
Contact and Free-Gesture Tracking for Large

Interactive Surfaces

by

Che King Leo

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c© Che King Leo, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 24, 2002

Certified by. .
Joseph A. Paradiso, Ph.D

Principal Research Scientist, MIT Media Lab
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

Contact and Free-Gesture Tracking for Large Interactive

Surfaces

by

Che King Leo

Submitted to the Department of Electrical Engineering and Computer Science
on May 24, 2002, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

In this thesis, I redesigned a Responsive Window that tracked the locations of phys-
ical impacts on a pane of glass. To do this, I redesigned algorithms and boards,
and utilized a DSP to do the signal processing. Tracking accuracy was significantly
improved over the previous system. A study on radar rangefinding systems was also
done to select the best radar system for integration with the Responsive Window.
The applications for the system were realized, and debuted with great success.

Thesis Supervisor: Joseph A. Paradiso, Ph.D
Title: Principal Research Scientist, MIT Media Lab

3

Acknowledgments

To Joe Paradiso for all his insight, intuition, and confidence in me. I thank him for

giving me the chance to work for him. It has been a great, rewarding experience.

To Stacy Morris for all her help and insights, as well her willingness to help review

the previous incarnation of this thesis.

To Mats Nordlund for his insight and help with the Radar.

To Steve Francis for his insight and help with the DSP.

To Axel Yamamoto for his timely resourcefulness with Panasonic transducers.

To Mark Feldmeier, Josh Lifton, Hong Ma, and Nick Yu and all my colleagues

and friends in the Responsive Environments Group for putting up with me and

helping me when I needed help.

To all my friends for their patience, support and encouragement.

Finally, to my family for their encouragement, love and support. Without them, I

would never have gotten this far.

4

Contents

1 Introduction 15

1.1 Problem Description . 15

1.2 Prior Work . 15

1.3 General Overview . 17

2 Background and Motivation 21

2.1 The Previous Responsive Window Prototype 21

2.2 Motivation . 22

2.2.1 Real-Time Response . 23

2.2.2 Increased User Input Spectrum 23

2.2.3 System Robustness . 23

2.2.4 System Portability . 24

2.2.5 Self Calibration . 24

2.2.6 Free Gesture Tracking . 25

3 Responsive Window System Design 27

3.1 Design Overview . 27

3.2 Hardware Design . 28

3.2.1 Replacing the PVDF Strips 29

3.2.2 Low Frequency Impact Microphone 29

3.2.3 External Noise Transient Veto Microphone 30

5

3.2.4 Redesigned Pre-Amplifier Boards 31

3.2.5 Digital Signal Processor . 32

3.2.6 Sensor Window Placement . 33

3.2.7 Physical Hardware Implementation 34

3.3 DSP Software Design . 35

3.3.1 Sampled Waveform Analysis 36

3.3.2 Dynamic Trigger Threshold 39

3.3.3 Cellular Phone Noise . 41

3.3.4 Zero Crossing Count . 42

3.3.5 Waveform Normalization . 43

3.3.6 Rising Edge Detection . 43

3.3.7 Heuristic Chi-Square Fit and Cross Correlation Method 44

3.3.8 “Bash” and “Clap” Microphone Data Analysis 48

3.4 PC Position Determination Code . 48

3.4.1 Nearest Neighbors Algorithm 49

3.4.2 Calculating Hyperbolas . 50

3.4.3 Intersection of Hyperbolas . 51

3.4.4 Knock Position Determination 52

3.4.5 Low Frequency Impact and Clap Veto Microphone Data . . . 53

3.5 Window Calibration Code . 53

3.5.1 Location of Sensors . 54

3.5.2 Determining Velocity at Relevant Frequencies 54

3.5.3 Tap Types . 55

3.5.4 Mapping from the Glass to Pixels 55

4 Responsive Window Performance 57

4.1 Tap Type Determination . 57

4.2 Position Determination . 59

4.2.1 Tracking outside the sensor grid 67

6

4.2.2 Sources of Error . 67

4.3 System Latency . 68

4.4 System Sensitivity . 69

5 Discussion 73

5.1 Dispersion and Attenuation . 73

5.1.1 Iterative Methods . 74

5.1.2 Dechirping Filters . 75

5.2 Simpler Timing Analysis . 76

5.3 Window Sensor Placement . 77

5.3.1 Sensor Proximity to Window Edge 79

5.3.2 Valid Window Tracking Area 79

5.3.3 Nodal Behavior Effects . 80

5.3.4 Choosing the Best Placement 82

5.4 Sensor Characteristics . 83

5.5 Glass Thickness . 84

6 Radar Rangefinders 85

6.1 Narrowband Tank Radars . 86

6.2 Micro-Impulse Radar . 88

6.3 Doppler Radar . 89

7 Applications 93

7.1 Interactive Drawing Exhibit . 93

7.2 Knock-Driven Display . 96

7.3 Store Front Window . 96

7.4 SIGGRAPH: Interactive Window . 101

8 Conclusion and Future Work 103

8.1 Miniaturizing Components . 103

7

8.2 Scaling to Larger Windows . 104

8.3 Scaling to Other Media . 104

8.4 Future Applications . 105

A Abbreviations and Symbols 107

B Hardware Schematics 109

C Software Code 117

C.1 DSP Code . 118

C.2 C++ Code . 139

D Explanation of Calculations 155

D.1 Calculating σ . 155

8

List of Figures

1-1 Current hardware configuration for Responsive Window system. . . . 19

2-1 Original PVDF with pickup . 22

3-1 Flow diagram for determining knock position 28

3-2 “Bash” microphone glued to the window surface 30

3-3 Comparison of size between redesigned (left) and previous pre-amplifier

board (right). 32

3-4 Preamplifier board with copper shielding 33

3-5 Internal view of housed electronics . 34

3-6 External view of housed electronics 35

3-7 Flowchart for DSP software . 36

3-8 Sampled waveforms for different tap types 37

3-9 DFT of sampled waveforms for different tap types 38

3-10 Ring down for a metal (top) and knuckle (bottom) tap 40

3-11 Absolute value GSM cellular phone noise picked up by the Panasonic

EFVRT receiver and preamplifier (normalized) 42

3-12 Translation from point on window to pixel on projection 55

4-1 Histogram of knuckle and metal tap frequency 58

4-2 Piezo and dynamic responses to knuckle knock and bash 59

4-3 Granularity (for sample quantization) of Hyperbola Intersection algo-

rithm for u=2000 m/s . 60

9

4-4 Zoom of granularity of Hyperbola Intersection algorithm for u=600 m/s 61

4-5 Estimated positions for metal taps at five positions for 1 cm glass . . 62

4-6 Estimated positions for knuckle taps at five positions for 1 cm glass . 62

4-7 Estimated positions for metal taps at five positions for 1
4

inch glass . 63

4-8 Estimated positions for knuckle taps at five positions for 1
4

inch glass 64

4-9 Estimated positions for metal taps at five positions for (sensors 35 cm

from corner) 1
4
” glass . 65

4-10 Estimated positions for knuckle taps at five positions for (sensors 35

cm from corner) 1
4
” glass . 66

4-11 Rays of energy leaving a point source in an inhomogeneous medium . 68

4-12 Relative signal height vs. distance . 70

5-1 Different window sensor placements: placement 1 - blue; placement 2

- red; placement 3 - black . 78

5-2 Comparison of frequency components for different sensor placement.

placement (1) (top) versus placement (2) (bottom) 81

6-1 Using the Saab Tank Radar Pro as a radar rangefinder 86

6-2 The commercial use for the Saab Radar Tank Pro 87

6-3 Micro-Impulse radar . 88

6-4 Doppler radar developed at the MIT Media Lab 89

6-5 Doppler radar measurements . 90

7-1 Interactive Drawing Exhibit at the Ars Electronica Museum 94

7-2 Close-up of Interactive Drawing Exhibit 95

7-3 “A Telephone Story” Exhibit opening screen 97

7-4 “A Telephone Story” Exhibit in action 98

7-5 Storefront Display at American Greetings 99

7-6 Close-up of storefront display at American Greetings 100

7-7 Setup for the Interactive Window at SIGGRAPH, 2002 101

10

7-8 Sample graphics for Interactive Window 102

B-1 Schematic for pre-amplifier board . 110

B-2 Layout for pre-amplifier board . 111

B-3 Schematic for analog signal conditioning board 112

B-4 Layout for analog signal conditioning board 113

B-5 Schematic for power supply auxiliary board 114

B-6 Layout for power supply auxiliary board 115

11

12

List of Tables

4.1 Table of knock statistics for 1
4

inch window with sensors closer to Center 65

4.2 Table of knock statistics for 1
4

inch window with sensors further from

the corners . 66

13

14

Chapter 1

Introduction

1.1 Problem Description

The quest to create interactive rooms has inspired much interest by the research

community [1]. Indeed, many groups across the US work towards the greater goal of

one day being able to live in a “smart” house fully facilitated by the use of computers

and the latest technologies. As an example, there are advantages in making sensors

which can be easily retrofitted to surfaces already available in homes easily retrofitted

with sensors to make them interactive. Many windows have already been retrofitted

with anti-theft systems. After all, the more information a computer has about its

environment, the better it can aid the user. In this thesis we discuss methods for

creating an interactive system from already in-place surfaces. This system would be

able to generally monitor the user’s position and activity within a given area, and

feature a large, accurate, tracking surface for detailed interaction.

1.2 Prior Work

In 1998, Ishii and Paradiso collaborated to create a project called Ping Pong Plus

(PP+) [2]. In this project, a projector cast images onto a Ping Pong table that

15

were correlated to where the ball had bounced on the table, allowing the players to

attain a higher level of engagement. The tracking mechanism used in PP+ consisted

of distributed microphones, and used a simple time of flight analysis to determine

the position of the bounce. In this way, the ping-pong table was made into an

interactive surface. Naturally, this straightforward technique could be expanded to

other continuous surfaces, most notably glass.

The use of glass as an interactive surface is appealing in many ways. First and

foremost, it is one of the most common elements in society today. Windows are in

most any man-made structure, allowing many places to be easily retrofitted with an

interactive surface. Second, glass is usually clear. Given sufficient throw, a projector

and a screen can be placed behind the glass to allow images to appear, while never

having parts of the image blocked by users, a problem found in most user interfaces

that use a projector. In 2000, Paradiso et al. [3] proposed and demonstrated trans-

forming large sheets of ordinary glass into an interactive surface capable of tracking

the location of knocks via acoustic pickups adhering to the glass.

In 2001, Checka presented a more robust system of easily retrofitting pieces of

glass into interactive surfaces [4]. Using piezoelectric polyvinylidene fluoride (PVDF)

strips to pick up flexural bending waves created by users knocking on the glass,

the system was able to roughly track and process the user input. The system was

demonstrated by converting an ordinary conference room wall into a fully interactive

web browser. However, there were a few potential drawbacks to this approach that

prevented it from practical deployments. Most notably, the use of the interpretive

language MATLAB and a commercial A/D PCI card to process the knocks caused

considerable “dead time” of the system, and therefore limited the user’s rate of input.

Also, the use of a 3rd-order coordinate calibration model caused some points to be

more significantly inaccurate than others. Finally, the system was limited to knocks

made by human knuckles. This system was incapable of differentiating many different

types of inputs, such as the difference between higher frequency metallic knocks (via

16

metallic objects like rings and keys) and more conventional human knuckle-based

knocks. This is crucial for tracking knock position because the wavefronts from these

types of knocks travel at very different velocities because of the dispersive nature

of the glass. This system was also unable to correctly discern valid knocks which

produce reliable coordinates from poor knocks that produce unreliable coordinates

and false triggers caused by external sources such as pickup from cellular phones and

sharp sounds like loud, nearby hand clapping or door slams. Finally, the system was

only interactive in two dimensions, lacking the ability to have depth perception. Such

an ability would seem to be a very useful feature, since it would provide an additional

dimension’s worth of information for the system to use. The screen, for instance,

could respond differently as users approach.

1.3 General Overview

In this thesis, the Responsive Window system presented above was modified so that

it became faster, more robust, more accurate, and produced more features. Changes

ranged from rewriting the tracking and signal processing algorithms to modifying the

hardware used in the system. In addition, a second system of sensor input was in-

vestigated: a low-power range-finding radar, which would allow for a third dimension

depth of detection. The addition of a system could add robustness to the interactive

window system by monitoring nearby human presence, providing an entirely new level

of interaction.

The system described by Checka [4] has been modified in several ways. First, the

piezoelectric PVDF foil strips were replaced by piezoceramic microphones (Panasonic

EFVRT series) which are less noise-sensitive [5]. These sensors were glued to the

glass and covered by a shield box, reducing the total amount of electromagnetic

pickup noise introduced into the system. An Analog Devices digital signal process on

(DSP) replaced the National Instruments Card with MATLAB for data acquisition

17

and the differential time-of-flight analysis. Figure 1-1 shows the current hardware

configuration for the system.

Two extra microphones, labeled “bash” and “clap” were used to provide addi-

tional information to the system. The bash microphone and circuitry which consisted

of an electrodynamic microphone with a gain stage and lowpass filter was used to

cleanly detect low frequency “bashes”(under 300 Hz; i.e. hitting the glass with the

palm of the hand), since the piezo-electric pickups had a poor frequency response for

low frequencies. The “clap” microphone was used to veto ambient noise from the sur-

rounding off-window environment that falsely triggered the system. It was mounted

in the air, instead of on the glass. Its analog signal conditioning involved several gain

stages, a peak detector and a bandpass filter. By detecting when a large amplitude

existed on the clap veto microphone, the system was able to use this information to

reliably veto most of the false triggers to the system.

The analysis algorithms were substantially changed for improved performance

and real time operation. A heuristically-guided chi-squared estimation was used to

select which portions of the waveform most closely matched each other, so that those

portions could be cross-correlated to fine-tune the accuracy of the values used for time-

of-flight analysis. An iterative algorithm implicitly solved the problem of finding the

intersection of the two hyperbolas defined by the time-of-flight values. This was done

by matching the differential time-of-flight values by minimizing the error over the x-

coordinate and the y-coordinate separately via a logarithmic search. The algorithm

also counts the number of zero-crossings in the waveforms over a certain period of

time. This simple frequency analysis was used in conjunction with the time-of-flight

values in a nearest neighbors algorithm [6] to determine the dominant frequency of

the flexural wave, thereby providing the correct speed of the waveform, a necessary

value for correct calculation of the knock position.

In order to make the system aware of a third dimension, it will be augmented

with a simple, low-power range-finding radar that looks through the surface of the

18

Figure 1-1: Current hardware configuration for Responsive Window system.

19

glass. The radar will be monitored by the computer that drives the media content

and video projector. This device also assisted the algorithm in several ways. First,

in conjunction with the clap microphone, it reinforced the system to prevent false

triggers, by instructing the system not to process a knock event if there is no user

standing in front of the window. A second benefit from the range-finding radar was

its ability to track and zone users as they moved about the window. Such information

allowed the display to adjust its projection, evoking the feeling of interaction beyond

knocks on a piece of glass, thus allowing users to fully immerse themselves in the

window.

20

Chapter 2

Background and Motivation

2.1 The Previous Responsive Window Prototype

The previous system developed by Checka [4] described a system that employed

polyvinylidene fluoride (PVDF) as contact sensors to track acoustic impacts on the

window. Strips of PVDF backed with foam were mounted on a small PCB board

that amplified the acoustic signals to increase the signal to noise ratio. This is shown

in shown in Figure 2-1. Tiny nuts were then precisely super glued to the surface of

the glass at desired locations and used to screw mount the board. The PVDF strips

were thus tightly pressed against the glass and were able to pick up flexural waves

originating from user input.

The acoustic waveforms created by knocks on the glass were amplified by the

PCB board and sent through analog signal conditioning to remove high frequency

components. After this, the signal was digitized by a National Instruments NI-6024E

Data Acquisition Card and processed by MATLAB on a PC to discern the position of

the acoustic impact on the glass. The algorithms used to derive position consisted of

a third-order fit based on time-of-flight information obtained using cross-correlation

analysis. The third order fit was based on data gathered via calibration. Calibration

consisted of knocking on twenty known positions on the glass, and calculating the fit

21

Figure 2-1: Original PVDF with pickup

over these twenty variables.

When using the third order model, the system achieved an accuracy of less than

a 5 cm standard deviation from the knock positions, when the knocks occurred on

the calibration points. Checka also described a method for calculating time of flight

from a simple rising edge analysis, which produced a 10 cm standard deviation from

the knock position.

2.2 Motivation

In the quest for a system that can be responsive to user input, we wanted to create a

system that responded to acoustic impacts in real-time, as well as to a wider spectrum

of user input, unconfined to the rigors of meticulously setting up a precise calibration

system. We also desired a system that improved on accuracy and/or precision. Lastly,

we wished to create a more robust system, which was less likely to be fooled by fake

input (i.e., ambient noise and other false triggers), while still being responsive in some

way to all types of valid user input.

22

2.2.1 Real-Time Response

The use of MATLAB as the signal processing tool, was beneficial for developing

algorithms, due to its close-to-infinite precision arithmetic. However, depending on

MATLAB running on a PC is a poor choice to employ in creating a system that needs

to process information at a rate better than the maximum rate of human knocking

(5-10 Hz). In the previous system, using the NI-6024E and MATLAB setup incurred

approximately one to two seconds of delay before a response was shown on the screen.

To improve on this delay, some of the algorithms were implemented on a digital signal

processor (DSP), as described in this thesis.

2.2.2 Increased User Input Spectrum

The previous system was only able to track knocks created by an impact with one

knuckle. This was because the calibration knocks used to calculate the coefficients

for the forward determination scheme in the third order fit were all knocks using

a single knuckle on each calibration point of the glass. Using multiple knuckles or

different sections of the hand, including the palm, the fist, and fingernails often led

to inconsistent results; thus the previous system could only determine knock position

caused by knocks made with the knuckle. The new system was designed to be able

to track impacts caused by other sources, such as metallic taps from rings and keys.

The system was also able to track and/or respond to a wider range of knuckle knocks.

This is vital, as people will knock in any fashion in a public venue, and one cannot

reasonably expect them to be highly constrained.

2.2.3 System Robustness

The previous system ran on Windows 98, and the machine required rebooting every

day. Without rebooting once a day, continual knock estimation would fail, because the

NI-6024E and MATLAB combination would stall and stop processing taps, causing

23

the system to freeze. A migration to a digital signal processor (DSP) for signal

discretization and part of the signal processing easily improved system robustness

by eliminating the signal processing done on the PC. Second, the sensors would

also pick up random noise before the amplification stage. This problem was solved

by changing the sensors and placing a shield of copper on the pre-amplifier board.

Finally, the PVDF sensors would fall off easily, as the strength of their attachment

to the glass relied upon the screw connection between the pre-amplification PCB

boards and the nuts glued to the glass. By changing the type of sensors to a cheap,

commercially produced device (piezoceramic telephone receivers, found to be superior

in performance to the other pickups tested for this purpose), it allowed the sensors to

be super-glued to the glass, thereby eliminating the mechanical instability of Checka’s

“pinched” sensors.

2.2.4 System Portability

The previous system also did not lend itself to portability. The requirement to have

a PC with an open PCI slot for the NI-6024E card, as well as needing prototype

analog electronics did not allow the system to be easily brought from place to place

for display. The complicated setup and extensive requirements for different software

made the system less portable. It was also desirable to build a system that could be

eventually manufactured cheaply (at a cost of less than 100 per unit). The use of the

$3000 NI-6024E data acquisition card prohibited this requirement. Therefore, a DSP

was used for signal discretization and initial signal processing.

2.2.5 Self Calibration

Another requirement for the new system was that it should have an easy to use user

interface (UI) that would allow any user to calibrate the Responsive Window system.

Because every sheet of glass could potentially have different characteristics, a program

was needed that was versatile and allowed the user to easily calibrate the system.

24

2.2.6 Free Gesture Tracking

To allow for free gesture tracking, radar rangefinding systems were investigated for

integration into the Responsive Window. This integration will allow the system to

react not only to two dimensional input on the sheet of glass, but also the third

dimension of depth away from the surface. Doing so broadened the spectrum of

applications for the system.

25

26

Chapter 3

Responsive Window System Design

3.1 Design Overview

This section describes the Responsive Window system in four parts: Hardware Design,

DSP Software Design, PC Software Design, and Window Calibration.

The hardware design for the Responsive Window consisted of a redesign of the

analog signal conditioning board, as well as a design of the digital components, and

the physical implementation of the system (i.e. where the sensors are placed on

the window, and other physical structures used to improve robustness). The PVDF

strips were replaced with Panasonic piezoelectric receivers. Two more sensors were

introduced to the system - a crystal microphone for vetoing high energy noise that

can falsely trigger the system, and an electrodynamic microphone for detecting low

frequency “bash” impacts that did not get picked up well by the Panasonic receivers.

The pre-amplication boards were designed to increase bandwidth, to prevent acci-

dental destruction of delicate analog parts, and to make them modular. The DSP

chosen to do the signal processing and signal discretization was the Analog Devices

ADMC401 DSP chip, which has the ability to interface with a computer via a serial

cable link.

The software design had three main parts: DSP Code, PC Knock Position Deter-

27

Figure 3-1: Flow diagram for determining knock position

mination Code, and Calibration Code. The Calibration Code calculated parameters

to be used by the PC Knock Position Determination Code. The entire knock position

determination software design for the Responsive Window required both DSP and

PC code. The DSP code extracted useful characteristics for determining knock type,

as well as time-of-flight information between two predetermined pairs of sensors. The

PC knock determination program, was written in C++, and used parameters obtained

from calibration code and parameters from the DSP to calculate the knock position.

Figure 3-1 shows the flow diagram for the Responsive Window knock position deter-

mination.

3.2 Hardware Design

The hardware redesign was done by using a bottom-up approach. First, the appro-

priate sensors were chosen to replace the PVDF strips. Then, the pre-amplifier board

was redesigned. Next, the analog signal conditioning board was redesigned to include

channels for all the microphones. Then, a DSP was chosen, and a board was made

to power different sections of the hardware, followed by physical enclosures for the

28

system. Finally, sensor placement on the window was considered.

3.2.1 Replacing the PVDF Strips

First, different types of microphones were investigated to replace the PVDF strips,

since the PVDF strips did not have uniform frequency responses. Also, the mount-

ing for the PVDF strips allowed various amounts of background noise to enter the

system, depending on how tightly strips were pressed against the window. Therefore,

manufactured transducers were investigated, including microphones, speakers and

other sensors. The final choice was a Panasonic piezoelectric cellular phone receiver

(EFVRT series). The receiver had a 300-5000 Hz range for its frequency response,

which covered a portion of the frequencies of the knocks of interest. This Panasonic

receiver had the best performance across all types of knocks compared to all other

transducers tested for this application. A low frequency impact “bash” microphone

was used to complement the Panasonic receiver in the very low frequency range, where

bashes produced the most response. However, the Panasonic receivers were suscep-

tible to interference from cellular phone transmission signals when cellular phones

which used the GSM standard were very close (e.g. a few feet), so this flaw was

compensated for in the DSP code.

3.2.2 Low Frequency Impact Microphone

To allow the system to respond to low frequency “bash” impacts (such as those from

the fist of a hand), a fifth microphone was used. An electrodynamic microphone

was chosen because it responded well at lower frequencies. In order to be maximally

responsive in the lower frequency range, the microphone had to be glued with only its

diaphragm stuck to the window. Thus, in order to allow the microphone to operate

in a stable manner (without falling off), we had to epoxy the center of the diaphragm

to the window, and cantilever the mass of the microphone while strain-relieving the

cable. Figure 3-2 depicts the electrodynamic microphone with its diaphragm glued to

29

Figure 3-2: “Bash” microphone glued to the window surface

the surface of the glass. The resultant assembly was resonant at the low frequencies

excited by a bash. This microphone was conditioned by a circuit that used simple

analog peak detection to determine whether or not very low frequencies had been

detected. Figure B-3 in Appendix B diagrams the final circuit used.

The peak-detected signals from the low frequency impact microphone were used

to determine if a “bash” event had occurred that was beyond the frequency response

range of our piezoelectric receivers.

3.2.3 External Noise Transient Veto Microphone

The quest to allow for a broad user input spectrum also allowed the system to be

susceptible to external events that could falsely trigger an event. The main source

of false triggers came from high-energy transient signals, such as hand clapping. The

energy of hand clapping can couple into the glass and cause the receivers to falsely

pick them up as knocks. Therefore, we placed a sixth microphone in the air so that

the system could tell if the signal was stronger in the air or in the glass, thereby

indicating the origin of the trigger. A simple crystal microphone was used that had

a very nice frequency response to the types of sharp, transient signals that created

30

false triggers.

Analog components were designed to properly filter the signals from this trans-

ducer. Figure B-3 diagrams the final circuit. A high gain stage was provided for the

signal, since an amplifier board was not used for this microphone, and out-of-band

noise was filtered.

3.2.4 Redesigned Pre-Amplifier Boards

In order to minimize induced noise and electromagnetic pickup, the first stage of the

preamplifier was mounted right at the transducer. The original pre-amplifier boards

[4] were built with two goals in mind. The first was to allow the boards to be screwed

onto nuts crazy-glued onto the surface of the window, so that the sensors could be

removed without damage. The second was to improve the signal to noise ratio (SNR),

by amplifying the signal before it was transmitted to the main board.

A 3-conductor cable using a mini-stereophone jack coupled the power, ground, and

output signal to the preamplifier boards. When the stereophone cable was physically

plugged into the pre-amplifier board jack, there was a brief moment when the signal

out was shorted to ground. The previous setup thus allowed full power to be dumped

out of the output of the preamplifier IC, an OP162, into ground. Hence, if this was

done while power was on, it would sometimes result in the OP162 burning up. In

order to limit the output current, we placed a small resistor (330 Ω) was placed in

series with the output to the OP162.

Also, since the piezoelectric microphones required a high impedance input, R4 and

R5 were increased to 2.0 MΩ in order to get a better signal from the output. Finally,

in order to provide modularity, the board was designed so that it could be used for

microphones that required either a low or high impedance front end. Figure B-1 from

Appendix B shows the new schematic for the pre-amplifier board.

The area board was decreased by 45%, so that the amount of stress and torque

on the sensor was reduced. The use of the smaller board size allowed for the use of

31

Figure 3-3: Comparison of size between redesigned (left) and previous pre-amplifier
board (right).

a wider range of sensors, (i.e., sensors with smaller footprints). Figure 3-3 compares

the sizes of the two boards.

To reduce the amount of noise pickup at the preamplifier stage, a physical shield

made from copper siding material was fitted on top of the preamplifier board. Fig-

ure 3-4 depicts a board fitted with the copper shield.

3.2.5 Digital Signal Processor

The digital signal processor (DSP) that was chosen had to meet several requirements.

First, the DSP had to be able to sample on at least six channels, allowing it to sam-

ple the inputs from the four contact microphones, plus the two other microphones.

Second, the DSP needed a sample rate well above the Nyquist frequency. The Pana-

sonic EFVRT receivers had a frequency range up to 5 kHz, so to properly sample the

wavefront signal, the DSP had to have a minimum sampling throughput of 50 kHz

per channel. Third, a good data resolution of at least 10 bits was desired. Finally,

32

Figure 3-4: Preamplifier board with copper shielding

the DSP needed to have a serial output connection to allow the DSP unit to easily

interface with most computers, either via a USB serial port or a legacy serial port.

At the time of the DSP selection, the only readily available solution that met all

of these requirements was an evaluation kit from Analog Devices - the ADMC401

Motor Controller Kit. The ADMC401 kit had eight channels of inputs, a sampling

rate of 50 kHz, 12-bit resolution, and a serial port interface.

3.2.6 Sensor Window Placement

The four main contact sensors were placed so that each sensor was not too close

to the window edge, to minimize the effects of reflections from the closest window

edge which could contaminate the wavefront arrival. Because the highest dominant

frequency traveled at speeds ranging from 1200 m/s to 3000 m/s (depending on glass

thickness), a 50 kHz DSP sampling rate was insufficient to allow for sensor placement

in arrays. this would have allowed the position to be determined via a linear array

of sensors with phase calculations. The best solution for our constraints was to place

33

Figure 3-5: Internal view of housed electronics

each sensor some constant distance from each corner. Chapter 5 discusses experiences

with different sensor placements on the window and their implications.

The “bash” microphone was placed at the top center of the window. The elec-

trodynamic microphone needed to be able to sense very low frequency flexural waves

from its location. The “clap” microphone was placed in front, concealed out of view

at the top of the display. This was so that users would not see the microphone, and

deliberately try to trick the system into falsely triggering.

3.2.7 Physical Hardware Implementation

To protect the electronic hardware in the system, all the analog and digital com-

ponents were placed inside a sturdy 11.5′′ × 8.5′′ × 5.5′′ aluminum box. Power was

provided to the system by a ±5V power supply. A breakout board was used to dis-

tribute various voltages required by system components, including 9V for the serial

driver, 5V , and -5V for the analog and digital electronics. Figures 3-5 and 3-6 depict

the internal and external view of the box.

34

Figure 3-6: External view of housed electronics

3.3 DSP Software Design

The DSP Code was used to extract features from the sampled waveforms, and send

these features to the PC Knock Determination Program. The DSP code can be bro-

ken up into several parts - waveform normalization, trigger threshold, cellular phone

interference detection, zero crossing count, heuristic waveform selection, rising edge

selection, and analysis of the signals provided by the “bash” and “clap” microphones.

Figure 3-7 is a flowchart for the DSP software.

A dynamic trigger threshold on the window-mounted sensors controlled the point

at which samples from the sensors would start to be processed. Next, any vetoes

were derived to stop processing for false triggers, such as cellular phone noise. Events

considered valid were then further processed to acquire a zero crossing count, and a

heuristic waveform selection and rising edge analysis was performed to find differential

time-of-flight parameters.

Before the DSP software design is discussed, it is informative to investigate the

35

Figure 3-7: Flowchart for DSP software

characteristics of the waveforms sampled by the DSP.

3.3.1 Sampled Waveform Analysis

Figure 3-8 illustrates several types of the waveforms that can be obtained from various

impacts on a 143 cm ×143 cm, 1
4

inch thick tempered glass, mounted on a wooden

frame. As the metallic taps produced a much larger response in the transducers, they

tended to saturate more (although the most relevant initial wavefront remains linear.)

Hard, “metallic” impacts were found to excite higher frequencies than most knuckle

impacts. This is evident not only from looking at the Discrete Fourier Transform

(DFT) of the sampled signals (with the DC gain subtracted out), but also from hear-

ing the timbre of the sound made from the knock. Figure 3-9 shows the magnitude

of the frequency response for the various waveforms shown in Figure 3-8.

There are two big peaks at around the vicinity of 1000 Hz for knuckle-based

impacts, and one peak at 3200 Hz for metal-based impacts. Regardless of objects used

for impact, it seemed that the only major frequencies that could be excited by users for

this particular sheet of glass were located around 1000 Hz and 3200 Hz. Because of the

36

Figure 3-8: Sampled waveforms for different tap types

37

Figure 3-9: DFT of sampled waveforms for different tap types

38

dispersive nature of the glass, different frequency components in the glass propagated

through the glass at different speeds. Thus, calculating the velocity for both dominant

frequencies became essential for determining knock position. Because the two peaks

at 1000 Hz traveled at relatively the same speed, the average speed for knocks exciting

that frequency range was used. Perplexingly, the distal interphalangeal joint (upper

knuckle) knock has frequency content in both areas. In order to properly calculate

the knock origin for the upper knuckle knock, a velocity associated to the frequency

at 1000 Hz was used. This led to an algorithm for determining the difference between

knuckle and metal knocks.

If the mean of each set of waveform samples was brought to zero by subtracting out

initial bias, and took the absolute value of each waveform, “lobes” that represented

the flexural waves caused by the impact were left. At some point the peaks of each

lobe no longer increase in magnitude and the waveform appears to become “random.”

This “randomness” is mainly caused by the dispersive nature of glass, the nature of

the impact excitation, and the reflections from the glass edges as the glass lapses

into modal oscillations. Thus, in order to accurately find a good differential time-of-

flight between two sensors, it would be easier to only compare “clean” sections of the

signal where only one frequency component is dominant. This is a departure from

the cross-correlation method that Checka [4] used. In the previous system, Checka

performed cross-correlation on entire 8 ms samples of both signals. Here, this system

seeks to increase precision by correlating specific sections of each sample which were

more clearly from one dominant frequency.

3.3.2 Dynamic Trigger Threshold

In order to process knock events, it was important to know when the timing and

the number of input signal samples were valid for processing. At first glance, this

would seem easily determined by taking some amount of samples before and after a

set threshold was reached; however, this method would lead to many false triggers.

39

Figure 3-10: Ring down for a metal (top) and knuckle (bottom) tap

40

Figure 3-10 shows the “ring down” effect for a knuckle and metal tap placed at the

center of a 143 cm × 143 cm window with sensors placed 35 cm from each corner. The

window could ring for over 0.1 seconds like a chime (depending on the kind of glass

and the mounting), causing false triggers immediately after the correct, initial tap

was processed. Therefore, a dynamic trigger threshold was implemented, so that the

knock threshold would immediately rise in magnitude after an event was triggered,

and thereafter slowly return to the original base trigger threshold. Since any new

events of significant intensity are well above the “leftover” signal from the previous

impact, a trigger using the artificially higher threshold would mean a fresh knock has

occurred. Once triggered, 400 samples (8ms) were stored, consisting of 150 pre-trigger

samples and 250 post-trigger samples for each of the four contact microphones and

the clap microphone. Since the low frequencies arrive much later, an extra 600 post-

trigger samples were stored for the slow-response, low-frequency impact microphone

(for a total of 1000 samples). Triggers were caused by exceeding the threshold on any

of the contact pickups or the bash microphone signals. They were not used by the

“clap” microphone, which only produces a veto.

3.3.3 Cellular Phone Noise

Because the Panasonic EFVRT series receivers and the preamplifier boards were

sensitive to GSM cellular phone signals, the DSP was used to veto such signals. This

was done by investigating the structure of the signals that which were picked up.

Figure 3-11 shows the absolute-value waveform received for a common GSM signal.

The GSM pulse had a relatively sharp decay curve and was zero outside its pulse

range. This was unlike a knock event, which took relatively longer periods of time to

ring down. Thus, the DSP checks to see if the end of the sampled signal is at noise

levels. This indicates that cellular phone signals, and not real knock events, are being

picked up since the cellular phone signals decay much more rapidly.

41

Figure 3-11: Absolute value GSM cellular phone noise picked up by the Panasonic
EFVRT receiver and preamplifier (normalized)

3.3.4 Zero Crossing Count

A zero-crossing count was done before any waveform processing. This operation

counted the number of significant crossings through the initial bias for the sampled

waveform. A simple crossing count was done as follows:

(1) Calculate a threshold for noise +d and −e (d, e ∈ R+), forming a transition band

of width d + e.

(2) Increment the zero crossing count every time the signal alternated sides of the

transition region.

This method only counted the dominant frequency in the system, since signals which

had a frequency component smaller than the width of the transition region had little

affect on the zero crossing count. It resulted in a fairly accurate tally of the number of

zero crossings at the dominant frequency, thereby estimating whether the dominant

frequency was low or high. This was used as a very simple means to calculate the

dominant frequency of the flexural wave, so as to select the correct speed of the

42

flexural wavefront.

3.3.5 Waveform Normalization

The initial bias was subtracted from the sampled waveforms, xa[n], before analysis

was performed on them. This allowed all the sampled signals to be compared with

each other without trouble. Because only differential time-of-flight analysis was im-

plemented on a small frequency band, simple positive algebra could be used to avoid

excessive use of absolute values on the DSP by finding the zero-referenced absolute

value of the waveform. This is because the positive envelope for a given narrowband

signal is approximately equal to its negative envelope.

The waveform was compensated by subtracting the initial bias in the signal (during

the first fifty samples of the pre-trigger phase), and then the absolute value was taken

to get the new waveform, x̆a[n], as follows:

x̆a[n] = |xa[n]− 1

50

∑
0<i≤50

xa[i]| (3.1)

In order to reduce noise in the system, the signal was conditioned with a simple

first order FIR filter to acquire the normalized waveform, x̃[n]:

x̃a[n] =
x̆a[n− 1] + x̆a[n]

2
(3.2)

3.3.6 Rising Edge Detection

When trying to determine which samples of each waveform originated from the source

at the same time, the simplest solution would be to look for the spot where the signal

rises above a threshold in all four waveforms. This is called rising edge detection, since

it looks at the first significant rising edge of the waveform. However, it was found that

rising edge detection was somewhat inaccurate, especially for knuckle knocks. A low

threshold was susceptible to noise, while a high threshold was susceptible to missing

43

rising edges due to attenuation of the signal. Knocks close to one sensor would have

very different maximum magnitudes for the sensor that was close by compared to the

sensor that was furthest away.

The method used here was to find the spot where the signal first surpassed 1
4

of the maximum height of the sampled signal. From this point, the algorithm then

backtracked n steps, before proceeding forward to find the first spot that rose above

some lower threshold. In other words, in order to provide a more accurate rising edge

estimate, a higher threshold was used first, preceded by a lower threshold crossing

(in effect a double threshold level). The maximum n between thresholds was chosen

to be 50 samples, an estimate for the length of two full cycles of the lower dominant

frequency for the flexural wave.

None of these thresholds are related to the dynamic trigger threshold used in ac-

quiring the samples and described in Section 3.3.2. However, since the lower threshold

is a constant voltage (0.1V) above the maximum “noise” voltage in the pre-trigger

phase, this method estimates the rising edge incorrectly less often than one cycle.

3.3.7 Heuristic Chi-Square Fit and Cross Correlation Method

While improving accuracy compared to the previous Responsive Window system for

position determination, the rising edge method discussed in the previous section did

not have good precision. One way to increase precision when using the rising edge

method is to match the features (e.g. zero crossings and peaks of lobes) instead of

just the rising edge in the normalized waveforms, x̃a[n].

It would be ideal to perform signal processing on the parts of the sampled signal

that are least affected by dispersion or reflections. Due to dispersion, zero-crossings

in those affected parts of the wavefronts are not reliable markers for time-of-difference

calculations. Because dispersion causes higher frequencies to travel faster, the earliest

part of the signal consisting of the highest dominant frequency was examined, result-

ing in the examination of a predominantly narrowband signal. In order to match

44

lobes (and thus zero-crossings) for each of the signals, a sets of lobes most likely to

have originated from the same part of the flexural wave were chosen from the sam-

pled waveform . Hence, if x̃[si] represented the sample that was the ith zero-crossing

in the sampled waveform, the chosen lobes from x̃[n] are those within the range

si ≤ n ≤ si+N such that, for some set of constants δ1, δ2, ε, five heuristic conditions

are met.

Heuristic #1

The first heuristic is based on the fact that it is not useful to compare noise with

noise. Thus, a heuristic is needed that guarantees that the smallest lobe exceeds

some minimum height:

max
si≤n≤si+1

x̃[n] > (1 + δ1) max
0≤n≤50

x̃[n] + ε (3.3)

Equation 3.3 assures that the smallest lobe will be above some threshold determined

by δ1 and ε. For this implementation, δ1 = 0.5 and ε = 0.1(V) were used. The

baseline threshold is determined from the first fifty samples of the pretrigger, before

the wavefront arrived.

Heuristic #2

In order to insure that the lobes used had only one frequency component, only lobes

that had no more than one point of inflection in them were used. Extra inflection

points in the lobe would indicate the presence of a different frequency. However,

saturated lobes (where the top of the lobe is flat) were included to accommodate

intense impacts, as long as the lobe obeyed all the other heuristics.

Heuristic #3

Since it is obviously counter-intuitive to try to match lobes that are decaying in size

with lobes that are increasing in size, it was arbitrarily declared that the sets of lobes

45

that were selected must be increasing in size.

max
si+j−1≤n≤si+j

x̃[n] < max
si+j≤n≤si+j+1

x̃[n], 1 ≤ j ≤ N − 1 (3.4)

Equation 3.4 guarantees that each proceeding lobe has a higher amplitude than the

previous lobe.

Heuristic #4

Because the bias was not always exactly centered between 0 and 5V , the zero-

referenced waveform had different heights for saturated signals. This was because

the magnitudes of the negative lobes were generally different than the magnitudes of

the positive lobes. We therefore used another heuristic to make sure that incorrectly

passed Heuristic #3 were not picked.

max
si+N−2≤n≤si+N−1

x̃[n] < (1− δ2) max
si+N−1≤n≤si+N

x̃[n] (3.5)

Equation 3.5 was required to make sure that inaccuracies created by normalization of

the waveform did not affect the algorithm’s performance on optimally choosing the

best set of lobes. Setting δ2 = 0.1 was found to fix this problem.

Heuristic #5

In order to save on calculations, it was desirable to limit the number of lobes that

were picked. Equation 3.6 was used to insure that at least one lobe was picked, and

to keep calculations at a minimum (by constraining the number of lobes picked to be

three or less).

1 ≤ N ≤ 3 (3.6)

Having picked the lobes from each waveform, a method was devised to find which

lobes most resembled each other. Assuming constant attenuation of the signal, the

46

height of each compared set of sections was normalized. However, to figure out which

lobe in the set of three lobes corresponded to a lobe in another set, the entire set

of three lobes to the same height could not be normalized, since any comparison of

three normalized lobes would likely lead to the conclusion that the first lobe in the

first set correlated to the first lobe in the second set.

The solution to this problem is to compare sections of each set of lobes with each

other. Each triplet of lobes was split into two pairs of lobes such that the two pairs

of lobes consisted of lobes 1 and 2, and lobes 2 and 3 (assuming the triplet set of

lobes had its lobes numbered in order: lobes 1, 2 and 3). Then, all combinations

of pairs were matched up, and each match-up was normalized so that all pairs had

a maximum height of one. This resulted in following mean-squared error function

(chi-squared statistic) for each pair of lobe pairs for a range of values n:

χab[n] =
si+N−si∑

j=−(si+N−si)

(x̂a[j]− x̂b[j − n])2 (3.7)

where

x̂p[n] =


x̃p[n]

maxsi≤n≤si+N
x̃p[n]

si ≤ n ≤ si+N

0 elsewhere

Next, the minimum of each set of pairs’ mean-squared error function was found.

The set of pairs that had the smallest minimum was selected as the set of two lobes

that were most likely to match. A cross-correlation was performed on the two pairs

of lobes, and the peak of the cross-correlation signal was returned as the differential

time-of-flight. The cross-correlation, as conventionally defined in Oppenheim and

Schafer, can be written as [7]:

φab[m] =
∞∑

k=−∞
x̂a[k]x̂b[m− k] (3.8)

It should to be noted that all the calculations in this subsection need not be

done to find the end result. In particular, it is not necessary to calculate every mean-

47

squared error function for a large range of n in order to find its minimum. Instead, the

Chi-square statistic can be calculated across a limited range of n where the minimum

is most likely to occur. A sufficient sample range was found to be n = x±10, where x

is the average of the “center” of the two sets of lobes. Since x̂a[k] and x̂b[k] are finite

signals, the cross-correlation can easily be calculated. The accuracy of this method

is discussed in Chapter 4.

3.3.8 “Bash” and “Clap” Microphone Data Analysis

Because of the latency in the peak detector for the low frequency impact electrody-

namic “bash” microphone and slower signal propagation, the “bash” signal does not

arrive until about 500-600 samples into the post-trigger. Hence, it was necessary to

store a 1000 length sample and find the maximum value, which was passed on as a

parameter to the PC.

The crystal “clap” microphone data analysis was similar. It also passed the max-

imum value of the sampled signal to the PC.

3.4 PC Position Determination Code

The Position Determination Code, also written in C++, was run on a PC attached to

the DSP via a 115.2Kbit serial link. Upon receiving data from the DSP (indicating a

knock event), it used the variables and parameters found by the calibration program,

and the parameters from the DSP to calculate the knock position of the event.

The C++ code performed large-scale, memory-intensive calculations on the PC

that would not be easily done on the DSP. This included the nearest neighbor algo-

rithm, hyperbola intersection, and knock position determination. The other advan-

tage to keeping this section of the code on the PC was that these calculations require

input from the calibration program, which also ran on the PC.

48

3.4.1 Nearest Neighbors Algorithm

A five-nearest neighbors (5NN) algorithm, as described by Winston [6], was used

to decide the difference between knuckle knocks and metal taps over a range of 6

variables: the number of zero-crossings detected by each sensor over a range of 400

samples and the time difference (in number of samples) of the arriving wavefront for

each of two pairs of sensors. The first four variables provided a rough estimate of

the frequency content at each of the four sensors; the last two variables were used to

compare the frequency contents with the velocity of the bending wave, which is also

dependent on the type of knock. The six variables were normalized into the same

dimension, and the knock type was picked based on a majority of the five closest data

points (in Euclidean 6-D space) in relation to the current knock’s characteristics.

Normalization was done so that no variable was weighted more than the other.

Setup

The variables z1, z2, z3 and z4 represented the number of zero crossings at sensors 1, 2,

3 and 4, respectively, variables c1, and c2 represented the time difference in number of

samples between sensors 1 and 3, and sensors 2 and 4, respectively, [0, m] represents

the range of values for z1, z2, z3, z4, and [0, n] represented the range of values for c1

and c2 be [0, n].

Suppose they were 100 stored data points for metal taps and 100 stored data

points for knuckle taps such that:

t[i] = < z1:i, z2:i, z3:i, z4:i, c1:i, c2:i >

and for i= 1 to 100 these represent metal tap data points and for i= 101 to 200 these

represent knuckle tap data points.

49

Given a new tap with characteristics:

t[k] = z1:k, z2:k, z3:k, z4:k, c1:k, c2:k

Then the five i are found such that the five distances d[i], defined as:

d[i] =

√√√√ 4∑
j=1

(zj:k − zj:i)2

m
+

2∑
j=1

(cj:k − cj:i)2

n
(3.9)

are the five smallest distances over all i.

Hence, a simple majority is used - if there are more i selected below 100 than not,

t[k] is labeled as a knuckle tap. Otherwise, t[k] is labeled as a metal tap.

In this way, the time difference (related to the velocity) is correlated to the zero

crossings (related to frequency) to give an accurate estimate of the type of hit.

In practice, the number of calibration points does not have to be a total of 200

points, as is done in this setup. The number may go up or down with the size of the

window, to avoid over and under-training the data. For this setup, 81 knuckle data

points and 62 metal data points were used.

3.4.2 Calculating Hyperbolas

The main motivation here is to solve the problem of calculating a knock position for

some given set of time differences between sensors, ∆t13 and ∆t24. This was done

by finding the intersection of the hyperbolas that represented the possible places of

impact on an x−y plane corresponding to the sheet of glass. The hyperbolas that are

defined here consist of the set of points that produce a time difference ∆tab between

sensors located at (xa, ya) and (xb, yb) given an x− y plane measured in centimeters.

The point (0,0) is arbitrarily defined on the sheet of glass to be the lower left corner

of the window, and one unit is defined to be the equivalent of one centimeter. Hence,

to produce results matching these coordinates, the propagation velocity u, in cm/sec,

of the dominant frequency of the flexural wave must be known. The difference in

50

distance from the knock position (x, y) to the two sensors, a and b, will be equal

to the distance the flexural wave can travel across the measured difference in time,

which produces the following equation:

u∆tab =
√

(x− xa)2 + (y − ya)2 −
√

(x− xb)2 + (y − yb)2 (3.10)

Because the DSP provides a time difference in samples, it is necessary to divide

out by the sampling rate to calculate ∆t in seconds.

3.4.3 Intersection of Hyperbolas

If the point of impact, (x, y) is unknown, it is only necessary to calculate the inter-

section of two hyperbolas in order to estimate (x, y), the position of the knock. This

is done with an algorithm that minimizes the mean-squared error by selecting some

(x, y) for the two equations:

E13(x, y) =
√

(x− x1)2 + (y − y1)2 −
√

(x− x3)2 + (y − y3)2 − u∆t13 (3.11)

E24(x, y) =
√

(x− x2)2 + (y − y2)2 −
√

(x− x4)2 + (y − y4)2 − u∆t24 (3.12)

that minimizes:

E(x, y) = E2
13(x, y) + E2

24(x, y) (3.13)

When E(x, y) = 0, both E13 and E24 are zero, and thus the point (x, y) satisfies

both hyperbolas. To solve for E(x, y) = 0 it is assumed that both hyperbolas are

defined over some continuous range of x, for m ≤ y ≤ n. In this system, setting

m = −1000 and n = 1000 was sufficient. Next, E(x, y) was minimized over x for

y = y0 (where y0 is the center y-coordinate of the glass), via a binary search. The

51

nature of hyperbolas with foci on the diagonal corners of a rectangle require:

δEi(x, y)

δx
= 0

at a maximum of one point. E(x, y) is minimized when x is set to x0 (where x0 is the

value found previously when E(x, y) was minimized over x for y = y0). Because this

recursively zones in on the hyperbolas’ intersection, it is estimated that after about

seven iterations on each axis roughly a cm-level precision will have been attained, since

a binary search will have approximately halved the distance of the current guess from

the actual intersection. However, if no intersection exists, the algorithm will diverge.

This case can easily be checked by making sure the calculated intersection falls within

the range of the window.

3.4.4 Knock Position Determination

Statistically, the chi-square cross-correlation method provides better precision (less

than 2 cm away from actual position) 78% of the time, compared to the rising edge

method, when used for calculating knuckle-based taps. However, it can sometimes

shift discretely, if the wrong lobe is picked for correlation. To smear this effect, the

resultant two estimates from both methods are averaged when their results are within

a distance ∆d = 10 cm from each other. When ∆d is further than this threshold

distance, it is assumed the wrong lobe was picked, and use the rising edge estimate

alone. The result is an improved precision and accuracy over using only the rising

edge estimate, or only the cross-correlation method estimate. Because of sampling

rates, the chi-square cross-correlation method is ineffective for use with the metal

taps. Therefore, the rising edge method is always used to calculate positioning for

metal-based taps. Chapter 4 describes the results for these methods.

52

3.4.5 Low Frequency Impact and Clap Veto Microphone Data

A simple principle was used to figure out whether or not a triggered event needed

to be treated as a low frequency impact or as an external “clap” veto. Because

a low frequency impact would be picked up poorly by the four main piezoelectric

sensors, compared to the signal on the electrodynamic microphone (similarly for the

clap sensor for sharp external sounds), only the maximum recorded signal on the four

main microphones was needed for comparison with the maximum for each of the two

special microphones. If one of the special microphones had a higher maximum, then

we would know that one of the special event cases had triggered the system. Care

must be taken to adjust the analog gains for all the microphones so as to minimize

the number of false triggers, since triggers can come from the four main contact

microphones or the electrodynamic “bash” microphone. The analysis for this method

is discussed in Chapter 4.

3.5 Window Calibration Code

The Window Calibration Program was written in C++. It collected information to cal-

culate variables for the PC Knock Position Determination program. These variables

were stored in a file that was read by the PC Knock Position Determination software.

The purpose of the calibration scheme was to gather the following information:

1. Location of the sensors

2. Data for nearest neighbors algorithm

3. Average velocity for different types of waveforms

4. Information for mapping points on the glass to pixels to be projected on the

window

53

In order to gather information for mapping points on the glass to pixels for the

projector, the calibration code necessitated the use of the projector. Therefore, the

program was written on the PC.

3.5.1 Location of Sensors

The location of sensors played an important role in the ability to gather good data for

the algorithms. It was found that sensors could not be arbitrarily placed. Therefore,

code was written to take the size of the window as an input, and to give optimal

points for sensor placement. Chapter 5 discusses how different sensor placements

affect performance of our algorithms.

3.5.2 Determining Velocity at Relevant Frequencies

When an FFT of the waveform is taken, it is apparent that there are two major

frequency components - one higher frequency for “metallic” taps and one lower fre-

quency for duller, knuckle-based knocks. If the type of knock is known, the respective

velocity u in Equations 3.11 and 3.12 is used. Therefore, calculation of u for each

case is simple. Two points on the glass sheet are arbitrarily chosen that are relatively

far from the center. Knowing these coordinates, and the coordinates of the sensors,

twenty knock events are arbitrarily gathered for each position, and the time differ-

ence for each position is averaged. Since all the variables except u in Equations 3.11

and 3.12 are known, u can be solved for. The u’s that are found for both positions are

then averaged. Averaging the velocity estimates allows a better statistical accuracy

to be obtained, since inhomgeneities in the glass will usually lead to slightly non-

linear average velocity.[8] Methods for compensating this phenomenon are discussed

in Chapter 5.

54

Figure 3-12: Translation from point on window to pixel on projection

3.5.3 Tap Types

For this section of the code, the calibrator was instructed to knock on the sheet

of glass to provide data points for knuckle-based and metal-based taps to use with

the nearest neighbors algorithm. This allowed the main program to figure out if the

knock originated from the hand of a user, or from some foreign object that excited the

higher frequency in the glass. Because different joints in the hand caused different

frequencies, the calibrator was instructed to knock on the window using different

knuckles, mainly the metacarpophalangael, proximal and distal interphalangeal joints

(lower, middle, and upper knuckles).

3.5.4 Mapping from the Glass to Pixels

In order for the system to interact accurately with a projected image on the screen, it

was necessary to translate the coordinates calculation for an impact on the glass into

a specific pixel on the projector. This required a few variables that are easily attained

by the calibrator - the dimensions of the projection onto the window, and the distance

55

from the edges of the projection to the sides of the window, assuming a rectangular

window. In the case where we are using a non-rectangular shaped window, the math

can be generalized by superimposing a rectangular grid over it, and performing the

calculations in the same fashion. A window with a projection area of Lx × Ly (in

cm) and distances Dx, Dy from projection edges to the two window edges closest to

(x, y) = (0,0) would require a translation from window point (x, y) to the pixel point

(x′, y′) (where x′ and y′ are normalized to one), would be related by the following two

formulas:

x′ =
x−Dx

Lx

(3.14)

y′ =
y −Dy

Ly

(3.15)

Thus, points translated from within the geometric grid for projection would fall

within a range of [0,1]. Figure 3-12 relates the relative variables described above.

This calibration could be automatically accomplished by having the calibrator knock

on a series of projected points.

56

Chapter 4

Responsive Window Performance

In this chapter, the performance of the Responsive Window system is analyzed.

Because the structural-acoustic properties of every sheet of glass are different, the

system’s performance will change for different types of glass and different mounting

arrangements. In this chapter, the performance of the system is examined across

different media, venues, and mountings. The thinnest glass used, 1
4

inch thick tem-

pered glass was found to work the best, because the bending wave propagation speed

is slower as the glass grows thinner. It was also found that thicker glass tended to

have larger amounts of attenuation, thereby decreasing the sensitivity of the system.

Mounting also changed the performance of the system. Mounting includes how the

window is supported, as well as where and how the sensors are mounted on its surface.

The positions of the sensors were critical in picking up clear signals, for which our al-

gorithms would be able to pinpoint position correctly. Finally the effective sensitivity

of the Responsive Window is discussed.

4.1 Tap Type Determination

In order to explore the performance of the Responsive Window’s Tap Type Determi-

nation, the performance of the Nearest Neighbors algorithm is examined against the

57

Figure 4-1: Histogram of knuckle and metal tap frequency

performance of previous methods.

Figure 4-1 shows a histogram for how well a simple summation of zero crossings

was able to discern between knuckle and metal taps [9]. The graph shows an 88−99.5%

probability of correctly classifying taps.

When a new system was calibrated using the 5NN algorithm, the calibrator

knocked on the sheet of glass using as many different knocking styles as possible

to excite the glass in different ways. This enabled the gathering of data points re-

quired to distinguish between knock events that triggered higher and lower frequency

flexural waves. The sampled waveforms for different types of knocks were investi-

gated. Figure 3-8 shows the different types of taps that can be recognized by the

system. The biggest concern was differentiating between a knock done by the distal

interphalangeal joint (knuckle closest to the fingernail) and a metal tap. The only

obvious difference is that the metal tap seems to have much more energy than the

knuckle based tap. However, taking an DFT reveals that the knuckle tap actually

58

Figure 4-2: Piezo and dynamic responses to knuckle knock and bash

still has its dominant frequency at the same frequency as other knuckle-based knocks.

Thus, the calculation should be done with a slower propagation velocity. By using the

5NN algorithm over the zero-crossing data and the differential time of flight numbers,

it was possible to do a better job at discerning between these two events. Mainly,

out of 1000 points tapped, only one point was incorrectly determined. This gives us

a 99.9% accuracy.

Bash Determination

The bash microphone worked for the cases it was used for, and did not include a

“bash” event when a regular knock occurred. Figure 4-2 shows that the electrody-

namic microphone only responds to a fist bash, and not to a knuckle knock. [9]

4.2 Position Determination

When examining the performance of the Position Determination algorithm, it is in-

structive to first observe the granularity of the algorithms. Although the correlation

analysis is capable of producing sub-sample interpolation, the rising edge procedure

is constrained to finite granularity equal to that of the sampling rate. Therefore the

source estimation can only be expected to be as good as the granularity. Figure 4-3

plots the positions that a given set of time differences (in units of samples) input to

59

Figure 4-3: Granularity (for sample quantization) of Hyperbola Intersection algorithm
for u=2000 m/s

our hyperbola intersection algorithm can output, assuming the flexural wave had a

propagation velocity of 2000 m/s. The stars represent sensor locations. The gran-

ularity decreases further from the center of the sheet of glass. The granularity at

the center for the setup in Figure 4-3 is about 2.5 cm. As the propagation velocity

decreases, however, the granularity increases. Thus, for knuckle-based knocks, where

the propagation velocity can range from 600 to 1200 m/s, the granularity will be

much less; Figure 4-4 shows a zoomed in view of the center of the granularity plot

for a propagation velocity of 600 m/s. Here, the algorithm sports better than 1 cm

granularity.

Data from many different sources was looked at: two windows of different area and

tempered glass, 1
4

inch tempered glass, as well as one window with thicker shatterproof

glass of 1cm thickness[9]. The plots show the reconstructed x, y positions for taps

made repeatedly at the same positions, hence reflecting the intrinsic accuracy of the

system. Results from the first window, shown in Figures 4-5 and 4-6, demonstrate

60

Figure 4-4: Zoom of granularity of Hyperbola Intersection algorithm for u=600 m/s

the resolution of the system on a 1 cm thick window. Across a microphone separation

of 80 cm× 80 cm, a precision of σ = 3.3 cm was achieved for metal taps based

on rising edge alone, and σ = 3.5 cm for knuckle taps based on the chi-square and

cross-correlation method. Looking at the metal tap distribution plot, it is apparent

that each knock position created an uniform distribution, while the chi-square cross-

correlation method created tightly packed clusters that each had a very small standard

deviation. This is because matching the wrong lobes would add or subtract the width

of one lobe to the time differential, ∆tab. However, the precision for the incorrect spot

will still be the same. This suggests that if it were possible to match the correct lobes

every single time, our algorithm would be extremely accurate.

Interestingly, the propagation wave speeds used to calculate the two types of

knocks were quite high on this window. Metal taps produced flexural waves whose

dominant component propagated at 1700 m/s, and knuckle-based knocks had a dom-

inant component at 670 Hz. .

Figures 4-7 and 4-8 show knock distributions over a larger but thinner piece of

61

Figure 4-5: Estimated positions for metal taps at five positions for 1 cm glass

Figure 4-6: Estimated positions for knuckle taps at five positions for 1 cm glass

62

Figure 4-7: Estimated positions for metal taps at five positions for 1
4

inch glass

glass. Because the speed of propagation for all types of impacts were slower through

this glass, the overall sensitivity was increased, resulting in an average of σ = 2.4cm

for both knuckle and metal events.

However, closer look at the data reveals that accuracy of the system was quite

poor. Table 4.1 shows the statistics for this window. δmean, the accuracy, represents

the distance from the mean position of all knocks on that point to the actual point.

σ, the precision, is the standard deviation for the distances from the actual knock

position. Appendix D explains the calculation of this variable. The last column

represents how many knocks were properly processed, out of actual knocks physically

counted. It is believed that this window’s accuracy performed relatively poor because

the sensors were placed too close to the corners. Furthermore, it was observed that the

normalized waveform looked much clearer and well defined for the waveform picked up

by a sensor located further away from the corner than those in the system with poor

accuracy. This led to the conclusion that placing the sensors further from the corners

63

Figure 4-8: Estimated positions for knuckle taps at five positions for 1
4

inch glass

of the window provides a better accuracy and precision for the position estimate. This

is because the glass is more tightly pinned near the corner, attenuating and distorting

the flexural waves traveling through that area.

Figures 4-9 and 4-10 show distributions for 1
4

inch glass where the sensors are

located 35 cm from the corners. The system was able to properly recognize to get

all 100 taps for each point. Two points, however, were somehow gathered as extras.

As the room was quite crowded at the time, it is expected that this was caused by a

GSM cellular phone passing by, whose signal got mixed in with the knock, and caused

strange properties to occur in the system.

It is encouraging to note that the accuracy for this system is much more accurate

and precise at knock location. With an average accuracy of 2.0 cm and an average

standard deviation of 1.6 cm, this system is accurate enough so that users should not

be able to most errors, since the sizes of their hands are so large (larger than 4 cm

radius).

64

Knock Type Actual Position δmean(cm) σ(cm) Success/Knock
Knuckle (38, 28) 5.9 2.4 102/102
Metal (38, 28) 9.4 4.5 99/100
Knuckle (35, 92) 5.4 2.6 99/99
Metal (35, 92) 3.7 2.0 101/101
Knuckle (79, 59) 3.1 2.4 103/103
Metal (79, 59) 0.2 2.4 104/104
Knuckle (136, 26) 3.3 2.1 103/103
Metal (136, 26) 2.3 1.6 103/103
Knuckle (134, 94) 5.8 2.8 104/104
Metal (134, 94) 11.0 2.9 103/103

Table 4.1: Table of knock statistics for 1
4

inch window with sensors closer to Center

Figure 4-9: Estimated positions for metal taps at five positions for (sensors 35 cm
from corner) 1

4
” glass

65

Figure 4-10: Estimated positions for knuckle taps at five positions for (sensors 35 cm
from corner) 1

4
” glass

Knock Type Actual Position δmean(cm) σ(cm) Success/Knock
Knuckle (47, 47) 2.1 2.5 100/100
Metal (47, 47) 1.6 1.8 100/100
Knuckle (47, 93) 2.1 1.5 100/100
Metal (47, 93) 4.5 1.3 100/100
Knuckle (71, 71) 1.3 0.7 100/100
Metal (71, 71) 1.8 1.8 101/100
Knuckle (93, 47) 0.6 2.1 101/100
Metal (93, 47) 2.3 1.6 100/100
Knuckle (93, 93) 1.1 1.7 100/100
Metal (93, 93) 3.2 0.7 100/100

Table 4.2: Table of knock statistics for 1
4

inch window with sensors further from the
corners

66

4.2.1 Tracking outside the sensor grid

On some windows, the sensors will be mounted so that there is still some window

space outside the box created by the sensors. Figure 7-1 in Chapter 7 shows of one

such window. Children were able to tap below the main sensor grid area. In this

instance, it was only possible to accurately determine the x position of the knock.

This problem is attributed to signal attenuation. Attenuation will cause the sensors

farthest from the knock to lose virtually all of the incoming wavefront. Therefore,

the only accurate data is that received from the two closest sensors. Because the

intersection occurs closest to the two sensors that act as foci to the hyperbolas, the

section of the hyperbolas defining the knock position will be influenced greatly by

these foci. Thus, the sensors are able to accurately determine the x position, which

is orthogonal to the direction between these two sensors.

4.2.2 Sources of Error

There are several sources of error which are likely to be responsible for inaccuracies in

the system. The first source, was due to the physical limitations of system; because

the DSP cannot sample any faster, it is impossible to obtain finer granularities for

our hyperbola intersection algorithm.

The second source of error comes from the dispersive effects of the window. Even

though a narrowband signal is assumed for the section that we perform calculations

on, it is most definitely not narrowband. Even higher frequency components, which

have very little gain, can corrupt the signal in a slight way. Without some method to

compensate for the dispersion, it cannot be assume that the time-of-flight difference

estimates are accurate. In some sense, the act of peak matching becomes meaningless

if the transducers are at large differential distances from the knock; dispersion pro-

duces large changes in the nature and shapes of the peaks received at each transducer.

The third source of error comes from diffraction. Inhomogeneities in the glass,

as well as inconsistent mounting of the window will cause flexural waves to spread

67

Figure 4-11: Rays of energy leaving a point source in an inhomogeneous medium

unpredictably in different directions [8]. The algorithm assumes that the flexural

wave emanates from the source in an ideal fashion - in a circular fashion. Hence,

constant velocity cannot be assumed if it is also assumed that the wavefront travels

in a straight line from the source to the sensor. Figure 4-11 is taken from Johnson

[8], and shows us how waves of energy can be distorted in nonhomogeneous media..

The last source is human error. It is not possible for the calibrator to hit the same

point on the glass at the same spot each time. Compounded with the large surface

area on a knuckle, ct extremely accurate results (σ < 1 cm) for knock positions at

one location.

4.3 System Latency

There were four respective contributors to system latency: time for flexural waves to

travel to sensors, sampling period, data processing on the DSP, and data processing

on the desktop. For a window of size 1 meter × 1 meter, the maximum distance

a wavefront would travel to reach at least one sensor would be 0.707 m. If the

propagating flexural wave was traveling at 600 m/s, the total time this would take

is 1.2 ms. The sampling period had a post-trigger sampling time of 17 ms for the

68

“bash” microphone and 5ms for the other five sensors. Using an oscilloscope to

analyze latency between when a serial signal was sent and when the waveform was

sampled, it was determined that the DSP took approximately 50 ms to process the

tap. Finally, the computer (a Pentium III 1GHz machine) took about 10 ms to find

the position. This adds up to a total of about 60ms of system latency. If the time it

takes to render one or two frames onto the screen is added, at a 60 Hz refresh rate, it

is expected that our system will take 80-90 ms to process the entire tap and produce

updated graphics.

4.4 System Sensitivity

The system sensitivity is a factor that is difficult to measure in absolute terms. Be-

cause there is an adjustable gain stage in the analog signal conditioning electronics

before the signals are sampled by the DSP, the system sensitivity levels can be set us-

ing both DSP code, and the gain levels provided by the analog electronics. However,

it was observed that too much gain before sampling could cause early saturation for

many hits (particularly due to the difference in sensitivity between metal and knuckle

hits; this system must accommodate both). This can result in a very low dynamic

range, since the input span for the DSP A/D converter was ±2V . Too much gain

would cause the operational amplifier providing the gain to rail, and thus meaningful

signal was lost. At the same time, too low of a threshold to trigger sampling and

processing on the DSP caused “ring down” of signals to falsely retrigger the system

to process the signal. Though most “ring down” false triggers were easily identified

by looking to see if the rising edge occurred before the physical constraints dictated

that they could occur, allowing the system falsely trigger this way can increase dead

time. Figure 3-10 from Chapter 3 showed the “ring down” effect for a knuckle and

metal tap. Although a metal tap saturates faster, it also has a shorter ring down

time. This is because higher frequency components decay faster in glass, since their

69

Figure 4-12: Relative signal height vs. distance

faster propagation velocity relative to lower frequency components cause them to be

dissipated in the window mounting more quickly.

Since the knuckle tap takes a little more than 10 ms to reach noise levels, the

dynamic trigger threshold allows the system to prevent itself from automatically re-

triggering itself from the ring down. In this way, the sensitivity of the system was

increased without having to increase the gain for any of the channels, which would

cause signal loss for knocks with large amplitudes.

Figure 4-12 shows the correlation between relative maximum voltage levels picked

up by two sensors versus distance from both sensors. The x-axis represents the dis-

tance the knock was from preset diagonal sensors. Two lines are plotted to represent

voltage levels for the two diagonals of a rectangular window. The relative height, y

was calculated as follows:

y =
|max x̃a[n]−max x̃c[n]|
max x̃a[n] + max x̃c[n]

70

As one might expect, as the user knocks toward the center, the difference in maxi-

mum magnitudes decreases somewhat linearly. This could mean that the attenuation

is occurring roughly linear for the given system. The distance between diagonal sen-

sors is approximately 128 cm.

71

72

Chapter 5

Discussion

This chapter discusses the factors that were taken into consideration when re-

designing the Responsive Window system. These included parameters that affected

the acquired signals, such as the media type, dispersion and lossness, and sensor

placement.

5.1 Dispersion and Attenuation

Most media in the real world are dispersive and lossy in nature. Lossy media causes

signal components to lose strength over time. Thus, signal sources far from the sen-

sor are difficult to discern from noise. Losses can vary with frequency, and in most

mediums, higher frequencies are more heavily attenuated. Dispersive media causes

wave propagation speeds to differ for different frequencies [8]. A common example

of a dispersive object is a prism with incident light; it is visually apparent that the

prism spreads the different wavelengths of light across a range of angles. Because

dispersive media causes different frequencies to be phase shifted at the pickup point,

it follows that each frequency component will also undergo different amounts of at-

tenuation, dependent on the frequency [8]. Since some aspects of attenuation are

related to dispersion, and dispersion is a major factor limiting timing accuracy, the

73

implementation of several different methods to compensate for dispersion was inves-

tigated. Wave propagation can be modeled through a dispersive and lossy medium

with a differential equation[8]:

∇2s =
1

c2

δ2s

δt2
+ γ1

δs

δt
+ γ2s (5.1)

where ∇2 is the Laplacian operator (defined in Appendix A), s is the displacement

of the wave, c is the acoustic analog of the speed of propagation, and γ1, γ2 are

constants. When γ1 = 0, Equation 5.1 models a wave undergoing zero dispersion,

and when γ2 = 0, it models a wave with no attenuation.

5.1.1 Iterative Methods

A common method for dispersion compensation is the use of linear prediction to

estimate the source position, given the current measurement and the previous mea-

surement(s) for position of the source [8]. Compensation for dispersion occurs by

iteratively recalculating the distance traveled by the source from its last known po-

sition. Most tracking models use state-space equations to recursively calculate the

next position, and rely on the source moving predictably. Kalman filtering, Wiener

filtering, and adaptive filtering are all models based on a linearization of the source

movement [10].

Because knocks that are tracked are based on the whims of the user, it is not

likely that the user’s next knock can be estimated from a previous knock, unless the

triggers are occurring at a steady pace. Comparing prediction errors based on these

filters, it is unlikely that linear prediction in this fashion will do better than σ = 2.5

cm using the time domain based algorithms. Thus, an algorithm is proposed based on

recursively estimating average velocity for selected frequency components for a single

tap based on differential time-of-flights acquired by either the rising edge method or

the chi-square cross-correlation method. By iteratively calculating the velocity for

74

certain frequency components, any error in estimating the differential time-of-flight

of each waveform will appear as a difference in velocity for the frequency components.

A heuristic can be used to correct the time-of-flight difference between every pair of

sensors and to iterate until the difference between the velocity vectors is minimized.

5.1.2 Dechirping Filters

Instead of doing calculations based on the time domain of the sampled signal, an iter-

ative method could be used in the frequency domain to systematically phase shift dif-

ferent frequency components so that all the frequencies have the same phase, thereby

creating one large rising edge in the time domain which could be used for timing

analysis.

A very common area that uses dispersion compensation filtering is radar [11]. A

pulse expansion is used to disperse a signal before transmitting. A pulse compres-

sion system is used to convert the received pulse into a single impulse for timing

analysis. The “chirp” terminology comes from the meaning of pulse expansion. By

dispersing a pulse into several components at different frequencies, several “chirps”

are transmitted. Similarly, the pulse compression system is sometimes thought of

as a “dechirping” filter. The pulse compression and expansion system is usually im-

plemented in the form of a waveguide. The waveguide disperses the signal as it is

transmitted; when received, the waveguide inversely compresses the signal.

Another common dispersion compensation method uses real physical objects with

gratings or prism-like properties to slow faster frequencies down so that they are in

phase. This physical method is commonly used in optical settings, which require a

separation and slowdown of signals in the nanosecond or femtosecond range, before

recompressing the signal back into its original wavelength [12]. There also exists

types of sensors that use successive sheets of piezoelectric material to compress the

signal [11]. The wavelengths that are compressed are on the same order of the spacing

between sheets.

75

The analog of the pulse expansion and compression system for the Responsive

Window would require a knock event to be modeled as an impulse, and to either

create a sensor that performs pulse compression similar to the dispersive nature of the

glass (pulse expansion). The sensor would thus require some sort of grating to achieve

this result. One drawback to this method is that a different sensor would be required

to complement each glass sheet, or at the very least, each glass sheet thickness, since

dispersion is dependent on the thickness of the glass sheet. However, because there is

no fixed range for detection, the sensor will not properly compensate for dispersion for

every single knock. Therefore, extra computation would be necessary to compensate

for dispersion in this setup.

The alternative to building a sensor with the appropriate properties is to com-

pletely perform the pulse compression on a computer. This would be more computa-

tionally intensive, but would allow the system to be more portable. The calibration

program would have to be modified to calculate propagation speeds for different fre-

quency components. One possible implementation is to use a matched filter [8] whose

pulse compression is based on the dominant frequency(s) picked up by the contact

sensors. An iterative search is done for the correct amounts of compensation for

each major frequency component until the dispersion compensated signal matches a

typical pulse, by passing the set threshold for the filter. To simplify the complexity

of the model, the waveform is modeled as the sum of only its dominant frequencies

and the other lower magnitude frequency components are regarded as colored noise.

Therefore, the sampled data needs to pass through a whitening filter before being

passed through the matched filter [8].

5.2 Simpler Timing Analysis

A simple idea that would apply both the time-of-flight calculation methods described

in Chapter 3 is to use the zero crossing nearest to the rising edge. This is easily done

76

by taking the rising edge and backtracking to the nearest zero-crossing. The only

caveat here is that if the rising edge occurs in a region that is the sum of several

dominant frequencies, the zero crossing is inaccurate. Therefore, it would be best

to use a bandpass filter to narrow the signal’s bandwidth, and to then trace from

the corresponding rising edges in time in the full signal backwards to the nearest

zero-crossing in the narrowband signal.

5.3 Window Sensor Placement

It was desirable to minimize the amount of sensor clutter on the window, while

optimizing the sensor location, so four sensors were used to calculate position of

impact on the window. Multiple sensor placement positions that were considered:

(1) One sensor in each corner

(2) One sensor at the center of each side

(3) A pair of adjacent sensors at two locations

Figure 5-1 shows the different window sensor placements that were considered.

The advantage of placement (1) is that the sensors are least conspicuous in this

setup. However, since the sensors are in the far corners, they may not always pick

up desired clean signals. The mounting of the window could cause the sensor to be

stiffly “pinned” by the two adjacent sides of the window. This pinning could cause

the sensor position to result in a reduced sensitivity for some frequencies coming from

specific impact sources on the window. It was observed that higher frequencies were

often attenuated to the point where the corresponding signal components looked like

noise. Thus, a solution is to place the sensors further away from the corners, so that

they will not be “pinned” by two orthogonal sides of the window.

The primary advantage of placement (2) is that the sensors are now only pinned

to one axis - the side that the sensor is placed on - allowing for a more predictable

frequency response. The other advantage of this setup might be that the sensitivity

77

Figure 5-1: Different window sensor placements: placement 1 - blue; placement 2 -
red; placement 3 - black

of the system is greater than placement (1), since all four sensors are now placed

more closely to the center, and the four sensors are not placed on top of nodal lines

for principle modal frequencies in the glass. However, a simple rotation of the sensor

placement will reveal that placing the sensors closer to the center in the formation

of placement (1) will result in the same sensitivity, in the tracking area sense (based

on constant attenuation). Another big disadvantage to this placement scheme is

that it forces a smaller area for video projection, especially to avoid projecting over

the sensors. Empirical data also showed that the accuracy and precision for the

Responsive Window using placement (2) was much worse than placement (1).

Placement (3) allows us to track using phase calculations. Since each pair of

sensors are very close to each other, the waveform picked up by each sensor (in a

given pair) should be very similar. Hence, a cross-correlation of the signal should

easily reveal the phase difference, and two different time-of-flights should easily be

able to calculate a point of impact. However, for large distances, ∆t becomes very

78

small, and therefore low sampling rates will not have the resolution required to resolve

between points that are relatively far away. This problem can only be solved by

sampling at a higher frequency.

5.3.1 Sensor Proximity to Window Edge

Empirically, the distance of a sensor to the window edge is highly correlated to the

ability of receiving clean signals. The further the sensor is from the edge, the less

likely reflections from the window’s border are able to double back and get picked up

by the sensor. This is because the reflection will be weaker (some of the energy in the

wave is dissipated in the mounting) than the incoming wavefront, and attenuation

will cause the signal to diminish rapidly from the edge of the window. For a window

with 1
4

inch thick glass, it was found that placement (1) will work well if the sensor

is at least 20-25 centimeters away from the two adjacent sides of the window. We

estimate that for a thicker pane of glass, since the average propagation velocity of

all frequency components is higher, the distance from the edges may correspondingly

need to increase, although changes in attenuation for thicker glass, and the manner

of mounting may help here.

5.3.2 Valid Window Tracking Area

It was interesting to study how large of a tracking area each placement scheme would

be able to cover. To begin, it was assumed that a signal traveling a distance of x

would be attenuated to the point that the data was unusable. From this assumption,

it was realized that the maximum amount of tracking area occurs when the sensors are

placed in the formation of a square, if it is required that all four sensors require a valid

signal. Thus, there is no obvious advantage between placement (1) and placement

(2) for this heuristic. Placement (3) is at the worst disadvantage here, since it does

not even form a square to maximize tracking area.

79

5.3.3 Nodal Behavior Effects

On square sheets of glass, there are two principle nodal lines, along the diagonals

connecting both pairs of corners. Nodes represent “dull” spots where the modal

behavior of the glass causes excitations on the glass to have little or no behavior for

the corresponding modal frequency. (Consider observing how sand settles into a fixed

harmonic pattern atop a vibrating plate.)

However, not all of these natural modal frequencies are dampened at those prin-

ciple nodal lines. Cremer [13] explains that knocking on different points will excite

different modal frequencies. It is hypothesized that the modal frequencies that are

excited are the ones closest to the spectral content in the knock itself.

A further examination of the DTFT for sensor data from sensors placed on or off

the nodes in the glass reveals that the frequency response is different. Since placement

(1) places the sensor on the principle diagonal node, it is expected it to have a different

frequency response than a sensor not on the diagonal node. Indeed, Figure 5-2 shows

the dominant frequency in the sensor for placement (2) to be somewhat dampened in

the frequency response for placement (1).

Thus, by placing the sensors on the nodes on the diagonals of the glass, some

lower frequency modal vibrations in the system will be eliminated, resulting in a

larger magnitude response in the next largest modal frequency. Because the frequency

response of the receivers are limited at the lower range to 300 Hz, it seems that it

would be better to do time domain analysis on a higher frequency signal. Mainly,

placement (1) is believed to be more effective than (2) and (3), since the sensors in

placement (1) are placed so that the lower modal frequencies will be naturally filtered

out.

The chi-square cross-correlation algorithm is less suited to process a signal domi-

nant in the lower frequencies around 400 Hz, because knocks exciting low frequencies

will result in a slowly oscillating signal. It is difficult to define lobes for the algo-

rithm in such a slowly moving signal; at 400 Hz there are an average of only two full

80

Figure 5-2: Comparison of frequency components for different sensor placement.
placement (1) (top) versus placement (2) (bottom)

81

cycles of the waveform for the 250 samples representing the post-trigger phase. The

rising edge algorithm will also become less accurate for lower frequency signals, since

the rising edge becomes more ambiguous for slowly oscillating waveforms which have

undergone attenuation.

5.3.4 Choosing the Best Placement

It would seem then, that placement (3) is far superior to placement (2), because

the cross-correlation of two relatively similar signals will define a nice peak that will

define the phase difference. However, due to the nonhomogeneous structure of glass

(e.g. regions where the glass has been under stress), it cannot be assumed that the

wavefronts will be shifted versions of each other for placement (3) for each pair of

adjacent sensors. If the difference between the magnitudes for each sensor is modeled

as having added noise proportional to the distance to the sensors from the position

where the knock occurs, it is clear that a bigger distance between the knock and

the sensors will translate to more difficulty in obtaining an accurate phase difference

from a cross-correlation at each pair of sensors. This is because for large distances

from the array’s broadside, the distance a wave must travel to each sensor becomes

roughly equal. In short, for large distances, placement (3) will return time differences

close to zero for knocks occurring far away from the sensors. Phase measurements

for measuring θ, the offset angle of the knock from the sensor array will also be a

big problem for large distances r, since differential times will be minimal. The only

way to solve this problem is by increasing the sampling rate of the system, thereby

creating a finer timescale to differentiate the phase.

If the characteristics of the sampled waveform are examined for a sensor that is

very close to the source, it is apparent that the system quickly rises to saturation.

This is because the distance to the sensor is so small that the dispersive effects of

the glass are minimal. Thus, it is important to balance the distance from the sensors

in order to get relatively similar data versus the need for sensors to be close enough

82

to the sensor so that our system has good sensitivity. For these reasons, for most

window sizes and the algorithms defined in this thesis, placement (1) has be selected.

5.4 Sensor Characteristics

The types of sensors used to pick up data for waveform analysis are almost as impor-

tant as the algorithms themselves. The ideal sensor should be easily adhered (with

super-glue) to the glass surface, so that most of the energy in the flexural waves can

be transferred and picked up by the sensor. It was found that tightly pressing the

sensor against the glass using tape is not as effective in getting a waveform that is

clean. Also, super-gluing the sensor to the media gives relatively stronger signals

than those picked up by a sensor tightly pressed with tape. Therefore, the SNR for

superglued sensors is also significantly higher.

The material type of sensor casing should also be considered. Sensors with a

metallic shielding, such as those of the earlier Panasonic EFVRT series, were reusable,

because the it was relatively easy to remove the superglued sensor from the glass

without bending or destroying the microphone. The newer EFVRT series, however,

while lighter, were also more fragile. These sensors seem to be one-time use for the

system setup, because removal of the sensor from the glass usually caused the sensor’s

destruction of the sensor.

The frequency response of a sensor was also very important. A poor match in

response between knuckle knocks and metal taps can lead to insensitivity.

Mounting the Sensors

The way sensors were mounted to the glass seemed to dramatically affect data pickup.

Tightly pressed receivers did not seem to couple to the glass as well as superglued

sensors. However, there seems to be a limit to how much glue can be applied to the

system. Different amounts of applied glue seem to affect the frequency response of

83

each sensor, perhaps because of damage to the sensor elements as glue leaches into

the device or changes in spectral sensitivity as air holes on the sensor are obscured.

5.5 Glass Thickness

Because there are many types of glass, the amount of dispersion in each piece of

glass can vary. Mainly, as glass thickness increases, flexural frequencies tend to travel

faster through the media. Thus, in order to avoid having the propagation speed of

the highest frequency being too fast to sample properly to get an accurate position

estimation, the glass thickness would have to be kept to a tolerable limit. The ob-

servations made in Chapter 4 seem to point to the fact that tempered 1
4

inch thick

glass is the best media for the Responsive Window; it is thin enough to produce good

results, but not so thin as to easily break.

The other issue with glass thickness involves the amount of discomfort the user

can tolerate. A thicker sheet of glass translates to a relatively “harder” piece of glass,

since the amount of mass that has to excited increases proportionally. This means

that users may be less willing to interact with the glass because it hurts more to

knock on it. Fortunately, it seems that the Responsive Window is most well suited

with thinner sheets of glass, though it does accommodate comfortable knocks on all

pieces of glass that were used by increasing the sensitivity accordingly for thicker

windows. Of course, it does not work on double-paned windows, because of lack of

contact between the two sides of the window.

84

Chapter 6

Radar Rangefinders

Radar was selected over other methods for rangefinding for several reasons in this

application. First and foremost, radar is not lighting-dependent, as cameras are. The

lighting situation for a system placed behind a highly reflective piece of glass will

mostly likely be poor and dynamic. Hence, lighting-dependent methods may not be

as effective as radars when lighting conditions became poor. Radar also reflects off

skin, and is not affected by clothing and varying color. Radar can also see through

projector walls and non-conductive media.

There were four radar systems investigated for integration with the Responsive

Window - two Tank Radars made by Saab Marine [14], sponsors at the MIT Media

Laboratory, which were designed to measure liquid levels in large fuel tanks (e.g. at

an airport), Micro-Impulse Radar developed by Lawrence Livermore National Lab-

oratory, and a Doppler Radar system developed by the Responsive Environments

Group at the MIT Media Laboratory. The factors that went into picking the radar

system were portability, availability, and complexity.

85

Figure 6-1: Using the Saab Tank Radar Pro as a radar rangefinder

6.1 Narrowband Tank Radars

Two narrowband radars made by Saab Marine that were used to detect liquid levels

in a tank were investigated. These seemed well suited for this application, as the

amount of energy output by the system was well within safety limits, and the range

of operation was well matched to room-scale sensors.

The first system provided by Saab used a swept Doppler technique [14] to discern

distance. However, the waveguide packaged with the device was massive, and the

device was very unwieldy. Because the system had many more features than were

required (it was a commercial product dedicated to its application), the refresh rate

of the device was unsatisfactory (it had about a 2 Hz refresh rate and system latency

of about one second), and thus was difficult to adapt to use with the Responsive

Window. Figure 6-1 shows a picture of a theoretical use of the unwieldy radar system

being tested by a cooperative user.

86

Figure 6-2: The commercial use for the Saab Radar Tank Pro

This tank radar had mixed results. Accuracy was somewhat limited, and its

system latency was somewhat high. The extreme near field visibility of the radar

system was mixed, with the optimum measurement distance for the system at 4-

10 meters. The radar did not provide very stable results, even at this range. The

measurements would jump erratically for people walking within its tracking area, most

likely because of the slower refresh rate of the system. The other factor contributing

to error is that the radar was designed for use within a tank of specified shape, and

homogeneous wall structure. The beamwidth was also quite narrow. It was easy to

“trick” the radar system by walking in and out of the radar’s beamwidth. Though it

was possible to get this system working in early tests, difficulty in adapting it to this

application encouraged the testing of other devices.

A second improved tank radar was promised, but not delivered in time for thor-

ough testing. This tank radar was similar to the original tank radar, but was smaller,

and had a better interface [14]. Operating at a frequency of 10 GHz, the Saab Tank

87

Figure 6-3: Micro-Impulse radar

Radar Pro used several different types of algorithms to improve accuracy. It com-

bined the FFT, Frequency Modulated Continuous Wave (FMCW) Method and an

echo compensator to calculate the liquid level in the tank. A serial port interface al-

lowed several Tank Radars to be operated at the same time, if needed. The company

boasted a 5 mm accuracy range. Figure 6-2 illustrates the radar in a tank liquid level

detection setting. Further evaluation of this radar may prove beneficial.

6.2 Micro-Impulse Radar

The second radar system was one based on the technology promoted by Lawrence

Livermore National Laboratories. The device, called Micro-Impulse Radar (MIR

Technology)[15], used simple off the shelf components to create a radar system that

compared randomly output impulses in a broad bandwidth with the signals received.

This would give an accurate estimate of distance through simple time-of-flight cal-

culations, and would tend to be immune to interference that could be caused by a

88

Figure 6-4: Doppler radar developed at the MIT Media Lab

narrowband radar such as the tank radar made by Saab. Figure 6-3 demonstrates the

relative size of the Micro-Impulse Radar Unit. One major advantage of the system

was that it was an ultra-wideband device, so that noise from other devices operating

in some frequency range did not jam the radar. Although an early prototype of such

a system has been built [16], the design of this system and its antennas is not yet

ready for this application.

6.3 Doppler Radar

A much simpler radar was designed for this application, though this radar system

was not a range-finding system. Developed at the MIT Media Lab, the Doppler

radar was able to distinguish motion within the immediate surroundings by making

use of the Doppler principle [17]. Figure 6-4 shows a picture of the prototype for the

Doppler radar. One major drawback of the system was that the system was only able

to distinguish the motion, but not the position of the user within the surrounding

89

Figure 6-5: Doppler radar measurements

environment. Figure 6-5 demonstrates the data recorded by one Doppler radar.

Work is now being done to modify this system so that it can also detect position.

The main difficulty is rooted in the fact that the system detects distance through

attenuation of the signal; highly reflective objects (metallic objects) are perceived as

much closer than similarly distanced objects that absorb the signal (such as concrete).

One possible method to resolve position is to use multiple Doppler radar units

(> 2) to track user movement, and to estimate position through examining multiple

velocity vector measurements. Though this will not solve the problem of stationary

targets, it should resolve the position problem when the user makes gestures, since

90

different measurements of changing velocity from two different directions can be mixed

to reveal position of moving objects. A system is being developed by NASA to

measure wind speed and wind vectors by using two Doppler Wind LIDAR (laser

pulse guided systems) to sense velocity change [18].

Due to availability, portability, and ease of use in the design, the Doppler Radar

system was chosen for future integration with the Responsive Window.

91

92

Chapter 7

Applications

The applications of the Responsive Window System detailed in this thesis include

the use of the window as an Interactive Drawing Exhibit, a Store Front Display, and

the more general Knock Driven Display. When used in conjunction with a radar-

rangefinding device, the entire setup will be able to drive a more “sentient” system.

Installations with the Responsive Window System have already been presented at

three locations, including Boston, New York, and Linz, Austria. Each exhibit is

discussed, along with how users responded to such a system. Finally, the new system,

which will be debuted at the 2002 SIGGRAPH Convention Emerging Technologies

Exhibition in July, is discussed.

7.1 Interactive Drawing Exhibit

The Interactive Drawing Exhibit for the Responsive Window [19] was debuted in Linz,

Austria at the Ars Electronica Museum on August 31, 2001. It is a semipermanent

installation that debuted in the 2001 Ars Electronica Festival as the “Responsive

Window” [19]. The glass used was 1 cm thick, and was supported by two large

columns on its left and right. It was free of constraints at its top and bottom.

A device called a “holoscreen” was mounted behind the front of the glass, and a

93

Figure 7-1: Interactive Drawing Exhibit at the Ars Electronica Museum

projector hanging from the ceiling cast graphics onto the holoscreen. Because of the

nature of the holoscreen, users were both able to see through the projection and see

the projection itself. The clap microphone was placed on the very top of the right

pillar and the low frequency ”bash” microphone was placed on the center of the glass,

just above the top of the holoscreen. Figure 7-1 shows the setup from a distance - it

is a piece of 1 cm thick glass, 1 meter in width, and 3 meters high upon which the

sensors were affixed as mentioned previously. Figure 7-2 shows a close-up view.

The graphics that we were displayed resulted from a collaboration with Ben Fry

from the MIT Media Lab’s Aesthetics and Computation Group. It was essentially

a simple knock-driven drawing program that illustrated the full responsiveness of

the system. One knock generated a circle centered at the impact coordinate that

oscillated as a function of knock intensity. Second and third knocks extruded a

rotating 3D object, with dimensions determined by the knocks’ coordinates. The

rotation rate and fill intensity were similarly a function of the intensity of the knock.

94

Figure 7-2: Close-up of Interactive Drawing Exhibit

A fourth knock sent the object spiraling into the screen (with rate depending on knock

intensity), vanishing at the impact location. The color of the object was a function of

the spectral content of the sensor waveforms, with knuckle knocks producing bluish

objects and metal taps producing reddish objects. Fist bangs flash the entire screen

with a bright red transient, with large rotating rings centered at the estimated impact

location. Finally, hits above and below the sensor perimeters launched circular waves

into the screen, centered on the assumed horizontal location of the hit.

One of the major drawbacks of this setup was that the projector had very poor

illumination of the exhibit, because of surrounding ambient light coming from the

windows behind the display during the daytime.

95

7.2 Knock-Driven Display

A knock-driven display was created on a 160 cm × 130 cm sheet of 1
4

inch glass. The

content augmented on the Interactive Drawing Exhibit in one particular manner: it

not only projected visual images, but also integrated a Doppler radar to allow the

user to somewhat control interactive sound as they moved about in front of the glass.

This exhibit debuted at MIT for ID/Entity [20], and shown from December 2001 to

January 2002 at “The Kitchen” in New York City. A tap at a specific location of the

cover image (the artist’s desktop - see Figure 7-3) allowed a story to unfold, narrated

by sections of answering machine messages and accompanying video. Eight messages

were mapped to different parts of the screen, allowing the particular message to be

selected by knocking on a relevant object. During a video, the user could bring up

images of the speaker or relevant topics by knocking on the glass. The image would

appear at the knock location, and the rotational rate of the images was proportional

to the user’s impact strength. Figure 7-4 shows a user bringing up background images

during playback.

The Doppler radar system was placed behind the top panel of the exhibit. One

drawback in constructing this display window was that most of the exhibit was con-

structed from scratch, and the projector required a dark room with about ten feet

of throw behind the screen. Because of its rear-screen nature, the exhibit had to be

shown in low light conditions. The audio portions were well heard, and did not cause

the system to falsely trigger. Because of the museum-based nature of the exhibit,

ambient noise was relatively low.

7.3 Store Front Window

The Responsive Window System is simple, cheap, and easy to install on large win-

dows. As nothing is needed outside the glass, it is well-matched to interactive retail

on shop windows. Hence, we tested this concept by retrofitting the main window

96

Figure 7-3: “A Telephone Story” Exhibit opening screen

97

Figure 7-4: “A Telephone Story” Exhibit in action

98

Figure 7-5: Storefront Display at American Greetings

of an American Greetings card store at Rockefeller Center in New York City for

their major seasons (Christmas and Valentine’s Day), running from December 2001

through February 2002. A simple interface allowed passersby to knock on the window

and watch movie clips or play a card-swap game in Monte Carlo style to win a free

greeting card from the store. Features from the previous two systems were used -

an improved holoscreen inside the window and sound outside. Figure 7-5 shows the

display window in action and Figure 7-6 shows a close-up view of the system.

One thing lacking in the system is the capability of the system to have two clap

veto microphones. While a microphone inside could veto internal store noise, such as

people clattering nearby merchandise, it could not veto external traffic noise and other

outdoor phenomenon. Fortunately, even in downtown Manhattan, this presented

only an occasional problem, and the system seldom false-triggered; this is most likely

because the outside acoustic noise did not impedance-match well to the window, and

thus did not frequently falsely trigger the system. The window display looked a little

99

Figure 7-6: Close-up of storefront display at American Greetings

100

Figure 7-7: Setup for the Interactive Window at SIGGRAPH, 2002

washed out during the daytime when one was standing close, but looked brilliant at

dusk. Though this store would close at night, we look forward to future trials with

stores that will keep the display running throughout the evening to allow curious

users to explore the content, and define a new meaning to window browsing.

7.4 SIGGRAPH: Interactive Window

A fourth application using the entire system can utilize the three dimensional sensing

capabilities of the system as input to an artificial lifeform. This could be anything

from a physical robot sitting behind a window, to a sentient abstract being which is

projected from a computer. At SIGGRAPH 2002, this system will be unveiled [21].

Incorporating the radar and responsive window tracker, users will be able to fully

explore media that both responds to contact and non-contact movements. The setup

is shown in Figure 7-7.

This system will use the window parameters and radar inputs to drive a graphics

system based on a layered behavioral network [22]; sample graphics are illustrated in

101

Figure 7-8: Sample graphics for Interactive Window

Figure 7-8. The exhibit intends to characterize noncontact gesture with non-localized

phenomena, while contact gesture will “crystallize” discrete events at particular lo-

cations. Feedback between the user, video, and sound, will allow the Interactive

Window to come alive.

102

Chapter 8

Conclusion and Future Work

A quick overview of the contents provided in this thesis will reveal that a sta-

ble, time-domain algorithm was developed to passively track single source, impulsive

impacts. The addition of a radar system was used to provide a three dimensional

interaction for the user. Several areas of research can be used to improve system

robustness and portability. These include miniaturizing the components, scaling to

larger windows and other media, as well as further investigation of the methods dis-

cussed in Chapter 5, such as dispersion compensation. Other types of improvements

are discussed below.

8.1 Miniaturizing Components

Because this is a prototype, larger components and a DSP evaluation kit were used.

As seen in Figures 3-5 and 3-6, the prototype hardware, although functional, is bulky,

fragile, and complex. A next step would be to redesign the system to fit on a single

smaller board or PC card. Miniaturizing the assembly of the Responsive Window

system would be a quick way to increase portability and robustness of the system.

Placing all the parts in a smaller package, as well as moving the serial port to a USB

connection would allow the system to be more easily deployed, as well as able to

103

interface with a wider range of computers.

It would also be possible to create a simpler device that only samples the wave-

forms and transmits the data over a USB port to the computer. However, in order

to maintain the same response time as the DSP, we would need at least a 2.4 Mbit/s

transfer rate, similar to a video system. (a rate of 2.4 Mbit/s is needed to sustain 50

kHz 12-bit sampling for four channels.)

8.2 Scaling to Larger Windows

Due to the absorption loss in glass, the Responsive Window is expected to have

poor sensitivity for extremely large windows, requiring very hard knocks. A natural

solution would be to add more sensors to sample more often to increase sensitivity.

The algorithms described in this thesis are easily scaled to provide tracking with

more sensors. However, as mentioned in Chapter 5, one must be careful about the

placement of the sensors, as this can influence the sampled waveforms’ characteristics.

Another method for scaling to a larger window is to use the sensor placement (2),

such as discussed in Chapter 5. In order to make the algorithm work, however, the

sensors will need to be placed far enough from the window edges so that reflections

do not corrupt the signal. The hyperbola intersection routine can easily be modified

by rotating the coordinates to maintain the conditions set to solve for the solution.

8.3 Scaling to Other Media

While these techniques have been refined for use with glass, the concepts used here

could be applied to track single ping source impacts on other media. Other types

of surfaces, such as plexiglass and metal sheets could be explored. However, it is

possible that the receivers may have to be discarded in favor of different sensors that

have better frequency responses for the given media.

104

8.4 Future Applications

A system that follows both contact gesture (as physical impacts) and non-contact

gestures of a user has many applications. Besides being able to provide information

to a user via dynamic projected video, it can also be used as a simple means of

controlling devices (e.g., a vending machine or robots performing hazardous tasks)

that require being behind a barrier, such as glass.

As the intrinsic resolution is so coarse, this system is mainly appropriate for large

displays; standard touchscreen technologies [23] are better suited to smaller CRT-

sized systems, such as in video kiosks. As a very inexpensive retrofit to large display

surfaces, however, this system holds the promise of ubiquitously ushering communal

and informative interaction into public venues, potentially revolutionizing our concept

of window browsing.

105

106

Appendix A

Abbreviations and Symbols

Symbol Definition

∇2 = δ2

δx2 + δ2

δy2 + δ2

δz2 Laplacian Operator

5NN Five Nearest Neighbors

A/D Analog to Digital

ADMC401 Analog Devices Motor Control Kit

DFT Discrete Fourier Transform

DSP Digital Signal Processor

FIR Finite Impulse Response

FMCW Frequency Modulated Continuous Wave

IC Integrated Circuit

MIR Micro-Impulse Radar

PC Personal Computer

PVDF Polyvinylidene Flouride

SNR Signal to Noise Ratio

USB Universal Serial Bus

107

108

Appendix B

Hardware Schematics

This section contains schematics and layout for the Analog Components of the Re-

sponsive Window System. These include the Pre-Amplifier Board, the Main Analog

Signal Conditioning Board, and the Auxiliary Power Breakout Board.

109

Figure B-1: Schematic for pre-amplifier board

110

Figure B-2: Layout for pre-amplifier board

111

Figure B-3: Schematic for analog signal conditioning board

112

Figure B-4: Layout for analog signal conditioning board

113

Figure B-5: Schematic for power supply auxiliary board

114

Figure B-6: Layout for power supply auxiliary board

115

116

Appendix C

Software Code

This section contains code used for the Responsive Window. It is broken up into

two parts: DSP Code, and C++ Code.

117

C.1 DSP Code

main.dsp

{****** main.dsp *************************}

{****** Main program for the *************}

{****** Responsive Window ****************}

.MODULE/RAM/SEG=USER_PM1/ABS=0x60 Main_Test;

#include <main.h>;
10 #include <pwm401.h>;

#include <adc401.h>;
#include <uart0.h>;
#include <chisq.h>;

.VAR/DM/CIRC input1[400];

.GLOBAL input1;

.VAR/DM/CIRC input2[400];

.GLOBAL input2;

.VAR/DM/CIRC input3[400];

20 .VAR/DM/CIRC input4[400];

.VAR/DM input1save[400];

.VAR/DM input2save[400];

.VAR/DM input3save[400];

.VAR/DM input4save[400];

.VAR/DM inputsaveptr;

.VAR/DM micsave[1000];

.VAR/DM mic2save[400];

30 .VAR/DM inp1start13;

.VAR/DM inp2start13;

.VAR/DM inp1end13;

.VAR/DM inp2end13;

.VAR/DM maxcorrdiff13;

.VAR/DM secondcorrdiff13;

.VAR/DM/CIRC mic[1000];

.VAR/DM/CIRC mic2[400];

.VAR/DM tempinput[400];

40 .GLOBAL tempinput;

.VAR/DM length;

.VAR/DM xcorrhi[400];

.GLOBAL xcorrhi;

.VAR/DM xcorrlo[400];

.GLOBAL xcorrlo;

.VAR/DM locptr;

.GLOBAL locptr;

.VAR/DM peakcount;

50
.VAR/DM initialbias;

.VAR/DM initialsumhi;

.VAR/DM initialsumlo;

.VAR/DM tapthres;

.VAR/DM bangthres;

.VAR/DM delaybeforenext;

.VAR/DM delaycntr;

.VAR/DM wasbadtap;

.VAR/DM metaltapthres;

60 .VAR/DM toolonginmain;

.VAR/DM abovenoisethres;

.VAR/DM noisecount;

.VAR/DM maxsum;

.VAR/DM littledelaycntr;

.VAR/DM littledelaymult;

.VAR/DM pwmtripcount;

.VAR/DM inp1value;

.VAR/DM inp2value;

70 .VAR/DM inp3value;

.VAR/DM inp4value;

.VAR/DM inp5value;

.VAR/DM inp6value;

.VAR/DM decaythres;

.VAR/DM decaymult;

.VAR/DM largestmax;

.VAR/DM startsamplecount;

80 .VAR/DM bangcount;

.VAR/DM filtersumlo;

.VAR/DM filtersumhi;

.VAR/DM maxcorrpeakhi;

.VAR/DM maxcorrpeaklo;

.VAR/DM maxcorrpeakloc;

.VAR/DM secondcorrpeakhi;

.VAR/DM secondcorrpeaklo;

90 .VAR/DM secondcorrpeakloc;

.VAR/DM maxcorrdiff;

.VAR/DM secondcorrdiff;

.VAR/DM corrlength;

.GLOBAL corrlength;

.VAR/DM peakamphi[15];

.VAR/DM peakamplo[15];

.VAR/DM peakloc[15];

100 .VAR/DM zerocrossloc[15];

.VAR/DM zerocrosscount;

.VAR/DM purezerocrosscount;

.VAR/DM max;

.GLOBAL max;

.VAR/DM threshhold;

.GLOBAL threshhold;

.VAR/DM min;

.GLOBAL min;

.VAR/DM sum;

110 .VAR/DM sumlength;

.VAR/DM sumcounter;

.VAR/DM trimstart;

.GLOBAL trimstart;

.VAR/DM zerocross;

.VAR/DM maxpeak;

.VAR/DM inputlabel;

.VAR/DM aftertriggerlength;

.VAR/DM saveinput;

.VAR/DM saveinput1;

120 .VAR/DM saveinput2;

.VAR/DM saveinput3;

.VAR/DM hpsum;

.VAR/DM slopepos1;

.VAR/DM slopepos2;

.vAR/DM slopeneg1;

.VAR/DM slopeneg2;

.VAR/DM peakorzero;

.VAR/DM lastpeakfound;

.VAR/DM notmaxpeak;

130 .VAR/DM searchdownslope;

.VAR/DM prevslope;

.VAR/DM ninetenthsmax;

.VAR/DM lastpeakamp;

.VAR/DM currpeakamp;

.VAR/DM threepeaks[3];

.VAR/DM surrzeros[4];

.VAR/DM threepeaks1[3];

.VAR/DM threepeaks2[3];

140 .VAR/DM threepeaks3[3];

.VAR/DM threepeaks4[3];

.VAR/DM surrzeros1[4];

.VAR/DM surrzeros2[4];

.VAR/DM surrzeros3[4];

.VAR/DM surrzeros4[4];

.VAR/DM inp1peaksptr;

.GLOBAL inp1peaksptr;

.VAR/DM inp2peaksptr;

150 .GLOBAL inp2peaksptr;

.VAR/DM inp1surrzerosptr;

.GLOBAL inp1surrzerosptr;

.VAR/DM inp2surrzerosptr;

.GLOBAL inp2surrzerosptr;

.VAR/DM inp1start;

.GLOBAL inp1start;

118

.VAR/DM inp1end;

.GLOBAL inp1end;

.VAR/DM inp2start;

160 .GLOBAL inp2start;

.vAR/DM inp2end;

.GLOBAL inp2end;

.VAR/DM inp1start2;

.GLOBAL inp1start2;

.VAR/DM inp1end2;

.GLOBAL inp1end2;

.VAR/DM inp2start2;

.GLOBAL inp2start2;

.VAR/DM inp2end2;

170 .GLOBAL inp2end2;

.VAR/DM inp1num;

.GLOBAL inp1num;

.VAR/DM inp2num;

.GLOBAL inp2num;

.VAR/DM inp1startfinal;

.GLOBAL inp1startfinal;

.VAR/DM inp1endfinal;

.GLOBAL inp1endfinal;

.VAR/DM inp2startfinal;

180 .GLOBAL inp2startfinal;

.VAR/DM inp2endfinal;

.GLOBAL inp2endfinal;

.VAR/DM finalchisqminlo;

.GLOBAL finalchisqminlo;

.VAR/DM finalchisqminhi;

.GLOBAL finalchisqminhi;

.VAR/DM inp1ptr;

.GLOBAL inp1ptr;

.VAR/DM inp2ptr;

190 .GLOBAL inp2ptr;

.VAR/DM chisqinput1[100];

.GLOBAL chisqinput1;

.VAR/DM chisqinput2[100];

.GLOBAL chisqinput2;

.VAR/DM chisqlen1;

.GLOBAL chisqlen1;

.VAR/DM chisqlen2;

.GLOBAL chisqlen2;

200 .VAR/DM chisqmaxlen;

.GLOBAL chisqmaxlen;

.VAR/DM chisqminlo;

.GLOBAL chisqminlo;

.vAR/DM chisqminhi;

.GLOBAL chisqminhi;

.VAR/DM checkdist;

.GLOBAL checkdist;

.VAR/DM newmin;

.GLOBAL newmin;

210 .VAR/DM shiftinput;

.GLOBAL shiftinput;

.VAR/DM mulfacthi;

.GLOBAL mulfacthi;

.VAR/DM mulfactlo;

.GLOBAL mulfactlo;

.VAR/DM maxminlength;

.GLOBAL maxminlength;

220 .VAR/DM metaltapstart;

.VAR/DM zerocrosssum;

.VAR/DM hextemp;

.VAR/DM startdata;

.vAR/DM trigger;

.ENTRY findmaxmin;

.ENTRY badtap;

230
{************************}

{ Start of program code }

{************************}

startup:

IMASK=0x0006;

AR=0;

dm(trigger)=AR;

dm(startdata)=AR;

240
PWM_Init(PWMSYNC_ISR, PWMTRIP_ISR);

UART0_Init;

IFC = 0x80; { Clear any pending IRQ2 inter.}

IMASK=0x0206;

ADC_Init;

{ Calibrates the ADC block. This calibration requires }

250 { values from the ADC and so the PWMSYNC must be }

{ running when it is called. Here all the offset are }

{ stored. }

{ Thus, ADC_init is placed after IRQ2 is enabled }

IMASK = 0x0006;

call initvalues;

AR=0;

dm(pwmtripcount)=AR;

260
IMASK = 0x0206;

jump main;

initvalues:

AR=%input1;

dm(length) = AR;

AR=251;

270 dm(aftertriggerlength)=AR;

AR=120;

dm(sumlength)=AR;

AR=10;

dm(checkdist)=AR;

AR=0x2000; {was 0x1600}

dm(tapthres)=AR;

280
AR=0x6000;

dm(bangthres)=AR;

AR=5000; {was 600}

dm(delaybeforenext)=AR;

AR=1;

dm(delaycntr)=AR;

290 AR=0;

dm(wasbadtap)=AR;

AR=42;

dm(metaltapthres)=AR;

AR=0x0050;

dm(abovenoisethres)=AR;

AR=40;

300 dm(noisecount)=AR;

AR=0;

dm(littledelaycntr)=AR;

AR=150;

dm(littledelaymult)=AR;

AR=0;

dm(decaythres)=AR;

310
AR=0x0001;

dm(decaymult)=AR;

AR=-1;

dm(bangcount)=AR;

AR=0;

dm(trigger)=AR;

320 AR=150;

dm(startsamplecount)=AR;

write_dm(piopwm, 0);

I1=^input1;

L1=%input1;

M1=1;

I2=^input2;

L2=L1;

330 M2=1;

119

I3=^input3;

L3=L1;

M3=1;

I4=^input4;

L4=L1;

M4=1;

I0=^mic;

L0=%mic;

M0=1;

340 I5=^mic2;

L5=%mic2;

M5=1;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine1;

AR=1;

cntrfine1: CNTR=AR;

AR=0;

350
DO init1 UNTIL CE;

DM(I1, M1)=AR;

DM(I2, M2)=AR;

DM(I3, M3)=AR;

DM(I4, M4)=AR;

DM(I0, M0)=AR;

init1: DM(I5, M5)=AR;

AR=%mic;

360 CNTR=AR;

AR=0;

DO initmic UNTIL CE;

initmic: DM(I0, M0)=AR;

AR=%peakamphi;

CNTR=AR;

AR=0;

I5=^peakamphi;

370 I6=^peakamplo;

I7=^peakloc;

L5=0;

L6=0;

L7=0;

M5=1;

M6=1;

M7=1;

DO init2 UNTIL CE;

380 DM(I5, M5)=AR;

DM(I6, M6)=AR;

init2: DM(I7, M7)=AR;

I5=^threepeaks;

AR=3;

CNTR=AR;

AR=0;

DO init3 UNTIL CE;

init3: DM(I5, M5)=AR;

390
AR=1;

dm(startdata)=AR;

call resetinputs;

RTS;

MAIN:

400 nop;

nop;

nop;

nop;

nop;

nop;

nop;

jump MAIN;

rts;

410 testthreepeaks:

IMASK=0x0006;

I6=AR;

M6=1;

L6=0;

AR=dm(I6, M6);

AR=AR+0;

IF GT jump okay;

AR=0x1234;

okay: nop;

420 RTS;

save13info:

IMASK=0x0006;

AR=dm(inp1startfinal);

dm(inp1start13)=AR;

AR=dm(inp2startfinal);

dm(inp2start13)=AR;

AR=dm(inp1endfinal);

dm(inp1end13)=AR;

430 AR=dm(inp2endfinal);

dm(inp2end13)=AR;

AR=dm(maxcorrdiff);

dm(maxcorrdiff13)=AR;

AR=dm(secondcorrdiff);

dm(secondcorrdiff13)=AR;

RTS;

printdigit: {put digit to be printed in AR}

IMASK=0x0066;

440
ax0=AR;

ay0=0xA;

AR=AR-ay0;

if GE jump letter;

ay1=0x30;

AR=ax0;

AR=AR+ay1;

UART0_Write(AR);

jump endprint;

450 letter:

AR=ax0;

AR=AR-ay0;

ay1=0x41;

AR=AR+ay1;

UART0_WRite(AR);

endprint: nop;

RTS;

460 printhex: {put number to be printed in AR}

IMASK=0x0066;

dm(hextemp)=AR;

ay0=0xF000;

AR=AR AND ay0;

SR=LSHIFT AR BY -12 (hi);

AR=SR1;

call printdigit;

470
AR=dm(hextemp);

ay0=0x0F00;

AR=AR AND ay0;

SR=LSHIFT AR BY -8 (hi);

AR=SR1;

call printdigit;

AR=dm(hextemp);

ay0=0x00F0;

480 AR=AR AND ay0;

SR=LSHIFT AR BY -4 (hi);

AR=SR1;

call printdigit;

AR=dm(hextemp);

ay0=0x000F;

AR=AR AND ay0;

call printdigit;

490 Uart0_Write(255);

RTS;

resetinputs:

IMASK=0x0006;

AR=^input1;

I1=AR;

AR=^input2;

I2=AR;

AR=^input3;

500 I3=AR;

AR=^input4;

I4=AR;

AR=dm(length);

L1=AR;

120

L2=L1;

L3=L1;

L4=L1;

M1=1;

M2=1;

510 M3=1;

M4=1;

I0=^mic;

L0=%mic;

M0=1;

I5=^mic2;

L5=%mic2;

M5=1;

RTS;

520
copyinputs: {recopy 4 inputs as linear arrays}

IMASK=0x0006;

I6=^tempinput;

L6=0;

M6=1;

AR=dm(length);

AR=AR+0;

530 IF GT jump cntrfine12;

AR=1;

cntrfine12: CNTR=AR;

DO copyloop1 UNTIL CE;

AR=dm(I1, M1);

copyloop1: dm(I6, M6)=AR;

I1=^input1;

L1=0;

I6=^tempinput;

AR=dm(length);

540 AR=AR+0;

IF GT jump cntrfine2;

AR=1;

cntrfine2: CNTR=AR;

DO copyloop2 UNTIL CE;

AR=dm(I6, M6);

copyloop2: dm(I1, M1)=AR;

I6=^tempinput;

AR=dm(length);

550 AR=AR+0;

IF GT jump cntrfine3;

AR=1;

cntrfine3: CNTR=AR;

DO copyloop3 UNTIL CE;

AR=dm(I2, M2);

copyloop3: dm(I6, M6)=AR;

I2=^input2;

L2=0;

I6=^tempinput;

560 AR=dm(length);

AR=AR+0;

IF GT jump cntrfine4;

AR=1;

cntrfine4: CNTR=AR;

DO copyloop4 UNTIL CE;

AR=dm(I6, M6);

copyloop4: dm(I2, M2)=AR;

I6=^tempinput;

570 AR=dm(length);

AR=AR+0;

IF GT jump cntrfine5;

AR=1;

cntrfine5: CNTR=AR;

DO copyloop5 UNTIL CE;

AR=dm(I3, M3);

copyloop5: dm(I6, M6)=AR;

I3=^input3;

L3=0;

580 I6=^tempinput;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine6;

AR=1;

cntrfine6: CNTR=AR;

DO copyloop6 UNTIL CE;

AR=dm(I6, M6);

copyloop6: dm(I3, M3)=AR;

590 I6=^tempinput;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine7;

AR=1;

cntrfine7: CNTR=AR;

DO copyloop7 UNTIL CE;

AR=dm(I4, M4);

copyloop7: dm(I6, M6)=AR;

I4=^input4;

600 L4=0;

I6=^tempinput;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine8;

AR=1;

cntrfine8: CNTR=AR;

DO copyloop8 UNTIL CE;

AR=dm(I6, M6);

copyloop8: dm(I4, M4)=AR;

610
I6=^tempinput;

AR=%mic;

AR=AR+0;

IF GT jump cntrfine9;

AR=1;

cntrfine9: CNTR=AR;

DO copyloop9 UNTIL CE;

AR=dm(I0, M0);

copyloop9: dm(I6, M6)=AR;

620 I0=^mic;

L0=0;

I6=^tempinput;

AR=%mic;

AR=AR+0;

IF GT jump cntrfine10;

AR=1;

cntrfine10: CNTR=AR;

DO copyloop10 UNTIL CE;

AR=dm(I6, M6);

630 copyloop10: dm(I0, M0)=AR;

I6=^tempinput;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine11;

AR=1;

cntrfine11: CNTR=AR;

DO copyloop11 UNTIL CE;

AR=dm(I5, M5);

640 copyloop11: dm(I6, M6)=AR;

I5=^mic2;

L5=0;

I6=^tempinput;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine13;

AR=1;

cntrfine13: CNTR=AR;

DO copyloop12 UNTIL CE;

650 AR=dm(I6, M6);

copyloop12: dm(I5, M5)=AR;

RTS;

findinitialbias:

IMASK=0x0006;

L5=0;

M5=1;

660 AR=0;

dm(initialsumlo)=AR;

dm(initialsumhi)=AR;

AR=8;

CNTR=AR;

DO suminitial UNTIL CE;

ay0=dm(I5, M5);

ax0=10000;

AR=ax0+ay0;

ay0=dm(initialsumlo);

670 AR=AR+ay0;

dm(initialsumlo)=AR;

AR=dm(initialsumhi);

AR=AR+C;

suminitial: dm(initialsumhi)=AR;

AR=dm(initialsumlo);

SR=LSHIFT AR BY -3 (lo);

AR=dm(initialsumhi);

SR=SR OR LSHIFT AR BY -3 (hi);

121

AR=SR0;

680 ay0=10000;

AR=AR-ay0;

dm(initialbias)=AR;

RTS;

findmaxmin:

{put sample in I5, length in maxminlength}

IMASK=0x0006;

L5=0;

690 M5=1;

AR=0x7FFF;

ay0=AR;

AR=0x0000;

ay1=AR;

AR=dm(maxminlength);

AR=AR+0;

IF LE RTS;

CNTR=AR;

700 DO maxloop UNTIL CE;

ax1=dm(I5, M5);

AR=ax1+0;

IF GT jump posalready;

AR=-ax1;

ax1=AR;

posalready: AR=ax1-ay0;

IF GT jump checkmax;

ay0=ax1;

checkmax: AR=ax1;

710 AR=AR-ay1;

IF LE jump maxloop;

ay1=ax1;

maxloop: nop;

AR=ay0;

dm(min)=AR;

AR=ay1;

dm(max)=AR;

RTS;

720

normalize:

{put sample in I5, put savesample in I7}

IMASK=0x0006;

M5=1;

L5=0;

I6=I5;

M6=1;

730 L6=0;

M7=1;

L7=0;

AR=80;

dm(maxminlength)=AR;

call findmaxmin;

I5=I6;

740 M5=1;

L5=0;

AR=1;

dm(purezerocrosscount)=AR;

AR=dm(max);

ay0=1600;

AR=AR+ay0;

dm(max)=AR;

750 AR=dm(min);

AR=AR-ay0;

dm(min)=AR;

AR=0;

dm(abovethreshhold)=AR;

AR=dm(length);

AR=AR+0;

IF GT jump cntrisfine;

760 AR=1;

cntrisfine: CNTR=AR;

DO updatezerocount UNTIL CE;

AR=dm(abovethreshhold);

AR=AR+0;

IF NE jump lookforzeroxing;

AR=dm(I5, M5);

ay0=AR;

AR=dm(max);

AR=AR-ay0;

770 IF LE jump abovethresh;

AR=dm(min);

AR=AR-ay0;

IF LT jump updatezerocount;

AR=-1;

dm(abovethreshhold)=AR;

jump updatezerocount;

abovethresh: AR=1;

dm(abovethreshhold)=AR;

jump updatezerocount;

780 lookforzeroxing:AR=AR+0;

IF GT jump lookdownwards;

AR=dm(I5, M5);

ay0=AR;

AR=dm(max);

AR=AR-ay0;

IF GT jump updatezerocount;

AR=dm(purezerocrosscount);

AR=AR+1;

dm(purezerocrosscount)=AR;

790 AR=1;

dm(abovethreshhold)=AR;

jump updatezerocount;

lookdownwards: AR=dm(I5, M5);

ay0=AR;

AR=dm(min);

AR=AR-ay0;

IF LT jump updatezerocount;

AR=dm(purezerocrosscount);

AR=AR+1;

800 dm(purezerocrosscount)=AR;

AR=-1;

dm(abovethreshhold)=AR;

updatezerocount:nop;

I5=I6;

AR=1600;

ay0=AR;

AR=dm(max);

AR=AR-ay0;

810 dm(max)=AR;

AR=dm(min);

AR=AR+ay0;

dm(min)=AR;

ay0=dm(initialbias);

AR=dm(max);

AR=AR-ay0;

820 dm(max)=AR;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine14;

AR=1;

cntrfine14: CNTR=AR;

AR=dm(inputlabel);

ay1=5;

830 AR=AR-ay1;

IF NE jump notfive2;

AR=%mic;

AR=AR+0;

IF GT jump cntrfine30;

AR=1;

cntrfine30: CNTR=AR;

notfive2: AR=dm(I5, M5);

840 DO submin UNTIL CE;

AR=AR-ay0;

IF GT jump waspositive;

AR=-AR;

waspositive: SR=LSHIFT AR BY -4 (LO);

AR=SR0;

dm(I6, M6)=AR;

dm(I7, M7)=AR;

submin: AR=dm(I5, M5);

850 AR=dm(max);

SR=LSHIFT AR BY -4 (LO);

dm(max)=SR0;

122

SR=LSHIFT AR BY -8 (lo);

AR=SR0;

dm(threshhold)=AR;

RTS;

trimfront: {put sample in I5}

IMASK=0x0006;

860
M5=1;

L5=0;

I6=I5;

M6=1;

L6=0;

AR=0;

dm(trimstart)=AR;

ay0=dm(threshhold);

870 ax0=15;

AR=ax0-ay0;

IF LE jump takethres;

ay0=15;

takethres: AR=1;

dm(locptr)=AR;

AR=dm(length);

AR=AR+0;

IF GT jump cntrfine15;

AR=1;

880 cntrfine15: CNTR=AR;

AR=dm(I5, M5);

DO trimloop UNTIL CE;

AR=AR-ay0;

IF LT JUMP notreached;

AR=dm(locptr);

dm(trimstart)=AR;

pop CNTR;

pop PC;

pop LOOP;

890 jump trimloopdone;

notreached: AR=0;

dm(I6, M6)=AR;

AR=dm(locptr);

AR=AR+1;

dm(locptr)=AR;

AR=dm(I5, M5);

trimloop: nop;

trimloopdone: nop;

RTS;

900
findpeakzero: {put input in I5}

IMASK=0x0006;

AR=dm(trimstart);

AR=AR+0;

IF LE jump trimstartzero;

AR=AR-1;

trimstartzero: ay0=AR;

AR=I5;

910 dm(saveinput)=AR;

AR=AR+ay0;

I5=AR;

I6=^peakloc;

I7=^zerocrossloc;

M6=1;

M7=0;

L6=0;

L7=0;

920 M0=1;

AR=0;

dm(maxpeak)=AR;

dm(zerocross)=AR;

dm(sum)=AR;

dm(slopepos1)=AR;

dm(slopepos2)=AR;

dm(slopeneg1)=AR;

dm(slopeneg2)=AR;

930 dm(lastpeakfound)=AR;

dm(searchdownslope)=AR;

dm(lastpeakamp)=AR;

AR=1;

dm(peakorzero)=AR;

dm(zerocrosscount)=AR;

dm(sumcounter)=AR;

AR=3;

940 dm(locptr)=AR;

AR=dm(length);

AR=AR-ay0;

AR=AR-1;

IF GT jump cntrokay1;

call badtap;

jump endloop;

cntrokay1: CNTR=AR;

AR=dm(I5, M5);

950 SR=LSHIFT AR by -4 (lo);

AR=SR0;

dm(sum)=AR;

AR=dm(trimstart);

dm(I7, M7)=AR;

AR=dm(I5, M5);

dm(prevslope)=AR;

ax0=AR;

960 DO pzloop UNTIL CE;

ay0=dm(sumlength);

AR=dm(sumcounter);

AR=AR-ay0;

IF LT jump sumnext;

pop PC;

pop LOOP;

pop CNTR;

jump pzloop;

970 sumnext: AR=ax0;

SR=LSHIFT AR by -4 (lo);

ay0=dm(sum);

AR=SR0+ay0;

dm(sum)=AR;

AR=dm(sumcounter);

AR=AR+1;

dm(sumcounter)=AR;

ax1=dm(I5, M5);

980 ay1=ax0;

AR=dm(peakorzero);

AR=AR+0;

IF GT jump peaks;

AR=dm(slopeneg2);

AR=AR+0;

IF LE jump notneg2;

990 AR=ax1-ay1;

IF LE jump notzero;

AR=0;

dm(slopeneg1)=AR;

dm(slopeneg2)=AR;

jump iszero;

notneg2: AR=dm(slopeneg1);

AR=AR+0;

1000 IF LE jump notneg1;

AR=ax1-ay1;

IF EQ jump incptr;

IF GT jump pos1;

AR=1;

dm(slopeneg2)=AR;

jump notzero;

pos1: AR=0;

dm(slopeneg1)=AR;

jump notzero;

1010
notneg1: AR=ax1-ay1;

IF GE jump incptr;

AR=1;

dm(slopeneg1)=AR;

jump notzero;

iszero: AR=dm(zerocrosscount);

AR=AR+1;

dm(zerocrosscount)=AR;

1020
ay0=%zerocrossloc;

AR=dm(zerocrosscount);

AR=AR-ay0;

IF GE jump incptr;

AR=1;

123

dm(peakorzero)=AR;

AR=dm(trimstart);

1030 AR=AR-2;

ay0=AR;

AR=dm(locptr);

AR=AR+ay0;

dm(I7, M7)=AR;

jump incptr;

notzero: {AR=0;

dm(zerocross)=AR;}

AR=dm(lastpeakfound);

1040 AR=AR+0;

IF GT jump incptr;

AR=dm(searchdownslope);

AR=AR+0;

IF EQ jump incptr;

AR=ax1-ay1;

ay0=dm(prevslope);

AR=AR-ay0;

1050 AR=AR-2;

IF LE jump incptr;

AR=1;

dm(lastpeakfound)=AR;

AR=I6;

AR=AR-2;

I1=AR;

AR=I7;

1060 AR=AR-1;

I2=AR;

M1=-1;

M2=-1;

L1=0;

L2=0;

I3=^threepeaks;

I4=^surrzeros;

1070 M3=1;

M4=1;

AR=3;

CNTR=AR;

DO setthreepeaks UNTIL CE;

AR=dm(I1, M1);

dm(I3, M3)=AR;

AR=dm(I2, M2);

setthreepeaks: dm(I4, M4)=AR;

1080 AR=dm(I2, M2);

dm(I4, M4)=AR;

jump incptr;

peaks: AR=dm(peakcount);

AR=AR+0;

IF GT jump notfirstpeak;

AR=ax1-ay1;

1090 ay0=dm(prevslope);

AR=AR-ay0;

AR=AR-1;

IF LE jump notfirstpeak;

AR=dm(trimstart);

AR=AR-2;

ay0=AR;

AR=dm(locptr);

1100 AR=AR+ay0;

dm(I7, M7)=AR;

notfirstpeak: AR=dm(slopepos2);

AR=AR+0;

IF LE jump not2;

AR=ax1-ay1;

IF GE jump incptr;

AR=dm(peakcount);

1110 AR=AR-1;

IF GE jump donesetptr;

M7=1;

AR=dm(I7, M7);

donesetptr: AR=0;

dm(slopepos2)=AR;

dm(slopepos1)=AR;

AR=%peakloc;

1120 ay0=AR;

AR=dm(peakcount);

AR=AR-ay0;

IF GT jump incptr;

AR=dm(peakcount);

AR=AR+1;

dm(peakcount)=AR;

AR=0;

1130 dm(peakorzero)=AR;

dm(zerocross)=AR;

AR=dm(trimstart);

AR=AR-2;

ay0=AR;

AR=dm(locptr);

AR=AR+ay0;

dm(I6, M6)=AR;

1140 AR=dm(maxpeak);

AR=AR-ay1;

IF GE jump notnewmax;

AR=ay1;

dm(maxpeak)=AR;

AR=0;

dm(notmaxpeak)=AR;

jump donesetmax;

1150 notnewmax: AR=1;

dm(notmaxpeak)=AR;

donesetmax: ay0=dm(peakcount);

AR=3;

AR=AR-ay0;

IF LT jump morethanthree;

AR=dm(lastpeakamp);

AR=AR-ay1;

IF LE jump setlastpeak;

1160
AR=dm(lastpeakfound);

AR=AR+0;

IF GT jump pzloop;

AR=1;

dm(lastpeakfound)=AR;

ay0=5;

ax0=dm(inputlabel);

1170 AR=ax0-ay0;

IF GE jump pzloop;

I1=I6;

I2=I7;

M1=-1;

M2=-1;

L1=0;

L2=0;

1180 I3=^threepeaks;

I4=^surrzeros;

M3=1;

M4=1;

L3=0;

L4=0;

AR=dm(peakcount);

AR=AR-1;

1190 IF GT jump enoughpeaks3;

call badtap;

jump endloop;

enoughpeaks3: AR=dm(I1, M1);

AR=dm(I1, M1);

AR=dm(I2, M2);

AR=3;

ay0=dm(peakcount);

AR=AR-ay0;

IF GT jump setcntrto3b;

1200 AR=ay0;

124

AR=AR-1;

IF GT jump cntrfine16a;

call badtap;

POP PC;

POP CNTR;

POP LOOP;

jump endloop;

cntrfine16a: CNTR=AR;

jump donesettingcntr1b;

1210 setcntrto3b: CNTR=3;

donesettingcntr1b:

DO setthreepeaksend1a UNTIL CE;

AR=dm(I1, M1);

dm(I3, M3)=AR;

AR=dm(I2, M2);

setthreepeaksend1a: dm(I4, M4)=AR;

AR=dm(I2, M2);

dm(I4, M4)=AR;

1220 jump pzloop;

morethanthree: AR=dm(lastpeakfound);

AR=AR+0;

IF GT jump incptr;

AR=1;

dm(searchdownslope)=AR;

1230 AR=dm(notmaxpeak);

AR=AR+0;

IF GT jump wasnotmax;

MX1=ay1;

MY1=0x7332;

MR=MX1*MY1(SS);

AR=dm(lastpeakamp);

ay0=MR1;

dm(ninetenthsmax)=ay0;

1240 AR=AR-ay0;

IF LT jump setlastpeak;

wasnotmax: AR=1;

dm(lastpeakfound)=AR;

AR=I6;

AR=AR-2;

I1=AR;

1250 AR=I7;

AR=AR-1;

I2=AR;

M1=-1;

M2=-1;

L1=0;

L2=0;

I3=^threepeaks;

1260 I4=^surrzeros;

M3=1;

M4=1;

AR=3;

CNTR=AR;

DO setthreepeaks2 UNTIL CE;

AR=dm(I1, M1);

dm(I3, M3)=AR;

AR=dm(I2, M2);

1270 setthreepeaks2: dm(I4, M4)=AR;

AR=dm(I2, M2);

dm(I4, M4)=AR;

jump incptr;

setlastpeak: dm(lastpeakamp)=ay1;

jump incptr;

not2: AR=dm(slopepos1);

1280 AR=AR+0;

IF LE jump not1;

AR=ax1-ay1;

IF EQ jump incptr;

IF LT jump neg1;

AR=1;

dm(slopepos2)=AR;

jump incptr;

neg1: AR=0;

dm(slopepos1)=AR;

1290 jump incptr;

not1: AR=ax1-ay1;

IF LE jump incptr;

AR=1;

dm(slopepos1)=AR;

incptr: AR=dm(locptr);

AR=AR+1;

dm(locptr)=AR;

1300 ax0=ax1;

AR=ax1-ay1;

dm(prevslope)=AR;

pzloop: nop;

afterpzloop: AR=dm(lastpeakfound);

AR=AR+0;

IF GT jump endloop;

1310 ay0=5;

ax0=dm(inputlabel);

AR=ax0-ay0;

IF GE jump doneitall;

AR=1;

dm(lastpeakfound)=AR;

I1=I6;

I2=I7;

1320 M1=-1;

M2=-1;

L1=0;

L2=0;

I3=^threepeaks;

I4=^surrzeros;

M3=1;

M4=1;

L3=0;

1330 L4=0;

AR=dm(peakorzero);

AR=AR+0;

IF GT jump lookingforpeak;

AR=dm(peakcount);

AR=AR-1;

IF GT jump enoughpeaks1;

call badtap;

1340 jump endloop;

enoughpeaks1: AR=dm(I1, M1);

AR=dm(I1, M1);

AR=dm(I2, M2);

AR=3;

ay0=dm(peakcount);

AR=AR-ay0;

IF GT jump setcntrto3;

AR=ay0;

AR=AR-1;

1350 IF GT jump cntrfine16;

call badtap;

jump endloop;

cntrfine16: CNTR=AR;

jump donesettingcntr1;

setcntrto3: CNTR=3;

donesettingcntr1:

DO setthreepeaksend1 UNTIL CE;

AR=dm(I1, M1);

dm(I3, M3)=AR;

1360 AR=dm(I2, M2);

setthreepeaksend1: dm(I4, M4)=AR;

AR=dm(I2, M2);

dm(I4, M4)=AR;

jump endloop;

lookingforpeak: AR=dm(peakcount);

AR=AR+0;

IF GT jump enoughpeaks2;

1370 call badtap;

jump endloop;

enoughpeaks2: AR=dm(I1, M1);

AR=dm(I2, M2);

AR=3;

125

ay0=dm(peakcount);

AR=AR-ay0;

IF GE jump setcntrto3a;

AR=ay0;

AR=AR+0;

1380 IF GT jump cntrfine17;

AR=1;

cntrfine17: CNTR=ay0;

jump donesettingcntr1a;

setcntrto3a: CNTR=3;

donesettingcntr1a:

DO set3peaksend UNTIL CE;

AR=dm(I1, M1);

dm(I3, M3)=AR;

1390 AR=dm(I2, M2);

set3peaksend: dm(I4, M4)=AR;

AR=dm(I2, M2);

dm(I4, M4)=AR;

endloop: nop;

AR=^threepeaks;

call testthreepeaks;

doneitall: nop;

RTS;

1400

transmitinput: {put input number in inputlabel}

IMASK=0x0066;

Uart0_Write(255);

UART0_Write(105);

AR=dm(inputlabel);

call printdigit;

1410 Uart0_Write(255);

UART0_Write(115);

Uart0_Write(255);

AR=dm(sum);

call printhex;

UART0_Write(109);

Uart0_Write(255);

1420 AR=dm(inputlabel);

ay0=5;

AR=AR-ay0;

IF LT jump usemaxpeak;

AR=dm(max);

jump donemaxpick;

usemaxpeak: AR=dm(maxpeak);

donemaxpick: call printhex;

UART0_Write(122);

1430 Uart0_Write(255);

AR=dm(zerocrosscount);

call printhex;

IMASK=0x0006;

RTS;

clearpeakinfo:

IMASK=0x0006;

AR=%peakloc;

1440 CNTR=AR;

AR=0;

dm(peakcount)=AR;

I5=^peakamphi;

I6=^peakamplo;

I7=^peakloc;

L5=0;

L6=0;

L7=0;

1450 M5=1;

M6=1;

M7=1;

AR=0;

DO clearall UNTIL CE;

DM(I5, M5)=AR;

DM(I6, M6)=AR;

clearall: DM(I7, M7)=AR;

I5=^threepeaks;

1460 AR=3;

CNTR=AR;

AR=0;

DO clearthreepeak UNTIL CE;

clearthreepeak: DM(I5, M5)=AR;

RTS;

clearzeroinfo:

1470 IMASK=0x0006;

AR=%zerocrossloc;

CNTR=AR;

AR=0;

dm(zerocrosscount)=AR;

I5=^zerocrossloc;

L5=0;

M5=1;

DO clearzeros UNTIL CE;

1480 clearzeros: DM(I5, M5)=AR;

I5=^surrzeros;

AR=4;

CNTR=AR;

AR=0;

DO clearsurrzeros UNTIL CE;

clearsurrzeros: DM(I5, M5)=AR;

RTS;

1490
filter: {put the input in I5, input*save in I7}

IMASK=0x0006;

M5=1;

M7=1;

L5=0;

L7=0;

AR=dm(I7, M7);

ay1=AR;

1500 AR=dm(I7, M7);

ax0=AR;

AR=dm(I5, M5);

AR=dm(length);

AR=AR-2;

IF GT jump cntrfine18;

AR=1;

cntrfine18: CNTR=AR;

1510
DO filterinput UNTIL CE;

AR=dm(I7, M7);

ax1=AR;

ay0=0;

AR=0;

dm(filtersumhi)=AR;

AR=ax1+ay1;

1520 ay0=AR;

AR=ax0+ay0;

ay0=AR;

AR=0;

AR=AR+C;

dm(filtersumhi)=AR;

AR=ax0+ay0;

ay0=AR;

AR=dm(filtersumhi);

AR=AR+C;

1530 dm(filtersumhi)=AR;

SR=LSHIFT AR BY -2(hi);

AR=ay0;

SR=SR OR LSHIFT AR BY -2(lo);

dm(I5, M5)=SR0;

ay1=ax0;

filterinput: ax0=ax1;

1540 RTS;

prepinput: {put the input in I5, label in AR, input*save in I7}

IMASK=0x0006;

dm(inputlabel)=AR;

AR=I5;

dm(saveinput)=AR;

126

AR=I7;

1550 dm(inputsaveptr)=AR;

call findinitialbias;

AR=dm(saveinput);

I5=AR;

AR=dm(length);

dm(maxminlength)=AR;

1560 AR=dm(inputlabel);

ay0=5;

AR=AR-ay0;

IF NE jump notfive;

AR=%mic;

dm(maxminlength)=AR;

notfive: call findmaxmin;

AR=dm(saveinput);

I5=AR;

1570 call normalize;

AR=dm(max);

SR=LSHIFT AR BY -4 (lo);

AR=SR0;

ay0=dm(maxsum);

AR=AR+ay0;

dm(maxsum)=AR;

ay0=dm(max);

1580 AR=dm(largestmax);

AR=AR-ay0;

IF GE jump notlargestmax;

dm(largestmax)=ay0;

notlargestmax: nop;

AR=dm(saveinput);

I5=AR;

AR=dm(inputsaveptr);

I7=AR;

1590 call filter;

AR=dm(saveinput);

I5=AR;

call trimfront;

call clearpeakinfo;

call clearzeroinfo;

AR=dm(saveinput);

I5=AR;

call findpeakzero;

1600 call transmitinput;

RTS;

savethreepeakinfo:

{put ^threepeaks* in I5, ^surrzeros* in I7}

IMASK=0x0006;

M5=1;

M7=1;

L5=0;

L7=0;

1610
I0=^threepeaks;

I2=^surrzeros;

M0=1;

M2=1;

L0=0;

L2=0;

CNTR=3;

DO copy3peak UNTIL CE;

1620 AR=dm(I0, M0);

copy3peak: dm(I5, M5)=AR;

CNTR=4;

DO copyzeros UNTIL CE;

AR=dm(I2, M2);

copyzeros: dm(I7, M7)=AR;

RTS;

1630

findpeaks:

IMASK=0x0006;

call clearpeakinfo;

I7=^xcorrhi;

L7=0;

M7=1;

1640 I4=^xcorrlo;

L4=0;

M4=1;

I5=^peakamphi;

L5=0;

M5=1;

I6=^peakamplo;

L6=0;

M6=1;

1650 L1=0;

M1=1;

I0=^peakloc;

L0=0;

M0=1;

AR=0;

dm(peakcount)=AR;

dm(slopepos1)=AR;

dm(slopepos2)=AR;

1660 AR=1;

dm(locptr)=AR;

AR=dm(corrlength);

AR=AR+0;

IF GT jump cntrokay7;

call badtap;

jump pfend;

cntrokay7: CNTR=AR;

MR1=dm(I7, M7);

MR0=dm(I4, M4);

1670
DO peakloop UNTIL CE;

SR1=dm(I7, M7);

SR0=dm(I4, M4);

AR=dm(slopepos2);

AR=AR+0;

IF LE jump nots2;

ay0=MR0;

1680 ax0=SR0;

AR=ax0-ay0;

ay0=SR1;

ax0=MR1;

AR=ay0-ax0+C-1;

IF GE jump ploop1;

AR=0;

dm(slopepos2)=AR;

dm(slopepos1)=AR;

1690
AR=%peakloc;

ay0=AR;

AR=dm(peakcount);

AR=AR-ay0;

if LE jump continue;

pop CNTR;

pop PC;

pop LOOP;

jump pfend;

1700
continue: AR=dm(peakcount);

AR=AR+1;

dm(peakcount)=AR;

ay0=dm(locptr);

dm(I0, M0)=ay0;

AR=^xcorrhi;

AR=AR+ay0;

AR=AR-1;

1710 I1=AR;

AR=dm(I1, M1);

dm(I5, M5)=AR;

AR=^xcorrlo;

AR=AR+ay0;

AR=AR-1;

I1=AR;

AR=dm(I1, M1);

dm(I6, M6)=AR;

1720 jump ploop1;

nots2: AR=dm(slopepos1);

127

AR=AR+0;

IF LE jump nots1;

ay0=MR0;

ax0=SR0;

AR=ax0-ay0;

ay0=SR1;

ax0=MR1;

1730 AR=ay0-ax0+C-1;

IF LT jump negs1;

AR=1;

dm(slopepos2)=AR;

jump ploop1;

negs1: AR=0;

dm(slopepos1)=AR;

jump ploop1;

1740 nots1: ay0=MR0;

ax0=SR0;

AR=ax0-ay0;

ay0=SR1;

ax0=MR1;

AR=ay0-ax0+C-1;

IF LT jump ploop1;

AR=1;

dm(slopepos1)=AR;

1750 ploop1: AR=dm(locptr);

AR=AR+1;

dm(locptr)=AR;

MR0=SR0;

peakloop: MR1=SR1;

pfend: AR=0;

dm(locptr)=AR;

RTS;

1760
findcorrdiff:

IMASK=0x0006;

I5=^peakamphi;

I6=^peakamplo;

I7=^peakloc;

M5=1;

M6=1;

M7=1;

L5=0;

1770 L6=0;

L7=0;

AR=0x8000;

dm(maxcorrpeakhi)=AR;

dm(secondcorrpeakhi)=AR;

dm(maxcorrpeaklo)=AR;

dm(secondcorrpeaklo)=AR;

AR=0;

1780 dm(maxcorrpeakloc)=AR;

dm(secondcorrpeakloc)=AR;

AR=dm(peakcount);

AR=AR+0;

IF GT jump cntrokay8;

call badtap;

jump donefindcorrdiff;

cntrokay8: CNTR=AR;

DO findmaxpeak UNTIL CE;

1790 ax0=dm(maxcorrpeaklo);

ay0=dm(I6, M6);

AR=ax0-ay0;

ay1=dm(maxcorrpeakhi);

ax1=dm(I5, M5);

AR=ay1-ax1+C-1;

IF GE jump notnewcorrmax;

AR=dm(maxcorrpeaklo);

dm(secondcorrpeaklo)=AR;

AR=dm(maxcorrpeakhi);

1800 dm(secondcorrpeakhi)=AR;

AR=dm(maxcorrpeakloc);

dm(secondcorrpeakloc)=AR;

dm(maxcorrpeaklo)=ay0;

dm(maxcorrpeakhi)=ax1;

AR=dm(I7, M7);

dm(maxcorrpeakloc)=AR;

jump findmaxpeak;

1810 notnewcorrmax: ax0=dm(secondcorrpeaklo);

AR=ax0-ay0;

ay1=dm(secondcorrpeakhi);

aR=ay1-ax1+C-1;

IF GE jump notsecondpeak;

dm(secondcorrpeaklo)=ay0;

dm(secondcorrpeakhi)=ax1;

AR=dm(I7, M7);

dm(secondcorrpeakloc)=AR;

jump findmaxpeak;

1820
notsecondpeak: AR=dm(I7, M7);

findmaxpeak: nop;

AR=dm(corrlength);

AR=AR+1;

SR=LSHIFT AR BY -1 (lo);

ax0=SR0;

ay0=dm(maxcorrpeakloc);

1830 AR=ax0-ay0;

dm(maxcorrdiff)=AR;

ay0=dm(secondcorrpeakloc);

AR=ax0-ay0;

dm(secondcorrdiff)=AR;

ax0=dm(inp1startfinal);

ay0=dm(inp2startfinal);

AR=ax0-ay0;

1840 ax1=AR;

ay0=dm(maxcorrdiff);

AR=ax1+ay0;

dm(maxcorrdiff)=AR;

ay0=dm(secondcorrdiff);

AR=ax1+ay0;

dm(secondcorrdiff)=AR;

donefindcorrdiff: nop;

RTS;

1850 transmitknuckle:

IMASK=0x0066;

UART0_Write(120);

Uart0_Write(255);

AR=dm(chisqminhi);

call printhex;

AR=dm(chisqminlo);

call printhex;

1860
UART0_Write(99);

Uart0_Write(255);

AR=dm(maxcorrdiff);

call printhex;

AR=dm(secondcorrdiff);

call printhex;

UART0_Write(97);

Uart0_Write(255);

1870 AR=dm(maxcorrpeakhi);

call printhex;

AR=dm(maxcorrpeaklo);

call printhex;

Uart0_Write(255);

AR=dm(secondcorrpeakhi);

call printhex;

AR=dm(secondcorrpeaklo);

call printhex;

1880 IMASK=0x0006;

RTS;

findmetaltapstart: {put input in I5}

IMASK=0x0006;

AR=I5;

dm(saveinput)=AR;

M5=1;

1890 L5=0;

AR=70;

dm(maxminlength)=AR;

call findmaxmin;

AR=dm(max);

128

dm(threshhold)=AR;

SR=LSHIFT AR BY -1 (lo);

1900 ay0=SR0;

AR=20;

ay1=AR;

AR=dm(threshhold);

AR=AR+ay0;

AR=AR+ay1;

dm(threshhold)=AR;

1910 AR=dm(saveinput);

I5=AR;

AR=1;

dm(locptr)=AR;

AR=1;

dm(metaltapstart)=AR;

ay0=dm(threshhold);

1920
AR=dm(length);

CNTR=AR;

DO newmetalalg UNTIL CE;

AR=dm(I5, M5);

AR=AR-ay0;

IF LE jump notreachedstart;

AR=dm(locptr);

dm(metaltapstart)=AR;

POP LOOP;

1930 POP CNTR;

POP PC;

RTS;

notreachedstart:

AR=dm(locptr);

AR=AR+1;

newmetalalg: dm(locptr)=AR;

donemetalthres: nop;

RTS;

1940
badtap:

AR=1;

dm(wasbadtap)=AR;

RTS;

PWMSYNC_ISR:

{IMASK=0x0066;

uart0_write(115);

uart0_write(121);

1950 uart0_write(110);

uart0_write(99);

uart0_write(105);

uart0_write(110);

uart0_write(32);}

IMASK=0x0006;

AR=dm(startdata);

AR=AR+0;

1960 if EQ jump notinited;

AR=dm(bangcount);

AR=AR+0;

IF EQ jump startprocessing;

IF LE jump delayzero;

AR=AR-1;

dm(bangcount)=AR;

ADC_Read(ADC0, Offset_0to3);

DM(I0, M0)=AR;

1970 jump next2;

delayzero: AR=dm(trigger);

AR=AR+0;

if LE jump next1;

AR=dm(aftertriggerlength);

ay0=AR;

AR=dm(trigger);

AR=AR+1;

1980 dm(trigger)=AR;

AR=AR-ay0;

if LT jump next1;

startprocessing: AR=dm(bangcount);

AR=AR+0;

IF EQ jump donebang;

AR=600;

dm(bangcount)=AR;

1990 jump next1;

donebang: call copyinputs;

AR=0;

dm(zerocrosssum)=AR;

AR=0;

dm(maxsum)=AR;

2000 AR=0;

dm(largestmax)=AR;

AR=0x0001;

I5=^input1;

I7=^input1save;

call prepinput;

I5=^threepeaks1;

I7=^surrzeros1;

call savethreepeakinfo;

2010 AR=^threepeaks1;

call testthreepeaks;

AR=dm(zerocrosscount);

dm(zerocrosssum)=AR;

AR=0x0002;

I5=^input2;

I7=^input2save;

call prepinput;

I5=^threepeaks2;

2020 I7=^surrzeros2;

call savethreepeakinfo;

AR=^threepeaks2;

call testthreepeaks;

AR=dm(zerocrosssum);

ay0=dm(zerocrosscount);

AR=AR+ay0;

dm(zerocrosssum)=AR;

AR=0x0003;

2030 I5=^input3;

I7=^input3save;

call prepinput;

I5=^threepeaks3;

I7=^surrzeros3;

call savethreepeakinfo;

AR=^threepeaks3;

call testthreepeaks;

AR=dm(zerocrosssum);

ay0=dm(zerocrosscount);

2040 AR=AR+ay0;

dm(zerocrosssum)=AR;

AR=0x0004;

I5=^input4;

I7=^input4save;

call prepinput;

I5=^threepeaks4;

I7=^surrzeros4;

call savethreepeakinfo;

2050 AR=^threepeaks4;

call testthreepeaks;

AR=dm(zerocrosssum);

ay0=dm(zerocrosscount);

AR=AR+ay0;

dm(zerocrosssum)=AR;

AR=0x0005;

I5=^mic;

I7=^micsave;

2060 call prepinput;

AR=0x0006;

I5=^mic2;

I7=^mic2save;

call prepinput;

IMASK=0x0066;

AR=dm(metaltapthres);

2070 ay0=dm(zerocrosssum);

129

AR=AR-ay0;

IF LE jump metaltap;

knuckletap: UART0_Write(75);

Uart0_Write(255);

IMASK=0x0006;

AR=^threepeaks1;

2080 dm(inp1peaksptr)=AR;

AR=^surrzeros1;

dm(inp1surrzerosptr)=AR;

AR=^threepeaks3;

dm(inp2peaksptr)=AR;

AR=^surrzeros3;

dm(inp2surrzerosptr)=AR;

call choosepeaks;

2090 AR=^input1;

dm(inp1ptr)=AR;

AR=^input3;

dm(inp2ptr)=AR;

call findchisqmin;

call correlate;

call findpeaks;

call findcorrdiff;

IMASK=0x0066;

2100 UART0_Write(49);

UART0_Write(51);

Uart0_Write(255);

call transmitknuckle;

IMASK=0x0006;

call save13info;

AR=^threepeaks2;

dm(inp1peaksptr)=AR;

2110 AR=^surrzeros2;

dm(inp1surrzerosptr)=AR;

AR=^threepeaks4;

dm(inp2peaksptr)=AR;

AR=^surrzeros4;

dm(inp2surrzerosptr)=AR;

call choosepeaks;

AR=^input2;

2120 dm(inp1ptr)=AR;

AR=^input4;

dm(inp2ptr)=AR;

call findchisqmin;

call copycorrinputs;

call correlate;

call findpeaks;

call findcorrdiff;

IMASK=0x0066;

2130 UART0_Write(50);

UART0_Write(52);

Uart0_Write(255);

call transmitknuckle;

metaltap: IMASK=0x0066;

UART0_Write(77);

Uart0_Write(255);

2140 I5=^input1save;

call findmetaltapstart;

AR=dm(metaltapstart);

call printhex;

I5=^input2save;

call findmetaltapstart;

AR=dm(metaltapstart);

call printhex;

2150 I5=^input3save;

call findmetaltapstart;

AR=dm(metaltapstart);

call printhex;

I5=^input4save;

call findmetaltapstart;

AR=dm(metaltapstart);

call printhex;

2160 nexttap: nop;

IMASK=0x0066;

AR=dm(wasbadtap);

call printdigit;

Uart0_Write(255);

Uart0_Write(255);

Uart0_Write(255);

2170

IMASK=0x0006;

call initvalues;

AR=dm(largestmax);

SR=LSHIFT AR BY 4 (lo);

ay0=SR0;

AR=0x0050;

2180 AR=AR+ay0;

dm(decaythres)=AR;

next1:

IMASK=0x0006;

ADC_Read(ADC4, Offset_4to7);

dm(I1, M1)=AR;

dm(inp1value)=AR;

2190 ADC_Read(ADC5, Offset_4to7);

dm(I2, M2)=AR;

dm(inp2value)=AR;

ADC_Read(ADC6, Offset_4to7);

dm(I3, M3)=AR;

dm(inp3value)=AR;

ADC_Read(ADC7, Offset_4to7);

dm(I4, M4)=AR;

2200 dm(inp4value)=AR;

ADC_Read(ADC0, Offset_0to3);

dm(inp5value)=AR;

DM(I0, M0)=AR;

ADC_Read(ADC1, Offset_0to3);

dm(inp6value)=AR;

DM(I5, M5)=AR;

2210 AR=dm(startsamplecount);

AR=AR+0;

IF LE jump okaytriggeralready;

AR=AR-1;

dm(startsamplecount)=AR;

jump next2;

okaytriggeralready:

AR=dm(trigger);

AR=AR+0;

2220 if NE jump next2;

AR=dm(inp1value);

AR=AR+0;

if GT JUMP nn1;

AR=-AR;

nn1: SR= LSHIFT AR by 0 (LO);

AR=dm(inp2value);

AR=AR+0;

if GT JUMP nn2;

2230 AR=-AR;

nn2: SR=SR or LSHIFT AR by 0 (LO);

AR=dm(inp3value);

AR=AR+0;

if GT JUMP nn3;

AR=-AR;

nn3: SR=SR or LSHIFT AR by 0 (LO);

AR=dm(inp4value);

AR=AR+0;

if GT JUMP nn4;

2240 AR=-AR;

nn4: SR=SR or LSHIFT AR by 0 (LO);

Ax0=SR0;

ay0=dm(tapthres);

AR=dm(decaythres);

130

AR=AR-ay0;

IF LE jump lessthanthres;

ay0=dm(decaythres);

ax1=ay0;

ay1=dm(decaymult);

2250 AR=ax1-ay1;

IF GE jump decaythrespos;

AR=0;

decaythrespos: dm(decaythres)=AR;

lessthanthres: AR=Ax0-ay0;

IF LT JUMP next2;

jump starttrigger;

AR=dm(inp5value);

2260 ay0=dm(bangthres);

AR=AR-ay0;

if GT jump starttrigger;

jump next2;

starttrigger: AR=1;

dm(trigger)=AR;

2270 next2: nop;

notinited: nop;

IFC=0x80;

IMASK=0x0206;

RTI;

PWMTRIP_ISR:

IMASK=0x0006;

2280 AR=dm(pwmtripcount);

AR=AR+1;

dm(pwmtripcount)=AR;

write_dm(PWMTM,0x104);

write_dm(PWMCHA,0);

write_dm(PWMCHB,0);

write_dm(PWMCHC,0);

IMASK=0x0206;

rti;

2290

.ENDMOD;

131

chisq.dsp

{****** chisq.dsp ************************}

{****** Library for doing chi-squared ***}

{****** and cross-correlation method *****}

.MODULE/RAM/SEG=USER_PM2 CHISQ;

.ENTRY mult32by16;

10 .ENTRY divide;

.ENTRY copychisqinputs;

.ENTRY findmulfact;

.ENTRY chisqnormalize;

.ENTRY findchisqmin;

.ENTRY comparechisqmin;

.ENTRY chisqfunc;

.ENTRY choosepeaks;

.ENTRY copycorrinputs;

.ENTRY correlate;

20
.EXTERNAL badtap;

.EXTERNAL findmaxmin;

.EXTERNAL input1;

.EXTERNAL input2;

.EXTERNAL tempinput;

.EXTERNAL locptr;

.EXTERNAL max;

.EXTERNAL threshhold;

.EXTERNAL min;

30 .EXTERNAL trimstart;

.EXTERNAL inp1peaksptr;

.EXTERNAL inp2peaksptr;

.EXTERNAL inp1surrzerosptr;

.EXTERNAL inp2surrzerosptr;

.EXTERNAL inp1start;

.EXTERNAL inp1end;

.EXTERNAL inp2start;

.EXTERNAL inp2end;

40 .EXTERNAL inp1start2;

.EXTERNAL inp2start2;

.EXTERNAL inp1end2;

.EXTERNAL inp2end2;

.EXTERNAL inp1num;

.EXTERNAL inp2num;

.EXTERNAL inp1startfinal;

.EXTERNAL inp1endfinal;

.EXTERNAL inp2startfinal;

.EXTERNAL inp2endfinal;

50 .EXTERNAL finalchisqminlo;

.EXTERNAL finalchisqminhi;

.EXTERNAL inp1ptr;

.EXTERNAL inp2ptr;

.EXTERNAL chisqinput1;

.EXTERNAL chisqinput2;

.EXTERNAL chisqlen1;

.EXTERNAL chisqlen2;

.EXTERNAL chisqmaxlen;

.EXTERNAL chisqminlo;

60 .EXTERNAL chisqminhi;

.EXTERNAL checkdist;

.EXTERNAL newmin;

.EXTERNAL shiftinput;

.EXTERNAL mulfacthi;

.EXTERNAL mulfactlo;

.EXTERNAL maxminlength;

.EXTERNAL corrlength;

.EXTERNAL xcorrhi;

70 .EXTERNAL xcorrlo;

mult32by16:

{32-bit in MX1, MX0, }

{16-bit in MY1, result in SR0}

MR=MX0*MY1(US);

MY0=MR0;

MR0=MR1;

AR=0x0000;

80 MR1=AR;

MR=MR+MX1*MY1(SS);

SR=LSHIFT MR0 BY -18 (hi);

AR=MY0;

SR=SR OR LSHIFT AR BY -18 (lo);

RTS;

divide:

{MSW of dividend in AY1,}

90 {LSW in AY0, divisor in AX0; result in SR0}

DIVS AY1, AX0;

DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;

DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;

DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;

AR=ay0;

SR=LSHIFT AR BY 1 (LO);

RTS;

copychisqinputs:

100 {put inp*start* in ay0,}

{ay1, lengths in chisqlen1,2,}

{addresses of inputs in inp1ptr, inp2ptr}

AR=dm(chisqlen1);

AR=AR+0;

IF GT jump cntrokay9;

call badtap;

jump donecopychisqinputs;

cntrokay9: CNTR=AR;

110 I1=^chisqinput1;

M1=1;

AR=dm(inp1ptr);

AR=AR-1;

AR=AR+ay0;

I2=AR;

M2=1;

DO copyinp1 UNTIL CE;

AR=dm(I2, M2);

copyinp1: dm(I1, M1)=AR;

120
AR=dm(chisqlen2);

AR=AR+0;

IF GT jump cntrokay10;

call badtap;

jump donecopychisqinputs;

cntrokay10: CNTR=AR;

I1=^chisqinput2;

AR=dm(inp2ptr);

AR=AR-1;

130 AR=AR+ay1;

I2=AR;

DO copyinp2 UNTIL CE;

AR=dm(I2, M2);

copyinp2: dm(I1, M1)=AR;

donecopychisqinputs: nop;

RTS;

findmulfact:

ay1=0x07FF;

140 ay0=0xF000;

AF=pass 0xF000;

MR0=dm(max);

AR=MR0 AND AF;

IF EQ jump notbyte1;

ax0=dm(max);

call divide;

AR=0x0000;

dm(mulfacthi)=AR;

150 dm(mulfactlo)=SR0;

jump donefact;

notbyte1: AR=0x0F00;

AF=pass AR;

AR=MR0 AND AF;

IF EQ jump notbyte2;

SR=LSHIFT MR0 BY 3 (lo);

ax0=SR0;

call divide;

160 AR=SR0;

SR=LSHIFT AR BY 3 (lo);

dm(mulfacthi)=SR1;

dm(mulfactlo)=SR0;

jump donefact;

notbyte2:

132

AR=0x00F0;

AF=pass AR;

AR=MR0 AND AF;

170 IF EQ jump notbyte3;

SR=LSHIFT MR0 BY 7 (lo);

ax0=SR0;

call divide;

AR=SR0;

SR=LSHIFT AR BY 7 (lo);

dm(mulfacthi)=SR1;

dm(mulfactlo)=SR0;

jump donefact;

180 notbyte3:

SR=LSHIFT MR0 BY 11 (lo);

ax0=SR0;

call divide;

AR=SR0;

SR=LSHIFT AR BY 11 (lo);

dm(mulfacthi)=SR1;

dm(mulfactlo)=SR0;

donefact: nop;

190 RTS;

chisqnormalize:

I5=^chisqinput1;

AR=dm(chisqlen1);

dm(maxminlength)=AR;

call findmaxmin;

call findmulfact;

I5=^chisqinput1;

200 M5=1;

L5=0;

I6=I5;

M6=1;

L6=0;

AR=dm(chisqlen1);

AR=AR+0;

IF GT jump cntrokay11;

call badtap;

jump donechisqnormalize;

210 cntrokay11: CNTR=AR;

MX1=dm(mulfacthi);

MX0=dm(mulfactlo);

DO multbyfact1 UNTIL CE;

MY1=dm(I5, M5);

call mult32by16;

multbyfact1: dm(I6, M6)=SR0;

I5=^chisqinput2;

AR=dm(chisqlen2);

220 dm(maxminlength)=AR;

call findmaxmin;

call findmulfact;

I5=^chisqinput2;

I6=I5;

AR=dm(chisqlen2);

AR=AR+0;

IF GT jump cntrokay12;

call badtap;

230 jump donechisqnormalize;

cntrokay12: CNTR=AR;

MX1=dm(mulfacthi);

MX0=dm(mulfactlo);

DO multbymax1 UNTIL CE;

MY1=dm(I5, M5);

call mult32by16;

multbymax1: dm(I6, M6)=SR0;

donechisqnormalize: nop;

RTS;

240
findchisqmin:

AR=0x7FFF;

dm(chisqminhi)=AR;

dm(chisqminlo)=AR;

L1=0;

L2=0;

AR=dm(inp1num);

250 AR=AR+0;

IF GT jump notboth1;

AR=dm(inp2num);

AR=AR+0;

IF GT jump notboth1;

AR=dm(inp1start);

dm(inp1startfinal)=AR;

AR=dm(inp1end);

dm(inp1endfinal)=AR;

260 AR=dm(inp2start);

dm(inp2startfinal)=AR;

AR=dm(inp2end);

dm(inp2endfinal)=AR;

ay0=dm(inp1start);

AR=dm(inp1end);

AR=AR-ay0;

AR=AR+1;

dm(chisqlen1)=AR;

270
ay1=dm(inp2start);

AR=dm(inp2end);

AR=AR-ay1;

AR=AR+1;

dm(chisqlen2)=AR;

call copychisqinputs;

call chisqnormalize;

call chisqfunc;

280 AR=dm(chisqminhi);

dm(finalchisqminhi)=AR;

AR=dm(chisqminlo);

dm(finalchisqminlo)=AR;

jump donechisqmin;

notboth1:

AR=dm(inp1start);

ay0=AR;

AR=dm(inp1end);

290 AR=AR-ay0;

AR=AR+1;

dm(chisqlen1)=AR;

ay1=dm(inp2start);

AR=dm(inp2end);

AR=AR-ay1;

AR=AR+1;

dm(chisqlen2)=AR;

300 call copychisqinputs;

call chisqnormalize;

call chisqfunc;

AR=dm(chisqminhi);

dm(finalchisqminhi)=AR;

AR=dm(chisqminlo);

dm(finalchisqminlo)=AR;

AR=dm(inp1start);

dm(inp1startfinal)=AR;

310 AR=dm(inp1end);

dm(inp1endfinal)=AR;

AR=dm(inp2start);

dm(inp2startfinal)=AR;

AR=dm(inp2end);

dm(inp2endfinal)=AR;

AR=dm(inp1num);

AR=AR+0;

IF GT jump twoinp1;

320
twoinp2:

AR=dm(inp1start);

ay0=AR;

AR=dm(inp1end);

AR=AR-ay0;

AR=AR+1;

dm(chisqlen1)=AR;

AR=dm(inp2start2);

330 ay1=AR;

AR=dm(inp2end2);

AR=AR-ay1;

AR=AR+1;

dm(chisqlen2)=AR;

call comparechisqmin;

AR=dm(newmin);

AR=AR+0;

IF EQ jump oldmin1;

340 AR=dm(inp1start);

133

dm(inp1startfinal)=AR;

AR=dm(inp1end);

dm(inp1endfinal)=AR;

AR=dm(inp2start2);

dm(inp2startfinal)=AR;

AR=dm(inp2end2);

dm(inp2endfinal)=AR;

oldmin1: jump donechisqmin;

350 twoinp1:

AR=dm(inp2num);

AR=AR+0;

IF GT jump twoboth;

ay0=dm(inp1start2);

AR=dm(inp1end2);

AR=AR-ay0;

AR=AR+1;

dm(chisqlen1)=AR;

360
ay1=dm(inp2start);

AR=dm(inp2end);

AR=AR-ay1;

AR=AR+1;

dm(chisqlen2)=AR;

call comparechisqmin;

AR=dm(newmin);

AR=AR+0;

370 IF EQ jump oldmin2;

AR=dm(inp1start2);

dm(inp1startfinal)=AR;

AR=dm(inp1end2);

dm(inp1endfinal)=AR;

AR=dm(inp2start);

dm(inp2startfinal)=AR;

AR=dm(inp2end);

dm(inp2endfinal)=AR;

380 oldmin2: jump donechisqmin;

twoboth:

AR=dm(inp1start2);

ay0=AR;

AR=dm(inp1end2);

AR=AR-ay0;

AR=AR+1;

dm(chisqlen1)=AR;

390 ay1=dm(inp2start);

AR=dm(inp2end);

AR=AR-ay1;

AR=AR+1;

dm(chisqlen2)=AR;

call comparechisqmin;

AR=dm(newmin);

AR=AR+0;

IF EQ jump oldmin3;

400 AR=dm(inp1start2);

dm(inp1startfinal)=AR;

AR=dm(inp1end2);

dm(inp1endfinal)=AR;

AR=dm(inp2start);

dm(inp2startfinal)=AR;

AR=dm(inp2end);

dm(inp2endfinal)=AR;

oldmin3:

410 AR=dm(inp1start);

ay0=AR;

AR=dm(inp1end);

AR=AR-ay0;

AR=AR+1;

dm(chisqlen1)=AR;

AR=dm(inp2start2);

ay1=AR;

AR=dm(inp2end2);

420 AR=AR-ay1;

AR=AR+1;

dm(chisqlen2)=AR;

call comparechisqmin;

AR=dm(newmin);

AR=AR+0;

IF EQ jump oldmin4;

AR=dm(inp1start);

dm(inp1startfinal)=AR;

430 AR=dm(inp1end);

dm(inp1endfinal)=AR;

AR=dm(inp2start2);

dm(inp2startfinal)=AR;

AR=dm(inp2end2);

dm(inp2endfinal)=AR;

oldmin4:

AR=dm(inp1start2);

ay0=AR;

440 AR=dm(inp1end2);

AR=AR-ay0;

AR=AR+1;

dm(chisqlen1)=AR;

AR=dm(inp2start2);

ay1=AR;

AR=dm(inp2end2);

AR=AR-ay1;

AR=AR+1;

450 dm(chisqlen2)=AR;

call comparechisqmin;

AR=dm(newmin);

AR=AR+0;

IF EQ jump donechisqmin;

AR=dm(inp1start2);

dm(inp1startfinal)=AR;

AR=dm(inp1end2);

dm(inp1endfinal)=AR;

460 AR=dm(inp2start2);

dm(inp2startfinal)=AR;

AR=dm(inp2end2);

dm(inp2endfinal)=AR;

donechisqmin: nop;

RTS;

470 comparechisqmin:

AR=0;

dm(newmin)=AR;

call copychisqinputs;

call chisqnormalize;

call chisqfunc;

ay0=dm(finalchisqminlo);

AR=dm(chisqminlo);

AR=AR-ay0;

480 ax0=dm(finalchisqminhi);

ay0=dm(chisqminhi);

AR=ay0-ax0+C-1;

IF GE jump notmin1;

AR=dm(chisqminlo);

dm(finalchisqminlo)=AR;

AR=dm(chisqminhi);

dm(finalchisqminhi)=AR;

AR=1;

dm(newmin)=AR;

490 notmin1: nop;

RTS;

chisqfunc: {put inputs in chisqinput1,2, lengths in chisqlen1,2}

I1=^chisqinput1;

AR=dm(chisqlen1);

ay0=AR;

AR=I1;

500 AR=AR+ay0;

AR=AR-1;

I1=AR;

M1=-1;

AR=dm(checkdist);

ay1=AR;

AR=I1;

AR=AR+ay1;

I3=AR;

510 M3=-1;

AR=AR+1;

I5=AR;

M5=1;

134

I2=^chisqinput2;

AR=dm(chisqlen2);

ax0=AR;

AR=ax0-ay0;

520 IF GT jump secondlonger;

AR=ay0;

dm(chisqmaxlen)=AR;

jump donemaxlen;

secondlonger: nop;

AR=ax0;

dm(chisqmaxlen)=AR;

donemaxlen: AR=I2;

ay1=ax0;

530 AR=AR+ay1;

AR=AR-1;

I2=AR;

M2=-1;

AR=dm(checkdist);

ay0=AR;

AR=AR+ay0;

ay0=AR;

AR=I2;

540 AR=AR+ay0;

I4=AR;

M4=-1;

AR=AR+1;

I6=AR;

M6=1;

AR=dm(chisqlen1);

AR=AR+0;

IF GT jump cntrokay13;

550 call badtap;

jump donechisqfunc;

cntrokay13: CNTR=AR;

DO shiftinput1 UNTIL CE;

AR=dm(I1, M1);

shiftinput1: dm(I3, M3)=AR;

AR=dm(chisqlen2);

AR=AR+0;

IF GT jump cntrokay14;

560 call badtap;

jump donechisqfunc;

cntrokay14: CNTR=AR;

DO shiftinput2 UNTIL CE;

AR=dm(I2, M2);

shiftinput2: dm(I4, M4)=AR;

AR=dm(checkdist);

AR=AR+0;

IF GT jump cntrfine23;

570 CNTR=1;

cntrfine23: CNTR=AR;

AR=0;

DO addszeros1 UNTIL CE;

addszeros1: dm(I3, M3)=AR;

AR=dm(checkdist);

ay0=AR;

AR=AR+ay0;

IF GT jump cntrfine24;

580 CNTR=1;

cntrfine24: CNTR=AR;

AR=0;

DO addszeros2 UNTIL CE;

addszeros2: dm(I4, M4)=AR;

AR=dm(chisqlen2);

ay0=AR;

AR=dm(checkdist);

AR=AR+ay0;

590 IF GT jump cntrfine25;

CNTR=1;

cntrfine25: CNTR=AR;

AR=0;

DO addezeros1 UNTIL CE;

addezeros1: dm(I5, M5)=AR;

AR=dm(chisqlen1);

ay0=AR;

AR=dm(checkdist);

600 AR=AR+ay0;

IF GT jump cntrfine26;

CNTR=1;

cntrfine26: CNTR=AR;

AR=0;

DO addezeros2 UNTIL CE;

addezeros2: dm(I6, M6)=AR;

I1=^chisqinput1;

AR=^chisqinput2;

610 ax0=AR;

AR=dm(checkdist);

ay0=AR;

AR=AR+ay0;

ay0=AR;

AR=ax0+ay0;

I2=AR;

M1=1;

M2=-1;

L1=0;

620 L2=0;

M3=1;

M4=1;

L3=0;

L4=0;

AR=0x7FFF;

dm(chisqminhi)=AR;

dm(chisqminlo)=AR;

630
AR=dm(checkdist);

ay0=AR;

AR=AR+ay0;

IF GT jump cntrfine27;

CNTR=1;

cntrfine27: CNTR=AR;

DO chisqloop UNTIL CE;

MR0=0;

640 MR1=0;

MR2=0;

I3=I1;

I4=I2;

AR=dm(chisqmaxlen);

ax0=AR;

AR=dm(checkdist);

ay0=AR;

AR=AR+ay0;

ay0=AR;

650 AR=ax0+ay0;

AR=AR+0;

IF GT jump cntrfine28;

CNTR=1;

cntrfine28: CNTR=AR;

DO dataloop UNTIL CE;

ax0=dm(I3, M3);

ay0=dm(I4, M4);

AR=ax0-ay0;

660 MY0=AR;

MX0=AR;

dataloop: MR=MR+MX0*MY0(SS);

SR=LSHIFT MR2 BY 11 (HI);

SR=SR OR LSHIFT MR1 BY -5 (HI);

SR=SR OR LSHIFT MR0 BY -5 (LO);

AR=dm(chisqminlo);

ay0=SR0;

AR=AR-ay0;

670 ay0=dm(chisqminhi);

AR=SR1;

AR=ay0-AR+C-1;

IF LE jump notmin;

AR=SR0;

dm(chisqminlo)=AR;

AR=SR1;

dm(chisqminhi)=AR;

notmin: AR=dm(I2, M2);

680 MR1=0;

chisqloop: MR0=0;

donechisqfunc: nop;

RTS;

choosepeaks:

{put addresses of both input}

{threepeaks, surrzeros in}

{inp1peaksptr, inp1surrzerosptr,}

135

{inp2peaksptr, inp2surrzerosptr}

690
M1=1;

M3=1;

M4=1;

M6=1;

L1=0;

L3=0;

L4=0;

L6=0;

AR=0;

700 dm(inp1num)=AR;

dm(inp2num)=AR;

AR=dm(inp1peaksptr);

I1=AR;

AR=dm(inp2peaksptr);

I4=AR;

AR=dm(I1, M1);

AR=AR+0;

IF GT jump okay1;

710 call badtap;

jump donepick;

okay1: AR=dm(I4, M4);

AR=AR+0;

IF GT jump okay2;

call badtap;

jump donepick;

okay2: M1=0;

M4=0;

AR=dm(I1, M1);

720 AR=AR+0;

IF GT jump p21fine;

AR=dm(I4, M4);

AR=AR+0;

IF GT jump p22fine;

AR=dm(inp1surrzerosptr);

I3=AR;

M3=1;

AR=dm(I3, M3);

730 dm(inp1end)=AR;

AR=AR+0;

IF GT jump okay3;

call badtap;

jump donepick;

okay3: AR=dm(I3, M3);

dm(inp1start)=AR;

AR=AR+0;

IF GT jump okay4;

call badtap;

740 jump donepick;

okay4: AR=dm(inp2surrzerosptr);

I6=AR;

M6=1;

AR=dm(I6, M6);

dm(inp2end)=AR;

AR=dm(I6, M6);

AR=AR+0;

IF GT jump okay5;

call badtap;

750 jump donepick;

okay5: dm(inp2start)=AR;

AR=AR+0;

IF GT jump okay6;

call badtap;

jump donepick;

okay6: jump donepick;

p22fine:

AR=dm(inp1surrzerosptr);

760 I3=AR;

M3=1;

AR=dm(I3, M3);

dm(inp1end)=AR;

AR=AR+0;

IF GT jump okay7;

call badtap;

jump donepick;

okay7: AR=dm(I3, M3);

dm(inp1start)=AR;

770 AR=AR+0;

IF GT jump okay8;

call badtap;

jump donepick;

okay8: AR=dm(inp2surrzerosptr);

AR=AR+1;

I6=AR;

M6=1;

AR=dm(I6, M6);

dm(inp2end)=AR;

780 AR=AR+0;

IF GT jump okay9;

call badtap;

jump donepick;

okay9: AR=dm(I6, M6);

dm(inp2start)=AR;

AR=AR+0;

IF GT jump okay10;

call badtap;

okay10: jump donepick;

790
p21fine:

AR=dm(I4, M4);

AR=AR+0;

IF GT jump p2sfine;

AR=dm(inp1surrzerosptr);

AR=AR+1;

I3=AR;

M3=1;

800 AR=dm(I3, M3);

dm(inp1end)=AR;

AR=AR+0;

IF GT jump okay11;

call badtap;

jump donepick;

okay11: AR=dm(I3, M3);

dm(inp1start)=AR;

AR=AR+0;

IF GT jump okay12;

810 call badtap;

jump donepick;

okay12: AR=dm(inp2surrzerosptr);

I6=AR;

M6=1;

AR=dm(I6, M6);

dm(inp2end)=AR;

AR=AR+0;

IF GT jump okay13;

call badtap;

820 jump donepick;

okay13: AR=dm(I6, M6);

dm(inp2start)=AR;

AR=AR+0;

IF GT jump okay14;

call badtap;

okay14: jump donepick;

p2sfine:

AR=dm(inp1peaksptr);

830 AR=AR+2;

I1=AR;

AR=dm(inp2peaksptr);

AR=AR+2;

I4=AR;

M1=0;

M4=0;

AR=dm(inp1surrzerosptr);

I3=AR;

840 M3=1;

AR=dm(I3, M3);

dm(inp1end)=AR;

AR=AR+0;

IF GT jump okay15;

call badtap;

jump donepick;

okay15: AR=dm(I3, M3);

AR=dm(I3, M3);

dm(inp1start)=AR;

850 AR=AR+0;

IF GT jump okay16;

call badtap;

jump donepick;

okay16: AR=dm(inp2surrzerosptr);

I6=AR;

M6=1;

AR=dm(I6, M6);

dm(inp2end)=AR;

AR=AR+0;

860 IF GT jump okay17;

call badtap;

jump donepick;

136

okay17: AR=dm(I6, M6);

AR=dm(I6, M6);

dm(inp2start)=AR;

AR=AR+0;

IF GT jump okay18;

call badtap;

jump donepick;

870 okay18: AR=dm(I1, M1);

AR=AR+0;

IF GT jump p31fine;

AR=dm(I4, M4);

AR=AR+0;

IF LE jump donepick;

AR=dm(inp2surrzerosptr);

AR=AR+1;

880 I6=AR;

M6=1;

AR=dm(I6, M6);

dm(inp2end2)=AR;

AR=AR+0;

IF GT jump okay19;

call badtap;

jump donepick;

okay19: AR=dm(I6, M6);

AR=dm(I6, M6);

890 dm(inp2start2)=AR;

AR=AR+0;

IF GT jump okay20;

call badtap;

jump donepick;

okay20: AR=1;

dm(inp2num)=AR;

jump donepick;

p31fine: AR=dm(I4, M4);

900 AR=AR+0;

IF GT jump p3sfine;

AR=dm(inp1surrzerosptr);

AR=AR+1;

I3=AR;

M3=1;

AR=dm(I3, M3);

dm(inp1end2)=AR;

AR=AR+0;

IF GT jump okay21;

910 call badtap;

jump donepick;

okay21: AR=dm(I3, M3);

AR=dm(I3, M3);

dm(inp1start2)=AR;

AR=AR+0;

IF GT jump okay22;

call badtap;

jump donepick;

okay22: AR=1;

920 dm(inp1num)=AR;

jump donepick;

p3sfine: AR=dm(inp1surrzerosptr);

AR=AR+1;

I3=AR;

M3=1;

AR=dm(I3, M3);

dm(inp1end2)=AR;

AR=AR+0;

930 IF GT jump okay23;

call badtap;

jump donepick;

okay23: AR=dm(I3, M3);

AR=dm(I3, M3);

dm(inp1start2)=AR;

AR=AR+0;

IF GT jump okay24;

call badtap;

jump donepick;

940 okay24: AR=1;

dm(inp1num)=AR;

AR=dm(inp2surrzerosptr);

AR=AR+1;

I6=AR;

M6=1;

AR=dm(I6, M6);

dm(inp2end2)=AR;

AR=AR+0;

950 IF GT jump okay25;

call badtap;

jump donepick;

okay25: AR=dm(I6, M6);

AR=dm(I6, M6);

dm(inp2start2)=AR;

AR=AR+0;

IF GT jump okay26;

call badtap;

jump donepick;

960 okay26: AR=1;

dm(inp2num)=AR;

donepick: nop;

RTS;

copycorrinputs:

970 ay0=dm(inp1ptr);

AR=dm(inp1startfinal);

AR=AR+ay0;

AR=AR-1;

I5=AR;

M5=1;

L5=0;

ay0=dm(inp2ptr);

AR=dm(inp2startfinal);

980 AR=AR+ay0;

AR=AR-1;

I6=AR;

M6=1;

L6=0;

I7=^chisqinput1;

M7=1;

L7=0;

I0=^chisqinput2;

990 M0=1;

L0=0;

ay0=dm(inp1startfinal);

ax0=dm(inp1endfinal);

AR=ax0-ay0;

AR=AR+1;

ay1=AR;

ay0=dm(inp2startfinal);

1000 ax0=dm(inp2endfinal);

AR=ax0-ay0;

AR=AR+1;

ax1=AR;

AR=ax1-ay1;

IF GE jump secondlonger2;

dm(corrlength)=ay1;

AR=ax1;

AR=AR+0;

1010 IF GT jump cntrokay2;

call badtap;

jump donecopyinput;

cntrokay2: CNTR=ax1;

DO copyfirst1 UNTIL CE;

AR=dm(I5, M5);

dm(I7, M7)=AR;

AR=dm(I6, M6);

copyfirst1: dm(I0, M0)=AR;

1020
AR=ax1-ay1;

AR=-AR;

IF GT jump cntrokayn;

call badtap;

jump donecopyinput;

cntrokayn: CNTR=AR;

DO copyrest1 UNTIL CE;

AR=dm(I5, M5);

dm(I7, M7)=AR;

1030 AR=0;

copyrest1: dm(I0, M0)=AR;

jump donecopyinput;

secondlonger2: dm(corrlength)=ax1;

AR=ay1;

137

AR=AR+0;

IF GT jump cntrokay3;

call badtap;

1040 jump donecopyinput;

cntrokay3: CNTR=ay1;

DO copyfirst2 UNTIL CE;

AR=dm(I5, M5);

dm(I7, M7)=AR;

AR=dm(I6, M6);

copyfirst2: dm(I0, M0)=AR;

AR=ax1-ay1;

IF LE jump donecopyinput;

CNTR=AR;

1050 DO copyrest2 UNTIL CE;

AR=0;

dm(I7, M7)=AR;

AR=dm(I6, M6);

copyrest2: dm(I0, M0)=AR;

donecopyinput: nop;

RTS;

1060 correlate:

IMASK=0x0006;

call copycorrinputs;

I7=^chisqinput1;

L7=0;

I5=^chisqinput2;

L5=0;

M5=1;

I6=^xcorrhi;

1070 L6=0;

M6=1;

I3=^xcorrlo;

L3=0;

M3=1;

AR=dm(corrlength);

AR=AR-1;

ay0=AR;

1080
AR=I7;

AR=AR+ay0;

I7=AR;

M7=-1;

I2=1;

M2=1;

L2=0;

1090 M0=1;

M4=1;

AR=DM(corrlength);

AR=AR+0;

IF GT jump cntrokay5;

call badtap;

jump donecorrelate;

cntrokay5: CNTR=AR;

1100
corrhalf1:

DO corr_loop1 UNTIL CE;

I0=I7;

I4=I5;

AR=I2;

AR=AR+0;

IF GT jump cntrfine19;

AR=1;

cntrfine19: CNTR=I2;

1110 MR=0;

DO data_loop1 UNTIL CE;

MY0=DM(I4, M4);

MX0=DM(I0, M0);

data_loop1: MR=MR+MX0*MY0(SS);

MX0=DM(I7, M7);

MX0=DM(I2, M2);

SR=LSHIFT MR2 BY 11 (HI);

SR=SR OR LSHIFT MR1 BY -5 (HI);

SR=SR OR LSHIFT MR0 BY -5 (LO);

1120 DM(I3, M3)=SR0;

corr_loop1: DM(I6, M6)=SR1;

nop;

M2=-1;

AR=DM(corrlength);

AR=AR-1;

IF GT jump cntrokay6;

call badtap;

jump donecorrelate;

1130 cntrokay6: CNTR=AR;

AR=I2;

AR=AR-2;

I2=AR;

M7=1;

MX0=DM(I7, M7);

MX0=DM(I5, M5);

corrhalf2:

DO corr_loop2 UNTIL CE;

1140 I0=I7;

I4=I5;

AR=I2;

AR=AR+0;

IF GT jump cntrfine22;

AR=1;

cntrfine22: CNTR=I2;

MR=0;

DO data_loop2 UNTIL CE;

MY0=DM(I4, M4);

1150 MX0=DM(I0, M0);

data_loop2: MR=MR+MX0*MY0(SS);

MX0=DM(I5, M5);

MX0=DM(I2, M2);

SR=LSHIFT MR2 BY 11 (HI);

SR=SR OR LSHIFT MR1 BY -5 (HI);

SR=SR OR LSHIFT MR0 BY -5 (LO);

DM(I3, M3)=SR0;

corr_loop2: DM(I6, M6)=SR1;

1160 AR=dm(corrlength);

ay0=AR;

AR=AR+ay0;

AR=AR-1;

dm(corrlength)=AR;

donecorrelate: nop;

RTS;

.ENDMOD;

138

C.2 C++ Code

// dataparser.cpp

//

// this will be used to parse the data taken from the tap tracker in the file parsetap.txt

// the format of the input is in the general form of output given by the DSP

// this program will basically open a file and do processing on it as did tapper.h

//

// Che King Leo

//

// version 0.4

10 // Added support to use the sensors in a "diamond" configuration

// Added Nearest Neighbor Algorithm for determining Tap Type

//

// version 0.3

// Includes support to change the coordinates of the sensor positions automatically.

// This is via the new hypfast routine, which runs in approximately lg() time.

//

// version 0.2

// Includes serial support. (see line 37, bool forSerial)

// This allows this file to be used to be integrated with real time apps using

20 // the Responsive Window with the DSP.

//

// version 0.1

// Only does data parsing of files taken from terminal windows from DSP

//

#include <stdio.h>

#include <string.h>

#include <time.h>

30 #include <sys/timeb.h>

#include <winsock.h>

#include <fstream.h>

#include <math.h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ VARIABLES for SERIAL PORT ∗∗∗∗∗∗∗∗∗∗/
static HANDLE hCom;

char serialPort[30] = "COM1";

int i, j, k; //for loops

unsigned char data[300]; //for storing data from the serial port

40 int pos=0; //pointer for data[]

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ SUBROUTINES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void comSetup(); //setup serial port

// hyp() has become obsolete...

void hypfast(); //finds intersection of points given corr13, corr24,

//and speed u via guessing heuristic

void hypbrute(); //brute force version of hypfast

void hyppreferred(); //method used to find intersection of hyperbolas

long getnumber(unsigned char*); //parses serial data from DSP

50 unsigned char* serialRead(); //reads data from serial port

void getTapType(double freq1, double freq2, double freq3, double freq4);

double getDistance(double x1, double y1, double x2, double y2);

double getMinimum(double x1, double x2, double x3, double x4);

double getMaximum(double x1, double x2, double x3, double x4);

double getMaximum(double x1, double x2, double x3, double x4, double x5, double x6);

void hypbrute(double x1, double y1, double x2, double y2, double x3,

double y3, double x4, double y4, double corr13, double corr24);

void getClosestPoint(double x1, double y1, double x2, double y2,

double x3, double y3, double x4, double y4, double x, double y);

60 unsigned char* read();

void run();

void initializeGlobals();

void transposeSensors(); // transposes sensors for diamond configuration for use with hypfast

void untransposeOutput(); // untransposes the output so it is correct

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ VARIABLES ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
bool forSerial = 0; // toggles serial reading with data file parsing.

// 1 = serial. 0 = data file parsing.

70 bool forDiamond = 0; // toggles configuration of four sensors for transposeSensors use

int globalpos;

int datalength;

char mypointer[1000000];

double xposition; // resulting xposition from hyp()

double yposition; // resulting yposition from hyp()

double NUMBEROFKNUCKLECALS=81;

double NUMBEROFMETALCALS=62;

80 double savex1, savex2, savex3; // vars for storing xpositions from hyp()

double savey1, savey2, savey3; // vars for storing ypositions from hyp()

double incorr13, incorr24; // actual variables used to pass

139

// corr13 and corr24 to hyp()

double corr13, corr24; // variable inputs for hyp()

double corr132, corr242; // secondary positions for hyp()

double zeroxings; // sum total of zero crossings over 480 samples

double humpwidth; // resulting avg width of waveforms (NOT period)

90 double metalu, knuckleu; // variables to change

double u; // speed for hyp()

// for now, metal tap is 1300, knuckle is 550.

double maxfreqdiff; // maximum frequency difference between sensors before

// knock is considered to be tainted with cell phone noise

int ss1, ss2, ss3, ss4; // integrated amplitude for sensors.

int ms1, ms2, ms3, ms4; // maximum magnitude for sensors.

int ms5, ms6; // bang amplitude and clap detector amplitude

100 int proxsensor; // if cannot be determined, proxsensor will say

// which sensor is closest by guess.

int badtap; // if == 1, means tap was bad (from DSP)

// (formerly called tapflag)

int xboundaryflag; // 0 means x coordinate is valid;

// -1 means to the right of all sensors;

// 1 means to the left

int yboundaryflag; // like above, but for y coordinates

// -1 means below all sensors; 1 means above

110
double precisionradius; // radius of certainty...

// don’t know if this is a good variable to use

double accuracy; // number that tells how good it is.

// lower is better.

int cpl13, cpl132; // correlation peak location btwn 1 and 3

// (highest, 2nd highest, resp.)

int cpl24, cpl242; // correlation peak location btwn 2 and 4

// (highest, 2nd highest, resp.)

120 double cpa13, cpa132; // correlation peak amplitude btwn 1 and 3

// (highest, 2nd highest, resp.)

double cpa24, cpa242; // correlation peak amplitude btwn 2 and 4

// (highest, 2nd highest, resp.)

double cha13, cha132; // chi-square peak amplitudes

double cha24, cha242;

int typetriggered; // type of tap

// double, knuckle, metal, bang, clap = 0,1,2,3,4

double sensor1x, sensor1y; // sensor positions

double sensor2x, sensor2y;

130 double sensor3x, sensor3y;

double sensor4x, sensor4y;

double sensor1xT, sensor1yT; // sensor positions, transposed

double sensor2xT, sensor2yT;

double sensor3xT, sensor3yT;

double sensor4xT, sensor4yT;

double ptx, pty, counter;// global vars for getClosestPoint

double avgX, avgY; // mean point for center of glass

double mycounter;

140
double kdata[81][6] = {{329,375,12,7,6,6},

{330,412,12,8,15,10},

{356,435,9,8,7,7},

{391,465,10,9,6,5},

{420,462,8,7,6,6},

{394,447,10,9,7,6},

{374,414,12,13,11,7},

{349,399,15,8,17,11},

{356,367,16,8,8,14},

150 {372,387,13,10,8,9},

{396,408,11,8,6,7},

{419,432,9,9,6,9},

{440,444,9,8,7,6},

{462,432,9,9,7,6},

{446,424,8,8,7,6},

{415,388,9,8,7,6},

{393,365,13,13,9,11},

{373,339,9,10,12,9},

{391,317,10,10,6,9},

160 {402,337,12,10,8,10},

{424,368,10,9,12,9},

{460,379,11,8,7,6},

{481,402,9,7,7,8},

{500,412,8,6,6,6},

{475,372,7,6,6,8},

{419,338,11,7,6,11},

{401,401,10,9,7,7},

{338,389,14,10,22,16},

{338,407,14,11,22,11},

170 {362,428,22,13,24,21},

140

{381,454,12,13,13,8},

{398,472,13,12,17,11},

{416,460,13,11,7,12},

{406,443,12,12,16,10},

{382,431,17,14,11,11},

{354,403,13,15,9,20},

{348,368,11,12,6,9},

{374,393,15,11,15,15},

{400,415,15,21,18,13},

180 {423,444,10,14,10,20},

{438,437,14,13,25,25},

{432,417,12,17,25,20},

{406,405,14,13,10,9},

{305,255,13,11,4,4},

{363,355,14,11,8,11},

{377,339,11,11,13,9},

{391,347,12,10,6,7},

{418,374,12,10,11,7},

{428,393,14,13,21,18},

190 {474,401,9,8,14,11},

{460,414,14,15,20,21},

{471,394,18,13,17,17},

{448,367,9,12,17,25},

{422,331,12,10,10,11},

{346,388,3,5,2,4},

{317,410,11,10,13,8},

{366,424,12,11,9,10},

{381,446,10,10,14,6},

{410,470,8,4,7,4},

200 {387,437,11,9,11,8},

{370,412,11,8,7,7},

{354,390,7,6,5,8},

{356,376,7,6,5,12},

{370,390,8,8,6,8},

{397,416,7,8,9,7},

{414,435,5,5,5,8},

{425,436,10,7,7,8},

{446,428,4,4,6,4},

{434,411,5,6,5,8},

210 {403,404,6,6,4,5},

{391,375,7,6,5,4},

{381,358,7,5,9,4},

{390,357,7,6,4,5},

{419,383,9,7,6,6},

{450,401,8,7,6,10},

{459,411,9,8,6,6},

{479,386,6,5,5,4},

{443,381,8,7,6,4},

{430,352,12,6,9,6},

220 {392,308,4,4,4,3},

{391,402,8,7,4,7}};

double mdata[62][6] = {{366,392,33,30,28,27},

{372,408,33,29,29,30},

{380,416,34,33,31,36},

{390,426,32,29,30,30},

{396,434,26,29,30,27},

{411,431,22,26,30,31},

{403,423,31,26,30,32},

230 {393,411,34,34,32,33},

{381,401,33,32,30,30},

{382,388,31,32,30,25},

{375,383,33,32,29,28},

{389,394,33,33,30,31},

{400,408,33,30,34,31},

{409,418,28,31,31,34},

{415,422,25,30,33,33},

{425,418,31,29,33,33},

{413,407,33,34,32,31},

240 {401,398,33,32,32,33},

{392,383,33,35,31,29},

{388,376,32,33,30,30},

{398,381,34,33,31,30},

{409,395,33,31,34,32},

{424,408,31,33,33,31},

{435,407,25,27,30,32},

{428,400,29,32,32,31},

{409,379,30,33,33,30},

{397,370,26,32,30,28},

250 {405,360,29,32,30,27},

{416,372,30,34,32,29},

{427,389,28,31,33,29},

{437,396,23,28,31,26},

{360,383,29,24,27,27},

{364,404,32,27,25,28},

{369,411,34,26,27,32},

{387,419,29,29,29,32},

141

{389,432,33,30,28,32},

{404,435,28,25,30,33},

260 {398,425,31,29,29,30},

{387,410,36,31,30,32},

{376,399,32,31,29,29},

{376,385,33,32,29,28},

{381,395,30,30,30,29},

{391,409,32,32,31,32},

{403,418,28,31,31,36},

{411,424,29,26,27,34},

{423,418,28,31,32,33},

{418,412,27,30,31,33},

270 {404,397,31,34,33,31},

{392,388,34,32,31,31},

{378,379,25,32,28,29},

{386,366,24,32,29,27},

{402,385,29,33,31,30},

{409,393,29,32,32,32},

{428,404,30,26,32,30},

{436,409,23,27,32,30},

{436,397,28,31,32,28},

{417,387,28,33,33,30},

280 {404,372,29,33,29,28},

{403,355,30,31,28,27},

{415,366,26,30,31,31},

{427,389,28,31,32,27},

{437,398,26,28,32,27}};

double distance, distance1, distance2, distance3, distance4, distance5;

double type, type1, type2, type3, type4, type5;

double scale01off, scale01, scale2345;

290 bool coeffSet13; // decides to initialize hyp vars as either

//for sensors 1 and 3 or 2 and 4

// 1 and 3 == TRUE; 2 and 4 == FALSE;

//double timedifference;

//clock_t start, finish;

void main() {

cout << "initializing globals...\n";

300 initializeGlobals();

if (forSerial == TRUE) {

cout << "Using serial port.\n";

comSetup();

cout << "\n";

while(1) {

serialRead();

//cout << "gotdata \n"<< endl;

run();

310 }

} else {

cout << "Using datafile parsetap.dat.\n";

ifstream newdata("parsetap.dat",ios::in);

if (!newdata) {

cerr << "File could not be opened" <<endl;

exit(1);

}

newdata >> mypointer;

datalength = strlen(mypointer);

320 //cout << "gotpointer\n";

while (globalpos < datalength) {

read();

run();

}

//cout << strlen(mypointer) << endl;

}

}

void initializeGlobals(){

330 // initialize globals

/∗ identity data ∗/

sensor1x = 158.0;

sensor1y = 117.0;

sensor2x = 158.0;

sensor2y = 0.0;

sensor3x = 0.0;

sensor3y = 0.0;

340 sensor4x = 0.0;

sensor4y = 117.0;

/∗ 1CC data ∗/

142

// diagonal formation

/∗
sensor1x = 67.0;
sensor1y = 129.0;
sensor2x = 10.0;

350 sensor2y = 77.0;
sensor3x = 72.0;
sensor3y = 12.5;
sensor4x = 129.0;
sensor4y = 76.0;
∗/
// rectangular formation

/∗
sensor1x = 25.0;
sensor1y = 116.0;

360 sensor2x = 25.0;
sensor2y = 25.0;
sensor3x = 116.0;
sensor3y = 25.0;
sensor4x = 116.0;
sensor4y = 116.0;
∗/

knuckleu = 696;

metalu = 1500;

370 maxfreqdiff = 4;

avgX = (sensor1x + sensor2x + sensor3x + sensor4x) / 4.0;

avgY = (sensor1y + sensor2y + sensor3y + sensor4y) / 4.0;

scale01off = 250.0;

scale01 = 300.0;

scale2345 = 16.0;

for (int i=0; i<NUMBEROFKNUCKLECALS; i++) {

kdata[i][0] = (kdata[i][0]-scale01off)/scale01;

380 kdata[i][1] = (kdata[i][1]-scale01off)/scale01;

kdata[i][2] = kdata[i][2]/scale2345;

kdata[i][3] = kdata[i][3]/scale2345;

kdata[i][4] = kdata[i][4]/scale2345;

kdata[i][5] = kdata[i][5]/scale2345;

}

for (i=0; i<NUMBEROFMETALCALS; i++) {

mdata[i][0] = (mdata[i][0]-scale01off)/scale01;

mdata[i][1] = (mdata[i][1]-scale01off)/scale01;

mdata[i][2] = mdata[i][2]/scale2345;

390 mdata[i][3] = mdata[i][3]/scale2345;

mdata[i][4] = mdata[i][4]/scale2345;

mdata[i][5] = mdata[i][5]/scale2345;

}

/∗ AG window data
sensor1x = 169.0;
sensor1y = 130.0;
sensor2x = 168.0;

400 sensor2y = 0.0;
sensor3x = 0.0;
sensor3y = 0.0;
sensor4x = 0.0;
sensor4y = 133.0;

knuckleu = 1200;
metalu = 2000;
maxfreqdiff = 4; ∗/

/∗
410 incorr13 = 392;

incorr24 = 384;
u = knuckleu;
hyppreferred();
cout << xposition << ”, ” << yposition << endl;
cout << avgX << ”, ” << avgY << endl;

∗/
}

420 void getClosestPoint(double x1, double y1, double x2, double y2,

double x3, double y3, double x4, double y4, double x, double y) {

double distance, temp;

counter = 1;

distance = (x1 - x) * (x1 - x) + (y1 - y) * (y1 - y);

ptx = x1;

pty = y1;

temp = (x2 - x) * (x2 - x) + (y2 - y) * (y2 - y);

if (temp < distance) {

++counter;

430 distance = temp;

ptx = x2;

143

pty = y2;

}

temp = (x3 - x) * (x3 - x) + (y3 - y) * (y3 - y);

if (temp < distance) {

++counter;

distance = temp;

ptx = x3;

pty = y3;

440 }

temp = (x4 - x) * (x4 - x) + (y4 - y) * (y4 - y);

if (temp < distance) {

++counter;

distance = temp;

ptx = x4;

pty = y4;

}

}

450
unsigned char* read() {

unsigned char buffer;

data[0] = 0;

pos = 0;

while (1) {

buffer = mypointer[globalpos++];

if (pos > datalength) {

return data;

460 }

if (pos < 300) {

data[pos++] = buffer;

if (pos > 5) {

if (!isalnum((int)data[pos-1]) && !isalnum((int)data[pos-2]) &&

!isalnum((int)data[pos-3])){

//cout << "data go parse" << endl;

return data; // data in data, pos in pos (globals)

470 }

}

}

}

}

void run() {

long temp; // temp variable for getting data from serial port.

480 long temp1, temp2, temp3, temp4; // for getting rid of double taps, accuracy

double freq1, freq2, freq3, freq4; // records the number of zeroxings for sensors 1-4

double freqdiff12, freqdiff13, freqdiff14, freqdiff23, freqdiff24, freqdiff34;

double doubletemp1, doubletemp2;

typetriggered = 1; // reset this number!

// sum all the magnitudes

// veto the DSP if it’s stupid on type of tap

temp = getnumber(&data[20]);

freq1 = temp;

490 if (temp >= 10 && data[150] != ’M’) {

//data[150] = ’N’;

}

zeroxings = temp;

temp = getnumber(&data[45]);

freq2 = temp;

if (temp >= 10 && data[150] != ’M’) {

//data[150] = ’N’;

}

zeroxings += temp;

500 temp = getnumber(&data[70]);

freq3 = temp;

if (temp >= 10 && data[150] != ’M’) {

//data[150] = ’N’;

}

zeroxings += temp;

temp = getnumber(&data[95]);

freq4 = temp;

if (temp >= 10 && data[150] != ’M’) {

//data[150] = ’N’;

510 }

//data[150] = ’N’;

zeroxings += temp;

humpwidth = 480.0/zeroxings;

if (zeroxings > 37 && data[150] != ’M’) {

//data[150] = ’N’;

}

//sum and max magnitude of waveforms

144

520 ss1 = getnumber(&data[6]);

ms1 = getnumber(&data[13]);

ss2 = getnumber(&data[31]);

ms2 = getnumber(&data[38]);

ss3 = getnumber(&data[56]);

ms3 = getnumber(&data[63]);

ss4 = getnumber(&data[81]);

ms4 = getnumber(&data[88]);

ms5 = getnumber(&data[113]);

ms6 = getnumber(&data[138]);

530
if (data[150] == ’M’ || data[150] == ’N’) {

// means DSP thinks a metal tap has occurred

typetriggered = 2;

u = metalu;

if (data[150] == ’M’) {

temp = getnumber(&data[152]);

temp1 = temp;

540 corr13 = 400 + temp;

temp = getnumber(&data[157]);

corr24 = 400 + temp;

temp2 = temp;

temp = getnumber(&data[162]);

corr13 -= temp;

temp3 = temp;

temp = getnumber(&data[167]);

corr24 -= temp;

temp4 = temp;

550 } else {

//cout << data[150];

//cout << " knuckle converted to metal!\n";

temp = getnumber(&data[254]);

temp1 = temp;

corr13 = 400 + temp;

temp = getnumber(&data[259]);

corr24 = 400 + temp;

temp2 = temp;

temp = getnumber(&data[264]);

560 corr13 -= temp;

temp3 = temp;

temp = getnumber(&data[269]);

corr24 -= temp;

temp4 = temp;

data[150] = ’M’;

temp = getnumber(&data[169]);

corr13 = 400 + temp;

temp = getnumber(&data[174]);

570 corr132 = 400 + temp;

temp = getnumber(&data[219]);

corr24 = 400 + temp;

temp = getnumber(&data[224]);

corr242 = 400 + temp;

}

if ((temp1 < 60 || temp2 < 60 || temp3 < 60 || temp4 < 60) && ms5 < 256) {

//printf("dying 1\n");

typetriggered = 0;

580 xposition = 0;

yposition = 0;

goto ENDOFPROCESS;

}

badtap = 0;

} else { // means DSP thinks a knuckle tap has occurred

typetriggered = 1;

temp = getnumber(&data[254]);

temp1 = temp;

590 temp = getnumber(&data[259]);

temp2 = temp;

temp = getnumber(&data[264]);

temp3 = temp;

temp = getnumber(&data[269]);

temp4 = temp;

if ((temp1 < 60 || temp2 < 60 || temp3 < 60 || temp4 < 60) && ms5 < 256) {

typetriggered = 0;

xposition = 0;

yposition = 0;

600 goto ENDOFPROCESS;

}

u = knuckleu;

badtap = getnumber(&data[274]);

145

temp = getnumber(&data[169]);

corr13 = 400 + temp;

temp = getnumber(&data[174]);

corr132 = 400 + temp;

610 temp = getnumber(&data[219]);

corr24 = 400 + temp;

temp = getnumber(&data[224]);

corr242 = 400 + temp;

// correlation peak locations and amplitudes

cpl13 = getnumber(&data[169]);

cpl132 = getnumber(&data[174]);

cpl24 = getnumber(&data[219]);

cpl242 = getnumber(&data[224]);

620 // neither word can ever be negative

temp = getnumber(&data[186]);

if (temp < 0) {

temp = temp + 65535;

}

if (temp == 32768) {

temp = 0;

}

cpa13 = temp;

temp = getnumber(&data[181]);

630 if (temp < 0) {

temp = temp + 65535;

}

if (temp == 32768) {

temp = 0;

}

cpa13 += temp * 65536 ;

temp = getnumber(&data[197]);

if (temp < 0) {

640 temp = temp + 65535;

}

if (temp == 32768) {

temp = 0;

}

cpa132 = temp;

temp = getnumber(&data[192]);

if (temp < 0) {

temp = temp + 65535;

}

650 if (temp == 32768) {

temp = 0;

}

cpa132 += temp * 65536;

temp = getnumber(&data[236]);

if (temp < 0) {

temp = temp + 65535;

}

if (temp == 32768) {

660 temp = 0;

}

cpa24 = temp;

temp = getnumber(&data[231]);

if (temp < 0) {

temp = temp + 65535;

}

if (temp == 32768) {

temp = 0;

}

670 cpa24 += temp * 65536;

temp = getnumber(&data[247]);

if (temp < 0) {

temp = temp + 65535;

}

if (temp == 32768) {

temp = 0;

}

cpa242 = temp;

680 temp = getnumber(&data[242]);

if (temp < 0) {

temp = temp + 65535;

}

if (temp == 32768) {

temp = 0;

}

cpa242 += temp * 65536;

// get chi-squared amplitudes

690 cha13 = getnumber(&data[157]);

cha132 = getnumber(&data[162]);

cha24 = getnumber(&data[207]);

146

cha242 = getnumber(&data[212]);

}

// determine proxsensor value

// use the metal taps, which are so conveniently stored in temp1-4

700
proxsensor = 1;

temp = temp1;

if (temp2 > temp) {

proxsensor = 2;

temp = temp2;

}

if (temp3 > temp) {

proxsensor = 3;

temp = temp3;

710 }

if (temp4 > temp) {

proxsensor = 4;

}

if (typetriggered == 1 || typetriggered == 2 || typetriggered == 3) {

// do a nearest neighbor search

incorr13 = 400 + temp1 - temp3;

incorr24 = 400 + temp2 - temp4;

720
hyppreferred(); //hyperbola estimate based on metal tap

savex2 = xposition;

savey2 = yposition;

incorr13 = corr13; //hyperbola estimate based on chi-square cross-corr

incorr24 = corr24;

savex1 = 0;

savey1 = 0;

hyppreferred();

730 savex1 = xposition;

savey1 = yposition;

if (getDistance(savex2, savey2, xposition, yposition) < 10) {

xposition = (xposition + savex2) / 2.0;

yposition = (yposition + savey2) / 2.0;

} else {

xposition = savex2;

740 yposition = savey2;

}

}

ENDOFPROCESS:

mycounter++;

// only print out taps that were good

if (typetriggered != 0) {

cout << typetriggered << "\t";

750 cout << savex2 << "\t" << savey2 << "\t" << xposition << "\t" << yposition << "\t" << savex1 << "\t" << savey1 << "\t";

cout << freq1 + freq2 + freq3 + freq4 << "\t" << mycounter << endl;

}

}

void getTapType(double freq1, double freq2, double freq3, double freq4) {

double distance1, distance2, distance3, distance4, distance5;

760 int type1, type2, type3, type4, type5;

distance1 = 10000000;

distance2 = 10000001;

distance3 = 10000002;

distance4 = 10000003;

distance5 = 10000004;

type1 = 0;

type2 = 0;

type3 = 0;

type4 = 0;

770 type5 = 0;

for (i=0; i<NUMBEROFMETALCALS; i++) {

// calculate nearest neighbors for metal calibration points

distance = pow(((incorr13-scale01off)/scale01-mdata[i][0]), 2) +

pow(((incorr24-scale01off)/scale01-mdata[i][1]), 2) +

pow((freq1/scale2345-mdata[i][2]), 2) + pow((freq2/scale2345-mdata[i][3]), 2) +

pow((freq3/scale2345-mdata[i][4]), 2) + pow((freq4/scale2345-mdata[i][5]), 2);

distance = sqrt(distance);

147

780 if (distance < distance1) {

distance5 = distance4;

distance4 = distance3;

distance3 = distance2;

distance2 = distance1;

type5 = type4;

type4 = type3;

type3 = type2;

type2 = type1;

distance1 = distance;

790 type1 = -1;

} else if (distance < distance2) {

distance5 = distance4;

distance4 = distance3;

distance3 = distance2;

type5 = type4;

type4 = type3;

type3 = type2;

distance2 = distance;

type2 = -1;

800 } else if (distance < distance3) {

distance5 = distance4;

distance4 = distance3;

type5 = type4;

type4 = type3;

distance3 = distance;

type3 = -1;

} else if (distance < distance4) {

distance5 = distance4;

type5 = type4;

810 distance4 = distance;

type4 = -1;

} else if (distance < distance5) {

distance5 = distance;

type5 = -1;

}

}

for (i=0; i<NUMBEROFKNUCKLECALS; i++) {

// calculate nearest neighbors for knuckle

820 distance = pow(((incorr13-scale01off)/scale01-kdata[i][0]), 2) +

pow(((incorr24-scale01off)/scale01-kdata[i][1]), 2) +

pow((freq1/scale2345-kdata[i][2]), 2) + pow((freq2/scale2345-kdata[i][3]), 2) +

pow((freq3/scale2345-kdata[i][4]), 2) + pow((freq4/scale2345-kdata[i][5]), 2);

distance = sqrt(distance);

if (distance < distance1) {

distance5 = distance4;

distance4 = distance3;

distance3 = distance2;

distance2 = distance1;

830 type5 = type4;

type4 = type3;

type3 = type2;

type2 = type1;

distance1 = distance;

type1 = 1;

} else if (distance < distance2) {

distance5 = distance4;

distance4 = distance3;

distance3 = distance2;

840 type5 = type4;

type4 = type3;

type3 = type2;

distance2 = distance;

type2 = 1;

} else if (distance < distance3) {

distance5 = distance4;

distance4 = distance3;

type5 = type4;

type4 = type3;

850 distance3 = distance;

type3 = 1;

} else if (distance < distance4) {

distance5 = distance4;

type5 = type4;

distance4 = distance;

type4 = 1;

} else if (distance < distance5) {

distance5 = distance;

type5 = 1;

860 }

}

type = type1 + type2 + type3 + type4 + type5;

if (type < 0.0) {

u = metalu;

148

typetriggered = 2;

} else if (type > 0.0){

u = knuckleu;

870 typetriggered = 1;

} else {

if (type1 == -1) {

u = metalu;

typetriggered = 2;

} else {

u = knuckleu;

typetriggered = 1;

}

}

880 }

long getnumber(unsigned char* mypointer) {

int finalint = 0;

const char * myowntemp = ((const char *) mypointer);

long myx = strtol(myowntemp, NULL, 16);

890 if (myx > 32767) {

myx = myx - 65535;

}

return myx;

}

void hyppreferred() {

// Preferred method for finding intersection of hyperbolas

transposeSensors();

hypfast();

900 untransposeOutput();

}

void transposeSensors() {

if (forDiamond == 1) {

// center on zero and rotate coordinates by w radians

// x’ = x cos(w) - y sin(w)

// y’ = x sin(w) + y cos(w)

// in this incarnation we will rotate by 45 degrees

910 sensor1xT = (sensor1x - sensor1y - avgX + avgY)/ sqrt(2.0) + avgX;

sensor1yT = (sensor1x + sensor1y - avgX - avgY)/ sqrt(2.0) + avgY;

sensor2xT = (sensor2x - sensor2y - avgX + avgY)/ sqrt(2.0) + avgX;

sensor2yT = (sensor2x + sensor2y - avgX - avgY)/ sqrt(2.0) + avgY;

sensor3xT = (sensor3x - sensor3y - avgX + avgY)/ sqrt(2.0) + avgX;

sensor3yT = (sensor3x + sensor3y - avgX - avgY)/ sqrt(2.0) + avgY;

sensor4xT = (sensor4x - sensor4y - avgX + avgY)/ sqrt(2.0) + avgX;

sensor4yT = (sensor4x + sensor4y - avgX - avgY)/ sqrt(2.0) + avgY;

} else {

sensor1xT = sensor1x;

920 sensor1yT = sensor1y;

sensor2xT = sensor2x;

sensor2yT = sensor2y;

sensor3xT = sensor3x;

sensor3yT = sensor3y;

sensor4xT = sensor4x;

sensor4yT = sensor4y;

}

}

930 void untransposeOutput() {

double xpositionTemp, ypositionTemp;

xpositionTemp = xposition;

ypositionTemp = yposition;

if (forDiamond == 1) {

xposition = (xpositionTemp + ypositionTemp - avgX - avgY)/ sqrt(2.0) + avgX;

yposition = (-xpositionTemp + ypositionTemp + avgX - avgY)/ sqrt(2.0) + avgY;

}

}

940 void hypfast() {

// we want to minimize:

// abs(sqrt((x-sensor3x)^2 + (y-sensor3y)^2) + sqrt((x-sensor4x)^2 +

//(y-sensor4y)^2) - sqrt((x-sensor1x)^2 + (y-sensor1y)^2) -

// sqrt((x-sensor2x)^2 + (y-sensor2y)^2) - (d1 + d2))

// abs(sqrt((x-x3)^2 + (y-y3)^2) + sqrt((x-x4)^2 + (y-y4)^2) -

//sqrt((x-x1)^2 + (y-y1)^2) - sqrt((x-x2)^2 + (y-y2)^2) - (d1 + d2))

double w, d1, d2, x, y, xSET, ySET, xmin, ymin, xmax, ymax, toMinimize;

double absmin, absmax, absmid1, absmid2;

// assume positions x1, x4, x3, x2, clockwise starting from top left from inside view

950 // assume xk + yk is smallest for k = 3

// change the stupid names of the global sensor positions

double x1, x2, x3, x4, y1, y2, y3, y4;

double temp1, temp2;

149

x1 = sensor1xT;

y1 = sensor1yT;

x2 = sensor2xT;

y2 = sensor2yT;

x3 = sensor3xT;

960 y3 = sensor3yT;

x4 = sensor4xT;

y4 = sensor4yT;

//cout << x1 << x2 << x3 << x4 << y1 << y2 << y3 << y4<< "\n";

//cin >> w;

double m = 400;

w = 100.0 * u / 50000.0;

// this makes no sense, but it works... apparently i screwed up somewhere

970 d1 = w * (m - incorr13);

d2 = w * (m - incorr24);

// guess a point -- the center?

xSET = abs(x1 + x2 + x3 + x4)/ 4.0;

ySET = abs(y1 + y2 + y3 + y4)/ 4.0;

x = xSET;

y = ySET;

temp1 = abs(sqrt(pow((x-x3),2.0) + pow((y-y3),2.0)) - sqrt(pow((x-x1),2.0) + pow((y-y1),2.0)) - d1);

temp2 = abs(sqrt(pow((x-x4),2.0) + pow((y-y4),2.0)) - sqrt(pow((x-x2),2.0) + pow((y-y2),2.0)) - d2);

980 //cout << temp1 << " " << temp2 << "\n";

toMinimize = pow(temp1,2) + pow(temp2, 2);

for (int i=1; i<5; i++) {

//while (toMinimize > 1) {

// minimize toMinimize w.r.t. y when x = XSET.

// binary search for better minimum point ySET

ymin = -1000;

ymax = 1000;

while (((ymax - ymin) > 0.5) && (ymax > 0)) {

990 y = (ymin + ymax)/2.0;

temp1 = fabs(sqrt(pow((x-x3),2.0) + pow((y-y3),2.0)) - sqrt(pow((x-x1),2.0) + pow((y-y1),2.0)) - d1);

temp2 = fabs(sqrt(pow((x-x4),2.0) + pow((y-y4),2.0)) - sqrt(pow((x-x2),2.0) + pow((y-y2),2.0)) - d2);

absmid1 = pow(temp1,2) + pow(temp2, 2);

y = y + 0.1;

temp1 = fabs(sqrt(pow((x-x3),2.0) + pow((y-y3),2.0)) - sqrt(pow((x-x1),2.0) + pow((y-y1),2.0)) - d1);

temp2 = fabs(sqrt(pow((x-x4),2.0) + pow((y-y4),2.0)) - sqrt(pow((x-x2),2.0) + pow((y-y2),2.0)) - d2);

absmid2 = pow(temp1,2) + pow(temp2, 2);

//cout << "ymin:ymax are" << ymin << ":" << ymax<< "\t" << y << ": "<< absmid1 << " "<< absmid2 << "\n";

if (fabs(absmid1 - absmid2) < 0.001) {

1000 break;

} else if (absmid1 < absmid2) {

ymax = y +0.01;

} else {

ymin = y;

}

/∗if (absmid1 < absmid2) {
ymax = y +0.01;

} else if (absmid1 > absmid2) {
ymin = y;

1010 } else {
//break;

}∗/
}

//cout << "ymin:ymax are" << ymin << ":" << ymax<< "\n";

ySET = (ymin + ymax) /2.0;

y = ySET;

// minimize toMinimize w.r.t. x when y = ySET.

// binary search for better minimum point xSET

1020 xmin = -1000;

xmax = 1000;

while ((xmax - xmin) > 0.5 && (xmax > 0)) {

x = (xmin + xmax)/2.0;

temp1 = fabs(sqrt(pow((x-x3),2.0) + pow((y-y3),2.0)) - sqrt(pow((x-x1),2.0) + pow((y-y1),2.0)) - d1);

temp2 = fabs(sqrt(pow((x-x4),2.0) + pow((y-y4),2.0)) - sqrt(pow((x-x2),2.0) + pow((y-y2),2.0)) - d2);

absmid1 = pow(temp1,2) + pow(temp2, 2);

x = x + 0.01;

temp1 = fabs(sqrt(pow((x-x3),2.0) + pow((y-y3),2.0)) - sqrt(pow((x-x1),2.0) + pow((y-y1),2.0)) - d1);

1030 temp2 = fabs(sqrt(pow((x-x4),2.0) + pow((y-y4),2.0)) - sqrt(pow((x-x2),2.0) + pow((y-y2),2.0)) - d2);

absmid2 = pow(temp1,2) + pow(temp2, 2);

//cout << "xmin:xmax are" << xmin << ":" << xmax<< "\t" << x << ": "<< absmid1 << " "<< absmid2 << "\n";

if (fabs(absmid1 - absmid2) < 0.001) {

break;

} else if (absmid1 < absmid2) {

xmax = x +0.01;

} else {

xmin = x;

}

1040 /∗if (absmid1 < absmid2) {

150

xmax = x +0.01;
} else if (absmid1 > absmid2) {

xmin = x;
} else {

break;
}∗/

}

xSET = (xmin + xmax) / 2.0;

if ((absmid1 > toMinimize) || (absmid2 > toMinimize)) {

1050 break;

}

if ((xmax <= 0) || (ymax <= 0)) {

break;

}

toMinimize = absmid1;

}

//cout << toMinimize << "\n";

xposition = xSET;

yposition = ySET;

1060
}

void hypbrute() {

// assumes point is inside grid

double temp1, temp2, temp3 , temp4;

double x1, x2, x3, x4, y1, y2, y3, y4;

// uh.... a brute force search.

double oldmin, min, x, y, xSET, ySET;

double w, d1, d2, temp1a, temp2a;

1070 double m = 400;

x1 = sensor1x;

y1 = sensor1y;

x2 = sensor2x;

y2 = sensor2y;

x3 = sensor3x;

y3 = sensor3y;

x4 = sensor4x;

y4 = sensor4y;

1080
// get size of grid

temp1 = getMinimum(x1, x2, x3, x4);

temp2 = getMaximum(x1, x2, x3, x4);

temp3 = getMinimum(y1, y2, y3, y4);

temp4 = getMaximum(y1, y2, y3, y4);

//corr13 = 400 - mytemp1 + mytemp3;

//corr24 = 400 - mytemp2 + mytemp4;

w = 100.0 * u / 50000.0;

1090 d1 = w * (incorr13 - m);

d2 = w * (incorr24 - m);

oldmin = 10000000;

for (int i=(int) temp1; i < (int) temp2; i++) {

for (int j=(int) temp3; j < (int) temp4; j++) {

x = i;

y = j;

temp1a = fabs(-sqrt(pow((x-x4),2.0) + pow((y-y4),2.0)) + sqrt(pow((x-x2),2.0) + pow((y-y2),2.0)) - d2);

temp2a = fabs(-sqrt(pow((x-x3),2.0) + pow((y-y3),2.0)) + sqrt(pow((x-x1),2.0) + pow((y-y1),2.0)) - d1);

1100 min = pow(temp1a, 2.0) + pow(temp2a, 2.0);

if (min < oldmin) {

oldmin = min;

xSET = x;

ySET = y;

}

}

}

//cout << xSET << "\t" << ySET << endl;

1110 xposition = xSET;

yposition = ySET;

}

void hypbrute(double x1, double y1, double x2, double y2, double x3,

double y3, double x4, double y4, double corr13, double corr24) {

// assumes point is inside grid

double temp1, temp2, temp3 , temp4;

1120
// uh.... a brute force search.

double oldmin, min, x, y, xSET, ySET;

double w, d1, d2, temp1a, temp2a;

double m = 400;

// get size of grid

temp1 = getMinimum(x1, x2, x3, x4);

151

temp2 = getMaximum(x1, x2, x3, x4);

temp3 = getMinimum(y1, y2, y3, y4);

1130 temp4 = getMaximum(y1, y2, y3, y4);

//corr13 = 400 - mytemp1 + mytemp3;

//corr24 = 400 - mytemp2 + mytemp4;

w = 100.0 * u / 50000.0;

d1 = w * (corr13 - m + 0.001);

d2 = w * (corr24 - m + 0.001);

oldmin = 10000000;

for (int i=(int) temp1; i < (int) temp2; i++) {

1140 for (int j=(int) temp3; j < (int) temp4; j++) {

x = i;

y = j;

temp1a = fabs(sqrt(pow((x-x4),2.0) + pow((y-y4),2.0)) - sqrt(pow((x-x2),2.0) + pow((y-y2),2.0)) - d2);

temp2a = fabs(sqrt(pow((x-x3),2.0) + pow((y-y3),2.0)) - sqrt(pow((x-x1),2.0) + pow((y-y1),2.0)) - d1);

min = pow(temp1a, 2.0) + pow(temp2a, 2.0);

if (min < oldmin) {

oldmin = min;

xSET = x;

ySET = y;

1150 }

}

}

//cout << xSET << "\t" << ySET << endl;

xposition = xSET;

yposition = ySET;

}

1160
double getMinimum(double x1, double x2, double x3, double x4) {

double temp;

temp = x1;

if (x2 < temp) {

temp = x2;

}

if (x3 < temp) {

temp = x3;

}

1170 if (x4 < temp) {

temp = x4;

}

return temp;

}

double getMaximum(double x1, double x2, double x3, double x4) {

double temp;

temp = x1;

if (x2 > temp) {

1180 temp = x2;

}

if (x3 > temp) {

temp = x3;

}

if (x4 > temp) {

temp = x4;

}

return temp;

}

1190

double getMaximum(double x1, double x2, double x3, double x4, double x5, double x6) {

double temp;

temp = x1;

if (x2 > temp) {

temp = x2;

}

if (x3 > temp) {

temp = x3;

1200 }

if (x4 > temp) {

temp = x4;

}

if (x5 > temp) {

temp = x5;

}

if (x6 > temp) {

temp = x6;

}

1210
return temp;

}

unsigned char* serialRead() {

152

DWORD bytesread;

unsigned char buffer[1];

data[0] = 0;

pos=0;

1220 while (1)

{

ReadFile(hCom, buffer, 1, &bytesread, NULL);

cout.flush();

if (bytesread)

{

for (int i=0; i<bytesread; i++)

{

data[pos++]=buffer[i];

//cout << "read data\n";

1230 if (pos > 300) {

pos = 0;

}

if (pos > 5) {

if (!isalnum((int)data[pos-1]) && !isalnum((int)data[pos-2]) && !isalnum((int)data[pos-3])){

//cout << "here is " << pos << " bits of data go parse" << endl;

//cout << "X" << (int)data[pos-1] << "X" << (int)data[pos-2] << "X" << (int)data[pos-3] << "X"<< endl;

//cout << "X" << (int)data[pos-4] << "X" << (int)data[pos-5] << "X" << (int)data[pos-6] << "X"<< endl;

return data; // data in data, pos in pos (globals)

1240 }

}

}

}

}

}

1250
static void comSetup() {

DCB dcb;

DWORD dwError;

BOOL fSuccess;

hCom = CreateFile(serialPort,

GENERIC_READ | GENERIC_WRITE,

0, /∗ comm devices must be opened w/exclusive−access ∗/
NULL, /∗ no security attrs ∗/

1260 OPEN_EXISTING, /∗ comm devices must use OPEN EXISTING ∗/
0, /∗ not overlapped I/O ∗/
NULL /∗ hTemplate must be NULL for comm devices ∗/
);

cout << "Opened serial port " << serialPort << " " << hCom;

if (hCom == INVALID_HANDLE_VALUE) {

dwError = GetLastError();

/∗ handle error ∗/
1270 return;

}

/∗
∗ Omit the call to SetupComm to use the default queue sizes.
∗ Get the current configuration.
∗/

fSuccess = GetCommState(hCom, &dcb);

1280 if (!fSuccess) {

/∗ Handle the error. ∗/
return;

}

/∗ Fill in the DCB: baud=19200, 8 data bits, no parity, 1 stop bit. ∗/

dcb.BaudRate = 115200;

dcb.ByteSize = 8;

dcb.Parity = NOPARITY;

1290 dcb.StopBits = ONESTOPBIT;

fSuccess = SetCommState(hCom, &dcb);

if (!fSuccess) {

/∗ Handle the error. ∗/
return;

}

COMMTIMEOUTS cto;

1300 cto.ReadIntervalTimeout = 4;

cto.ReadTotalTimeoutMultiplier = 10;

153

cto.ReadTotalTimeoutConstant = 100;

cto.WriteTotalTimeoutMultiplier = 10;

cto.WriteTotalTimeoutConstant = 100;

if (!SetCommTimeouts(hCom, &cto)){

}

// UINT threadID;

// threadHandle = (HANDLE) _beginthreadex(NULL, 0, threadMain, NULL, 0, &threadID);

}

1310
double getDistance(double x1, double y1, double x2, double y2) {

double temp;

temp = sqrt(pow((x1 - x2),2) + pow((y1 - y2), 2));

return temp;

}

double doubleabs(double x) {

if (x < 0) {

return x*(-1.0);

1320 } else {

return x;

}

}

154

Appendix D

Explanation of Calculations

D.1 Calculating σ

Given a set of points, the mean point, (x̄, ȳ) is calculated. Next, the distance from

each point to (x̄, ȳ) is calculated. The standard deviation, σ, is based upon these

distances.

155

156

Bibliography

[1] A. Pentland. Smart rooms. Scientific American, pages 274(4):68–76, April 1996.

[2] H. Ishii, C. Wisneski, J. Orbanes, B. Chun, and J. Paradiso. PingPongPlus: De-

sign of an Athletic-Tangible Interface for Computer-Supported Cooperative Play.

Proceedings of Conference on Human Factors in Computing Systems (CHI’99),

pages 394–401, May 1999.

[3] J.A. Paradiso, K. Hsiao, J. Strickon, J. Lifton, and A. Adler. Sensor Systems for

Interactive Surfaces. IBM Systems Journal, 39(3 & 4):892–914, October 2000.

[4] N. Checka. A System for Tracking and Characterizing Acoustic Impacts on

Large Interactive Surfaces. MS Thesis, Massechusetts Institute of Technology,

Department of Electrical Engineering and Computer Science and MIT Media

Lab, May 2001.

[5] Panasonic EFVRT recievers. see http://www.maco.panasonic.co.jp/

www-ctlg/ctlg/qAAA0000_E.html.

[6] P.H. Winston. Artificial Intelligence. Addison Wesley, second edition, 1993.

[7] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing. Prentice

Hall, second edition, 1998.

[8] D.H. Johnson and D.E. Dudgeon. Array Signal Processing. Prentice Hall, first

edition, 1993.

157

[9] J.A. Paradiso, C.K. Leo, N. Checka, and K. Hsiao. Passive Acoustic Sensing

for Tracking Knocks Atop Large Interactive Displays. IEEE Sensors Journal,

17(17):1–7, June 2002.

[10] S. Haykin. Introduction to Adaptive Filters. Macmillan Publishing Company,

1984.

[11] H. Matthews, editor. Surface Wave Filters. John Wiley & Sons, 1977.

[12] D. Yelin, D. Meshulach, and Y. Silberberg. Adaptive Femtosecond Pulse Com-

pression. Optics Letters, 22(23):1793–1795, December 1997.

[13] L. Cremer, M. Heckl, and R.R. Ungar. Structure-Borne Sound. Springer-Verlag,

second edition, 1990.

[14] Saab Aerospace. The Ultimate Radar Level Gauge, February 2000.

[15] Micropower Impulse Radar. see http://www.llnl.gov/IPandC/op96/10/

10o-mic.html.

[16] H. Ma. Ultra Wideband Impulse Radar for HCI Applications. Technical report,

MIT Media Lab and University of British Columbia, June 2002.

[17] N.H. Yu.

[18] M.J. Kavaya and G.D. Emmitt. Tropospheric Wind Measurements

from Space. see http://www.ghcc.msfc.nasa.gov/sparcle/docs/MJK-GDE_

invited_paper.htm.

[19] J. Paradiso. The Responsive Window, in Take Over, Proc. of the 2001 Ars

Electronica Festival. Springer-Verlag, September 2001.

[20] J.D. Beltran. see http://identity.media.mit.edu/telephonestory.html.

158

[21] J. Paradiso. The Interactive Window. see http://www.siggraph.org/s2002/

conference/etech/interwin.html.

[22] M. Downey.

[23] R.A. Quinnell. Touchscreen technology improves and extends its options. EDN,

40(23):52, 54–6, 58, 60, 62, 64, November 1995.

159

