
Towards a Perceptual Loss: Using a Neural Network Codec
Approximation as a Loss for Generative Audio Models

Ishwarya Ananthabhotla
ishwarya@media.mit.edu

MIT Media Lab
Cambridge, MA

Sebastian Ewert
sewert@spotify.com

Spotify, Inc.
London, United Kingdom

Joseph A. Paradiso
joep@media.mit.edu

MIT Media Lab
Cambridge, MA

ABSTRACT
Generative audio models based on neural networks have led to
considerable improvements across fields including speech enhance-
ment, source separation, and text-to-speech synthesis. These sys-
tems are typically trained in a supervised fashion using simple
element-wise ℓ1 or ℓ2 losses. However, because they do not capture
properties of the human auditory system, such losses encourage
modelling perceptually meaningless aspects of the output, wasting
capacity and limiting performance. Additionally, while adversarial
models have been employed to encourage outputs that are statis-
tically indistinguishable from ground truth and have resulted in
improvements in this regard, such losses do not need to explicitly
model perception as their task; furthermore, training adversarial
networks remains an unstable and slow process. In this work, we
investigate an idea fundamentally rooted in psychoacoustics. We
train a neural network to emulate an MP3 codec as a differentiable
function. Feeding the output of a generative model through this
MP3 function, we remove signal components that are perceptually
irrelevant before computing a loss. To further stabilize gradient
propagation, we employ intermediate layer outputs to define our
loss, as found useful in image domain methods. Our experiments
using an autoencoding task show an improvement over standard
losses in listening tests, indicating the potential of psychoacousti-
cally motivated models for audio generation.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
perceptual loss function, perception, neural networks, audio, audio
coding
ACM Reference Format:
Ishwarya Ananthabhotla, Sebastian Ewert, and Joseph A. Paradiso. 2019.
Towards a Perceptual Loss: Using a Neural Network Codec Approximation
as a Loss for Generative Audio Models. In Proceedings of the 27th ACM
International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice,
France. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3343031.
3351148
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10. . . $15.00
https://doi.org/10.1145/3343031.3351148

1 INTRODUCTION
In recent years, generative models based on neural networks have
seen a steep improvement in performance. A major remaining
challenge in designing generative models, however, is evaluation
(e.g. asking, "Does this face look natural?" in image generation).
This difficulty extends to the design of meaningful loss functions
used to train a model, as the loss is used as a proxy measure for the
final evaluation.

In this context, designing trainable objective functions that re-
flect auditory perception remains an interesting yet open problem.
In state-of-the-art audio generation models, such as WaveNet [11],
SampleRNN [10], or Tacotron [15], the most commonly employed
loss functions are sample-level distance metrics, such as a mean-
squared-error (ℓ2) or mean-absolute-error (ℓ1) metric. Adversarial
loss models have been suggested as a potential improvement over
such naive losses [3, 13]. Here, instead of prescribing the output in
all detail, the generative model is encouraged to produce results
that are statistically indistinguishable from real data. Despite con-
siderable potential for this concept, there are several limitations
and disadvantages; First, GANs remain notoriously difficult to train.
Further, in contrast to the image domain, only a few examples of suc-
cessful audio-oriented GANs have been reported in the literature,
suggesting more intrinsic challenges. Most importantly, however,
the discriminator networks used in GANs to distinguish real from
generated examples are not required to take human perception into
account. In other words, the objective of matching real and model
distributions is too strict, as two sounds might be perceptually
equivalent while the network might exploit minimal differences
to distinguish real and generated examples. This way, network ca-
pacity is wasted, training could be unnecessarily difficult, and the
generative performance might be limited overall.

From an auditory modelling perspective, several computational
models have been proposed to approximate human perception of au-
dio quality – examples include the Perceptual Evaluation of Audio
Quality (PEAQ) [14], the Perceptual Evaluation of Speech Quality
(PESQ) [12], and the Perceptual Evaluation of Audio methods for
Source Separation (PEASS) [5]. Such models employ a series of
signal processing steps to model various aspects of the human au-
ditory system. While these models were certainly useful in various
problem spaces, they are highly task-specific and might not gener-
alize beyond the types of artefacts they were originally designed to
capture. Furthermore, their design typically does not correspond to
a differentiable function that can be employed during training.

As an alternative, we propose the use of existing, extremely well
tuned psychoacoustic models as found in audio compression codecs
such as MP3 or AAC. More precisely, such codecs were designed
to identify and eliminate signal components that are perceptually

https://doi.org/10.1145/3343031.3351148
https://doi.org/10.1145/3343031.3351148
https://doi.org/10.1145/3343031.3351148

less relevant to save bandwidth during transmission, exploiting in
particular masking in time and frequency [1]. In our approach, we
thus apply a codec to both the generated audio as well as some
target to remove irrelevant components before using a metric to
compare the two. Operating in the time domain in this way, we can
incorporate any available, potentially task specific codec without
requiring any knowledge of the form or properties of the underlying
auditory filtering or the hardcoded psychoacoustic model.

For use as part of a neural network, we would need a codec that
can be expressed as a differentiable function – which is not available
for commercial codecs.We thus propose training a separate network
to approximate a low bit-rate codec. This way, we not only retain
our ability to employ any available codec but also obtain a fully
differentiable function approximation of the underlying codec.

In preliminary experiments, we found that while this concept
can already be effective it can also be unstable during training.
We thus additionally incorporate the idea of a feature loss that
has been popular in image domain methods [2, 8]. More precisely,
we do not only compare the generated and target audio based
on the final output of our codec network, but additionally based
on all intermediate layer activations. As shown previously, this
procedure effectively stabilizes the gradient computation through
fixed networks used as function approximations [4]. Further, we
can compare the generated and target audio at several semantic
levels, which additionally improved our results.

For our experiments, we employ a simple autoencoding task as a
proxy for a wider range of generative audio tasks, while eliminating
the task specific complexities to accelerate experimentation. The
listening tests we conducted indicate a considerable improvement
in audio quality using our codec-loss network over a baseline ℓ1 loss.
Overall, our contributions in this work are summarized as follows:

(1) We design a fully convolutional network to emulate the
FFMPEG implementation of a 16kbps MP3 codec.

(2) We employ this network in combination with intermediate
layer outputs to construct a more perceptually relevant loss
function. The network is referred to as the loss network.

(3) We construct a simple autoencoder framework, simulating a
coding and decoding task, to demonstrate the utility of our
approach. This network is referred to as the encoder network.

(4) We present the results of a crowd-sourced A/B listening test,
in which we compare the outputs of an encoder network
trained with our codec-loss to one trained with a standard ℓ1
metric. We demonstrate a quantifiable improvement in the
perceived reconstruction quality of the segments resulting
from our approach.

2 RELATEDWORK
The idea of using a separately trained loss network is well estab-
lished, and was first investigated in the image domain. Work done
in [2, 8] show the use of activation outputs from a secondary neu-
ral network, originally trained to perform a task unrelated to the
primary network, in computing a feature loss term to achieve im-
age style transfer. The idea was subsequently explored further in
the image domain [4], and was recently also developed in the au-
dio domain. Pre-print work in [6] and [9] demonstrate the use
of feature losses for denoising and bandwidth extension tasks in

speech, sourced from a secondary network performing a classifi-
cation and autoencoding task, respectively. Drawing inspiration
from this work, we go one step further to construct a loss function
from a loss network designed to approximate audio coding, which
is a task directly related to perception as opposed to an unrelated
task as in [6]. Doing this allows us to compute both a feature loss
term and a prediction loss term, or a comparison of the outputs of
the loss network.

Additionally, there have been a few attempts to directly incorpo-
rate perceptual evaluation toolkits andmodels into neural networks.
Work in [17] demonstrates improvements in speech enhancement
by approximating STOI within the loss function, while in [16], gra-
dients are estimated for the STOI and PESQ metrics at each training
iteration in the absence of a differentiable approximation. The latter
approach is shown to slow down training significantly due to the
gradient estimation of external PESQ and STOI implementations
at each step, while the former does not directly incorporate per-
ceptual information – it is an approximation of an approximation
for speech perception. Both approaches are also not generalizable
beyond speech data. In this work, we propose a method that incor-
porates a generic model of audio perception and enables on-line
training as a differentiable representation.

3 DATASET
The data used for both the loss network training task and encoder
network experiments (detailed below) is sourced from an internal
dataset, consisting of 10,000 lossless musical tracks sampled at
44100Hz and spanning a variety of genres. The data is partitioned
into train, validation, and test data subsets in a 70:20:10 ratio for
each task, and preprocessed as necessary depending on the nature
of the task. This is further detailed in the following sections.

4 LOSS NETWORK
As our custom loss function, we aim to train a networkG such that
for any lossless audio segment xl ,G(xl) produces xc , a 16kbps MP3
encoded version of xl .

We train two versions of such a loss network – one that operates
on magnitude spectrogram input (discarding phase information),
and one that operates directly on time domain input (retaining all
phase information).

4.1 Magnitude STFT Domain
Our model architecture is a U-Network, closely following the work
done in [7]. It consists of a series of 2D convolutional layers with a
stride of 2 followed by a series of 2D transposed convolution layers,
with skip connections between these downsampling and upsam-
pling layers. An overview of our model architecture is provided in
Figure 1, with our final hyperparameters listed in Table 1.

We first pre-process our dataset to downsample the tracks to
16,000Hz and sum them to have a single channel (in the interest
of limiting the network size and computation time), and generate
a secondary, compressed version of each track using FFMPEG’s
MP3 implementation. We then train our network to operate on
pairs of lossless and coded magnitude spectrograms, using an ℓ1
error metric. During training, we extract patches of time domain
audio consisting of 66048 samples, and compute a magnitude STFT

Parameter Magnitude Spectrogram Time Domain
Number of Layers 5 8

W 128 16384
H 512 N/A
F 32 32

Batch Normalization All layers N/A
Dropout 50% (first 3 upsampling layers) N/A

Kernel Size (Downsampling) (5,5), Stride=2 15, Stride=1
Kernel Size (Upsampling) (5,5), Stride=2 9, Stride=2

Activation ReLu, sigmoid in final layer ReLu, tanh in final layer
Learning Rate 0.001 0.0001

Decay 5e-6 5e-6
Batch Size 32 16
Optimizer Adam Adam

Table 1: A list of the model architecture parameters and hyperparameters used in training the magnitude spectral-domain
and time domain loss networks.

Figure 1: An illustration of the model architecture used for
our loss networks.

representation with an FFT size of 1024 and hop length of 512,
which are used as input.

4.2 Time Domain
In our experiments, we noted that modeling a codec in the spectral
domain accelerated training, required less computational resources,
and resulted in better test set accuracies than modeling a codec
directly in the time domain – however, it is important to note that
phase information is not considered in this process. As a more
thorough approach, we additionally present the results from our
attempt to train a loss function in the time domain, though we
acknowledge a reduction in accuracy as a result of limited access
to compute infrastructure.

We similarly preprocess the dataset by downsampling the audio
to 16,000Hz and summing to a single channel. We extract time
domain patches of audio consisting of 16384 samples, with 50%
overlap, and feed these segments as input to our network. We again
design a U-Network closely resembling our STFT loss network,
and apply an ℓ1 error metric as our loss. Each downsampling layer

consists of a 1D convolution with a stride of 1, followed by a dec-
imation of 2; each upsampling layer consists of a 1D transposed
convolution. The model architecture and hyperparameters can be
found in Figure 1 and Table 1 respectively.

4.3 Evaluation
Both networks are trained for approximately 36-48 hours on a sin-
gle TI-1080 GPU. To indicate the effectiveness of either of these
approaches, we show a series of examples in Figure 2, which vi-
sually compare the results of our neural network approximation
to ground truth, i.e. the MP3 coded signal. In the spectral images
in the third row, we see that the magnitude spectrogram codec
approximation learns not only the low-pass filter at the appropriate
cutoff frequency, but also the gaps in the spectrum that are the
result of masking strategies employed in the coding process. With
the time domain approximation (fourth row), however, we observe
a noisier approximation of the masking process, but posit that bet-
ter accuracy can be obtained with deeper networks and longer
training times. As a result, we also do not expect the time domain
loss function to perform comparably to the spectral loss function
in our experimental setting discussed below, but refer to future
experiments. Audio samples from both implementations (with the
ground truth phase applied to the magnitude spectrum results) are
available at ishwaryaanant.github.io/codec-perceptual-loss.

5 ENCODER NETWORK
The codec-loss functions described in Section 4 can be employed
for a various tasks that entail generating audio data. As a proof-of-
concept, we consider a simple coding and decoding task. Specifically,
we consider a simple autoencoder setting, in which a given audio
segment is compressed into a lower dimensional internal represen-
tation (coding stage), from which the original audio content is then
to be reconstructed (decoding stage).

The model consists of a series of 1D convolutional and deci-
mating layers for for the coding stage, followed by 1D transpose
convolutions for the decoding stage. Model parameters are chosen
such that the bottleneck layer contains 50% of the total number
of variables of the input representation. We emphasize that the

ishwaryaanant.github.io/codec-perceptual-loss

Figure 2: Example predictions from the two loss network configurations for three different tracks. Top to bottom: Lossless,
FFMPEG codec (ideal), Magnitude STFT, Time Domain. We observe a detailed reconstruction of the coding behavior in the
magnitude STFT result, while we observe a slightly noisier reconstruction in the time domain results.

objective of this encoder network is to create a lightweight testbed
for evaluating our loss function within reasonable training times,
and not to suggest a state-of-the-art, deep-learning driven codec.

6 COMBINING THE ENCODER AND LOSS
NETWORKS: EXPERIMENTS

To study the benefits of our proposed loss function, we conduct
a series of experiments combining the proposed encoder network
with four different loss configurations. The models are defined
below, and illustrated in Figure 3. We additionally give the exact
model architecture parameters for each configuration in Table 2.

Model A: Baseline As a starting point, the encoder network is
trained with the following loss:

LA = | |x − xp | |1 (1)

Parameter Encoder Network
Number of Layers 8

Input Size 66048 (A,B,C), 16384 (D)
Number of Filters 12

Kernel Size (Downsampling) 9, Stride=1
Kernel Size (Upsampling) 9, Stride=1

Activation ReLu, tanh in final layer
Learning Rate 0.001

Decay 5e-6
Batch Size 32
Optimizer Adam

Table 2: Model architecture parameters and hyperparame-
ters employed in our encoder network.

Figure 3: An overview of our experiments combining the en-
coder networks and the loss networks; LA, LB , LC , LC corre-
spond to Models A, B, C, and D respectively.

where the time domain input to the encoder network is x , and the
prediction of the encoder network given x is defined as xp . This is a
standard autoencoder using an ℓ1 loss, which we use as a baseline.

Model B: Magnitude STFT Baseline To isolate the benefits of
computing the loss in the coded magnitude spectrogram domain
from simply computing it in the original magnitude spectrogram
domain, we consider a model with the loss network defined as:

LB = λa | |x − xp | |1 + λb | |S(t , f) − Sp (t , f)| |1, t ∈ T , f ∈ F (2)
where S(t , f) is the magnitude spectrogram representation of a
signal x , and λa and λb are weighting terms. We include a time do-
main error term here and in the subsequent model to encourage the
network to also optimize for phase content, since this is discarded
in the magnitude spectral loss functions (provided that enough free
capacity is available in the encoder network).

Model C: Magnitude STFT Codec Loss Function We then de-
sign an experiment to evaluate our first custom loss function,
trained to generate the magnitude spectrogram of an audio file
encoded via MP3. For this model, our loss is defined as:

LC =λa | |x − xp | |1

+λb | |C
S (S(t , f)) −CS (Sp (t , f))| |1

+λc

m=M∑
m=1

λm | |ϕm (S(t , f)) − ϕm (Sp (t , f)| |1,

t ∈ T , f ∈ F

(3)

where CS is the magnitude spectrogram loss network, and ϕm
is defined as the network activation of the m-th layer of the loss
network. λm represents a weighting term for each of these layers,

while λa , λb , and λc are the weighting terms for each component
of the loss. The loss function consists of a prediction loss term, a
feature loss term, and the time domain error term as above.

Model D: Time Domain Codec Loss Function Finally, we con-
duct an experiment to evaluate our second custom loss function,
trained to approximate an MP3 codec directly in the time domain.
Here, our loss is defined as:

LD =λa | |C
T (x) −CT (xp)| |1

+λb

m=M∑
m=1

λm | |ϕm (x) − ϕm (xp)| |1
(4)

whereCT is the time domain loss network. We include a prediction
loss and a feature loss term, but exclude the time domain error term,
as this custom loss function inherently constrains phase informa-
tion.

6.1 Training
We pre-process the dataset by downsampling all tracks to 16,000Hz,
and summing to a single channel. Additionally, we intentionally
band-limit the data to 3000Hz using a zero-phase sinc interpola-
tion method, so that the spectrum width for all samples is within
the range of the codec approximation we are using as our loss
function, and to greatly simplify the task of the encoding network
(see Section 8 for a discussion of this choice). We train Model A,
B, C by extracting time domain audio patches consisting of 66048
samples and feeding these as inputs to our encoding network. In
Model B and C, the ground truth sample x and the resulting en-
coder prediction xp are then converted to a magnitude spectrogram
representation S and Sp , using an FFT size of 1024 and hop size of
512. In Model B, these values are used directly to compute LB , as
above; in Model C, they are fed to the loss network CS to calculate
the LC . In Model D, due to the smaller size of loss network CT , we
extract time domain audio patches consisting of 16384 samples and
feed these to our encoder network. x and xp from this network are
then directly input to CT to compute LD .

Hyperparameters for each model are given in Table 2. Baseline
models A and B are trained for 36-48 hours, while the custom loss
models C and D are trained for 96 - 120 hours, all on a single TI-1080
GPU.

7 RESULTS

Model A Model B Model C Model D

59.3 55.6 62.7 45.6
Table 3: Per-model SNR, dB

In Figure 4, we show examples of outputs from each of the four
model configurations, compared with the original, lossless input for
reference. Audio samples can also be found at http://ishwaryaanant.
github.io/codec-perceptual-loss. In Table 3, we provide the SNR
computed and averaged across non-overlapping frames of size
66048 from all tracks within the test set. We see that the SNR
for Model C is slightly higher than the baseline models. At first, this

http://ishwaryaanant.github.io/codec-perceptual-loss
http://ishwaryaanant.github.io/codec-perceptual-loss

Figure 4: Example predictions from our combined encoder network and loss network experiments from three different tracks.
Top to bottom: Lossless, Model A, Model B, Model C, Model D. We observe the output most perceptually comparable to the
lossless examples resulting from Model C.

may appear counter-intuitive as we aim at improving the perceptual
quality with model C over A and B, which might have come at the
cost of a reduced energy-based quality, i.e. lower SNR values. Note
however that we utilize an ℓ1 loss for models A and B, which does
not directly optimize for SNR (in contrast to an ℓ2 loss). Further,
we hypothesize that the introduction of a feature loss term might
have enabled improved training behavior which is independent of
any additional perceptual benefits, though this would need to be
verified more thoroughly in future experiments.

We next conduct a crowd-sourced A/B test to rank the four
models with regards to audio quality. We select five tracks across
differing musical genres, and select an arbitrary 5-second segment
from each. We then create a set of samples consisting of this origi-
nal audio excerpt and the network predictions of Models A-D on
this excerpt. For the test, we create pair-wise comparisons that
present each of these excerpts against every other excerpt within
a set, and shuffle all comparisons across tracks. For each of the 50

comparisons presented to them, participants are asked to select the
sample with the better audio quality, or choose "I Don’t Know" if
they are unable to decide. We recruited 14 participants from our
institutions, and a demonstration of this experiment can be found
at http://audio-mafia.media.mit.edu/crowd-codec-ab.

In Table 4, we give the number of times an excerpt corresponding
to a particular model was rated higher than the excerpt it was
presented against, as a fraction of the total number of times it
appeared across the experiment (20 times). We average this quantity
across all participants and provide the mean and standard deviation.
We additionally show a variant of a confusion matrix showing the
number of times a pair of excerpts from specific model types were
rated using the "I Don’t Know" option, as a fraction of the number
of times the pairing appears across the experiment (5 times). This
quantity, also averaged across participants, is given in Table 5.

From the statistics, we infer that Model C (Magnitude STFT loss
function) outperforms both baselines models (A and B), and is rated

http://audio-mafia.media.mit.edu/crowd-codec-ab

comparably to the lossless reference example. Subjectively, we note
that participants observed a reduction in noise and distortion in
the Model C results as compared to the Model A and B results.
We additionally note that the time domain loss function model (D)
does not improve upon the baseline performance. We discuss this
behavior further below.

Original Model A Model B Model C Model D

Mean 0.65 0.2 0.46 0.68 0.13
Std 0.20 0.07 0.08 0.11 0.05

Table 4: The table indicates the number of times a sample
corresponding to a model was rated higher than another
sample it was presented against, as a fraction of the total
number of times the sample is presented in the listening test.
We show the mean and standard deviation when averaged
across all participants.

Original Model A Model B Model C Model D

Orig. N/A 0.12, 0.24 0.04, 0.08 0.92, 0.2 0.08, 0.16
Model A 0.12, 0.24 N/A 0.16, 0.2 0.08, 0.16 0.2, 0.25
Model B 0.04, 0.08 0.16, 0.2 N/A 0.08, 0.1 0.04, 0.08
Model C 0.92, 0.2 0.08, 0.16 0.08, 0.1 N/A 0.0, 0.0
Model D 0.08, 0.16 0.2, 0.25 0.04, 0.08 0.0, 0.0 N/A

Table 5: The table indicates the number of a times an pair of
samples was rated with the "I Don’t Know" option, suggest-
ing similar audio quality, as a fraction of the total number
of presentations of the pair in the listening test. We give the
mean and standard deviation with averaged across all par-
ticipants.

8 DISCUSSION AND FUTUREWORK
8.1 Computing Loss without Phase

Information
In this work, we present a version of the loss network that is trained
in the magnitude spectrogram domain, and motivated by a better
training behavior and the need for fewer computational resources
than its time domain counterpart. However, when using a time
domain encoder, the phase information from the audio samples
fed through the network is not inherently optimized in the loss
network. While we include a time domain comparison term in our
loss function when using the magnitude spectrum loss network as
a means of mitigating this to an extent, we observe an interesting
behaviour when we train our encoder network with broadband
audio samples. In Figure 5 (a), we show a track limited to a sample
rate of 10000Hz instead of the 6000Hz in our experiments, used as
the ground truth input to the encoder. Figure 5 (b) demonstrates
the baseline ℓ1 reconstruction (Model A), where only a fraction of
the spectrum width is recovered by the network. In both (c) and (d),
corresponding to the magnitude spectrogram baseline (Model B)
and magnitude spectrogram loss function (Model C) respectively,

we can observe that the network attempts to interpolate the spectral
content to its full width using the magnitude information; how-
ever, without any additional phase information, we observe that
the network implements this behaviour by generating a series of
broadband pulses that manifest in the reconstructed signal as noisy
"clicks". The reconstruction resulting from the time domain loss
function (Model D), however, shown in (e), does not exhibit these
artifacts and improves upon the Model A reconstruction somewhat
(which is a promising result suggesting the value of the time do-
main loss network). Overall, these observations point us to several
interesting avenues for future work. First, we might improve results
further by increasing the capacity of the encoder network and time
domain loss network with deeper networks, allowing us to operate
on broadband signals or to eliminate the conversion to the mag-
nitude spectrogram domain entirely. Further, we might consider a
better spectral phase representation that would allow us to train
with the magnitude and phase jointly.

8.2 The Challenges of Time Domain Modeling
As previouslymentioned, wewere limited in our exploration of time
domain modeling in both the loss function training phase and task
application phase by computational overhead, and acknowledge the
scope for improvement in model performance in this direction. We
additionally notice aliasing behavior in the output spectrum (visible
in Figure 4) when training with the time domain loss function
regardless of the downsampling or upsampling strategy employed
by the autoencoder network, similar to the reporting in [9]. We
were unable to mitigate this by fixed anti-aliasing filters within
the autoencoder network, and consider exploring this anomaly in
greater detail to develop an improved time domain loss function.

9 CONCLUSION
In this work, we demonstrate the feasibility of a fully differentiable,
perceptually motivated loss function, designed as a neural network
approximation of a low bitrate MP3 codec. We demonstrate that
using a weighted combination of this network’s layer activation
outputs and predictions as an objective function improves the per-
formance of a secondary autoencoding task as compared to an ℓ1
baseline, and discuss the tradeoff between modeling such a system
in the time and frequency domains. Through this work, we suggest
that the more general paradigm of capitalizing on psychoacoustic
information built into audio coding or other processes may be a
valuable tool for introducing online perceptual evaluation methods
to deep neural networks.

REFERENCES
[1] Marina Bosi and Richard E Goldberg. 2012. Introduction to digital audio coding

and standards. Vol. 721. Springer Science & Business Media.
[2] Qifeng Chen and Vladlen Koltun. 2017. Photographic image synthesis with

cascaded refinement networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV). 1511–1520.

[3] Chris Donahue, Julian McAuley, and Miller Puckette. 2019. Adversarial Audio
Synthesis. In Proceedings of the International Conference on Learning Representa-
tions (ICLR).

[4] Alexey Dosovitskiy and Thomas Brox. 2016. Generating images with perceptual
similarity metrics based on deep networks. In Advances in Neural Information
Processing Systems (NIPS). 658–666.

[5] Valentin Emiya, Emmanuel Vincent, Niklas Harlander, and VolkerHohmann. 2010.
The PEASS Toolkit-Perceptual Evaluation methods for Audio Source Separation.

Figure 5: Examples of conducting the experiments with broadband inputs, forcing the network to interpolate phase as a result
of transferring from the time domain to the spectral domain. Left to right: (a) broadband, lossless input; (b) Model A, (c) Model
B, (d) Model C, (e) Model D.

In Proceedings of the International Conference on Latent Variable Analysis and
Signal Separation (LVA/ICA).

[6] Francois G Germain, Qifeng Chen, and Vladlen Koltun. 2018. Speech denoising
with deep feature losses. arXiv preprint arXiv:1806.10522 (2018).

[7] Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel Bittner, Aparna
Kumar, and Tillman Weyde. 2017. Singing voice separation with deep U-Net
convolutional networks. In Proceedings of the International Society for Music
Information Retrieval (ISMIR).

[8] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-
time style transfer and super-resolution. In Proceedings of the European Conference
on Computer Vision (ECCV). Springer, 694–711.

[9] Sung Kim and Visvesh Sathe. 2019. Adversarial Audio Super-Resolution with
Unsupervised Feature Losses. https://openreview.net/forum?id=H1eH4n09KX

[10] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shubham
Jain, Jose Sotelo, Aaron Courville, and Yoshua Bengio. 2017. SampleRNN: An
unconditional end-to-end neural audio generation model. In Proceedings of the
International Conference on Learning Representations (ICLR).

[11] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[12] Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra.
2001. Perceptual evaluation of speech quality (PESQ)-a new method for speech

quality assessment of telephone networks and codecs. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
749–752.

[13] Daniel Stoller, Sebastian Ewert, and Simon Dixon. 2018. Adversarial Semi-
Supervised Audio Source Separation applied to Singing Voice Extraction. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). Calgary, Canada, 2391–2395.

[14] Thilo Thiede, William C Treurniet, Roland Bitto, Christian Schmidmer, Thomas
Sporer, John G Beerends, and Catherine Colomes. 2000. PEAQ - The ITU standard
for objective measurement of perceived audio quality. Journal of the Audio
Engineering Society 48, 1/2 (2000), 3–29.

[15] YuxuanWang, RJ Skerry-Ryan, Daisy Stanton, YonghuiWu, Ron JWeiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. 2017.
Tacotron: Towards end-to-end speech synthesis. In Proceedings Interspeech.

[16] Hui Zhang, Xueliang Zhang, and Guanglai Gao. 2018. Training supervised
speech separation system to improve STOI and PESQ directly. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 5374–5378.

[17] Yan Zhao, Buye Xu, Ritwik Giri, and Tao Zhang. 2018. Perceptually guided speech
enhancement using deep neural networks. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 5074–5078.

https://openreview.net/forum?id=H1eH4n09KX

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Loss Network
	4.1 Magnitude STFT Domain
	4.2 Time Domain
	4.3 Evaluation

	5 Encoder Network
	6 Combining the Encoder and Loss Networks: Experiments
	6.1 Training

	7 Results
	8 Discussion and Future Work
	8.1 Computing Loss without Phase Information
	8.2 The Challenges of Time Domain Modeling

	9 Conclusion
	References

