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Abstract
Climate change and environmental degradation
are causing species extinction worldwide. Auto-
matic wildlife sensing is an urgent requirement
to track biodiversity losses on Earth. Recent im-
provements in machine learning can accelerate
the development of large-scale monitoring sys-
tems that would help track conservation outcomes
and target efforts. In this paper, we present one
such system we developed. ’Tidzam’ is a Deep
Learning framework for wildlife detection, identi-
fication, and geolocalization, designed for the Tid-
marsh Wildlife Sanctuary, the site of the largest
freshwater wetland restoration in Massachusetts.

1. Introduction
Ubiquitous sensing technologies (Paradiso, 2016) can be
used to capture aspects of ecosystem function and ecological
transformation with minimal impact at high resolution over
long periods of time. However, in part due to recognition
challenges, automatic wildlife sensing remains mostly out
of reach. In the ecological research community, wildlife
surveys are still conducted by experts estimating a given
species population at a specific time. Intensive manual
efforts are required, even with the help of recordings and
modern signal processing tools. Field surveyors need to
maintain perceptual awareness and attention to detail.

Efforts to automate surveys are vital to gaining a real-time
understanding of a massive wave of species extinction. This
represents a significant opportunity for Artificial Intelli-
gence (AI) systems, which thrive on big data, and might
one day be able to analyze and characterize wildlife popu-
lations around the globe. Accurate and continuous wildlife
detection, identification and geolocalization would trans-
form wildlife surveys into high-resolution activity maps that
would update in real time and at large scale. Recent ad-
vances in Deep Learning enable recognition of rare species
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that otherwise produce low-occurrence signals in evolving
and noisy environments.

Optical and acoustic sensing provide complementary infor-
mation. For example, the biophony is intrinsically complex
in terms of vocalizations (e.g. birds) and diverse regard-
ing species candidates. However, the biophony is mainly
produced by non-visible creatures. A multi-modal sensing
approach can help separate noisy geophony and anthrophony
from the desired wildlife signal. One crucial requirement is
a system’s ability to detect new species in an area, especially
in a dynamic restoration program such as the one presented
in Section 2.

Regions of interest for wildlife sensing are often difficult to
access and lack physical infrastructure. Such environments
are generally hostile to technology. For example, there
may be large gradients of temperature and humidity. Also,
outdoor deployments are subject to unpredictable events like
lighting strikes, ant colony intrusion, and rodent mastication
of system wiring. In a well-designed real-world deployment,
the AI infrastructure can be turned inwards to flag system
failures, e.g. water intrusion, blurry images, lost signal, etc.

Some recent contributions have demonstrated the ability of
Deep Learning to scale biologists’ efforts to identify wildlife.
For example, automatic animal identification from camera
trap images using a VGG model trained on 1.4 million
images over 48 classes was shown to have 96.8% accuracy
(Norouzzadeh et al., 2018). AI can be leveraged to save
time when used with human volunteers.

For acoustic identification of wildlife, several new contri-
butions focus on deep learning technology, such as (Strout
et al., 2017) for amphibians, (Mac Aodha et al., 2018) for
bats, (Kiskin et al., 2017) for insects, and (Potamitis, 2016)
for bird vocalization segmentation. We expect interesting
contributions in the future thanks to the Bird Audio De-
tection challenge (Stowell et al., 2019; Cakir et al., 2017;
Adavanne et al., 2017). Such lab-based results are essential
to accelerating field deployments.

In this paper, we present our own efforts to monitor wildlife
activity at the Tidmarsh Wildlife Sanctuary, the site of the
one of the largest-ever freshwater wetland restorations in
the northeastern United States. In this deployment, our
Deep Learning models have been running 24/7 on data
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streaming from microphones and cameras in real-time over
the last 3 years, and our system has been used by biologists,
restoration scientists, and other practitioners.

2. Tidmarsh Wildlife Sanctuary
The Tidmarsh Wildlife Sanctuary is a 600-acre former cran-
berry farm in southern Massachusetts in the midst of a
freshwater wetland restoration. Different types of sensors
are permanently deployed on the site to monitor its evo-
lution, including ground/topography/hydrology restoration
and wildlife activity. Our ’Tidzam’ wildlife detection sys-
tem monitors wildlife, leveraging 24 custom microphones
and 6 cameras deployed across four different areas at Tid-
marsh, as illustrated in Figure 1.

Figure 1. Sensors, microphones, and cameras are deployed in four
regions of interest at Tidmarsh. Custom sensors have been spe-
cially designed to withstand wetland conditions year-round.

2.1. Tidzam Wildlife Sensing Framework

In the Tidzam framework, we implement and deploy Deep
Learning techniques from the literature to detect, identify
and geolocalize wildlife activities. Over the last four years,
we have tested a number of different approaches leveraging
bio-acoustics and computer vision.

2.1.1. BIO-ACOUSTIC CLASSIFIERS

The Tidmarsh bio-acoustic ecosystem has evolved dramati-
cally over years of restoration progress. Dynamic environ-
ments require continuous learning to make classifiers robust
to both episodic and permanent acoustic changes – espe-
cially concerning the identification of as-yet unseen species.
To that end, we developed a semi-automatic database aug-
mentation mechanism using a confidence function detailed
in (Duhart et al., 2019). A flow controller limits the record-
ing volume and parameterizes the extraction balance be-
tween unidentified and uncertain predictions. Our ’Tidplay’
platform, introduced in Section 2.2, allows bio-acoustic hu-
man experts to annotate and discuss these recordings while
building a local acoustic database used to iteratively refine
the classifiers. The database is – at the time of writing –
composed of 400,000 500 ms recordings distributed over

66 classes including system failure modes (e.g. microphone
crackling or offline), geophonic scenes (e.g. rain, wind,
quiet), anthrophonic sounds (e.g. cars, airplanes, human
voices), and finally, bio-acoustic events from insects (e.g.
crickets, cicadas), amphibians (e.g. spring peepers, green
frogs), and bird vocalizations across 42 species.

Several classifier models have been tested, presented in Ta-
ble 1. The classifier is retrained from scratch every 2 months,
taking into consideration new recording annotations. The
average accuracy gain increases significantly at each train-
ing iteration, with the extent of the improvement depending
on the number of new classes, diversity of vocalizations,
and quality of the extracted recordings. Our current bio-
acoustic classifier is based on a revisited expert architecture
(Jordan & Jacobs, 1992) running on one Titan X GPU. It
continuously analyzes overlapped 500 ms Mel-Spectrogram
windows from 24 discrete microphones and 3 on-camera
microphones deployed on site.

Architecture F1

64RBM-16RBM + SAE + CE 73%
121C-2P-16C-2P-1024FC-1024FC + CE 85%

121C-2P-16C-2P-3EA(1024FC-1024FC) + CE 88%
121C-2P-16C-2P-1024FC-1024FC + T-Lost 87%

Table 1. Testing F1 scores on the Tidmarsh dataset using a Re-
stricted Boltzman Machine (RBM) with Stacked Auto-Encoder on
Cross-Entropy (CE), Convolution (C) with Pooling (P) and Fully
Connected (FC) layers, Expert Architecture (EA) and Triplet-Lost

2.1.2. CAMERA TRAP CLASSIFIERS

Camera traps use movement detectors to trigger video
recording. In an outdoor environment such as Tidmarsh,
non-animal movements dominate the trigger. Common
causes include rain, wind, and water flow, which together
produce a large number of irrelevant video recordings.

Deep Learning can provide a high level of visual semantic
description, saving volunteer time. We have experimented
with and deployed different types of computer vision mod-
els to pre-filter our motion video databases. These include
CNN, Fast R-CNN (Girshick, 2015), and Yolo v3 (Redmon
& Farhadi, 2018). As illustrated in Figure 2, precise species
identification is still a challenging task in regards to the num-
ber of possible classes and the lack of a sufficient training
dataset for general-purpose wildlife recognition. It would
be a massive challenge to build a database containing every
species present on the planet, and it may even be impossible
to build a corresponding classifier model.

Based on this assumption, we use our Tidplay platform to
build a locally-dependent visual database to refine the pre-
trained classifier model. This platform allows volunteers to
create new classes and add new bounding boxes to video
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frames automatically extracted by a confidence function sim-
ilar to the one used in our bio-acoustic classifier. Our current
system is based on the Yolo v3 model and analyzes video
recordings coming from 6 network cameras at Tidmarsh.

Figure 2. Wildlife detection on the Herring site by a Yolo v3 model
that has not been refined by a local training database.

2.2. Tidplay Annotation Platform

Tidplay is an open-source, crowd-sourcing annotation web
platform that we have designed to build training databases
from audio and video sources. Users can upload, download
and share audio and video files, write down annotations
and comments, and create their custom databases while
learning about wildlife. Tidplay has two intended user bases.
First, wildlife ecologists can use Tidplay to share data for
collaborating on the construction of annotated databases.
Second, a tutorial mode can be used for public engagement
and student training. Users can learn how to distinguish
different sounds coming from geophony, anthropophony
and biophony, progressively developing their abilities to
identify challenging bird calls, for example. The multiple
training levels available allow users to extend their bio-
acoustic skills by comparing their answers and discussing
ambiguous recordings with other users ranging from novices
to experts. Recordings extracted automatically by Tidzam
classifiers are integrated into Tidplay for cross-validation
by multiple wildlife experts before being integrated into
training databases. The Tidplay platform can be used for
timestamped annotations of audio as shown in Figure 3, for
drawing video bounding boxes, and for pose estimation.

Figure 3. The audio module of the Tidplay annotation platform
shows the recording’s spectrogram during listening to facilitate the
annotation task.

3. Discussions and Future Work
Our Tidzam framework shows how Deep Learning technol-
ogy can be used to detect and identify wildlife activities.
However, its effectiveness for identifying or tracking indi-
vidual animals and achieving accurate density estimation is
an open question requiring additional data collection and
validation. Currently, ecologists at Tidmarsh use correla-
tions between Tidzam’s detection density maps and periodic
field surveys to estimate the wildlife population dynamics
over years of restoration. More work is needed to develop an
accurate and automatic wildlife survey system, but Tidzam
already provides a powerful tool for ecological research.

3.1. Managed Care at San Diego Zoo

Wildlife behavior comparison between managed care and
natural environments is another important aspect of mea-
suring human impacts on animal quality of life. In col-
laboration with the San Diego Zoo, we are exploring how
2D/3D pose estimation could provide benefits in comparison
studies, with the unique benefit of collecting data around-
the-clock without intrusive deployment. Figure 4 shows an
example frame of a panda from one of our early efforts.

Figure 4. Tidzam 2D pose estimation in San Diego Zoo.

3.2. Amazon Conservation Area

Deployment in a rainforest, at high altitude, or in other re-
mote environments requires the design of fully autonomous
systems that are self-sufficient in terms of energy and
computation. In collaboration with Instituto Nacional de
Pesquisas da Amazonia (INPA), we are beginning a project
aimed at the design of embedded Deep Learning nodes for
long-term deployment in remote environments.

4. Conclusion
We have presented our Tidzam framework, an ongoing ef-
fort to deploy Deep Learning tools for automatic wildlife
surveying in restoration, conservation and managed care
environments. Our work shows how Deep Learning can
advance significant opportunities for ecological research
efforts, restoration science, and public engagement.
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