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Abstract. We describe ’Tidzam’, an application of deep learning that
leverages a dense, multimodal sensor network installed at a large wetland
restoration performed at Tidmarsh, a 600-acre former industrial-scale
cranberry farm in Southern Massachusetts. Wildlife acoustic monitoring
is a crucial metric during post-restoration evaluation of the processes,
as well as a challenge in such a noisy outdoor environment. This article
presents the entire Tidzam system, which has been designed in order to
identify in real-time the ambient sounds of weather conditions as well as
sonic events such as insects, small animals and local bird species from mi-
crophones deployed on the site. This experiment provides insight on the
usage of deep learning technology in a real deployment. The originality
of this work concerns the system’s ability to construct its own database
from local audio sampling under the supervision of human visitors and
bird experts.
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1 Introduction

In an era of increasingly ubiquitous sensing, Paradiso et al. [PP16] discuss how it
is now possible to document natural ecosystems and record ecological change over
longer periods and at significantly higher resolutions than ever before. These new
capabilities are of particular interest to restoration scientists and practitioners,
who seek to create conditions for complex ecosystems to flourish where human
activity previously eradicated them. The restoration context offers researchers
the unique opportunity to embed sensor networks directly into new ecosystems
as they form, and the resulting data gives the public a chance to learn about
ecological functions and environmental impacts. With these dual goals in mind,
we developed comprehensive network and sensing infrastructure on a wetland
restoration site in southern Massachusetts, called Tidmarsh. Once a 600+ acre
industrial cranberry farm, Mass Audubon’s recently opened Tidmarsh Wildlife
Sanctuary and the Town of Plymouth’s Foothill Preserve now host the largest
freshwater wetland restoration in New England. We deployed a large number of
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custom-designed wireless sensor devices, microphones, and cameras on the site
to monitor its transition from industrial farm to protected wetland. The data
from our sensors are recorded and streamed in real-time for use in scientific stud-
ies, as well as for new immersive experiences for the remote and visiting public.
Those experiences include both traditional web applications and augmented re-
ality tools for landscape exploration. A significant challenge we face in this work
is in the automated analysis and classification of our data, particularly of the
streaming audio and video. To process the audio, we developed a system called
Tidzam that analyzes large numbers of live streams, recognizes ambient acous-
tic scenes, and identifies the sources of transient sonic events from an array of
wildlife (including dozens of bird species, frogs, and insects), vehicles, and visi-
tors. Recognizing the enormous potential for visitors to submit audio from their
mobile devices, our system can also flexibly process temporary streams. In both
cases, the resultant classifications are made available to end-user applications in
real time. This paper presents the end-to-end Tidzam acoustic wildlife sensing
system, its technical underpinnings, and its novel applications to both environ-
mental science and public outreach. A review of the broader vision, as well as
details of the sensing and environmental interaction projects, can be found in
[MM18]. The locations of the different sensors, microphones and the network
infrastructure can be found in Figure 1.

Fig. 1: Locations of the deployed sensors and microphones on Tidmarsh site.

A unique challenge of our acoustic classification task in the restoration con-
text is the appearance and disappearance of numerous different sound sources
both seasonally and over the long environmental recovery period. As a result,
Tidzam is scalable to new classification tasks to accommodate newly resident
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and migrating wildlife; the system is able to detect when a new kind of sound
appears and builds new classifiers as needed. A second distinguishing feature of
the Tidzam system is our focus on real-time processing for online use with mini-
mal latency. Finally, in addition to identifying bird calls and other wildlife, it has
also been designed to record/playback requested samples for expert scientists to
review/use.

Automated Recorded Systems (ARS) are crucial tools for wildlife monitor-
ing, estimating bird species abundance and diversity as discussed in Celis et al.
[CMDA09]. However, while ARS have evolved from manually triggered to time
scheduling systems as presented in Acevedo et al. [AVR06], automated stream
segmentation and real-time signal identification remain difficult in noisy and un-
predictable outdoor environments. Even in a wildlife sanctuary, human activity
appears across the spectrum, with noise caused by cars, aircraft, visitors, and
abutters. In real deployment, a wildlife identification system must be coupled
with an acoustic scene analysis system.

Acoustic Scene Classification (ASC) is an active research area that has seen
significant recent advancement with Deep Learning algorithms. Li et al. [LDM+17]
compare such approaches with classical ones, and conclude that temporal spe-
cialized models such as Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNN) produce better results than resolution-specialized mod-
els like Gaussian Mixture Model (GMayton) and i-vector. A combination of both
model types also improves the results by some percent points. A number of re-
searchers are focused on efficient deep learning architectures that are robust to
noise or improve diversity of learned features, such as Han et al. [HP17] and Xu
et al. [XHW+17]. Those improvements allow expert classifiers for bird calls to
be cascaded in realistic outdoor deployments.

Acoustic Bird Identification (ABI) systems in outdoor deployments face two
main challenges: first, calls from same and different species frequently overlap in
time, and second, many species sound similar to one another in addition to have
multiple calls. Kojima et al. [KSH+17] propose a source separation approach
which allows the classifier to be processed on independent sources for each pos-
sible target bird. This promising approach requires multiple microphones, and
we intend to experiment with it in future work. The issue of large output classes
is investigated by Hershey et al. [HCE+17], who propose a bottleneck model
similar to a de-noising auto-encoder. Their approach forces the system to learn
efficient kernels of features in CNNs, and the feature compression may increase
diversity and robustness. Cakir et al. [CAP+17,ADCV17] present a Recurrent
Convolutional Neural Networks (RCNN) approach, which allows the classifier
to learn on both the acoustic texture and its evolution over time, with possible
long term dependencies.

Our system has a deep learning expert architecture combining an ASC with
an ABI. Section 2 presents the overall architecture as applied to our real-time
classification task on 24 live microphone streams and visitor-submitted audio at
Tidmarsh, as well as the sample extraction strategy we developed to build our
database. Section 3 presents an evaluation of classifier accuracy, which progres-
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sively improves with sample extraction during database construction. Section
4 discusses current limitations, diverse applications, and planned future work,
leading into our concluding remarks in Section 5.

2 Tidzam

The Tidzam architecture is composed of several processing pipelines presented
in Figure 2. A stream manager receives the different input audio streams pro-
duced by the fixed microphones onsite (illustrated in Figure 3) or from visitor-
submitted mobile audio streams. To reduce bandwidth requirements, the mi-
crophone streams are compressed in software running on an embedded server
in the marsh; by bundling the channels together into a single Opus-encoded
stream, that application also maintains sample-accurate synchronization. The
Tidzam server decodes the multichannel stream and sends individual channels
to the classifier, which in turn sends its analysis to remote clients and a database
server for logging. To grow the sample database, a rules-based engine extracts
samples automatically according to classifier confidence. Samples are automat-
ically forwarded to a web interface used by bird identification experts to label
unknown samples and further refine the classifier for the next cycle.

Fig. 2: Overview of Tidzam architecture with the three main pipelines. The
green modules represent the classification flows of the different microphone
streams loaded by the StreamManager, dispatched by the JACK server to the
classifiers in the Analyzer. The results are transmitted to subscribed data con-
sumers in the blue module, which also configure the input streams. The orange
modules represent the processing chain for the classifier training, from extraction
of a poorly identified sample through the upgrade of the classifier.
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2.1 Audio Live Capture Infrastructure

On site A set of 24 microphones, specially designed for harsh environmen-
tal conditions, were deployed at Tidmarsh (Figure 3). The audio channels are
synchronized and compressed before their transmission to the Tidzam server.
Additional audio channels are collected from the streaming wildlife cameras.

Fig. 3: Fixed audio capture at Tidmarsh: 24 microphones are connected to a 32-
channel mixer and audio interface, whose output is compressed into a Ogg/Opus
stream.

Data Sampling By default, input audio streams are split into segments of 500
ms with a half-overlapping window. A Mel-Filter Banks (MFB) spectrogram
is computed on each sample, followed by a median filter for background noise
reduction in the presence of brief sonic events. A 50 Hz to 12 KHz bandpass filter
is then applied to select the frequency range of the major local bird vocalizations.
Finally, samples are normalized for the classifier. Some result examples can be
observed in Figure 4. Our choice of a simple preprocessing step over the state
of the art reflects a trade-off between the real-time constraints and available
compute resources.

2.2 Convolutional Expert Based Classifier

The classifier is a Convolutional Neural Network (CNN) with an expert architec-
ture, as illustrated in Figure 5. The classifier layer is separated into an Acoustic
Scene Classification (ASC) and an Acoustic Bird Identification (ABI). The ASC
computes a general classification that weights the inhibition of the ABI according
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(a) (b) (c) (d) (e)

Fig. 4: Illustration of preprocessed sample spectra before their transmission to
the classifier: (a) Blue Jay (b) American Crow (c) Fox Sparrow (d) Frog (e)
Human Voice.

to its probabilistic estimation of bird presence. The final probabilities are fused
by multiplying ABI outputs with the ASC bird class probability. The classifiers
share the same stack of convolutional layers responsible for the acoustic feature
learning. The cost function is a regular multi-class cross-entropy with parameter
regularization as defined in Eq. 1. The ASC was trained on 15 different acoustic
scene samples (e.g. rain, crickets, aircraft) as well as brief generic sonic events for
inhibition control (e.g. human voice, frog, birds, etc). The ABI has been trained
on 50 local bird species.

C = −
∑
i

y′i log yi + (1− y′i) log (1− yi) + γ
∑
k

||wk||22 with γ ∈]0, 1] (1)

Eq. 1: Cross-entropy cost function used during classifier training with L2 regu-
larization on the weights w. yi and y′i are the neural network response probability
and the expected value for the class i, respectively.

Note: The design of our expert architecture is a result of early experiments,
which demonstrated the difficulty of learning both ambient sounds and punctual
sonic events in the same classifier. We observed ambient sounds stimulating a
large number of neurons, which can overwhelm the subset of activations produced
by smaller patterns of punctual sonic events. In the expert architecture, the
separation of the classification task into two independent layers allows the ABI
classifier to retain details in the information flow for bird species identification
without being overwhelmed by ASC sensitivity.
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Fig. 5: Neural Expert Architecture

2.3 Semi-Supervised Database Generation

The design of a relevant ASC and ABI database is strongly dependent on the
site-specific acoustic scene and the local bird species. Even if a list of bird species
is provided by experts, the specific acoustic environment of Tidmarsh must be
learned to isolate wildlife sounds from rustling tree leaves, rain, wind, etc. In ad-
dition, new species appear over time and throughout the year, requiring constant
classifier updates. Semi-supervised database generation from a combination of
local ambient sound and off-site samples provides a flexible framework for itera-
tive classifier updates. Based on a confidence rule, the classifier extracts current
local samples in order to refine its database. If a sound is labeled as unknown,
it is brought to human attention, or can become a candidate for a database
augmentation if found to be misclassified as such.

Classifier Confidence Function The confidence function F defined in Eq. 2
evaluates the reliability of the classifier response for the current sample. Based on
the comparison between the confidence value and two threshold hyper-parameters
du, da ∈ [0; 1], the system can decide to extract the sample for a human con-
sideration if lower than du (unidentified sample), or for database augmentation
(with a preset label) if lower than da.

Note: This confidence function tends to extract samples which do not pro-
duce enough sparse responses between the output classes. In practice, the con-
fidence thresholds start with low values, which are manually and progressively
increased according to the classifier versions. As the diversity of samples in the
database increases, the output classifier probabilities tend to become more sat-
urated.

Extraction Rules The extraction rules produce samples for both human con-
sideration and database augmentation, according to the confidence function and
the distribution of samples among the classes as defined in Eq.3. The well-
identified samples are used for the next classifier training (after validation by
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F (y1, ..., yn) = b1 −
n∑

j=2

bj (2)

Eq. 2: Confidence function evaluating how distant the predicted class output
b1 is from the others, where bj is the jth largest value of the classifier outputs
yi.

expert operator), whereas unidentified samples are extracted for manual label-
ing. Unidentified samples are considered as a class, so their extraction probability
depends on the number of samples awaiting human consideration. Note: At the
same time, the system favors samples for classes that are not well represented
in the database, regulating the flow of samples for manual labeling.

P (si) = λ1(1− λi
2

|Di|
maxj 6=i |Dj | ) with s ∈ D,λ1, λ2 ∈ [0; 1[ (3)

Eq. 3: Extraction probability for a sample s of class i according to the database
composition D. λ1 is a flow control parameter used to smooth the number of
extracted samples over time, whereas λ2 controls a probabilistic margin of ex-
traction dependent on class maturity in the database.

2.4 Novel Class Bootstrapping & Training

The classifier is periodically retrained from scratch according to the database
augmentation. The training and testing sets, respectively 80% and 20% of the
database, are composed of downloaded samples from online databases, mixed
with samples extracted on the Tidmarsh site. The bootstrapping of a new class
is based on downloaded or manually extracted samples for a rough pretraining
and setup of the confidence function. At the first database update, the sample
diversity is low, which in turn favors very similar samples by the confidence func-
tion. At the same time that the classifier is trained with similar samples (which
tends to saturate its output probability), the confidence function threshold is
reduced in order to increase the diversity of possible extracted samples. Hence
the system extracts samples increasingly diverse from its initial bootstrapped
sample references.

Note: After running for one year, Tidzam has generated a database of ap-
proximately 300,000 samples, composed of a set of acoustic scenes such as rain
noise, water flowing, aircraft, etc, and a set of bird calls from local species. Boot-
strapping a new class requires at least 500 samples, which are selected to cover
the largest sound diversity for each species’ vocalizations or each acoustic scene.
The class is then progressively augmented with extracted samples cross-validated
with human oversight.
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3 Evaluation

The following experimentation has been conducted in order to evaluate whether
the self-extraction of samples directly from the acoustic environment can pro-
duce effective sample databases. Over one year, a new classifier is trained from
scratch each month on a new dataset composed of the previous dataset version
augmented with the collected samples of the current month.

3.1 Datasets

During the database construction, new classes were added over one year. For
an objective comparison in terms of classifier improvements due to database
augmentation, this study has been reduced from 75 to 25 classes (10 acoustic
scenes and 15 bird species) that were present in the first version of the database.
The samples were added in order of their timestamps of extraction and in order
to conserve the balance between the different classes of each training and testing
dataset versions.

3.2 Experimental Results

The curves in Figure 6 illustrate the classifier improvements on the testing
datasets through the sequence of database updates each two months. The curve
V0 is the initial classifier trained on the bootstrap dataset composed of samples
from the online Cornell database and some audio recordings from the acous-
tic scene of Tidmarsh e.g. quiet sound, rain, wind, etc. Each classifier version
has been tested on each database version in order to evaluate the improvement
resulting from the addition of the newly extracted samples. Parallel trainings
are operated in order to get the best classifier depending of the regularization
hyper-parameter γ. for a given database version, usually with a success rate
greater than 93%. It can be observed that each generation of the classifier out-
performs the previous one. Indeed each classifier version gets lowest scores on
following augmented databases. Hence the database augmentation by sample
extraction improves the inference generalization. The histograms represent the
sample extraction frequencies Fu for unidentified samples and Fa for database
augmentation. At the beginning, the system tends to extract mainly the uniden-
tified samples, but after several generations of training, this proportion starts to
invert. The average frequency of extraction is maintained using the flow control
parameter of λ1. The Figure 7 presents the confusion matrices of the ASC and
ABI of the last classifier version on the testing dataset.

Note: The inversion of extraction frequency from unidentified samples to
data augmentation results in an improvement of the confidence function, poten-
tially due to an improvement in sound diversity of the database. The system has
learned more different kinds of bird calls, but still needs to improve its sensitivity
according to the extraction rules in the confidence function.
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Fig. 6: Evaluation of the impact of extraction strategy on classifier accuracy.
Curves represent the accuracy, on the test dataset, of the different upgraded
versions of the classifier according to the iterations of database augmentation
each two months. Bars represent the extraction frequencies of samples.

(a) (b)

Fig. 7: Confusion matrices of the ASC and ABI classifiers on version V12 of the
testing dataset with γ = 0.01. Main errors occur in the bird species classification.
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4 Limitations, Discussions and Applications

As Tidzam is an online learning system which builds its database over time, it
is not yet possible to draw firm conclusions about the choices made regarding
the neural network architecture for this application. However, we can observe
the generic sample extraction strategy constantly improving the database by
examining the classifier accuracy over time. This improvement has been achieved
thanks to the confidence function, which allows the system to automatically
extract samples cross-validated by a human using the Tidzam web interface.

In the interest of expediency, the web application was designed to be as simple
as possible, consisting of an automatic sound player, spectrogram visualization,
and validation buttons. Given our 24/7 monitoring, validation can be extremely
time consuming, with as many as 700 cross-validation samples per day. In the
future, this web interface will be replaced by a more engaging, gamified interface,
in which both remote experts and Tidmarsh visitors would be able to learn more
about the wildlife sanctuary. At the same time, they would be able to correct
misclassifications and aid in the labeling of new samples. We see this closed
learning loop as beneficial both to amateur enthusiasts interested in learning
about bird calls and to experts investigating animal behavior. Crowd-sourcing
the validation and labeling process would help Tidzam refine its database.

This approach is in line with the goals of the overall Tidmarsh project, in
which immersive technologies are used to augment the visitor experience (see
Mayton et al. [MM18]). In one example, called HearThere, a custom-designed
smart headphone allows users to hear a dynamic spatial rendering of real-time or
recorded sound from all the microphones on the landscape as they walk through
it. Output from Tidzam is used to adjust the mix of microphones to promote
channels where interesting wildlife has been observed, and suppress channels car-
rying undesirable sound, such as wind or the voices of other visitors. In another
example, called DoppleMarsh, a 3d model of the Tidmarsh terrain is used as the
basis of a virtual reality (VR) world driven by the sensing on the physical site.
Users can navigate the site remotely in VR, and Tidzam classifications are used
to render virtual wildlife and other scenic dimensions. However Tidzam is not
able to localize precisely the acoustic sources which would be a very interesting
assets in terms of rendering for DoppleMarsh as well as ecological studies. In fu-
ture works, geo-localization based on source separation on the microphone array
will be investigated after an acoustic propagation study on site. This will lead a
location update / new deployment of microphones on Tidmarsh.

5 Conclusion

This contribution presents the technique used by the Tidzam project for acoustic
scene analysis, wildlife detection, and bird species identification in the outdoor
acoustic environment of a wetland. Based on 24 microphones deployed on site,
a classifier expert architecture based on deep learning techniques is used to
analyze in real-time multiple audio streams. The system is able to automatically
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extract the samples in which its confidence is too low so they can be identified by
human experts on a web interface. Then the classifier is refined, incorporating
the new samples. The preliminary results of this contribution are promising -
along 12 training iterations, the system performance has significantly improved.
The system has now been building its own database of 300,000 samples over the
past year. It is currently used as a wildlife tracker in a large wetland restoration
project.

Additional Information: Tidzam is is running on two NVIDIA Titan X GPUs
and available online at http://tidzam.media.mit.edu/. All source code can be
downloaded from https://github.com/mitmedialab/tidzam
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