fixed num-
ber of cycles in a row before a change is acknowledged. This
will be in the range of one quarter of the window size.

7 Testing and Analysis
7.1 Test Scenario

Power usage (µW) at
25Hz 50Hz 100Hz 200Hz

ADXL202 1031 2031 4031 4830
ADXRS300 22343 24831 24831 24831

ENC03J 11931 11931 11931 11931
Tilt 5.85 11.7 23.4 46.8

Table 2. Power usage of sensors by sampling rate.

As a detailed testing scenario for this framework, we
decided to mimic the wearable gait laboratory detailed
in [3]. A six degree-of-freedom inertial module was built
using two Analog Devices ADXL202 accelerometers, two
Murata ENC03J gyroscopes and a single Analog Devices
ADXRS300 gyroscope. A four-way static tilt switch pro-
vided for additional micropower single-bit acceleration mea-
surement and a Texas Instruments MSP430F1611 micropro-
cessor was used to collect and process the data. The hard-
ware was attached to the heel of the user’s shoe with a ther-
moformed attachment. Data was collected at 200Hz and ver-
sions of the data streams for sampling rates of 25, 50 and
100Hz calculated using the downsample function in MAT-
LAB (which does not apply an anti-aliasing filter). A window
size of 1.2sec was chosen based on the collected data. The
power usage (including feature calculation) of the sensors at
various sampling rates is shown in Table 2. Shaded cells in-
dicate that the sensors cannot be power-cycled at that rate.
Note that the energy use of the ADXL202 includes a buffer
to reduce the input impedance to the microprocessor’s ADC.
Also, because the ADXL202 is a dual-axis package, the test
costs of the y-axis (upward) and z-axis (lateral) accelerom-
eter are combined, i.e. use of one makes the other available
for zero cost.

Our goal was to descriminate between wide variety of
different ambulatory activities. The set of activities chosen
was: normal level gait, walking uphill, walking downhill,
ascending stairs and descending stairs. A shuffling motion
was also recorded, where the user specifically attempted to
mimic the shuffling motion of a patient with Parkinson’s Dis-
ease (PD) [12]. This data set allows us to create classifiers
which attempt to separate a single (complex) ambulatory ac-
tivity from the rest. It is often the case that only one of these
motions is of interest for a given patient. When treating PD
patients, a doctor would be most interested in collecting in-
formation about the frequency of and parameters describing
the patient’s shuffling episodes [40]. For patients with total
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Figure 4. Power/accuracy tradeoff for decision trees and SVM

knee replacement, activities such as ascending stairs (where
the knee flexion is > 90◦) are the most important to mea-
sure [18]. Both of these cases call for far richer classifiers
than those used to simply separate ambulatory from non-
ambulatory (roughly: still) states.

To represent the variability of user motion, training data
was collected on five separate days, each time at a differ-
ent point in the user’s waking cycle. The active data streams
contained a segment of at least 2 minutes in length of each of
the motions. These motions were collected individually and
in isolation, since only the states (and not the transitions be-
tween them) were of interest. Annotations were later added
to the data stream based on marks in the data stream added
by a user-controlled pushbutton.

Several days after the last active data stream was taken, a
further data stream was collected for the purposes of simulat-
ing the real-time operation of the classifier. In the course of
a single continuous session, the wearer performed two seg-
ments (roughly 10-15 seconds each) of each of the motions
of interest. The total running time of this stream is 200 sec-
onds. The data from this stream was not used to either grow,
prune or test the classifier, allowing for an independent real-
time simulation.

7.2 Static Classifier Performance
Classifiers were trained for the six different cases of one

of the ambulatory motions being the positive class and the
others being grouped together as the negative class. Each
classifier will therefore attempt to separate a single type of
motion from the other five. This provides a fairly complex
task, such that power savings will be achieved from the ap-

propriate selection of sensors to sample, rather than through
long periods of idling. To determine how the classifier re-
sponds to the availability of features calculated at different
sampling rates, the following combinations were tested: all
the frequencies together, each frequency individually and the
pairwise combination of adjoining rates.

The classification trees were trained using a two-part
holdout procedure. The full data set was divided into 5 seg-
ments, with one acting as the holdout test set and the other
four used as the training set. The portion used as the test set
was rotated, such that all five segments were eventually used.
A 20% holdout pruning set (from the four segments which
make up the training set) was treated in the same fashion.
Overall, 25 classifiers were built for each of ten values of W
between 0 and 0.29 — the maximum useful value of W [5].
Accuracy and average test cost were found using the test set.

Support vector machines [36, Chap. 5.4] were trained for
the same tasks as above to act as a point of comparison. Both
Gaussian and linear kernels were used, and the accuracy was
estimated from 5 loops of 5-fold cross-validation to mimic
the same training set/test set combinations used for the de-
cision trees. While decision trees select the useful features
as a fundamental part of their operation, SVMs use all of the
features provided in the training set. Therefore, to calculate
the power/accuracy trade-off of the SVMs, classifiers were
trained for all 63 possible combinations of active sensors run
at the maximum sampling rate.

The results are plotted in the power/accuracy plane, with
each classifier being a single point (Figure 4). An algorithm
is considered superior to another if its curve is closer to the



Gaussian SVM This Framework Ratio (SVM:This)
Accuracy Power (mW) Accuracy Power (mW) Accuracy Power

Level Gait 0.9702 21.59 0.9601 6.37 1.011 3.39
Uphill 0.9953 9.66 0.9888 4.66 1.006 2.07

Downhill 0.9781 9.66 0.9667 5.70 1.011 1.69
Ascend Stairs 0.9921 4.83 0.9912 2.06 1.001 2.35
Descend Stairs 0.9959 4.83 0.9890 1.07 1.006 4.52
Shuffling Gait 0.9997 4.83 0.9984 0.32 1.001 15.1

Table 3. Comparison of best practises classifiers to this framework

top left corner (high accuracy/low power). The curves for
each algorithm are simplified by showing only the points
which make up the non-decreasing hull of the data, since
any points below this curve are sub-optimal. The power axis
is set such that the whole curve for the decision trees is visi-
ble as well as at least two points of the SVM curves. While
different curves are made up of a different number of points,
this is a function of the classifiers generated in each case and
does not hold any intrinsic meaning.

The first step is to compare the performance of the deci-
sion tree classifiers with those obtained using support vector
machines. In all cases the decision trees, over their range of
operation, are superior to the linear SVM, achieving the same
accuracy for less power. They are superior to the Gaussian
SVM in all cases but level gait. Further, note that the Gaus-
sian SVM is unsuitable for implementation in an embedded
platform. While a linear SVM requires a dot product of vec-
tors with length equal to the number of features, a Gaussian
SVM requires one such product for each support vector (e.g.
∼ 100 for walking). This is not only time consuming, but
requires large amounts of static memory. Thus, this com-
parison is relevant numerically but impossible to implement
practically.

Surprisingly, training with all available sampling rates did
not give the best decision trees in any of the cases. Rather,
the tasks fall into two sets. For uphill, downhill and level
gait, the 200Hz data alone seems, in general, to give the best
classification results. For ascending and descending stairs
and the shuffling gait, the 25Hz data alone is superior. These
motions appear to be simpler and more structured than the
first three mentioned above, and therefore can be differenti-
ated with less data and thus less power.

More importantly, in all cases there is a knee in the
power/accuracy curve for the decision trees, after which
there is minimal gain in accuracy for a large increase in
power use. Prior to this point, the accuracy of the decision
tree is improved by adding more sensors. Afterward, the ac-
curacy is improved by moving decisions involving the more
expensive sensors closer to the root node. This strongly sup-
ports the claim that a hierarchical activation system can pro-
vide strong classifiers for reduced cost.

To demonstrate this point, Table 3 compares results of the
current practises used for training SVMs with the framework
presented here. Feature selection is used for the SVMs, with
the features calculated at the maximum sampling rate — the
standard practise, at least in the case of embedded sensors.
For each algorithm, the best classifier is defined as the one
with the lowest power usage amongst those with accuracies
within 1% of the most accurate classifier. For our framework,

this corresponds to the knee point defined above. This defini-
tion was chosen to avoid selecting very power hungry clas-
sifiers which are only marginally more accurate than those
with more reasonable power usage.

In this comparison with SVMs, our framework performs
quite well. SVMs do offer an accuracy improvement on the
order of 0.5%, though at a power increase of about three
times in most cases. It appears that the hierarchical acti-
vation of sensors allows our framework to compete with a
classifier of greater descriptive power.

7.3 Real-time Classifier Performance
Two concerns arise when using trees trained with static

data in a real-time system. The first is the effect of the la-
tency inherent in activating sensors and whether this will lead
to missed detections. The second is the issue of the gener-
alizability of the classifier itself — i.e. did it overtrain to
the sample set. Testing was done using the trees at the knee
points of the power/accuracy curves.

A few key facts about these trees are noted. First, as men-
tioned above, they use only a single sampling rate throughout
their operation. Second, the trees contain a large number of
leaf nodes with populations of much less than 1% of the data
set. These leaves are very expensive to calculate and provide
only a tiny improvement in accuracy and hence were pruned.
Notably, these pruned trees used three sensors exclusively:
the tilt switch and the y- and z-axis accelerometer. Since the
latter two are contained within a single sensor package, there
were only two activation levels in our trees (with the excep-
tion of the shuffle classifier, which has only one). This limits
the possible benefits of our system and suggests that a differ-
ent test application would allow for greater power savings.

% Time at High Activation Level
Static Simulation Embedded

Level Gait 74 95 95
Uphill 63 72 86

Downhill 71 85 78
Ascend Stairs 74 88 98
Descend Stairs 38 63 47
Shuffling Gait 100 100 100

Table 4. Percentage of time in higher activation levels

Each classifier was both simulated on the continuous
stream set aside for this purpose and also tested in our em-
bedded sensor node. Table 4 shows the percentage of time
during which the tree was in the higher activation level
for the static (with all sensors instantly toggled) and real-
time (with sensor on/off latency as above) trees. The lat-
ter includes both simulations and tests run on the embed-



ded implementation. We assume that a binary wakeup sys-
tem would have been triggered by any motion, and therefore
would have a value of 100% for each task. The static tree
is in the high energy state far less often than the real-time
systems. There are two main reasons for this. First, the turn
off hysteresis led to unnecessary sensors being powered. Re-
ducing this value can save power, though it risks increasing
the latency and causing missed events. Second, the structure
of the tree is such that examples from the negative states can
fall into leaves at a number of different levels of the tree.
It is surmised that during the testing of the embedded node,
the user’s gait was such that the deeper leaves were needed,
thereby increasing the power usage. It is possible that the
classifier would use less power in further tests.

      other

   other                        stair descent

   mean(Tilt) [f=25Hz] < 0.5

   min(Ax) [f=25Hz] < 971

Figure 5. Classification tree for stair descent

The results for the stair descent tree (Figure 5) are exam-
ined in greater depth. The left-hand column of plots in Fig-
ure 6 shows the ground truth of the user annotation and four
different interpretations of the operation of the classifier. The
first is the state output of the static classifier and the second
shows the state output for the real-time classifier. Note that,
by definition, the real-time classifier cannot respond more
quickly. The third plot is the number of sensors active at any
given point and the last shows the power consumption of the
active and awakening sensors. Just as the state output of the
real-time classifier is a subset of the state output of the static
classifier, it is also a subset of the activation level, which is
a subset of the power usage. The right-hand column shows
the same information, this time collected from the system
running in the testing of the embedded node.

While quantitative evaluation of false positives and nega-
tives is not appropriate here because of the conservative na-
ture of the annotation and the differences between the indi-
vidual test runs, qualitatively we note that the stair descent
classifier detected the last two-thirds of each decent and had
only minor blips otherwise. As mentioned above, the hys-
teresis was a major source of wasted energy, as the classifier
drew the power associated with the higher activation level
far more often than it was actually in it. There is a base-
line power usage (roughly 4mW) associated with execution
of the classification tree (and associated bookkeeping) in the
microcontroller. This could be reduced through software or

hardware redesign for increased efficiency. Nonetheless, our
system is concerned with the difference in sensor power us-
age, and this was as predicted.

The other classifiers fall into two categories. The stair as-
cent and shuffle classifiers, which like the stair descent clas-
sifier run at 25Hz, both correctly recognize virtually all of
the associated motions while producing only minimal false
negatives (and then only during state transitions). The down-
hill, uphill and level gait classifiers, which run at 200Hz, do
not fare so well. These tasks are more difficult, primarily
because the three motions themselves are difficult to disam-
biguate from each other. In each case, the classifier recog-
nizes approximately two-thirds of the associated motion and
tends to flicker on and off only during the other two mo-
tion (net total of a quarter of the time). While these results
may seem numerically disappointing, they are no worse than
those of the SVMs.

The operation of the classifier during transitions between
states is ambiguous, since portions of the transitions include
shallow ascents and short periods of level gait. Since these
are not annotated, clear conclusions cannot be drawn, though
it appears that the classifiers are not limited solely to the pa-
rameters (such as grade of slope) on which they were trained.

Overall, the classifiers were successfully implemented in
hardware and performed as well as their static counterparts.
The latency does not appear to have lead to missed detec-
tions, though the hysteresis — which was meant to counter-
act the latency — instead led to increased power usage and
should be reduced in the future. The classifiers do not ap-
pear to have overgeneralized, though the natural variation in
human motion caused the power usage to differ from the pre-
dicted values in the tested cases. Further study is necessary
to determine if it is possible to build trees which will give
more consistent power usage over their range of operation.

8 Future Work
8.1 Improvements to the Implementation

As it is the core of this framework, we concentrate our
effort on improving the classification tree construction al-
gorithms and insuring that the chosen problems can benefit
from this approach.

Broadening the choice of features should allow for more
compact and accurate trees. The current set of features used
to train the classifier were chosen based on their simplic-
ity and generality. However, for any particular problem, it
is likely that the application designer knows of (or can find
in the literature) other features which are useful within the
specific domain. It should be possible for such features to
be calculated from the training set and used in the classifier
with a minimum of hassle for the designer. While it will of-
ten be the case that these features are more computationally
expensive than the current set, the selected processor should
be sufficient in most cases. Similarly, it should be possible
to apply knowledge of sensors which, when used in combi-
nation, more effectively partition the data set. The current
discounting of test cost can handle such features in all or-
derings (i.e., regardless of whether the combination or the
individual sensors are used first). However, since the classi-
fier does not have the ability to adjust the parameters of the
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Figure 6. Simulation (left) and embedded operation (right) of stair descent classifier



features, the exact combination must be fixed ahead of time.
The testing application itself needs to be reconsidered. In

our case, the two-axis accelerometer was too useful in and of
itself, and the gyroscopes were so expensive that they were
never included by the tree construction algorithm, even at the
lower branches. An application needing a greater variety of
sensors measuring significantly different modalities would
provide a much better test. The effect of the range (i.e. same
or multiple orders of magnitude) of sensor costs should also
be examined. Finally, this work suggests that compound sen-
sors which allow individual control of both the activation and
accuracy of their individual components could allow for the
construction of more efficient sensor nodes.
8.2 Extension to Sensor Networks

We are considering modifications to extend this work to
networked sensor systems, thereby allowing for larger and
more complex applications. Overall, the goal is to exploit
the potential benefits to the network as a whole from nodes
informing their neighbours of their current sensing and/or
state, thus allowing them to adjust their own sensing to guar-
antee that the network (rather than the individual nodes)
makes decisions in the most efficient fashion. While most
sensor networks fuse data to get the best possible result, our
goal is simply to collect enough information to make a de-
cision on a tree node. Sensor nodes can communicate ei-
ther their current measurement(s) and/or state. These can
be transferred between the nodes in either a peer-to-peer or
centralized format, dependant on whether the information is
relevant globally or only locally.

Structurally, data from external sources would not be han-
dled any differently than local data by the decision tree train-
ing algorithms. Their test cost would be the marginal power
usage of reception beyond the communication already nec-
essary to the network. This data is most likely to be used if
the test cost is small, such as in networks which communi-
cate continuously (e.g. to maintain synchronicity of timers),
for data from high power sensors (e.g. sonar), or when they
are the only available source. Also note that, for the case
of homogenous nodes, the same classifier can be run on all
nodes of the network.

We examine the specific case of tracking problems is
depth. In these applications, the individual nodes will switch
states as the phenomenon moves through the sensed area.
Their measurements and states will be correlated over time
based on the trajectory and speed of the phenomenon, such
that the values and state of one node will contain information
about the current and future state of its neighbours. There-
fore, energy can be saved by gaining state knowledge from
other nodes rather than through sensing. Peer-to-peer com-
munication is most appropriate, as only neighbouring nodes
can benefit from the information. At this point, there are two
cases based on the speed of the phenomenon relative to the
node spacing. If the phenomenon is moving slowly, then it
is most efficient to transmit sensor data, which each node
will use to determine not only whether the object is present,
but if it is the closest node to it. This is similar to work by
Zhao et al. [39], where nodes in a peer-to-peer network fol-
low a data-accuracy gradient to determine which node should
sample a static phenomena. If the phenomenon is moving

quickly, then it is move valuable for nodes to transmit their
states. A message from a neighbour stating that it has de-
tected an object would become part of the tiered wakeup
procedure, allowing the node to transition to a higher ac-
tivity level in anticipation. This should greatly reduce the
latency and increase the amount of interesting data captured,
while an isolated node may well miss the phenomenon en-
tirely. Similarly, a message from a neighbour stating that the
object is now out of range would likely move a node down
into a lower activity level. Note that while a centralized ap-
proach would have the benefit of more accurate trajectory
prediction (through knowledge of the network topology and
track history), it would require substantially more commu-
nication. He et al. [14] examine this problem for the case
of a two-tier network — a fixed set of vigilant (always-on)
sentries which wake the other nodes when triggered — and
achieves a significant increase in network lifetime.
8.3 Unsupervised Online Training

Unsupervised online training of these sensor nodes would
have two main benefits. The first is the ability to detect
rare or unexpected states which might be missed through the
training process. For a gait monitoring system, tripping is
an example of an event which is unlikely to be in a sample
data stream (almost regardless of length), could possibly be
missed by the designer and would be of great value to detect.
The second benefit would be the potential of the system to
alter the classifier (by adjusting constants or adding states)
over time as the environment or user changes (e.g. the ap-
pearance of a shuffling gait). While more general and less
taxing on the designer, it should be noted that unsupervised
training has the drawback of creating unlabelled states, mak-
ing both real-time and offline analysis more difficult because
of the lack of context.

To allow the system itself to remain relatively low power,
heuristics for the occurrence of new or interesting events will
need to be created. Starting from a supervised solution, one
potential method is to look for, on a micro level, state thrash-
ing in the decision tree or, on a macro level, a large diver-
gence from the expected power usage. While these condi-
tions can possibly be due to poor training, they could also
indicate that the system has an emergent condition. A com-
plete data stream can be collected for analysis and compar-
ison to known states. If the differences are minor, this sug-
gests a change in state statistics over time. Adjustment of
the splitting threshold of the thrashing decision node should
correct this problem. If there is a significantly difference, a
new state is added. This would require retraining of the de-
cision tree. Examples of each state could be collected during
regular operation. While training a decision tree is time in-
tensive, it can still be accomplished in situ with the current
microprocessor as no floating point operations are required
(for W = 0). However, an offline process would still be re-
quired to construct a large enough population of trees for
power/accuracy optimization.

As a further step to possibly capture very short states, full
data stream segments can be randomly collected throughout
the day at times when the device would otherwise be in a
low-power state (i.e. when supposedly nothing interesting is
taking place). Information theoretic techniques can be used



as a low-level assessment of the complexity, and therefore
potential interest, of the data, with a strong enough result
leading to a new state being added to the decision tree. Re-
training, as above, would then be required. This method will
take a very long time to accidentally catch one of these events
and it can be thought of as spreading out the power usage of
long term continuous data capture across a large number of
battery cycles, such that no single cycle is noticeably short-
ened.

Finally, given advance knowledge of possible circum-
stances which would drastically alter the state detection (e.g.,
for the wearable gait lab, a sharp increase in outdoor temper-
ature might correlate to reduced activity levels), low-power
static sensors with preset thresholds can be added to detect
these cases for a nominal reduction in battery life (see [24]
for one such system). Because of the compactness of their
representation, replacement decision trees could be stored lo-
cally for use in such an eventuality.

9 Conclusions
We have presented a three-component framework for

power-efficient detection in wearable sensors. The first is
modular hardware platform for ease of application proto-
typing which has been adapted to better reflect low-power
goals. The second and key component is a semi-autonomous
classifier construction algorithm. Since the specific goal of
this work is to create a hierarchy of activation levels to al-
low the system to make a state determination as efficiently
as possible, decision tree classification was used. By struc-
turing classification as a series of successive queries, the tree
uses different sets of features to classify various states, with
some requiring far fewer decisions, and therefore far less en-
ergy, than others. The standard top down induction algo-
rithm for decision trees was modified by weighting the split-
ting criterion by the energy cost necessary to collect the sen-
sor data used to calculate the features. As appropriate, this
energy cost is discounted based on prior use of a sensor in
the tree. The weighting is parameterized, and allows for the
construction of a collection of trees at various points on the
power/accuracy curve. The final component is a design for
an embedded implementation of this classifier for use with
wearable sensor nodes. This implementation takes into ac-
count a number of issues deriving from the real-time sequen-
tial nature of the system, including smoothing the state out-
put and requests for de/activation of sensors to avoid expen-
sive spurious actions.

An application based on a wearable gait monitor provides
quantitative support for this framework. The decision tree
classifiers achieved roughly identical detection accuracies to
those obtained using support vector machines while drawing
three times less power. Both simulation and real-time opera-
tion of the classifiers demonstrate that our multi-tiered clas-
sifier determines states as accurately as a single-trigger (bi-
nary) wakeup system while drawing as little as half as much
power and with only a negligible increase in latency.
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