
LightShow: Abstract Representations of Music
Lighting In Python

by

Benton B. Wilson
B.S., Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 5, 2022

Certified by. .
Joseph A. Paradiso

Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

LightShow: Abstract Representations of Music Lighting In

Python

by

Benton B. Wilson

Submitted to the Department of Electrical Engineering and Computer Science
on August 5, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
This thesis explores music lighting and ways in which music lighting can be generated
automatically. We attempted to use videos of prior concerts as training data for a
machine learning model, but ultimately this proved unsuccessful. Instead, a useful
abstraction for representing, designing, and implementing light shows based on audio
was designed, implemented in Python, and used to generate lighting in a few contexts.
The abstraction designed in this thesis ultimately focuses on allowing developers to
easily expand on the package and reuse code, with the restriction that audio data
must be known ahead of time. While the current abstraction does not support live
audio streams, the future work section outlines how this could be implemented.

Thesis Supervisor: Joseph A. Paradiso
Title: Professor of Media Arts and Sciences

3

4

Acknowledgments

Throughout the process of pursuing this project, I have received support from many

different people. First and foremost, I would like to thank my advisor, Joe Paradiso,

for providing guidance, inspiration, and encouragement. Joe has done a phenomenal

job in helping me hone my idea, which initially started as "something to do with music

and visuals," into something much more specific and useful. I am grateful for the time

he has more than willingly spent helping me.

I would also like to thank the members of the Responsive Environments research

group for being so open and willing to provide insight and to share their knowledge.

Specifically, thank you to David Ramsay for numerous extended brainstorming sessions

and for sharing knowledge on the entire thesis writing process. Also, thank you to

Ishwarya Ananthabhotla for helping me figure out which questions might be the most

interesting to try and answer.

I would also like to thank Zach Sternberg for being an amazing source of knowledge

regarding industry level music lighting.

Finally, I would like to thank my family and friends for supporting me throughout

this process, and for helping make my time at MIT so enriching.

5

6

Contents

1 Introduction 15

1.1 Lighting . 15

2 Background 17

2.1 Previous Work . 18

2.1.1 Relationship Between Music and Color 18

2.1.2 Visualizing Music . 18

2.1.3 Automatically Generated Music Lighting 19

2.1.4 Computer Vision and Lighting Detection 21

3 Initial Work 23

3.1 Initial Attempts . 23

3.2 Isolating the Stage . 24

3.3 Manual Annotations . 25

4 LightShow Package 27

4.1 General Goals . 27

4.2 Core Design Goals . 29

4.3 Basic Concepts . 32

4.3.1 LightShows . 32

4.3.2 Lights . 33

4.3.3 Lighting Components . 34

4.3.4 Shapes . 35

7

4.4 Language . 36

5 Classes and Operators 37

5.1 Core Operators . 37

5.1.1 Primitives . 37

5.1.2 Combiners . 38

5.1.3 Modifiers . 38

5.2 High Level Classes . 39

5.3 Geometry Aware Classes . 39

6 Applications and Examples 41

6.1 Examples Setup . 42

6.2 Simple Examples . 42

6.2.1 A Simple Fade . 42

6.2.2 Simple Fade Repeated at Times 43

6.2.3 Together With Another Fade Delayed By 4 Seconds 43

6.3 Geometry Aware Examples . 44

6.3.1 Setting up the Geometry of the Scene 44

6.3.2 Lighting Entire Component 45

6.3.3 Lighting a Shape . 46

6.3.4 Moving Spheres . 48

6.3.5 Shapes that Change Over Time 48

6.4 Music Aware Examples . 50

6.4.1 Simple Usage of on_midi() 51

6.4.2 On_midi() Combined with Shrinking Spheres 52

6.4.3 On_midi() with Moving Shrinking Spheres 53

6.4.4 Matching Album Art Colors 54

6.4.5 Slightly Changing How We Define Lighting Components . . . 56

7 Conclusion 59

7.1 Evaluation . 59

8

7.2 Limitations and Future Work . 60

7.2.1 Flood lighting is not handled directly 60

7.2.2 Representing Shows in Real Time 61

7.2.3 Exploration of mediums for displaying a lightshow 61

7.2.4 Expansion of the package . 61

7.2.5 Working with Machine Learning 62

A Implemented Abstractions 63

B Reference Code 67

9

10

List of Figures

2-1 A stereo, 3-band Color Organ circuit built by my advisor in 1972. . . 20

3-1 Example results from running the algorithm for isolating the stage . . 25

4-1 General Flow of LightShow package 28

4-2 The LightShow Interface . 32

4-3 The Light Interface . 33

4-4 The LightingComponent Interface . 34

4-5 The Shape Interface . 35

5-1 Example of how abstract geometries can be used to generate output. 40

6-1 Output of a_simple_fade() when played in the visualizer 43

6-2 Output of constant_lights_on_components() when played in the

visualizer . 46

6-3 Output of lights_on_spheres() when played in the visualizer . . . 47

6-4 Output of growing_and_shrinking_moving_sphere() when played

in the visualizer . 50

11

12

List of Tables

A.1 Implemented Simple Abstractions . 64

A.2 Implemented Higher Level Abstractions 65

13

14

Chapter 1

Introduction

1.1 Lighting

In music performances, lighting often plays an integral role in setting or complementing

the mood and energy of a performance. Recently, light shows have become increasingly

complex and often require many hours of manual labor to choose how to position light

fixtures, time them to the music, as well as make sure that various aspects of the

lighting, such as hue, saturation, and intensity properly supplement the performance.

Work has been done to streamline these decisions, and there are various tools which

help automate certain aspects of creation, but oftentimes these tools specialize in a

specific aspect of lighting, and still require artists to spend extensive amounts of time

working on choosing exactly how to design their light show.

While this may be reasonable for some artists, there are many groups on a tighter

budget that cannot afford to spend so many hours designing and manipulating their

lighting for a live show. Thus, it would be helpful if there was a simple way for an

artist to have a lighting setup and be able to automatically generate a dynamic light

show that responds to a musical performance, taking various contexts into account.

However, in order for this goal to be achieved, the barrier to entry for representing

and coding light shows needs to be lowered. Thus, creating a framework that allows

developers to easily explore and create light shows in order to marry emerging music

information retrieval (MIR) technologies would be beneficial. In the following paper,

15

we present the LightShow package, implemented in Python, which allows developers

to design light shows at a high level of abstraction, optionally taking into account

where lights are located in space. The package is currently designed to handle audio

that is known ahead of time, but the future work section outlines how we could

implement real time light shows. Full source code for the package can be viewed at

https://github.com/bentonw414/lightshow.

16

https://github.com/bentonw414/lightshow

Chapter 2

Background

In the world of music production lighting the common specification used by lighting

systems for carrying information is known as Digital Multiplex, or DMX for short.

In DMX, there are 512 “channels” and each channel contains a value in the range

0-255. Lighting fixtures are attached serially to each other, and channels are assigned

to control various aspects of the light for each lighting fixture (a lighting fixture here

is simply a group of lights). Then, a DMX controller sends packets of information

through a cable, controlling values such as the amount of red, green, blue, brightness,

or even position for each fixture.

However, this representation of light, while in a way abstract, does not really

capture how we think about light shows. When we watch a light show, there are

events that start and stop, and the mood may match the overall hue of the light. We

don’t see a light show as simply a stream of colors, but rather there are higher level

associations with those values across time, and those high level associations are what

are important. For instance, if a light is off for a period of time, then gets really

bright, and over a short period of time decreases in brightness until it is off again, we

may perceive this as "a flash,” which is a bit more abstract. While the end result is

the same (there is a stream of color coming from a light over time), having a way to

capture the higher level semantics of “a flash” is more natural for the designer of a

show.

17

2.1 Previous Work

2.1.1 Relationship Between Music and Color

There has been extensive work done examining the relationship between music and

color. One common theory is that music affects the emotion of a listener, and that

there is a mapping between emotion and color. Since there are many different ways to

classify emotion, various models have been used for finding such a mapping between

music and emotion, but there have been some general trends that have been found

across such mappings.

Across cultures, people tend to associate brighter, more saturated, yellower hues

with music that is faster in tempo, or music that is in a major key, and they tend to

associate darker, less saturated, bluer hues with music that is slower in tempo or in a

minor key [12]. While this association is clear, it is relatively coarse, and does not

necessarily paint a complete picture of how music and color are related.

2.1.2 Visualizing Music

Creating visualizations for music has been an area of research for some time, and

much work has been done to make visualizations more expressive and easier to create.

Musical keyboards and other performance interfaces have a rich history of being

adapted for color lighting shows for over two centuries now [13]. Earlier work involved

simpler mappings from music to various shapes and expressions, like modulated spirals,

and there have been relationships mapping darker and lighter colors to associated

emotions for a viewer [4]. Work has also been done to help make visuals more easily,

using programs like Imager with Sonnet, and later Jitter, which enable programmers

to build and connect components to map audio inputs to visual outputs [2][7].

Software has also been created to help simplify the process of designing light shows.

For instance, software such as MagicQ [9] can help control lights from a laptop, while

programs such as TouchDesigner [19] and Resolume [15] help abstract some of the

lighting design away from a simple stream of values. However, each of these pieces of

18

software specialize in a specific piece of the lighting pipeline, and often require time

to get up to speed on using the tools available within them.

2.1.3 Automatically Generated Music Lighting

Driving lighting directly from audio signals is an idea that dates back well over a

century - early loudspeakers were actually made from arc lamps, using the spark to

make sound. The term “Color Organ” or “Light Organ” was also appropriated to

refer to circuitry that would extract separate DC envelopes from different spectral

bands in an audio signal that would each drive different (typically strings) of colored

lights via Triac (a.k.a. dimmer) circuits, making the lights dynamically react to the

contours of music being played. These were very popular commercial projects dating

to the 1960s [3]. My thesis advisor actually built one of these in 1972 (see Figure 2-1)!

In many ways, these were the precursors to the now common audio driven lightshows

and music visualizer screensavers.

MIR as a field has grown significantly in the past decade, and as a result, there

are many libraries that have been created to make extracting information from an

audio source much easier. One such library, implemented in Python, is librosa, which

allows programmers to easily perform various analyses of audio signals [10]. On top of

this, music emotion retrieval has also grown as a field, and many of the techniques

employed in this field are extremely useful for extracting emotional information to

help map music to visuals.

Work has also been done in the field of automatic music transcription, the process

of converting a music signal into some sort of musical notation. One such package,

“Omnizart,” was released in 2020 and is implemented as both a Python package and a

command line tool, and allows the user to transcribe audio into midi files [20]. Other

packages exist for annotation of music (such as aubio [1]), but music metadata can

also be found through public APIs. For instance, Spotify provides extensive metadata

for each song through the Spotify API [16], and there are packages in Python (namely

Spotipy [17]) that make using said API extremely easy. All this metadata could be

used to map to a light show, given that we define a clear mapping.

19

Figure 2-1: A stereo, 3-band Color Organ circuit built by my advisor in 1972.

Attempts have been made to quantify the relationship between music, emotion,

and color. In a 2016 study, a group of researchers quantified the emotion of a piece of

music by using the Thayer model of human emotion, which places emotion as a point

in a plane of 2 dimensions [6]. One dimension is valence, how positive or negative an

emotion is. The other is arousal, how energetic a certain emotion is. In this study,

researchers asked lighting engineers to create a simple lighting show for a short piece

of music, adjusting only the properties of a single light in order to match the music.

Then, the researchers split the music into its emotion as well as its intensity. They

found that the lighting artists often associated certain colors with certain emotions

under the Thayer model (depending on the music genre) [6]. They were then able to

automatically map music to a color by first mapping the music to the emotion space,

and then mapping the emotion space to a color. However, they chose to associate the

brightness of the lighting with the intensity of the music.

20

2.1.4 Computer Vision and Lighting Detection

The world of computer vision has seen many advances. One popular open source

package that has been around for a while is OpenCV, which is available in both

Python and C++ and can be useful for its common helper functions and for running

general purpose computer vision tasks.

Fast object recognition in images and videos is also an active area of research. One

technique for processing images, known as YOLO (short for You Only Look Once),

was invented in 2016, and greatly increased the efficiency with which computers are

able to recognize objects by using a single pass through a neural network to recognize

objects (other techniques used multiple passes) [14]. This is now one of the most

commonly used methods for live object recognition.

Furthermore, work has been done to automatically reconstruct a lighting environ-

ment for a scene, given only an image to work with (this has become increasingly

important as augmented reality has grown as a field of research). Researchers have

employed various techniques, from using neural networks to estimate the direction of

lighting in an image [8], to estimating locations of light sources in an indoor environ-

ment [5]. Since music performances are often shot from multiple cameras, this could

be useful for determining the relative positions of different camera shots in a video.

21

22

Chapter 3

Initial Work

Initially, the goal of this thesis was more focused on automating the process of

generating visuals. Specifically, since there are plenty of videos online of concerts and

other performances with lighting matched to an audio signal, we had an idea that

those online videos could be used as training data for a model.

3.1 Initial Attempts

The general pipeline that we used for automatic audio to lighting was as follows.

First, the raw video frames were processed to generate lighting features, and the audio

was processed to generate audio features. Then a model could be trained to take in

the audio features as input, and use the video features as the target in a supervised

learning model.

For audio features, it generally made sense to use what was already available

(the common approach to audio classification is to use the audio to create a Mel

Spectrogram). However, extracting the video features proved to be much more difficult,

as many of the techniques mentioned in 2.1.4 for extracting the lighting information

from a video are relatively coarse, requiring specific types of videos to work, since the

techniques are still evolving.

23

3.2 Isolating the Stage

One problem with videos shot of performances is that the camera angle often moves,

and when concerts are professionally filmed, there are often multiple cameras that

the video cuts between. As such, the resulting problem when extracting information

from a concert video is in making sure that we can roughly identify where the stage is

located in the video, in order to discard information that is not from the stage. After

some experimenting, one algorithm that appeared to work was to use a sliding window

average algorithm as follows:

1. For each frame of the video, find the largest area rectangle on the frame, such

that 90% of the total energy in the frame is contained within the bounding box.

Energy E is defined per pixel of a grayscale image in the following way, where

𝐼(𝑖, 𝑗) is the pixel value at location (𝑖, 𝑗), and 𝜇(𝐼) is the mean of all pixel values

in the image:

𝐸(𝑖, 𝑗) = max

⎧⎪⎪⎨⎪⎪⎩
𝐼(𝑖, 𝑗) − 𝜇(𝐼)

0

2. Once all the bounding boxes are labeled, we take the average bounding box

(mean of each point from each of the last 10 frames). This helps to smooth out

the data, since camera angles and cuts are much less common by frame than

continuous shots.

Results from one small clip can be viewed in Figure 3-1. While the algorithm works

relatively well in this clip, it struggles with videos that do not take place in a dark

setting, and with camera angles that are not straight on the stage (for instance, when

the stage is viewed from the side, a simple bounding box cannot really describe the

location of the stage).

24

Figure 3-1: Example results from running the algorithm for isolating the stage on a
video. Video can be viewed at https://www.youtube.com/watch?v=hKmYnRQlg0g

3.3 Manual Annotations

After working on isolating the stage in a camera shot, further extraction of video

features still proved unsuccessful, so instead of automatically extracting lighting data,

a simple user interface was built to annotate videos manually. The user was given a

simple representation of 36 stage lights, and then had the ability to add lighting events

of either a fade from one color to another, a strobe between two colors, a constant

color, or a flash of a single light color. Multiple events could happen at once (for

instance, there could be strobing from above the stage, at the same time as lights on

the side were fading from blue to green).

Manual annotation had the problem of being both slow and tedious. Oftentimes,

the simple levels of abstraction of fade, constant, flash, and strobe did not really

capture what was happening (for instance, flashing with the beat), and it became

clear that a richer level of abstraction for representing a light show would be much

more useful. Hence, the LightShow package.

25

https://www.youtube.com/watch?v=hKmYnRQlg0g

26

Chapter 4

LightShow Package

4.1 General Goals

Coming into this thesis, the high level goal was to use videos of performances as

training data for developing a model to automatically generate a LightShow. However,

it quickly became apparent that a direct mapping from audio to lighting, while

intriguing, would not be as flexible as having a solid abstract representation of a light

show. In other words, if a model can output something of the form “a 200ms green

light on every bass note during the chorus,” it is much more adjustable from an artist’s

viewpoint than a simple stream of color values. So while some attempts were made to

extract information from a video to use as training data, it became clear that having

a nice abstract representation of a light show would be immensely useful.

When coming up with the core abstraction, the idea was to keep the flow of

information as simple as possible, since that makes it easier to understand, use, and

expand, and also helps make it easier to get started using the package. The overall

flow of information in the package can be viewed in Figure 4-1, and the package itself

is discussed in more detail in Section 4.3.

27

Abstract
LightShow

with_audio

Concrete
LightShow

get_info_at

Client Defined
Display Layer

Light show
output

Raw Audio

Audio Metadata

1. Input show and audio.

2. Initialize with audio
metadata.

3. Resulting initialized
show.

4. Extract light values.

5. Send light values to dis-
play layer.

6. View the show output.

Figure 4-1: General Flow of LightShow package

28

4.2 Core Design Goals

The following section discusses motivating factors and goals and how they impacted

the design of the LightShow package. Among these goals are: easy integration with

old as well as new MIR technologies, an emphasis on re-usability, expand-ability,

simplicity, as well as the ability to both encode, or not encode spatial geometry into

the abstraction.

Easy to Integrate with MIR Technologies

The LightShow package in general should be easy to integrate with new MIR tech-

nologies. As such, the core levels of abstraction do not require any sort of specific

audio metadata, and it is ultimately up to the implementer what metadata is used in

a specific abstraction. For instance, there is extensive use of callback functions in the

code, and the client can choose both the input to the callback function, and well as the

implementation of the callback function. An example of this is the DynamicAtEvents

class, which takes in a callback function of any metadata that must map to a list

of timestamps to play a LightShow on. Then, later, the client can pass in whatever

metadata is expected by the callback function. Since the user can choose the callback

function, this means that any metadata could be passed in and used.

Thus, metadata could come as raw audio, midi files, algorithms using the librosa

library, public API calls to Spotify, or any other information that the client wants to

use in an abstraction.

Reusable

LightShow objects and abstractions should be as reusable as possible. One way

to achieve this in a direct sense is by ensuring that all LightShows are immutable,

meaning that they can be passed around and shared, and generally LightShow objects

can be reused without worry. For instance, if we have a show that we want to play

on every beat, we can just reuse that show at every beat, without needing to worry

about the underlying LightShow object changing.

29

Simple and Easy to Understand

While LightShows being immutable eliminates a large class of aliasing bugs, keeping the

API simple and intuitive also allows for easier programming. LightShows only really

have 2 core methods, namely get_info_at and with_audio, plus simple information

such as start, end, and length. All other abstractions are built around those two

core functions.

Also, as shown in the examples (see on_midi_beats_1 and later examples in 6.4),

once an abstraction is created, it can be easily reused and combined with different

LightShows to create more intricate LightShows. Also, once an abstraction is created,

it is very easy to quickly represent various light shows using that abstraction (for

instance, the code in the example for on_midi_beats_5 in 6.4.5 is relatively compact).

Both Geometry Aware and Unaware

Initially, there was no notion of spatial geometry encoded into the LightShow package,

but since dealing strictly with light indices can be cumbersome, it made sense to

include support for geometry. For instance, what if there is a strip of lights, and we

want to have color wash from the left to the right? Or, in a more complicated scenario,

what if we have many strips, all oriented at different angles, and we still want color to

wash over all of the strips from left to right? Or, if we don’t care about the specific

geometry, and we just want color to wash from the beginning of a strip of lights to

the end, regardless of how we position them in space?

As a result, there are also Shapes and LightingComponents, which can be used

to optionally encode spatial geometry into a LightShow. For instance, we can use the

Sphere shape to color a certain part of a LightingComponent, and since Shapes and

LightingComponents can be encoded in 1, 2, or 3D space easily, a sphere can also be

used to light a circle on a 2D panel, or even a section of a single strip.

30

Expandable

The core of the package is the LightShow interface, which is just an abstract base class

in Python. Since there are really only 2 core methods that need to be implemented

(namely get_info_at() and with_audio()), the amount of code needed to implement

a new LightShow class can be kept relatively small.

Also, in general, note that care was taken to not constrain how expressive a

LightShow can be. For instance, Shapes and LightingComponents can optionally

vary over time, and while many users may not have lighting components that move,

disallowing lighting components from being able to vary over time may greatly constrain

a user who is designing for a light show where the lights change positions over time.

Other Design Decisions

LightShow outputs map Lights instead of LightingComponents to their HSV values.

The reason for this is mainly simplicity. Ultimately, lights are associated with indices,

and this is something that should be encoded in the LightShow itself. This allows

the client of a Lightshow to just go from light index straight to the output instead of

needing to worry about decoding what it means for a lighting component to be assigned

an HSV value. Overall, this allows the client defined display layer step (in Figure

4-1) to be as basic as possible. If LightShows were to output LightingComponent

values instead of just individual Light values, this would lead to the client potentially

needing to do more work after the fact. For instance, if a panel component is red,

but 2 of the lights inside of the panel are green, the client would need to resolve this.

Instead, we resolve conflicts like this using the with_importance abstraction.

Lights are also allowed to be "generic" (more info on what this means in sec-

tion 4.3.2). Most shows default output is on the generic light at index 0 with

universe 0, and this is also what certain LightShows that take in the output of

a LightShow as input should default to using. This allows simple code, such as

on_component(panel_component, fade(RED, BLUE, 400)), to hide the abstraction

of how panel_component and fade are connected (it all happens through generic

31

light 0). However, it still helps to have control over this, in case we want multiple

generic inputs.

4.3 Basic Concepts

4.3.1 LightShows

LightShow

start end length all_lights

get_info_at

with_audio

{Light→HSVInfo}

LightShow

timestamp: float

audio_id: int
**kwargs

Figure 4-2: The LightShow Interface

LightShow objects are the highest level of abstraction in the LightShow package,

and they represent the abstract notion of a LightShow. LightShows are immutable,

which makes them highly reusable, but most importantly, they can be queried for

information over time.

There are some simple properties that every LightShow has (see Figure 4-2), such

as start time (.start), end time (.end), and length (.length) (all in milliseconds),

as well as all the possible Lights that are ever used (.all_lights). However, the

most important methods are get_info_at) and with_audio. Note that LightingIn

foType (the output of get_info_at) is just a map of Light to HSVInfo.

The get_info_at method provides the output of the LightShow at a given time

in milliseconds (that is, it maps each light that is on to an HSV value). Sometimes,

multiple LightShows may try to control the same light at a time. In order to allow

for behavior to be controlled in this situation, it is possible to designate certain

LightShows as having higher importance, and a LightShow with higher importance

32

dominates the output over a LightShow that has lower importance. If two importance

values are the same, then the chosen output is unspecified. See the implementation of

constant_lights_on_components in 6.3.2 for an example.

Note that HSV values can optionally be undefined. For instance, if we have a

LightShow that fades from bright to dark, and then another LightShow that controls

the hue and saturation, it is possible to combine those two LightShows to get a

complete HSV value in the end.

The other major instance method is the with_audio method. This method takes

in a unique id of the audio (useful for caching to prevent generating extra Python

objects, but not required), as well as a set of keyword arguments that provide the

LightShow with metadata for contextual shows. For instance, a LightShow that takes

a fade and starts it at every beat would need to know which metadata to look at

in order to figure out where the beats are located. Examples of this can be seen in

Section 6.4.

4.3.2 Lights

Light

light_number universe is_generic

Figure 4-3: The Light Interface

Instead of simply working with indices directly, we use the Light abstraction

(visualized in 4-3). Lights consist of an index, a universe (similar to the DMX concept

of a universe, and useful for partitioning lights instead of needing to translate between

indices later), and whether or not they are generic. They are also hashable for easy

integration with Python dictionaries and sets.

Generic lights are used to represent outputs that are not meant to be the final

output, and are instead meant to be inputs to some other modifying LightShow (i.e.

we may have a generic light 0 that is green, and then a LightShow that takes whatever

33

the output for generic light 0 is and projects it onto a lighting component).

Otherwise, the index is meant to be the unique light within each universe, and

multiple universes can be useful in instances where lights may have the same index

but not actually be the same light. For instance, if there are two different controllers

connected to 2 different strips of 100 LEDs, it is easier to consider controller A to be

in universe 0 controlling indices 0-99, and controller B in universe 1 also controlling

indices 0-99. Without having universes, the client would be forced to represent this as

something like lights 0-99 and 100-199, and then translate after the fact to partition

which controller should handle each index.

4.3.3 Lighting Components

LightingComponent get_lights_in_space

all_lights_in_component:{Light} {Light→density:float}

shape: Shape
origin: Point

t:float

Figure 4-4: The LightingComponent Interface

Often, it is useful to not think about LightShows strictly in terms of individual

Lights. For instance, addressable LED light strips are relatively simple to wire up, but

it would be much easier to represent them as an entire strip, and be able to optionally

control sections of the strip.

LightingComponents are created by providing a set of Light objects in a certain

type of component, and then optionally encoding geometry (i.g. the start and stop

locations in space of a strip of lights).

Behind the scenes, LightingComponents always have a geometry, but the default

locations in space are chosen in a way that is useful. The default location of the start

of a light strip is at the (𝑥, 𝑦, 𝑧) origin (0, 0, 0), and the end location is at (number

of lights in strip, 0, 0). This allows the client to still light up parts of the component

34

from the start to the end of the strip for instance, without really caring about where

in space that object is.

Lighting components can also be combined to form composite components (for

instance, a panel of lights might be created by encoding many LightStrips stacked

on top of each other, using the LightingComponentGroup class; see the example with

setup_light_components in 6.3.1). Note that it is still possible to encode a single

light with geometry, using the SingleLight class.

The two methods that a LightingComponent provides are get_lights_in_space

and all_lights_in_component (visualized in 4-4). The method

get_lights_in_space allows us to query all lights that are contained within

a Shape (and also how dense the shape is at the location of a given light). The

density ranges from 0 to 1 (1 being fully dense), and can be useful for making shapes

look smoother when being lit up. Note that the time parameter t is available in case

a client wants to encode a moving component into a show.

The all_lights_in_component method is useful since it just returns the set of

all Lights that are in the LightingComponent.

4.3.4 Shapes

Shape

point_in_shape

bounding_cube

p: Point
t: float

in_shape:bool
density:float

Cube (Shape)

Figure 4-5: The Shape Interface

Shapes allow us to use the geometry encoded into LightingComponents to actually

manipulate the lights inside a component. The Shape interface represents regions in

3D space, and can be used to project lights into LightingComponents.

35

There are two methods which new shapes must implement: bounding_cube and

point_in_shape (visualized in 4-5). The bounding_cube method is useful for opti-

mizations, since it can quickly be used to constrict the region of space that the Shape

might affect. Then, the point_in_shape method returns two values, whether the

point is inside of the region controlled by the shape, and also the density of the shape

at that point.

Both of these methods are relatively simple to implement, but note that new shapes

can be implemented which vary over time (see the GrowingAndShrinkingSphere code

in 6.3.5).

4.4 Language

Generally, working with LightShow classes (described in 5) should be avoided directly.

For instance, to make a LightShow object that represents a single fading light, we could

directly grab an instance of the Fade class, but in order to allow for more reusability,

wrappers methods should be created (such as fade()) to get the LightShow object

that we want. For instance, constant() is currently implemented as a Fade between

two of the same colors, instead of adding an entire new class called Constant. By

putting this method behind a wrapper, the client does not need to care about the

difference. A full list of the abstractions currently implemented in the language is

available in A.1 and A.2.

36

Chapter 5

Classes and Operators

5.1 Core Operators

5.1.1 Primitives

LightShows can be built up from small primitives, and the package provides some

primitive classes, which can be used as the building blocks for more complicated light

shows. The current primitive classes that implement the LightShow interface are:

• Fade objects, which have a starting HSV value, an ending HSV value, and a

length to control a specified set of lights. This class is used to implement the

fade() and constant() language methods (a constant show can just be a Fade

between two identical HSV values).

• Strobe objects, which alternate between two HSV values (the time hi and

time low are inputs to creating the LightShow object). This is wrapped by

the strobe() method, which provides a useful abstraction by also allowing the

frequency of the strobing to be an input. Similar to the Fade object, this takes

in a length parameter, and starts at time zero.

37

5.1.2 Combiners

There are also a few combiner classes, which allow us to combine and build up

LightShow objects to create more complicated light shows. These are:

• Together (and its corresponding wrapper together()), which takes multiple

LightShows and returns the LightShow representing all of the input LightShows

put together. It resolves conflicts when multiple LightShows try to control the

same Light.

• RepeatAt (repeat_at() wrapper), which takes in a single LightShow as well as

a set of times (the set of times that the input LightShow should be played at).

This is useful when there are shows that need to be scheduled many times over

(RepeatAt provides a more efficient implementation than just a large Together

of shows).

5.1.3 Modifiers

Modifiers are shows that take in a LightShow, and wrap that LightShow in a way that

changes the output of the show. Some modifiers alter the input time (such as At and

During), whereas others alter the output HSV values.

PostModifier is the most general implementation of modifying the output of a

LightShow directly, and it takes in a LightShow, as well as two callback functions. The

first callback function takes in a LightingInfoType, and outputs a new LightingIn

foType. This callback essentially defines how output HSV values should be modified.

The second callback represents how to modify calls to all_lights, so that the new

output is still consistent with the old LightShow. PostModifier is used to implement

the following useful wrapper abstractions:

• with_importance(), which takes in a LightShow, and changes all output from

that LightShow to have a new importance.

• new_controls(), which takes in a LightShow and a callback function that is

38

used to modify which lights an old LightShow controls (i.e. if a LightShow

controls light 1, it could be modified to control light 5 with the same outputs).

There are a few other modifiers, namely At and During, which can be used to

set the time that a LightShow begins or is active. At is useful for scheduling when a

LightShow should begin, since it delays the start by a given amount of time. On the

other hand, During inactivates a LightShow outside of a range (for instance, if the

LightShow should only output values during the chorus, this could be encoded using

a During, with the start and end times being when the chorus starts and ends).

5.2 High Level Classes

There are also a few high level built in classes that can be used to create abstractions.

These classes are by no means a complete set of what might be useful, but they serve

as a good starting point to work with.

The DynamicAtEvents class is useful for scheduling shows to start based on some

sort of audio metadata. For instance, the on_midi() wrapper uses metadata to

schedule a LightShow to start on every note in a midi file that matches the pitch

specified in the input, and is implemented using the DynamicAtEvents class. Also,

since the implementation of DynamicAtEvents does not use a specific algorithm, the

client could implement a wrapper function that uses any algorithm to schedule a

LightShow to be played. For instance, the client could use their own beat tracking

algorithm to determine where beats should be, independent of the LightShow package.

Another example of a high level abstraction is the StateChanger class, which

switches between various LightShow outputs based on time, and can be useful for

having different LightShows for different sections of music.

5.3 Geometry Aware Classes

Some classes are useful for projecting onto LightingComponents using Shapes. For

instance, the Mover class takes in a LightShow, a Shape, a LightingComponent, and

39

a callback that determines position over time. It then moves a shape around a

lighting component over time, coloring the shape based on the output from the given

LightShow. See moving_spheres example for usage in 6.3.4. A visualization of how

an abstract shape can be projected onto a lighting component is given in 5-1.

An abstract sphere, lit up
blue, around a lighting com-

ponent panel defined in space.

After using on_shape to project
a constant blue LightShow
onto this panel using the
sphere, this is the result.

Figure 5-1: Example of how abstract geometries can be used to generate output.

40

Chapter 6

Applications and Examples

Since the output of a LightShow is just HSV values on lights over time, a user of

the LightShow package is not constrained to any specific output medium. Raspberry

Pi computers or microcontrollers work great for controlling addressable lights in a

simple home environment, but a user could also use public APIs to control smart home

lighting, or even connect the output to a DMX controller to control stage lights. The

user would only need to write code to take the output of a LightShow and actually

display it on some medium (the client defined display layer in 4-1).

It is worth noting that lights do not necessarily need to be lights in the physical

world. For the rest of this section, lights are represented as colored cubes in a three

dimensional rendered environment implemented in three.js [18], running in a web

browser. This is implemented by compiling a LightShow into a CSV file of the form

as follows, where each line contains information for the lights at one timestamp:

timestamp in millis,light index,h,s,v,light index,h,s,v...newline

This CSV file is compiled on a server, and is then sent to the web browser,

which uses the CSV file to control the colors of the cubes in the web browser. For

the following shows, the full code containing all of the shows is available at https:

//gist.github.com/bentonw414/5c06612863aa151b27180c25852e7dff.

41

https://gist.github.com/bentonw414/5c06612863aa151b27180c25852e7dff
https://gist.github.com/bentonw414/5c06612863aa151b27180c25852e7dff

6.1 Examples Setup

For all examples, we will use a virtual panel of lights to display a LightShow. The

bottom left corner is the light at index 0, and the lights have increasing indices left

to right, then bottom to top. Note that all lights are assumed to be in universe zero

(see 4.3.2 on lights for explanation of universes). Also, for the examples, we use the

following constant values:

RED = HSV(0, 1, 1)
BLUE = HSV(.67, 1, 1)
GREEN = HSV(.33, 1, 1)
ONE_SECOND = 1000 # milliseconds

6.2 Simple Examples

6.2.1 A Simple Fade

For this show, we can make a simple light show that fades from red to blue as follows:

def a_simple_fade() -> LightShow:
"""
Simple Fade Over 2 seconds from Red to Blue on lights 0 and 3
"""
lights = {Light(light_number=0), Light(3)}
return fade(start_value=RED,

end_value=BLUE,
length=2 * ONE_SECOND,
lights=lights)

First, we have to pick which lights we want to control. For this show, we can

choose lights 0 and 3 (note that by default, lights are in universe zero and are not

generic). Then, we return a LightShow that is a fade over 2 seconds, from red to blue.

When displayed on the 3D renderer, this lightshow is the following:

42

𝑡 = 0ms 𝑡 = 1000ms 𝑡 = 2000ms 𝑡 > 2000ms

Figure 6-1: Output of a_simple_fade() when played in the visualizer. Video can be
viewed at https://youtu.be/jtnOrSjO6p4

6.2.2 Simple Fade Repeated at Times

Instead of just having our simple fade play once, we can reuse that fade, and have it

play every 3 seconds, 5 times. This can be done using the repeat_at method, reusing

the fade from the previous example, and then specifying which timestamps we want

to repeat the fade at. The result of playing the repeated_fade LightShow is viewable

at https://youtu.be/586Rx5WioEI.

def repeated_fade() -> LightShow:
"""
Same as a simple_fade, but repeated every 3 seconds, 5 times
"""
fade_show = a_simple_fade()
timestamps = [3*ONE_SECOND*i for i in range(5)]

return repeat_at(timestamps, fade_show)

6.2.3 Together With Another Fade Delayed By 4 Seconds

We can also create another longer fade on lights 1 and 2, and delay it by 4 seconds

using the at method. Then, we can make a new show that combines this show with

the repeated_fade example using together. The result of playing this show in the

web visualizer can be viewed at https://youtu.be/EDmzI53f6TI.

43

https://youtu.be/jtnOrSjO6p4
https://youtu.be/586Rx5WioEI
https://youtu.be/EDmzI53f6TI

def together_and_delayed() -> LightShow:
"""
Make lights 1 and 2 do another longer fade together with
repeated_fade, and delay the start by 4 seconds
"""
repeated_fade_show = repeated_fade()

new_fade = fade(start_value=GREEN,
end_value=HSV(

h=GREEN.h,
s=GREEN.s,
v=0), # fade to black

length=10 * ONE_SECOND,
lights={Light(1), Light(2)})

delayed_new_fade = at(4 * ONE_SECOND, new_fade)

return together([repeated_fade_show, delayed_new_fade])

6.3 Geometry Aware Examples

6.3.1 Setting up the Geometry of the Scene

In order to use LightShows that depend on the geometry of the lights, we can create

LightingComponents in the function below. Note that for this, we represent the panel

of lights as a group of strips from the point (−5, 0, −2) at the lower left to (5, 4, −2)

at the upper right, and we also manually encode the locations of a few extra lights in

the corners.

def setup_light_components() -> tuple[
List[LightingComponent],
LightingComponent,
List[LightingComponent],
LightingComponent]:
"""
Returns all_strips, panel, extra_lights, all_lights
"""

Set up all the strips in the panel
all_strips: List[LightingComponent] = []

for row in range(8):
all_strips.append(

LightStrip([Light(col + row * 20) for col in range(20)],

44

start_location=Point(-5, row * .5, -2),
end_location=Point(5, row * .5, -2)))

The panel is just made up of all of the strips
panel = LightingComponentGroup(all_strips)

single_cube_positions = [
[-4.75, 3.5, -.5],
[-4.35, 3, -.7],
[-4.75, 3.25, 0],
[-5.75, 3.5, -.5],
[4.75, 3.5, -.5],
[4.35, 3, -.7],
[4.75, 3.25, 0],
[5.75, 3.5, -.5],

]

extra_lights = []
for i, [x, y, z] in enumerate(single_cube_positions):

extra_lights.append(
SingleLight(

Light(i+len(panel.all_lights_in_component())), Point(x, y, z))
)

all_lights = LightingComponentGroup(
[panel, LightingComponentGroup(extra_lights)])

return all_strips, panel, extra_lights, all_lights

6.3.2 Lighting Entire Component

One way to use LightComponents is by using the output from one LightShow to control

an entire component. This can easily be done using the on_component function. For

this LightShow, the panel and the extra lights are lit up to be a constant red and

green, respectively. Then, after 5 seconds, the 3rd strip is lit up blue. Note the use

of the with_importance method, which ensures that the blue strip overrides the red

light of the panel (by default, importance is zero, so setting the output of a LightShow

to be a higher importance ensures that it overrides any other conflicting output).

Also, note that by default, the generic light zero is used by the on_component

method, which is also the default output from the LightShows created by methods like

constant and fade (this practice makes the code a bit shorter for most LightShow

definitions).

45

def constant_lights_on_components() -> LightShow:
"""
Lights up the whole panel red, the extra lights green,
but overrides the 3rd strip to be blue after 5 seconds
"""
all_strips, panel, extra_lights, all_lights = setup_light_components()

panel_red = on_component(component=panel,
lightshow=constant(RED, 10 * ONE_SECOND))

extra_lights_green = on_component(LightingComponentGroup(
extra_lights), constant(GREEN, 10 * ONE_SECOND))

third_strip_blue_after_5_seconds = at(
5 * ONE_SECOND,
on_component(all_strips[2], constant(BLUE, 5 * ONE_SECOND)))

return together([
panel_red,
extra_lights_green,
with_importance(1, third_strip_blue_after_5_seconds)

])

0ms ≤ 𝑡 < 5000ms 5000ms ≤ 𝑡 < 10000ms 𝑡 ≥ 10000ms

Figure 6-2: Output of constant_lights_on_components() when played in the
visualizer. Video can be viewed at https://youtu.be/rT-VYyzvpXg

6.3.3 Lighting a Shape

Since we have defined the geometry of our scene, we can use that geometry with

Shapes to light up intersections of our lights with shapes we define. For instance, we

can define a sphere of radius 5 centered around the point (0, 1, −2). Then, we can use

the output of a blue fade LightShow to control the color of that sphere. We can also

specify that we want the sphere to affect the panel component.

After the blue light sphere is done, we can do the same thing in red, but instead

46

https://youtu.be/rT-VYyzvpXg

make a new LightingComponent based off of every other light strip in the panel, so

thatt the sphere in red is only shown on those strips. See Figure 5-1 for a visualization

of how methods like on_shape work.

def lights_on_spheres() -> LightShow:
"""
Lights up a sphere on the panel to be blue,
followed up by a sphere on only every other strip to be red
"""
all_strips, panel, extra_lights, all_lights = setup_light_components()
sphere = Sphere(radius=5, origin=Point(0, 1, -2))

make a sphere
blue_sphere_on_panel = on_shape(

shape=sphere,
lighting_component=panel,
lightshow=fade(BLUE, HSV(BLUE.h, BLUE.s, 0), 4000),

)

red_sphere_on_every_other_strip = on_shape(
shape=sphere,
every other strip should be affected by the red sphere
lighting_component=LightingComponentGroup(all_strips[::2]),
lightshow=fade(RED, HSV(RED.h, RED.s, 0), 4000)

)

return concat([blue_sphere_on_panel, red_sphere_on_every_other_strip])

𝑡 = 0ms 𝑡 = 2000ms 𝑡 = 3999ms

𝑡 = 4000ms 𝑡 = 6000ms 𝑡 = 7500ms

Figure 6-3: Output of lights_on_spheres() when played in the visualizer. Video
can be viewed at https://youtu.be/62v4m5V7otw

47

https://youtu.be/62v4m5V7otw

6.3.4 Moving Spheres

To demonstrate more clearly how shapes can be projected, we can define a shape that

is two spheres near each other, and then pass that to the Mover class, which takes in a

function of time to generate an offset for projecting the spheres. In this instance, the

spheres move left and right, and up and down in a sinusoidal manner. Also, note that

while the Mover class can be useful directly, it generally should be used in a wrapper

that is more higher level (for instance the back_and_forth method uses the Mover

class to control shapes going between two points). The output of the moving_spheres

LightShow can be viewed at https://youtu.be/maUxdks5x7g.

def moving_spheres() -> LightShow:
"""
Two spheres that are red, moving left and right and
up and down in a sinusoidal manner
"""
all_strips, panel, extra_lights, all_lights = setup_light_components()
spheres = CompositeShape([

Sphere(radius=2, origin=Point(0, 1, -2)),
Sphere(radius=1, origin=Point(3, 2.5, -2))

])

def position_controller(t: float) -> Point:
"""x goes from +4 to -4, y from -1 to 1"""
return Point(4 * math.sin(t * 2 * math.pi / 2250),

math.cos(t * 2 * math.pi / 500),
0)

return Mover(all_lights,
shape=spheres,
lightshow=constant(RED, 10000),
position_controller=position_controller)

6.3.5 Shapes that Change Over Time

Shapes implement the point_in_shape method, but note that point_in_shape takes

in a time parameter, which allows us to implement shapes that change over time. For

instance, if we wanted to implement a sphere that grows and shrinks over time, we

can implement it as follows:

48

https://youtu.be/maUxdks5x7g

class GrowingAndShrinkingSphere(Shape):
"""
A sphere that changes in size from max_radius to min_radius to
max_radius repeatedly, taking <cycle_length> time to happen
Also, the sphere is centered around <origin> in space.
"""

def __init__(self, max_radius: float, min_radius: float,
cycle_length: float,
origin: Point = Point(0, 0, 0)):

self._max_radius = max_radius
self._min_radius = min_radius
self._cycle_length = cycle_length
self._origin = origin
self._bounding_cube = Cube(

origin.minus(Point(max_radius, max_radius, max_radius)),
origin.minus(Point(-max_radius, -max_radius, -max_radius))

)

def point_in_shape(self, p: Point, t: float = 0) -> tuple[bool, float]:
delta_to_point = p.distance_to(self._origin)
t = t + self._cycle_length/2

current_radius = self._min_radius + \
(utils.linear_on_zero_one(t*2* math.pi/self._cycle_length))*\
(self._max_radius - self._min_radius)

if delta_to_point > current_radius:
return False, 0

solid_radius = current_radius * 0

if delta_to_point < solid_radius:
return True, 1

density = 1-(delta_to_point-solid_radius)/(current_radius-solid_radius)

return True, density

def bounding_cube(self) -> Cube:
return self._bounding_cube

Then, this growing and shrinking sphere could be used in a manner as follows (this

is similar to the moving_spheres example, but the spheres only move side to side,

and the left sphere grows and shrinks over time):

49

def growing_and_shrinking_moving_sphere() -> LightShow:
"""
Two spheres moving left and right, but one sphere is growing and shrinking
"""
all_strips, panel, extra_lights, all_lights = setup_light_components()
spheres = CompositeShape([

GrowingAndShrinkingSphere(max_radius=4.5, min_radius=0,
cycle_length=4000, origin=Point(0, 1, -2)),

Sphere(radius=1, origin=Point(3, 2.5, -2))
])

def position_controller(t: float) -> Point:
"""x goes from +4 to -4"""
return Point(4 * math.sin(t * 2 * math.pi / 2250))

return Mover(all_lights,
shape=spheres,
lightshow=constant(BLUE, 10000),
position_controller=position_controller)

𝑡 = 0ms 𝑡 = 1000ms 𝑡 = 1500ms

𝑡 = 2500ms 𝑡 = 3000ms 𝑡 = 4000ms

Figure 6-4: Output of growing_and_shrinking_moving_sphere() when played in
the visualizer. Video can be viewed at https://youtu.be/88IZ7bmQMa4here

6.4 Music Aware Examples

So far, all of the example LightShows have not depended on any sort of audio or

metadata. While this may be useful for certain applications such as manually coded

single light shows, it is much more useful to have a LightShow that can abstractly

50

https://youtu.be/88IZ7bmQMa4

use audio data or metadata to generate lighting. This is what with_audio is used

for, which generates a LightShow that actually uses the metadata passed into it. In

general, the values that are passed into with_audio are not specified, but rather

up to the implementer of higher level abstractions. For this example, we use the

on_midi abstraction, which expects the location of a midi file to be passed in, and

then schedules the given LightShow to be played on every note that matches the

pitch in the LightShow. Note that the resulting LightShow is abstract, and by calling

with_audio on it, we can get a LightShow that actually uses some audio metadata.

For the rest of the examples, we will use the song "I Turn My Camera On" by Spoon.

6.4.1 Simple Usage of on_midi()

On_midi is an abstraction that relies on the pretty_midi library in Python and

expects a midi file to open, but under the hood it just generates a DynamicAtEvents

object, so if an implementer wanted to make their own on_midi implementation, that

would be completely doable.

In the LightShow below, the final output has nothing to do with a specific audio

track, so before playing it back we must call with_audio like so:

lightshow_to_play = on_midi_beats_1().with_audio(0,
drum_midi_location="./SpoonITurnMyCameraOnDrums.mid")

This returns a new LightShow, initialized to play with the proper metadata. Below

is a basic LightShow using on_midi, which controls lights 0, 1, and 2 to fade on every

bass, snare, and hi-hat note (midi transcription was done using the Omnizart library

[20]). The result of playing on_midi_beats_1 with the midi metadata can be viewed

at https://youtu.be/CtdBkH4Vo5E.

51

https://youtu.be/CtdBkH4Vo5E

def on_midi_beats_1():
"""
Simple single color fades on lights 0,1,2 that go with the beat
"""
fade_time = 400

bass_drum = fade(GREEN, HSV(GREEN.h, GREEN.s, 0),
fade_time, lights={Light(0)})

snare_drum = fade(BLUE, HSV(BLUE.h, BLUE.s, 0),
fade_time, lights={Light(1)})

hihat_drum = fade(RED, HSV(RED.h, RED.s, 0), fade_time, lights={Light(2)})

midi_file_kwarg = "drum_midi_location"

return together([on_midi(midi_file_kwarg=midi_file_kwarg,
light_show_on_midi=bass_drum,
pitch=35),

on_midi(midi_file_kwarg,
snare_drum,
38),

on_midi(midi_file_kwarg,
hihat_drum,
42)])

6.4.2 On_midi() Combined with Shrinking Spheres

We can expand on this to use Shapes. In the following LightShow, we use two

shrinking spheres, and schedule them on the bass and snare drums, and then we

also use the hi-hats to control the bottom light strip. The results of playing this

on_midi_beats_2 LightShow after calling with_audio can be viewed at https://

youtu.be/1I7P5Y30hS4.

def on_midi_beats_2():
"""
Spheres on left and right go with the bass and snare,
then bottom strip is with hihat
"""
fade_time = 400
max_sphere_radius = 3
min_sphere_radius = 0

green_fade = fade(GREEN, HSV(GREEN.h, GREEN.s, 0), fade_time)
blue_fade = fade(BLUE, HSV(BLUE.h, BLUE.s, 0), fade_time)
red_fade = fade(RED, HSV(RED.h, RED.s, 0), fade_time)

all_strips, panel, _, _ = setup_light_components()

52

https://youtu.be/1I7P5Y30hS4
https://youtu.be/1I7P5Y30hS4

bass_drum = on_shape(GrowingAndShrinkingSphere(
max_sphere_radius, min_sphere_radius,
fade_time * 2,
Point(-3, 3, -2)),

panel,
green_fade
)

snare_drum = on_shape(GrowingAndShrinkingSphere(
max_sphere_radius, min_sphere_radius,
fade_time * 2,
Point(3, 3, -2)),

panel,
blue_fade
)

hihat_drum = on_component(all_strips[0], red_fade)

midi_file_kwarg = "drum_midi_location"

return together([on_midi(midi_file_kwarg=midi_file_kwarg,
light_show_on_midi=bass_drum,
pitch=35),

on_midi(midi_file_kwarg,
snare_drum,
38),

on_midi(midi_file_kwarg,
with_importance(1, hihat_drum),
42)])

6.4.3 On_midi() with Moving Shrinking Spheres

The following LightShow is very similar to on_midi_beats_2, except in this one, the

shrinking spheres move downwards, creating a neat effect. Note that this makes use of

the back_and_forth() wrapper, which is an abstraction around the Mover class. The

result of on_midi_beats_3 can be viewed at https://youtu.be/jQ15oUVABm4w.

def on_midi_beats_3():
"""
Same as on_midi_2, but now the spheres are moving
"""
fade_time = 400

green_fade = fade(GREEN, HSV(GREEN.h, GREEN.s, 0), fade_time)
blue_fade = fade(BLUE, HSV(BLUE.h, BLUE.s, 0), fade_time)
red_fade = fade(RED, HSV(RED.h, RED.s, 0), fade_time)

53

https://youtu.be/jQ15oUVABm4w

all_strips, panel, _, _ = setup_light_components()

bass_drum = back_and_forth(start_location=Point(0, 0),
end_location=Point(0, -6),
time_to_move=fade_time * 2,
shape=GrowingAndShrinkingSphere(

3, 0, fade_time * 2, Point(-3, 3, -2)),
lighting_component=panel,
lightshow=green_fade
)

snare_drum = back_and_forth(start_location=Point(0, 0),
end_location=Point(0, -6),
time_to_move=fade_time * 2,
shape=GrowingAndShrinkingSphere(

3, 0, fade_time * 2, Point(3, 3, -2)),
lighting_component=panel,
lightshow=blue_fade
)

hihat_drum = on_component(all_strips[0], red_fade)

midi_file_kwarg = "drum_midi_location"

return together([on_midi(midi_file_kwarg=midi_file_kwarg,
light_show_on_midi=bass_drum,
pitch=35),

on_midi(midi_file_kwarg,
snare_drum,
38),

on_midi(midi_file_kwarg,
with_importance(1, hihat_drum),
42)])

6.4.4 Matching Album Art Colors

Instead of the colors in the LightShow only being red, green, and blue, wouldn’t it be

cool if they could automatically match the colors from album art? We can implement

this in a class called WithAlbumArtColors, which when initialized with metadata,

changes any output from the LightShows passed in to match the colors extracted from

the album art. The implementation of the class is shown in Appendix B, and expects

new metadata, namely album_art_url, so when we play this LightShow, we have to

call with_audio in the following way (note that the real Spotify album art url can

easily be extracted using the Spotipy library [17]):

54

lightshow_to_play = on_midi_beats_4().with_audio(
0,
drum_midi_location="./SpoonITurnMyCameraOnDrums.mid",
album_art_url="http://spotifyalbumwebsite.com/fakeexample")

The result of this on_midi_beats_4 LightShow can be viewed at https://youtu.

be/hIkC3jGkFEY, and since the following image is the album cover for the song, the

resulting show ends up as red and white:

def on_midi_beats_4():
"""
Same as before, but now the colors of the shows match the album art colors
"""
fade_time = 400

doesn't matter what color, since it will be overwritten
by the album art color
generic_fade = fade(GREEN, HSV(GREEN.h, GREEN.s, 0), fade_time)

all_strips, panel, _, _ = setup_light_components()

bass_drum = back_and_forth(start_location=Point(0, 0),
end_location=Point(0, -6),
time_to_move=fade_time * 2,
shape=GrowingAndShrinkingSphere(

3, 0, fade_time * 2, Point(-3, 3, -2)),
lighting_component=panel,
lightshow=generic_fade
)

snare_drum = back_and_forth(start_location=Point(0, 0),
end_location=Point(0, -6),
time_to_move=fade_time * 2,
shape=GrowingAndShrinkingSphere(

3, 0, fade_time * 2, Point(3, 3, -2)),
lighting_component=panel,
lightshow=generic_fade

55

https://youtu.be/hIkC3jGkFEY
https://youtu.be/hIkC3jGkFEY

)

hihat_drum = on_component(all_strips[0], generic_fade)

midi_file_kwarg = "drum_midi_location"

return WithAlbumArtColors(album_url_kwarg="album_art_url",
lightshows=[

on_midi(midi_file_kwarg=midi_file_kwarg,
light_show_on_midi=bass_drum,
pitch=35),

on_midi(midi_file_kwarg,
snare_drum, 38),

on_midi(midi_file_kwarg,
with_importance(1, hihat_drum),
42)])

6.4.5 Slightly Changing How We Define Lighting Components

This LightShow is very similar to the previous example of on_midi_beats_4, except

the spheres move towards each other, and only control every other light strip. Also,

the hi-hats control the extra_lights component instead of the bottom strip. Overall,

this produces a relatively different LightShow, even though a very small amount of

code was changed. The results of this LightShow are available at https://youtu.be/

xT2iRABbvn8.

def on_midi_beats_5():
"""
Similar to midi_beats_4, but now two spheres move towards each other
and affect different strips. The hihat also only affects extra lights
"""
fade_time = 400
generic_fade = fade(GREEN, HSV(GREEN.h, GREEN.s, 0), fade_time)

all_strips, _, extra_lights, _ = setup_light_components()

midi_file_kwarg = "drum_midi_location"

common_shape = GrowingAndShrinkingSphere(
5, 0, fade_time * 2, Point(0, 1.5, -2))

bass_drum = back_and_forth(start_location=Point(4, 0),
end_location=Point(-8, 0),
time_to_move=fade_time * 2,
shape=common_shape,

56

https://youtu.be/xT2iRABbvn8
https://youtu.be/xT2iRABbvn8

lighting_component=LightingComponentGroup(
all_strips[::2]),

lightshow=generic_fade
)

snare_drum = back_and_forth(start_location=Point(-4, 0),
end_location=Point(8, 0),
time_to_move=fade_time * 2,
shape=common_shape,
lighting_component=LightingComponentGroup(

all_strips[1::2]),
lightshow=generic_fade
)

hihat_drum = on_component(
LightingComponentGroup(extra_lights), generic_fade)

return WithAlbumArtColors(album_url_kwarg="album_art_url",
lightshows=[

on_midi(midi_file_kwarg=midi_file_kwarg,
light_show_on_midi=bass_drum,
pitch=35),

on_midi(midi_file_kwarg,
snare_drum,
38),

on_midi(midi_file_kwarg,
with_importance(1, hihat_drum),
42)])

57

58

Chapter 7

Conclusion

7.1 Evaluation

For the most part, evaluating this thesis was done by iterating and testing how difficult

it was to build new abstractions. For instance, testing how difficult it was to create an

abstraction like on_midi helped to validate how easily the library could be expanded

in the future.

While this thesis ended up being a small package for lighting, much of the initial

design was focused around coming up with a good abstract representation of a light

show. Thus, the initial design and general workflow was not necessarily designed

around the standard way of doing lighting abstractions. However, after discussing

with a lighting professional, it seems like the general way of abstracting light shows

done in this thesis is consistent with how lighting is done in a professional setting.

While the LightShow package does not implement all of the abstractions that are

available in industry level software, it does do a decent job at providing an interface

that could implement many abstractions which might typically need to be handled

in separate pieces of software. Also, since LightShow is a relatively small and simple

Python package, it could make creating small light shows in a home environment

much easier to approach since the lighting representation can all be done within the

LightShow package.

Typically, different steps of the pipeline require different pieces of software, and

59

while those pieces of software may individually be much more advanced than what

LightShow can do, LightShow can represent many of these abstractions in different

ways. For instance, TouchDesigner [19] is a node-based visual programming language

that can be used to create live, interactive media, and Resolume [15] can help map

videos to lighting setups. There is even software that can be used to control lights from

a laptop (like MagicQ [9]), and oftentimes, different software work well for plugging

into each other. However, many of these pieces of software specialize in handling one

piece of the pipeline. There are also products for home lighting, but most of those

provide a small set of preset effects that can be used. LightShow makes it easy to

design simple shows without needing to download, learn, and program multiple pieces

of software. Instead, everything can be done within Python, in a relatively basic

package. Also, the package is open source, so as it expands, or as users come up with

their own implementations of the LightShow interface, these implementations could

be shared and used by anyone else quickly within their own systems.

7.2 Limitations and Future Work

7.2.1 Flood lighting is not handled directly

In the LightShow package, LightingComponents can move, but there is not a great

way of encoding how directional lighting affects a scene. For instance, spotlights may

change where they point, but the LightShow object cannot encode this information

well. Furthermore, the LightShow package does not handle encoding how the light

source may differ from where the light is viewed (i.e. a spotlight which lights up

the back of the stage, positioned in the front). For now, we would need to treat the

spotlight as having a location somewhere on the back of the stage. Further work is

needed to better encode the effects of something like a spotlight or even a flood light.

60

7.2.2 Representing Shows in Real Time

Currently, LightShows are immutable, and in order to initialize a LightShow to play,

all of the metadata must be known before playing the LightShow. In other words, the

entire audio needs to be known before playing back any audio, so the package is not

usable in live shows.

A better solution may be to use an abstraction similar to a Python stream. Instead

of get_info_at taking in a timestamp, it could take in a stream of audio data, and

return a stream of lighting values. The method signature for this function could be

something along the lines of:

def get_info_stream(audio_stream: Stream[Any]) -> Stream(LightingInfoType):
"""
audio_stream is a stream of audio metadata which allows the LightShow
to generate new lighting values.
"""

7.2.3 Exploration of mediums for displaying a lightshow

We are currently familiar with live light shows in-person at performances, and this

package makes it easier for someone at home with a few lights to design and implement

their own light shows. Also, as demonstrated earlier in the examples, LightShows can

be rendered in a 3D space. However, as virtual reality and augmented reality grow in

popularity, and as more exploration takes place in the world of virtual reality concerts

[11], exploring how light shows can be displayed in these virtual or semi-virtual worlds

provides a huge area of exploration. Further, as more mediums are explored, work

can be done to help adapt abstracted lighting shows to differing lighting setups. For

example, related work has been done in adapting room lighting scenarios across

differing arrays of light fixtures [21].

7.2.4 Expansion of the package

While the framework laid out in this thesis may be useful, it does not even begin to

exhaust what could be done with MIR in Python. To name a few abstractions that I

61

did not have the time to build:

• The shapes currently in the language are cubes, spheres, and growing and

shrinking spheres, but shapes such as cylinders, ellipses, and triangles could be

implemented easily.

• An abstraction using some of the work done by [6] to automatically adjust hue

colors based on the energy and valence of a piece of audio.

• An abstraction to continually adjust the size of a shape to match something in

the audio (for instance, matching the size of a sphere to the intensity of a piece

of music).

• An abstraction that automatically detects the verse, chorus, and bridge of a

song, and uses different LightShows to generate lighting based on which type of

section is playing.

7.2.5 Working with Machine Learning

Some early attempts were made to label songs with simple, high level abstractions

using videos to map to abstract LightShows. However, this was done manually, and

was quite slow, in part due to a lack of a proper way to abstract shows.

However, if a system was made that could automatically map from a video to

a LightShow, this could allow us to collect more training data for automatically

generating LightShows from concert videos. A system like this would also, after

showing a concert video to a model, be able to immediately replay that lighting on

any medium since we would get a matching LightShow object, which can be used for

any output medium.

62

Appendix A

Implemented Abstractions

63

Table A.1: Implemented Simple Abstractions

Abstraction
Name

Parameters General Description

at time_offset: float
lightshow: LightShow

Shifts the input lightshow by
time_offset milliseconds

together lightshows: Iterable[LightShow] Combines all of lightshows into one
LightShow.

fade start_value: HSV
end_value: HSV
length: float
lights?: Set[Light]

A LightShow that fades from
start_value to end_value over length
milliseconds (starting at time zero),
controlling lights if given, otherwise
controlling only generic Light zero.

constant color: HSV
length: float
lights?: Set[Light]

A LightShow that is the color color over
the time [0, length] in milliseconds,
controlling lights if given, otherwise,
just generic light zero.

new_controls control_definition:
(Light)→Set[Light]
lightshow: LightShow

Changes the input lightshow to control
outputs of control_definition. That is, if
Light x is in the output of lightshow,
those values are instead given to
control_definition(x)

strobe high_value: HSV
low_value: HSV
length: float
lights?: Set[Light]
time_high?: float
time_low?: float
frequency?: float

LightShow that strobes from time zero
to length between high_value and
low_value. Controls lights (default
generic light zero). If frequency is given,
uses that value for cycles per 1000
milliseconds. Otherwise, time_high and
time_low must be given, and define how
long, in each high-low cycle the values
should be used.

with_importance importance: int
lightshow: LightShow

This is the same as just the input
lightshow, but all outputs have
importance of importance.

repeat_at timestamps:Iterable[float]
lightshow: LightShow

Repeats the given lightshow at
timestamps. Equivalent to using
together and at semantically, though
this method can be more efficient.

concat lightshows: Iterable[LightShow] Plays the LightShows in lightshows one
after the other.

during start: float
end: float
lightshow: LightShow

Modifies the input lightshow to not have
any outputs outside the time range
[start, end] (in milliseconds)

64

Table A.2: Implemented Higher Level Abstractions

Abstraction
Name

Parameters General Description

on_component component: LightingComponent
lightshow: LightShow
control_light?: Light

A LightShow that uses the value of
control_light (default generic light
zero) from lightshow as the value for
setting all the lights in component.

on_midi midi_file_kwarg: str
light_show_on_midi: LightShow
pitch: int

A LightShow that schedules
light_show_on_midi to happen at
the start of every note that has pitch
equal to pitch, and expects a kwarg
named midi_file_kwarg pointing to
the midi file to use when with_audio
is called.

on_shape shape: Shape
lighting_component:
LightingComponent
lightshow: LightShow
control_light?: Light

A LightShow that uses the value of
control_light (default generic light
zero) from lightshow to light shape
on the given lighting_component.

back_and_forth start_location: Point
end_location: Point
time_to_move: float
shape: Shape
lightshow: LightShow
lighting_component:
LightingComponent
control_light?: Light

Uses the output from lightshow on
control_light (default generic light
zero) to color shape onto
lighting_component. However, the
origin for the shape is shifted from
start_location to end_location and
back (one cycle takes time_to_move
milliseconds).

65

66

Appendix B

Reference Code

class WithAlbumArtColors(LightShow):
"""
Represents a new LightShow that modifies the output of each LightShow
in <lightshows> to have colors given by 3 most dominant colors in the
album art at the url <album_url_kwarg>
"""

def __init__(self, lightshows: List[LightShow], album_url_kwarg: str):
super(WithAlbumArtColors, self).__init__()
self._lightshows = lightshows.copy()
self._album_url_kwarg = album_url_kwarg
self._with_audio_cache: Dict[int, LightShow] = {}

def get_info_at(self, timestamp: float) -> LightingInfoType:
return self._post_modifier.get_info_at(timestamp)

@property
def length(self) -> float:

return max(map(lambda lightshow: lightshow.length, self._lightshows))

@property
def start(self) -> float:

return min(map(lambda lightshow: lightshow.start, self._lightshows))

@property
def end(self) -> float:

return max(map(lambda lightshow: lightshow.end, self._lightshows))

@property
def all_lights(self) -> Set[Light]:

output = set()
for lightshow in self._lightshows:

output |= lightshow.all_lights
return output

67

def with_audio(self,audio_id:Optional[int]=None,**kwargs)->LightShow:
if audio_id in self._with_audio_cache:

return self._with_audio_cache[audio_id]

import requests
from PIL import Image

album_cover_url = kwargs.get(self._album_url_kwarg)
album_cover = Image.open(requests.get(

album_cover_url,
stream=True).raw)

palette_img = album_cover.quantize(3, kmeans=3)

Find the colors that occurs most often
palette = palette_img.getpalette()
color_counts = sorted(palette_img.getcolors(), reverse=True)
colors_hsv = []

for i in range(3):
palette_index = color_counts[i][1]
dominant_color = palette[palette_index * 3:palette_index * 3 + 3]
colors_hsv.append(

colorsys.rgb_to_hsv(
dominant_color[0] / 255,
dominant_color[1] / 255,
dominant_color[2] / 255))

album_color_covers = list(map(lambda hsv:
HSV(hsv[0],
hsv[1], hsv[2]),
colors_hsv))

Function for creating the various PostModifier functions
def info_modifier_factory(index: int) -> Callable[[LightingInfoType],

LightingInfoType]:
def info_modifier(old_info: LightingInfoType) -> LightingInfoType:

new_info: LightingInfoType = {}
index = index % len(album_color_covers)
for light, info in old_info.items():

new_info[light] = HSVInfo(
hsv=HSV(album_color_covers[index].h,

album_color_covers[index].s,
info.hsv.v),

h_importance=info.h_importance,
s_importance=info.s_importance,
v_importance=info.v_importance

)
return new_info

return info_modifier

Make the various PostModifier objects

68

together_list = []
for i, lightshow in enumerate(self._lightshows):

together_list.append(
PostModifier(

lightshow=lightshow.with_audio(audio_id, **kwargs),
info_modifier=info_modifier_factory(i),
all_lights_modifier=lambda x: x

)
)

new_output = Together(together_list)

self._with_audio_cache[audio_id] = new_output
return new_output

69

70

Bibliography

[1] Aubio: a collection of algorithms and tools to label and transform music and
sounds. https://aubio.org/. Accessed: 13-June-2022.

[2] Fred Collopy and Robert M. Fuhrer. A visual programming language for expressing
rhythmic visuals. Journal of Visual Languages & Computing, 12(3):283–297, 2001.

[3] Meyer D. Build "The Solonite". Popular Electronics, 28(5):27–30, 1968.

[4] Tom DeWitt. Visual music: Searching for an aesthetic. Leonardo, 20(2):115–122,
1987.

[5] Marc-André Gardner, Yannick Hold-Geoffroy, Kalyan Sunkavalli, Christian Gagné,
and Jean-François Lalonde. Deep parametric indoor lighting estimation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 7175–7183, 2019.

[6] Shih-Wen Hsiao, Shih-Kai Chen, and Chu-Hsuan Lee. Methodology for stage
lighting control based on music emotions. Information sciences, 412:14–35, 2017.

[7] Randy Jones and Ben Nevile. Creating visual music in jitter: Approaches and
techniques. Computer Music Journal, 29(4):55–70, 2005.

[8] Peter Kán and Hannes Kafumann. Deeplight: light source estimation for aug-
mented reality using deep learning. The Visual Computer, 35(6):873–883, 2019.

[9] Magicq. https://chamsyslighting.com/products/magicq. Accessed: 20-June-
2022.

[10] Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W. Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python.
In Proceedings of the 14th python in science conference, pages 18–25, 2015.

[11] Kelsey E. Onderdijk, Dana Swarbrick, Bavo Van Kerrebroeck, Maximillian Mantei,
Jonna K. Vuoskoski, Pieter-Jan Maes, and Marc Leman. Livestream experiments:
The role of covid-19, agency, presence, and social context in facilitating social
connectedness. Frontiers in Psychology, 12, 2021.

[12] Stephen E Palmer, Karen B Schloss, Zoe Xu, and Lilia R Prado-León. Music–color
associations are mediated by emotion. Proceedings of the National Academy of
Sciences, 110(22):8836–8841, 2013.

71

https://aubio.org/
https://chamsyslighting.com/products/magicq

[13] Kenneth J. Peacock. Instruments to Perform Color-Music: Two Centuries of
Technological Experimentation. Leonardo, 21(4):397–406, 1988.

[14] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection, 2015.

[15] Resolume. https://resolume.com/. Accessed: 20-June-2022.

[16] Spotify web API. https://developer.spotify.com/documentation/web-api/
reference/#/. Accessed: 13-June-2022.

[17] Spotipy Python library. https://spotipy.readthedocs.io/en/2.19.0/. Ac-
cessed: 13-June-2022.

[18] Three.js: Javascript 3D library. https://threejs.org/. Accessed: 13-June-
2022.

[19] Touchdesigner. https://derivative.ca/. Accessed: 20-June-2022.

[20] Yu-Te Wu, Yin-Jyun Luo, Tsung-Ping Chen, I-Chieh Wei, Jui-Yang Hsu, Yi-
Chin Chuang, and Li Su. Omnizart: A general toolbox for automatic music
transcription. Journal of Open Source Software, 6(68):3391, 2021.

[21] N. Zhao, C.D. Reinhart, and J.A. Paradiso. Image-based perceptual analysis of
lit environments. Lighting Research and Technology Journal, 0:1–21, 2018.

72

https://resolume.com/
https://developer.spotify.com/documentation/web-api/reference/#/
https://developer.spotify.com/documentation/web-api/reference/#/
https://spotipy.readthedocs.io/en/2.19.0/
https://threejs.org/
https://derivative.ca/

	Introduction
	Lighting

	Background
	Previous Work
	Relationship Between Music and Color
	Visualizing Music
	Automatically Generated Music Lighting
	Computer Vision and Lighting Detection

	Initial Work
	Initial Attempts
	Isolating the Stage
	Manual Annotations

	LightShow Package
	General Goals
	Core Design Goals
	Basic Concepts
	LightShows
	Lights
	Lighting Components
	Shapes

	Language

	Classes and Operators
	Core Operators
	Primitives
	Combiners
	Modifiers

	High Level Classes
	Geometry Aware Classes

	Applications and Examples
	Examples Setup
	Simple Examples
	A Simple Fade
	Simple Fade Repeated at Times
	Together With Another Fade Delayed By 4 Seconds

	Geometry Aware Examples
	Setting up the Geometry of the Scene
	Lighting Entire Component
	Lighting a Shape
	Moving Spheres
	Shapes that Change Over Time

	Music Aware Examples
	Simple Usage of on_midi()
	On_midi() Combined with Shrinking Spheres
	On_midi() with Moving Shrinking Spheres
	Matching Album Art Colors
	Slightly Changing How We Define Lighting Components

	Conclusion
	Evaluation
	Limitations and Future Work
	Flood lighting is not handled directly
	Representing Shows in Real Time
	Exploration of mediums for displaying a lightshow
	Expansion of the package
	Working with Machine Learning

	Implemented Abstractions
	Reference Code

