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Abstract
The Augmented Geometrically Spaced Transform (AGST) is an auditory model that
is based on an inversion of the acoustic piano, where the piano produces music and
the transform analyses it. In contrast with the standard spectrogram, which is a com-
plex frequency vector versus time, the AGST is based around a matrix of frequencies,
known as the AGST Frequency Matrix, where for every frequency in the matrix, a
spectral envelope is computed using a Single Channel Frequency Estimator (SCFE).
The core invention of the thesis is the algorithm for the SCFE, which computes spec-
tral envelopes with maximally high definition in a computationally efficient manner.
A bank of SCFEs is assembled into a constant Q transform, known as a Geometri-
cally Spaced Transform (GST). The GST can be used to visualize harmonics inside of
musical notes, or audio in general, in a constant Q fashion. It is then shown that the
AGST is a good front-end model for computational pitch perception. For example,
it can be used to solve an important problem in auditory perception, the case of the
missing fundamental. The entire thesis is framed in the context of building artificially
intelligent music systems, including synthetic listeners (machines that listen in the
way that people do), and synthetic performers (machines that allow for interactive
music performance).

Thesis Supervisor: Joseph A. Paradiso
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Chapter 1

Introduction

The Augmented Geometrically Spaced Transform is a K x M x N tensor that is a

novel representation of a signal. There are K frequency channels, M harmonics, and

N samples that are computed using Single Channel Frequency Estimators, or SCFEs.

On the K axis it computes frequency envelopes and on the N axis it computes spectral

envelopes. The M axis models a second order differential equation that computes

harmonics. In the most general sense, the SCFE is a signal analysis tool that has

a centre frequency 𝑓𝑘 and a setting for its Q. For the purpose of this thesis, I let

𝑄 = 16.81... since this corresponds to semi-tone spacing in music. But in practicality,

it can be tuned to any desired centre frequency 𝑓𝑘 and can be used with any Q you

choose. In the case of audio, with infinitely high oversampling, there is infinite time

resolution at lower frequencies that lie in the frequency range of human hearing. It’s

applications lie in the area of auditory signal analysis, including music, speech, bird

songs, and other auditory-based recordings. It, however, can also be used to analyse

sound that lies above the range of human hearing. For example, with high enough

sample rates, the system could be used to analyse various bands of signals such as

microwaves, x-rays, and ultrasound. This thesis is a scientific-based history of the

discovery of this signal representation.

The applications are numerous and I hope that people will find this to be a useful

tool in research. I have tried to show how it useful for analysing musical instrument

samples, such as the piano and the electric guitar. I assume a basic understanding of
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music, such as music theory in the tradition of Western musicology where the tonic,

sub-dominant, and dominant chords play an essential role. Just like Darwin observed

the Galapagos Islands and created a theory of evolution, I have observed my own

musical development and my knowledge of both piano and guitar-based music that

has influenced my musical knowledge and experience. While the experience of music

is subjective, here I propose that it can be analysed using computational methods.

One important idea that I propose is that auditory perception is an evolution-

ary process. People have been learning to listen to sounds for thousands of years,

beginning perhaps with the weather, drumbeats that were used in tribal practices,

drumbeats that were used for communication, and musical instruments that were

tuned in various ways. Concerning music, the ear has learned to listen to music,

including harmony. The psychological elements of auditory perception, including the

perception of pitch, beats, and timbre, evolved over time. What the ear is able to

listen to and enjoys listening to then continues to evolve through the creation of new

musical instruments and new methods of playing them.

I suggest that there is a clear link between music, technology, and culture. Based

on this observation and the theory developed here, I suggest that there is an emerging

field of study known as computational ethnomusicology. It is the study of how com-

putational methods can be used in anthropological research, especially as it relates

to music in culture. By the end of the thesis, I will show how the Augmented GST

can be used as an analysis tool to study music from any world culture. I will also

suggest, however, that it may be biased towards music that stems from Western Civ-

ilization, where for many centuries the piano has been the dominant compositional

tool. I will also suggest that the ear has certain innate abilities to analyse the sound

that enters the auditory system, but its interpretation and enjoyment is culturally

subjective. The idea then, of computational ethnomusicology, is to have a compu-

tational framework that can be used to study music, and I would also suggest that

the model could be expanded, for instance, to be useful for listening to the music of

India, where quarter-tone spacing is highly relevant to their form of classical music.

The thesis then is quite open ended because now that I have written it, it is clear
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that it leads to further work in physics, affective computing, artificial intelligence,

computational modelling, robotics, and other disciplines including music theory and

ethnomusicology.
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Chapter 2

A Brief History and Background

The idea of synthetic performance was pioneered at M.I.T. in the 1980s, where

Barry Vercoe built a music accompaniment system for a live flutist [Vercoe1984a]

[Vercoe1984b]. The flute had to be augmented with optical sensors to aid the real-

time pitch detection algorithm that was used to drive the system. Vercoe described

computer-based accompaniment systems as systems that could listen, learn, and per-

form with human musicians. This system motivates the need for real-time pitch

detection algorithms. The work was also pursued at other music research institutes

such as IRCAM where Pierre Boulez employed real-time computer interpretation of

audio in enhanced live performances with his Ensemble Intercontemporain.

There are a number of algorithms that go together to build a machine that lis-

tens. These include pitch detection, beat tracking, tempo tracking, et al, potentially

including instrument identification and source separation. These auditory listening

processes need to happen in real-time. Many algorithms that were developed by the

Machine Listening Group at the M.I.T. Media Lab and others in the 1990s, including

[Slaney1990], [Scheirer1997], [Martin1998], and [Smaragdis2001] are founda-

tional to building real-time sophisticated synthetic performance systems. What is

needed is a comprehensive auditory model that acts as a real-time front end proces-

sor and is an integrated framework for computational auditory perception.

One potential application of such a model, as it applies to building synthetic per-

formers, is interactive music performance, systems where humans and computers can
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interact and perform music together. A dream system would be a system that aug-

ments the experience of not just jamming and performing, but also aspects of learning

to play music, such as practicing technique and ear training. In the end, it would

be fun to play interactive musical games as Ben Vigoda describes in Musical Games:

A Guide for Group Improvisation, also known as Games for Song [Vigoda2005].

Playing these games are an example of meaningful musical group experiences. In

order for synthetic musicians to truly be successful, the boundary between humans

and machines would need to be blurred to a point where these machines pass the

Turing test for creating music as art [Turing1950].

Other practical applications of having an accurate perceptual computational model

of audition includes building more sophisticated hearing aids, music production sys-

tems, and other AI-based sound and music processing tools.

In this thesis, I propose a computational model of pitch perception that is based

on a matrix of frequency estimators that compute spectral envelopes called the Aug-

mented Geometrically Spaced Transform. I propose a constant Q frequency analyser,

called the Geometrically Spaced Transform (GST), as a computational alternative

to typical front-end auditory modelling and processing such as the Patterson and

Holdsworth auditory model [Patterson1995]. I then show that the GST can be

augmented by computing a tensor based on what I call the AGST Frequency Matrix.

This forms the basis of a computational model of pitch perception, and can be used

as a real-time system that computes pitch and, for instance, solves an important

problem in pitch perception, the case of the missing fundamental. I then show that

the inverse SCFE can be used to synthesize monophonic audio and the inverse GST

can be used to synthesize polyphonic audio.

In the original title of this thesis I used the term Online Frequency Estimation.

I envisioned a system where frequency estimates are computed as every new sample

enters the system. With this in mind, I had the idea that every frequency estimate

could be computed using a linear update rule, and this would give the maximum

time-frequency resolution possible. In Neil Gershenfeld’s The Nature of Mathematical

Modelling class, I made the observation that the Discrete Fourier Matrix was N-
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periodic. I envisioned spectral signal processing as having the Fourier matrix roll

like a cylinder across the input samples. This is atypical in traditional discrete-

time signal processing where spectral estimates are computed on blocks of input

samples. However, the approach taken here is that the auditory system operates

computationally in an online fashion and is high resolution, thus giving it high fidelity.

Using this approach, and following the seminal papers written by Judith C. Brown

[Brown1990] [Brown1992], I was able to derive an algorithm for online machine

listening that is constant Q and wavelet-like where frequency estimates are more

localized in time as frequency increases towards the top end of the hearing spectrum.

I now frame the thesis in a larger context, and explain how it might be related to

the field of Affective Computing [Picard1995]. I suggest that auditory perception is

an evolutionary process, and that the perception of auditory elements in music such

as pitch, beats, and timbre has changed over time. One goal of this may be to enhance

the emotional experience of the listening process. For example, the more a person

listens to music that is based on the rules of classical harmony and that is tuned based

on the equal-tempered scale, the better it is able to enjoy a peaceful, harmonious

listening experience [Haignere2013]. By harmonious, I mean an experience that

produces emotions that excite the corresponding emotional patterns in the brain.

I would suggest, for example, that Mozart played in major keys is more peaceful

to listen to than the blues, rock music, or heavy metal. Music in general plays

with the emotions in the brain, which is exemplified, for example, by the solo piano

improvisations of Keith Jarrett. He has synthesized classical and jazz in a harmonious

way that tells a story, that travels through the emotional experience of living life by

using intricate, harmonic-based chord progressions. But I think from an emotional

point of view, one way of ensuring a happy experience is to listen to music that is

based on the chord progression of the tonic travelling to the sub-dominant travelling

to the dominant and cadencing back to the tonic. This can be found for numerous

examples in classical European music, traditional African music, rock n roll music

such as Twist and Shout by The Beatles, ska music such as A Message To You

Rudy by The Specials, reggae music such as Stir It Up by Bob Marley and the
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Wailers, and electronic music such as Autobahn by Kraftwerk. What I mean to say is

that every note and every chord in a musical sequence evokes emotion, and triggers

corresponding emotion patterns in the brain that are a response to harmony. The

emotional experience is a direct response to the harmonic experience.

I also believe that it is important to keep in mind that music has an anthropological

significance. I am reminded of the thought that music creates culture and the idea

that the music that people listen to triggers an emotional response that influences

human thought, feeling, behaviour, and experience. For example, every generation in

American culture since the advent of the blues in the early 20th century has given rise

to dance, joy, sorrow, culture, and sociology. As music continues to evolve, society

unfolds in new and myriad ways, as seen, for example, since the beginning of the 20th

century where both musical and cultural development accelerated greatly, spurred by

advances in recording, communications, and media technology. Culture and history

continue to unfold in the 21𝑟𝑠𝑡 century as music, both new and old, is consumed

and experienced, where new culture emerges that is touched upon by the music that

people listen to. These musical and cultural forces interact to create a diverse fabric of

the human experience. It turns out that even cultural aspects of music performance,

such as instrument choice, modes, and tunings, can be analysed with computational

methods using a model such as the Augmented Geometrically Spaced Transform.
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Chapter 3

Time-Frequency Analysis

3.1 Introduction

Time-Frequency Analysis is often used to compute a Spectrogram that displays fea-

tures of a signal with time along the x-axis and frequency along the y-axis. Typical

applications include music, sonar, radar and speech. The most common tool used to

compute a Spectrogram is the Short-Time Fourier Transform (STFT), which uses

the Fast Fourier Transform (FFT) to compute a frequency vector for each windowed

block of the input signal. In the case of music and speech, where the contents of the

signal contain pitched information, a logarithmic scale is typically used to display

frequency. For music and speech analysis, the problem is that there is too little in-

formation available at low frequencies and too much information at high frequencies.

See figure (3-1). The result is that the Q of each frequency channel is wider at low

frequencies and narrower at high frequencies.

𝑄 = 𝑓𝑘

Δ𝑓𝑘

(3.1)

The Constant Q Transform (CQT) was proposed to solve this problem [Brown1990].

See figure (3-2). Brown devises a 24 band per octave filter bank, which has quarter-

tone spacing, and can resolve the fundamental frequencies of adjacent musical notes

with a semitone spacing. Brown states that "the resolution should be geometrically
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Figure 3-1: Pattern of Fourier Transform harmonic frequency components plotted
against log(frequency)

related to the frequency e.g., 3% of the frequency in order to distinguish between fre-

quencies with semitone (6%) spacing." What is desired is the ratio of centre frequency

to bandwidth should be constant; that is, the Q factor of each frequency channel is

constant.

I propose an alternative to this approach, which I call the Geometrically Spaced

Transform (GST), which uses a bank of Single Channel Frequency Estimators (SCFEs)

that are tunable to any desired center frequency. I tune the center frequencies to the

fundamental frequencies of the notes of the piano, which are semi-tone spaced, and

with the Q set as in equation (3.2):

𝑄 = 1
2 1

12 − 1
(3.2)

In this thesis, the algorithm operates off-line. The algorithm is designed however

to operate in an online fashion, where each successive filter output is computed using

a linear update rule based on the previous filter output as each sample enters the

system. Also note that here I suggest that semi-tone spacing is sufficient to resolve
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Figure 3-2: Brown’s Constant Q Transform example

individual pitches and that quarter-tone spacing is not necessary as Brown suggests

in [Brown1990]. See figure(3-3) where the GST mimics Brown’s figure.

Figure 3-3: GST analysis that mimics Brown’s example

Each SCFE is fast. It requires one real multiply, two real additions, two complex

multiplies, and two complex additions to process each time domain sample. The

27



SCFE can be inverted to recover the original audio with perfect signal reconstruction

to recover the audio input. In this thesis, I apply a matrix of SCFEs, known as

the Augmented GST, and suggest that it can be used as a general auditory model

for computational audition. Here, I focus on the CQS as the front end of a pitch

detection system. In the end, I also show that the inverse SCFE algorithm can be

modified to be used as a monophonic synthesizer, and the inverse GST algorithm can

be modified to be used as a polyphonic synthesizer.

I further describe the Single Channel Frequency Estimator. Given a real-valued

signal input, the algorithm estimates spectral energy at a given center frequency with

a fixed Q. A typical use of this in music signal analysis is that the Q is fixed to

resolve semi-tones of notes that are produced by typical Western musical instruments

(𝑄 ≈ 17) [Mathieu1997]. A bank of SCFEs can be put together into a transform

that mimics Brown’s Constant Q Transform (CQT), which I call the Geometrically

Spaced Transform.

I show a history of how I came to develop the SFCE algorithm, which begins with

an observation about the periodic nature of the Discrete Fourier Matrix. I develop

what I call the Online Fourier Transform, which is similar in principle to a Short-

Time Fourier Transform with a step size of one sample. I then show how instead of

computing this in matrix form, an algorithm can be developed by keeping track of

phase as a phasor circulates around the complex unit circle. This leads to the formu-

lation of the Geometrically Spaced Transform, where instead of computing linearly

spaced frequency components, the computed frequency components are geometrically

spaced, akin to the fundamental frequencies of the piano. The GST then is extended

to formulate the Augmented GST, where an additional dimension is added to the

GST to compute harmonics. It is this signal representation that is proposed as a

computational auditory model and when it comes to computing pitch, it for example

solves the problem of the missing fundamental [Moore1994].
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3.2 Constant Q Transform History

The Constant Q Transform (CQT), which has geometrically spaced frequency chan-

nels, was originally proposed by Brown in 1990 [Brown1990]. A more efficient

implementation of the CQT was proposed in 1992 [Brown1992], which efficiently

implements the following equation:

𝑋[𝑘] =
𝑁𝑘−1∑︁
𝑛=0

𝑤[𝑛, 𝑘]𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛 (3.3)

While the CQT can be used for analysis purposes, a goal is to be able to in-

vert the transform so that it can be used for re-synthesis. An approximate of an

inverse transform was described by FitzGerald, Cranitch, and Cychowski in 2006

[Fitzgerald2006]. In 2010, an improvement on the inverse transform was proposed

by Schorbuber and Klapuri who reported a signal-to-noise ratio of 55 dB for a re-

synthesized input signal by analysing 12 bins per octave [Schorbuber2010].

A modified constant Q spectrogram was proposed by [Ingle2011], whose algorithm

"computes the 𝑁𝑘-long DFT for each frequency, 𝑓𝑘, of interest and then picking out

the 𝑄𝑡ℎ DFT coefficient. The equation is as follows:

𝑋[𝑘] = 1
𝑁𝑘

𝑁𝑘−1∑︁
𝑛=0

𝑤[𝑘, 𝑛]𝑥[𝑛]𝑒
−𝑗2𝜋𝑄𝑛

𝑁𝑘 (3.4)

The proposed Online Fourier Transform is similar to the Sliding DFT (SDFT)

[Jacobsen2003]. The main difference between the two algorithms is that the SDFT

uses a circular buffer whereas the OFT uses a circular matrix, which I call the Fourier

cylinder. The result is that while the magnitude spectra are equivalent, the phase

spectra are different. In the case of the SDFT, Jacobsen’s research lead to a con-

stant Q transform, which is described in Sliding with a Constant Q [Bradford2008].

Here, the OFT, via the phase update method, leads to the GST. The value of the

GST compared to existing work is in its simplicity, compared with [Brown1992],

[Bradford2008], and [Velasco2011].
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3.3 Complex Exponentials

Complex exponentials are the basic unit that is used in harmonic analysis and can

be found in both physics and electrical engineering. The complex exponential can be

derived by solving the following differential equation:

𝑑𝑦

𝑑𝜃
− 𝑗𝑦 = 0 (3.5)

or
𝑑𝑦

𝑑𝜃
= 𝑗𝑦 (3.6)

The solution to (3.6) is the complex sinusoid

𝑦 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃 (3.7)

Here note that

𝑑𝑦

𝑑𝜃
= −𝑠𝑖𝑛𝜃 + 𝑗𝑐𝑜𝑠𝜃 (3.8)

and

𝑗𝑦 = −𝑠𝑖𝑛𝜃 + 𝑗𝑐𝑜𝑠𝜃 (3.9)

So
𝑑𝑦

𝑑𝜃
= 𝑗𝑦 (3.10)

and

𝑦 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃 (3.11)

is the solution.

I now examine the Taylor series for 𝑦 = 𝑠𝑖𝑛𝜃 and 𝑦 = 𝑐𝑜𝑠𝜃 and show that when I

put them together according to

𝑦 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃 (3.12)

30



I get the Taylor series for 𝑦 = 𝑒𝑗𝜃.

𝑐𝑜𝑠𝜃 = 1 − 1
2!𝜃

2 + 1
4!𝜃

4 − 1
6!𝜃

6 + 1
8!𝜃

8 − ... (3.13)

𝑠𝑖𝑛𝜃 = 𝜃 − 1
3!𝜃

3 + 1
5!𝜃

5 − 1
7!𝜃

7 + ... (3.14)

So

[1 − 1
2!𝜃

2 + 1
4!𝜃

4 − 1
6!𝜃

6 + ...] + 𝑗[𝜃 − 1
3!𝜃

3 + 1
5!𝜃

5 − 1
7!𝜃

7 + ...] (3.15)

1 + 𝑗𝜃 − 1
2!𝜃

2 − 𝑗
1
3!𝜃

3 + 1
4!𝜃

4 + 𝑗
1
5!𝜃

5 − 1
6!𝜃

6 − 𝑗
1
7!𝜃

7 + 1
8!𝜃

8 + ... (3.16)

= 𝑒𝑗𝜃 (3.17)

So

𝑒𝑗𝜃 = 𝑐𝑜𝑠𝜃 + 𝑗𝑠𝑖𝑛𝜃 (3.18)

which is known as Euler’s Formula [Strang2014]

In this thesis, I begin by examining the Discrete Fourier Matrix, which is a ma-

trix of complex exponentials. I use these complex exponentials to derive the Single

Channel Frequency Estimator, which forms the basis for the proposed Geometrically

Spaced Transform and Constant Q Spectrogram.

3.4 Discrete Fourier Matrix

The Discrete Fourier Matrix is a square matrix that is defined as follows:
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𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 . . . 1

1 𝑤 𝑤2 𝑤3 . . . 𝑤𝑁−1

1 𝑤2 𝑤4 𝑤6 . . . 𝑤2(𝑁−1)

1 𝑤3 𝑤6 𝑤9 . . . 𝑤3(𝑁−1

... ... ... ... . . . ...

1 𝑤2(𝑁−1) 𝑤3(𝑁−1) 𝑤6(𝑁−1) . . . 𝑤(𝑁−1)(𝑁−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.19)

where 𝑤 = 𝑒−𝑗2𝜋/𝑁 [Strang1998]

A Discrete Fourier Transform, calculated as a matrix multiplication, is as follows:

𝑋 = 𝐹𝑥 (3.20)

Typically, however, the Fast Fourier Transform algorithm is employed instead

of using matrix multiplication. An FFT efficiently computes such transformations

by factorizing the DFT matrix into a product of sparse, mostly zero, factors. This

reduces the computational cost from 𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔𝑁) [VanLoan1992]

3.5 Short-Time Fourier Transform

Given that I am trying to compute a new frequency estimate for every sample that

enters the system, I examine the Short-Time Fourier Transform with a step size of one

sample. Computing it this way ensures that the time resolution of the spectral output

is maximal. Typically, with the STFT, a window is used, but here I show that for this

algorithm windowing is not necessary. The Discrete Fourier Matrix is used at every

step to calculate the Discrete Fourier Transform of the windowed input samples at

any time t, and this is computed quickly using the Fast Fourier Transform algorithm

[Cooley1965], which takes advantage of the structure of the Discrete Fourier Matrix

to reduce the computation from a computational cost of 𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔𝑁) using

a recursive divide-and-conquer butterfly algorithm.

The standard method of then computing the Short-Time Fourier Transform ac-

cording to [Smith2011] is:
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𝑋𝑚(𝜔) =
∞∑︁

𝑛=−∞
𝑥(𝑛)𝑤(𝑛 − 𝑚𝑅)𝑒−𝑗𝜔𝑛 (3.21)

I simplify the math by showing how the DFT matrix can be used to compute an

STFT in the N = 4 case. Note that everyone uses the FFT to compute an STFT, but

here I am doing it with matrix multiplication because it informs the work to come on

the Online Fourier Transform.

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −𝑗 −1 𝑗

1 −1 1 −1

1 𝑗 −1 −𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.22)

�⃗� =
[︂
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 . . .

]︂
(3.23)

The output of the STFT produces a spectrogram as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −𝑗 −1 𝑗

1 −1 1 −1

1 𝑗 −1 −𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 𝑥2 𝑥3 𝑥4 . . .

𝑥2 𝑥3 𝑥4 𝑥5 . . .

𝑥3 𝑥4 𝑥5 𝑥6 . . .

𝑥4 𝑥5 𝑥6 𝑥7 . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
... ... ... ... · · ·

𝑓4 𝑓5 𝑓6 𝑓7 · · ·
... ... ... ... · · ·

⎤⎥⎥⎥⎥⎥⎦ (3.24)

Note that in the STFT representation, the harmonics of the musical audio signal

do not necessarily coincide with the centre frequencies of the bands that are being

analysed. This is the motivation behind designing a geometrically spaced transform

whose analysis frequencies match those of the typical frequencies inside of a harmonic-

based sound. See figures (3-4) and (3-5) as examples of STFT-based analysis of a

piano note. Note that with the STFT, it is typical to use a window on the input

samples before taking the FFT, which reduces spectral leakage between adjacent

frequency channels.
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Figure 3-4: STFT analysis of piano note A110, N = 1024, hop = 1, 𝑓𝑠 = 48 kHz

Figure 3-5: STFT analysis of piano note A110, N = 1024, hop = 256, 𝑓𝑠 = 48 kHz
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Chapter 4

Online Fourier Transform

4.1 Introduction

In this chapter, I discuss the Online Fourier Transform (OFT). I modify the STFT by

making the observation that the DFT matrix is N-periodic. I derive a linear update

rule to compute the filterbank output at each time step as a function of the previous

timestep. In the end, I will have a time-frequency matrix, or spectrogram, where each

frequency bin in a frequency estimate has been integrated over a time smear of N

samples, but where otherwise, the representation has the maximum time resolution

possible. I can show graphically, without a proof, that the magnitude of the OFT

spectrogram is equal to the magnitude of the STFT spectrogram. The phase of the

OFT differs however from the phase of the STFT because the OFT is demodulated.

It appears that for spectral channels that exactly detect a sinusoid whose frequency

is matched with the center frequency of its listening channel, the phase is a constant.

Figure (4-1) shows how I envision the Fourier matrix rolling like a cylinder across

the input samples. The mathematics in this section is similar to the Sliding DFT

[Jacobsen2003] (shown below).

I now show the calculation of the OFT. Again, I simplify the math by showing

the case for N = 4, i.e. where the DFT matrix is of size 4x4:
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Figure 4-1: A Fourier cylinder rolling across the input samples

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −𝑗 −1 𝑗

1 −1 1 −1

1 𝑗 −1 −𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.1)

Recall that a Discrete Fourier Transform is calculated as a matrix multiplication

as 𝑋 = 𝐹𝑥. Analysed in another way, the Discrete Fourier Transform is the vector

projection of the input signal onto each row of the Discrete Fourier Matrix :
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𝑝1 =
[︂
1 1 1 1

]︂
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑝2 =
[︂
1 −𝑗 −1 𝑗

]︂
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

𝑥2

𝑥3

𝑥4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

etc.

Using the idea of the Fourier Cylinder, each row of F can be seen as a complex

wave (i.e. a complex exponential) and each row can be expanded cyclically:

𝑝1 =
[︂
1 1 1 1 1 1 1 1 . . .

]︂
(4.3)

𝑝2 =
[︂
1 −𝑗 −1 𝑗 1 −𝑗 −1 𝑗 . . .

]︂
(4.4)

𝑝3 =
[︂
1 −1 1 −1 1 −1 1 −1 . . .

]︂
(4.5)

𝑝4 =
[︂
1 𝑗 −1 −𝑗 1 𝑗 −1 −𝑗 . . .

]︂
(4.6)

4.2 Forward Algorithm

The DFT matrix is viewed like a cylinder moving across a real time input vector �⃗�.

The notation is as follows. I use the matrix 𝐹4 to calculate a frequency estimate at

time t = 4 with input samples 𝑥1, 𝑥2, 𝑥3, and 𝑥4. Then at t = 5, I use 𝐹5 with input

samples 𝑥2, 𝑥3, 𝑥4 and 𝑥5, etc. Note that here 𝑘 is a whole number and 𝑁 = 4.
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𝐹4+𝑘𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −𝑗 −1 𝑗

1 −1 1 −1

1 𝑗 −1 −𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐹5+𝑘𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

−𝑗 −1 𝑗 1

−1 1 −1 1

𝑗 −1 −𝑗 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.7)

𝐹6+𝑘𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

−1 𝑗 1 −𝑗

1 −1 1 −1

−1 −𝑗 1 𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐹7+𝑘𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

𝑗 1 −𝑗 −1

−1 1 1 1

−𝑗 1 𝑗 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.8)

�⃗� =
[︂
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 . . .

]︂
(4.9)

To compute the next frequency estimate, the idea is given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 . . .

1 −𝑗 −1 𝑗 1 −𝑗 . . .

1 −1 1 −1 1 −1 . . .

1 𝑗 −1 −𝑗 1 𝑗 . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
... ... ... · · ·

𝑓4 𝑓5 𝑓6 · · ·
... ... ... · · ·

⎤⎥⎥⎥⎥⎥⎦ (4.10)

where

𝑓4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−𝑗

−1

𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥3 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

𝑗

−1

−𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥4 (4.11)
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𝑓5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−𝑗

−1

𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

1

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥3 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

𝑗

−1

−𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥4 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥5 (4.12)

= 𝑓4 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥5 −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥1 (4.13)

= 𝑓4 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(𝑥5 − 𝑥1) (4.14)

= 𝑓4 + 𝐹:,1(𝑥5 − 𝑥1) (4.15)

So in general:

𝑓𝑡 = ⃗𝑓𝑡−1 + 𝐹:,𝑡%𝑁(𝑥𝑡 − 𝑥𝑡−𝑁) (4.16)

where the Fourier matrix F is expressed with Matlab indexing and is of size NxN

and t%N is actually mod(t,N) if t <N and N if t = N. In the next section I use

this equation to generate the Fourier coefficients of 𝐹:,𝑡%𝑁 on the fly. This method

leads to the GST. Note that the computational cost of a new frequency estimate in

O(N) whereas the cost of computing an FFT is O(NlogN). This is of comparable

computational complexity to the Sliding DFT [Jacobsen2003]:

𝑆𝑘,𝑡 = 𝑆𝑘,𝑡−1𝑒
𝑗2𝜋𝑘/𝑁 + 𝑥𝑡 − 𝑥𝑡−𝑁 (4.17)

Note that I am circulating the columns of the Discrete Fourier Matrix and whereas

in the Sliding DFT, Jacobsen is using a fixed DFT matrix and a circular buffer for the

samples according to the DFT circular shift property. Equations (4.16) and (4.17)

differ by a modulation, according to the following equation:
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𝑓𝑘,𝑡 = 𝑒
−𝑗2𝜋𝑘𝑡

𝑁 𝑆𝑘,𝑡 (4.18)

4.2.1 Analysis

I begin by analysing a signal that contains a sine wave at 1000 Hz, with a sample

rate of 8000 Hz. I set N = 8 so that the frequency channels are tuned to multiples of

1000 Hz, which results in 8 computed frequency channels. See figure(4-2).

In the magnitude response, the 1000 Hz band and corresponding imaginary 7000

Hz band are constant. Note that in the phase response, the band at 1000 Hz is

constant at -𝜋/2 and the band at 7000 Hz is constant at 𝜋/2.

Because I am interested in analysing audio signals that contain music, I test the

algorithm on a piano note whose fundamental frequency is 110 Hz. Here, the sample

rate is 48 kHz. I display the first 64 channels. See figure (4-3).

Note that the harmonics of the piano notes are not well resolved in the magnitude

response, with the low frequency information muddled together in the bottom few

rows of the spectrogram. Note also, that in the phase response, there are horizontal

bands that appear as features of the image. It appears that there is harmonic structure

of the input signal that is being displayed by phase response.

4.3 Phase Update Method

In the previous section, I used the Discrete Fourier Matrix and let it roll like a

cylinder across the input samples. I use one column of the matrix to compute each

new frequency estimate. Here, instead of using the DFT matrix, I generate the Fourier

coefficients on the fly. One advantage here is that I am able to derive a method to

invert the transform. I can consider each frequency channel separately.
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Figure 4-2: OFT Magnitude and Phase analysis of a 1 kHz sine tone
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Figure 4-3: OFT analysis of audio input of piano note A2

4.3.1 Forward Algorithm

I define x to be the input signal, 𝑓𝑠 to be the sample rate, N to be the window length

(integration constant), and M to be the number of frequency channels starting at

DC. I consider frequency channel k at time t.

I start with 𝜃𝑘 = 0 and define Δ𝜃𝑘 = −2𝜋(𝑘−1
𝑁

)
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Initialization

I start with 𝑓𝑘,1 = 𝑒𝑗0𝑥1 = 𝑥1 and then for t = 2:N

𝜃𝑘,𝑡 = 𝜃𝑘,𝑡 + Δ𝜃𝑘 (4.19)

𝑓𝑘,𝑡 = 𝑓𝑘,𝑡 + 𝑒𝑗𝜃𝑘,𝑡𝑥𝑡 (4.20)

I now have frequency estimates for the first N samples including the first complete

N-point frequency estimate at time N 𝑓𝑁 .

Runtime

Starting with sample t = N+1:

𝜃𝑘,𝑡 = 𝜃𝑘,𝑡 + Δ𝜃𝑘 (4.21)

𝑓𝑘,𝑡 = 𝑓𝑘,𝑡−1 + 𝑒𝑗𝜃𝑘,𝑡(𝑥𝑡 − 𝑥𝑡−𝑁) (4.22)

See figure (4-4) for an example of using the OFT with the phase update method.

4.3.2 Inverse Algorithm

I use the buffered first N samples to begin the output signal.

Then starting at time t = N+1:

I start with

𝑓𝑘,𝑡 = 𝑓𝑘,𝑡−1 + 𝑒𝑗𝜃𝑘,𝑡(𝑥𝑡 − 𝑥𝑡−𝑁) (4.23)
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Figure 4-4: OFT phase update algorithm magnitude and phase analysis of a 1 kHz
sine tone
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Expressed in vector form:

𝑓𝑡 = ⃗𝑓𝑡−1 + 𝑒𝑗𝜃𝑡(𝑥𝑡 − 𝑥𝑡−𝑁) (4.24)

𝑓𝑡 = ⃗𝑓𝑡−1 + 𝑒𝑗𝜃𝑡𝑥𝑡 − 𝑒𝑗𝜃𝑡𝑥𝑡−𝑁 (4.25)

𝑓𝑡 − ⃗𝑓𝑡−1 + 𝑒𝑗𝜃𝑡𝑥𝑡−𝑁 = 𝑒𝑗𝜃𝑡𝑥𝑡 (4.26)

I let

𝑔𝑡 = 𝑓𝑡 − ⃗𝑓𝑡−1 + 𝑒𝑗𝜃𝑡𝑥𝑡−𝑁 (4.27)

so I have

𝑔𝑡 = 𝑒𝑗𝜃𝑡𝑥𝑡 (4.28)

Solving for 𝑥𝑡

𝑒𝑗𝜃𝑡𝑥𝑡 = 𝑔𝑡 (4.29)

1
𝐾

𝑒𝑗𝜃𝑡
*𝑇

𝑒𝑗𝜃𝑡𝑥𝑡 = 1
𝐾

𝑒𝑗𝜃𝑡
*𝑇

𝑔𝑡 (4.30)

𝑥𝑡 = 1
𝐾

𝑒𝑗𝜃𝑡
*𝑇

(𝑓𝑡 − ⃗𝑓𝑡−1 + 𝑒𝑗𝜃𝑡𝑥𝑡−𝑁) (4.31)

where K is the number of frequency channels being computed.
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Chapter 5

Single Channel Frequency

Estimation

5.1 Introduction

An SCFE is a high definition recursive digital filter. Each SCFE has a center frequency

𝑓 , a 𝑄, and an integration length 𝑁 that determines the number of samples over which

a frequency estimate is summed. Note that the concept of the SCFE is loosely related

to Goertzl’s Algorithm as it also analyses one selectable frequency component from a

discrete signal [Goertzel1958].

5.2 Forward Algorithm

Define the center frequency of a frequency channel to be 𝑓 . Then define the phase

update values as

Δ𝜃 = −2𝜋(𝑓𝑘

𝑓𝑠

) (5.1)

For a given frequency channel 𝑓 , set the Q to be as desired and then set the

integration time for each channel as
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𝑁 = ⌊𝑄 * 𝑓𝑠

𝑓𝑘

⌉ (5.2)

I initialize 𝜃 = 0 and 𝑓1 = 𝑒𝑗𝜃𝑥1 = 𝑥1.

For each successive sample starting with t = 2:

𝜃𝑡 = 𝜃𝑡−1 + Δ𝜃 (5.3)

𝜑𝑡 = 𝜃𝑡−1 − Δ𝜃𝑁 (5.4)

𝑓𝑡 = 𝑓𝑡−1 + 𝑒𝑗𝜃𝑡𝑥𝑡 − 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁 (5.5)

where 𝑥𝑝 is defined for 𝑝 ≥ 1 and is otherwise zero. One thing to note here is that

the phase accumulators 𝜃𝑡 and 𝜑𝑡 should be calculated with mod 2𝜋 so that the phase

doesn’t grow indefinitely.

According to this algorithm, phase updates are computed and stored in 𝜃𝑡 and

𝜑𝑡. According to (5.5), each new frequency estimate is computed by summing the

previous frequency estimate with a new modulated sample onto the front of the block

of 𝑁 samples and then demodulated off of the end of the block of 𝑁 samples.

The algorithm can be summarized by the following equation that combines all

three steps into one:

𝑓𝑡 = 𝑓𝑡−1 + 𝑒𝑗𝑡Δ𝜃𝑥𝑡 − 𝑒𝑗(𝑡−𝑁)Δ𝜃𝑥𝑡−𝑁 (5.6)

5.2.1 Analysis

Because the system is time-varying and not LTI, the frequency response of the sys-

tem cannot be computed by taking the FFT of the impulse response. One way of
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Figure 5-1: FIR filterbank which describes the SCFE rectangular summation

computing the frequency response of the system is to take a snapshot of the SCFE

at a frozen time 𝑡 = 𝑖, which is described by the FIR filterbank in figure (5-1). When

𝑡 = 𝑖, the impulse response is a unit rectangle of length 𝑁 . When you freeze time,

the SCFE becomes an FIR system whose impulse response is a complex exponential.

The frequency response plots have been generated by computing the 16k point DFT

of the N-point complex exponential, padding with zeros.
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Constant Q SCFEs

Here, I plot the frequency response of SCFEs for 𝑓𝑘 = 0.5, 1, 2, 4, 8, and 16 kHz. A

constant semitone Q is maintained. See figures (5-2) through (5-7).

Figure 5-2: Constant Q SCFE frequency response for 𝑓𝑘 = 0.5 kHz

Figure 5-3: Constant Q SCFE frequency response for 𝑓𝑘 = 1 kHz
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Figure 5-4: Constant Q SCFE frequency response for 𝑓𝑘 = 2 kHz

Figure 5-5: Constant Q SCFE frequency response for 𝑓𝑘 = 4 kHz
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Figure 5-6: Constant Q SCFE frequency response for 𝑓𝑘 = 8 kHz

Figure 5-7: Constant Q SCFE frequency response for 𝑓𝑘 = 16 kHz

A Generalized SCFE

It is possible to increase the frequency selectivity of a general SCFE at any center

frequency by adjusting the integration length 𝑁 as desired. This shows the general

trade-off between time and frequency, where as 𝑁 is longer, the filter is more frequency

selective and as 𝑁 is shorter, the filter is increasingly wider. Here I analyse 𝑓𝑘 = 5
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kHz, for 𝑁 = 125, 250, 500, 1000, 2000, and 4000 samples, where the sample rate is

48 kHz. See figures (5-8) through (5-13).

Figure 5-8: SCFE frequency response at 5 kHz, N = 125 samples

Figure 5-9: SCFE frequency response at 5 kHz, N = 250 samples
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Figure 5-10: SCFE frequency response at 5 kHz, N = 500 samples

Figure 5-11: SCFE frequency response at 5 kHz, N = 1000 samples
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Figure 5-12: SCFE frequency response at 5 kHz, N = 2000 samples

Figure 5-13: SCFE frequency response at 5 kHz, N = 4000 samples

5.2.2 Alternate Analysis

The following section suggests an alternate z-transform analysis to the SCFE system.

I re-frame (5.6) as a traditional discrete time difference equation.

𝑦𝑡 = 𝑦𝑡−1 + 𝑒𝑗𝑡Δ𝜃𝑥𝑡 − 𝑒𝑗(𝑡−𝑁)Δ𝜃𝑥𝑡−𝑁 (5.7)
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This difference equation has the following z-transform:

𝐻(𝑧, 𝑡) = 𝑒𝑗𝑡Δ𝜃 (1 − 𝑒−𝑗𝑁Δ𝜃𝑧−𝑁)
(1 − 𝑧−1) (5.8)

I simplify this by letting 𝛼 = 𝑒−𝑗𝑁Δ𝜃 so the z-transform simplifies to

𝐻(𝑧, 𝑡) = 𝑒𝑗𝑡Δ𝜃 (1 − 𝛼𝑧−𝑁)
(1 − 𝑧−1) (5.9)

The z-transform shows that the system has one pole and 𝑁 zeros with complex

coefficients.

5.2.3 Examples

It is possible to analyse just the harmonics of a given musical note by tuning SCFEs

to the harmonics of a given fundamental frequency. See figures (5-14) through (5-17).

Note that this kind of analysis is equivalent to one column in the M direction of the

Augmented GST.

Figure 5-14: Harmonic analysis of A2 on the Piano
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Figure 5-15: Harmonic analysis of Bb3 on the clarinet

Figure 5-16: Harmonic analysis of A2 on the electric guitar
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Figure 5-17: Harmonic analysis of G3 on the viola played pizzicato

5.3 Inverse Algorithm

The inverse SCFE algorithm will invert a single channel of analysed audio back into

the entire original signal with perfect reconstruction. In Appendix A, it is shown how

to modify this algorithms to be used as a monophonic synthesizer. The derivation is

straight forward:

𝑓𝑡 = 𝑓𝑡−1 + 𝑒𝑗𝜃𝑡𝑥𝑡 − 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁 (5.10)

𝑓𝑡 = 𝑓𝑡−1 + 𝑒𝑗𝜃𝑡𝑥𝑡 − 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁 (5.11)

𝑒𝑗𝜃𝑡𝑥𝑡 = 𝑓𝑡 − 𝑓𝑡−1 + 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁 (5.12)

𝑒𝑗𝜃𝑡
*
𝑒𝑗𝜃𝑡𝑥𝑡 = 𝑒𝑗𝜃𝑡

*(𝑓𝑡 − 𝑓𝑡−1 + 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁) (5.13)
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𝑥𝑡 = 𝑒−𝑗𝜃𝑡(𝑓𝑡 − 𝑓𝑡−1 + 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁) (5.14)

The algorithm is then as follows:

Initialize at t = 1: 𝑓1 = 𝑥1 and 𝜃1 = 0.

Δ𝜃 = −2𝜋(𝑓𝑘

𝑓𝑠

) (5.15)

Starting at t = 2:

𝜃𝑡 = 𝜃𝑡−1 + Δ𝜃 (5.16)

𝜑𝑡 = 𝜃𝑡−1 − Δ𝜃𝑁 (5.17)

𝑥𝑡 = 𝑒−𝑗𝜃𝑡(𝑓𝑡 − 𝑓𝑡−1 + 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁) (5.18)

where 𝑥𝑝 is valid for all 𝑝 ≥ 1 and is zero otherwise.
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Chapter 6

Geometrically Spaced Transform

6.1 Introduction

The Geometrically Spaced Transform (GST) consists of a bank of Single Channel

Frequency Estimators (SCFEs) whose center frequencies are spaced 𝑓𝑘+1 = 2 1
12 𝑓𝑘

apart to model the fundamental frequencies of the notes of the piano. Each channel

has a summation constant 𝑁𝑘 that is set to ensure that the channel maintains its

constant Q property. Because 𝑁𝑘 gets shorter with increasing frequency, the GST is

like a wavelet transform; however, there aren’t fewer frequency estimates at higher

frequencies than at lower frequecies. Rather, the number of samples used to create

the high frequency estimates is fewer than that of lower frequencies. The resulting

matrix is rectangular. This is similar to sampling a Continuous Wavelet Transform

that is logarithmically-spaced in frequency and linearly-spaced in time. A GST is the

first slice of an Augmented GST which is representative of harmonic number one, or

the fundamental frequencies of the piano notes.

6.2 Forward Algorithm

Note that for the previous part of the thesis, the algorithms and graphs used a

constant N. From here forward, note that N is now set to make the algorithm constant

Q and is denoted 𝑁𝑘 for the 𝑘𝑡ℎ frequency channel.
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I define x to be the input signal, 𝑓𝑠 to be the sample rate, 𝑁𝑘 to be the window

length of the 𝑘𝑡ℎ frequency channel, B to be the base band frequency, and M to be

the number of frequency channels starting at B Hz.

I compute the center frequencies of each frequency channel based on B and a

division of 12 musical notes in an octave:

𝑓𝑘 = 𝐵 * 2 𝑘−1
12 (6.1)

and then the phase update values accordingly:

Δ𝜃𝑘 = −2𝜋(𝑓𝑘

𝑓𝑠

) (6.2)

For a given frequency channel 𝑓𝑘, I set

𝑄 = 1
2 1

12 − 1
(6.3)

𝑁𝑘 = ⌊𝑄𝑓𝑠

𝑓𝑘

⌉ (6.4)

as in [Brown1990].

At t = 1, 𝜃𝑘,1 = 0 and 𝑓𝑘,1 = 𝑒𝑗𝜃𝑘𝑥1 = 𝑥1

Consider frequency channel k at time t.

Now for each successive sample starting with t = 2:

𝜃𝑘,𝑡 = 𝜃𝑘,𝑡−1 + Δ𝜃𝑘 (6.5)

𝜑𝑘,𝑡 = 𝜃𝑘,𝑡 − Δ𝜃𝑘𝑁𝑘 (6.6)

𝑓𝑘,𝑡 = 𝑓𝑘,𝑡−1 + 𝑒𝑗𝜃𝑘𝑥𝑡 − 𝑒𝑗𝜑𝑘𝑥𝑡−𝑁𝑘
(6.7)

where 𝑥𝑝 is defined for 𝑝 ≥ 1 and is zero otherwise. This algorithm can be

62



summarized as follows, with this time t beginning at t = 0:

𝑓𝑘,𝑡 = 𝑓𝑘,𝑡−1 + 𝑒𝑗𝑡Δ𝜃𝑘𝑥𝑡 − 𝑒𝑗(𝑡−𝑁𝑘)Δ𝜃𝑘𝑥𝑡−𝑁𝑘
(6.8)

The algorithm is summarized in the signal flow diagram shown in figure(6-1),

which includes a normalization factor of 1
𝑁𝑘

. The GST block lengths that make

the algorithm constant Q are shown in figure (6-2). The summation that happens

according to the SCFE linear update rule happens over longer windows of samples

for lower frequencies and shorter windows for higher frequencies.

Figure 6-1: Signal flow diagram for GST algorithm
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Figure 6-2: Block lengths for GST algorithm

The frequency response of the GST is shown for every note A on the piano in

figure (6-3) to -60 dB, and for the entire GST filterbank to -12 dB in figure (6-4).

Figure 6-3: Magnitude response of the GST filters for every note A on the piano
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Figure 6-4: Magnitude response of the 88 filters of the GST filterbank

Note that the GST filterbank can be compared to the well known Gammatone

filterbank, which is a popular auditory filter model. See figure (6-5).

Figure 6-5: Magnitude responses of 16 gammatone filters in the frequency range

300-8000 Hz
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6.3 Calculation of Q

An exact semi-tone Q, according to equation (6.3), would have a value of

𝑄 = 16.817153745 . . . (6.9)

The Q of each frequency channel in the GST can be calculated as follows:

𝑄 = Δ𝜃𝑘𝑁𝑘

−2𝜋
(6.10)

Note that in equation (6.10), because the calculation for 𝑁𝑘 is rounded off, the

Q for the set of 88 frequency channels in the GST is very close to constant, but is

not perfect. See figure (6-6). For the GST, the maximum error in the Q for the

implemented filterbank is 0.0252. Note the the scale of the y axis in figure (6-6) goes

from 16.78 to 16.84, where the desired Q is approximately 16.81. The Q is closer to

constant at lower frequencies and the error in the Q is largest at higher frequencies.

Figure 6-6: Q of each GST channel
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6.4 Examples

I present a number of graphical examples of the GST, including an analysis of the

piano in figures (6-7) through (6-9), electric guitar in figure (6-10), bass trombone in

figure (6-11), and tambourine in figure (6-12).

Figure 6-7: GST analysis of piano note A110

Figure 6-8: GST analysis of piano note A220
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Figure 6-9: GST analysis of piano note A330

Figure 6-10: GST analysis of guitar note A110

68



Figure 6-11: GST analysis of bass trombone note A110

Figure 6-12: GST analysis of a tambourine slap

6.5 Inverse Algorithm

In Appendix A, it is shown how the inverse GST algorithm can be modified to be a

polyphonic synthesizer. The derivation is similar to the inverse SCFE, except that

here it is expressed in vector form with K SCFE channels.
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𝑥𝑡 = 1
𝐾

𝑒𝑗 ⃗𝜃𝑡,𝑘
*𝑇

(𝑓𝑡 − ⃗𝑓𝑡−1,𝑘 + 𝑒𝑗 ⃗𝜑𝑡,𝑘𝑥𝑡−𝑁𝑘
) (6.11)
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Chapter 7

Computational Pitch Perception

7.1 Augmented Geometrically Spaced Transform

The Augmented Geometrically Spaced Transform is a matrix of SCFEs that are com-

puted for each frequency of the Augmented GST Frequency Matrix (AGST Frequency

Matrix). Each entry in the AGST Frequency Matrix contains a center frequency for

which an SCFE is computed. Note that for the AGST, non-normalized SCFEs are

used. The matrix contains the fundamental frequencies of the piano along the K

(fundamental frequency) axis, and then harmonics of these fundamental frequencies

along the M (harmonics) axis. See figure (7-1). In comparison, figure (7-2) shows the

subset of frequencies in the AGST Frequency Matrix that lie from 20 Hz to 20 kHz. I

make the comparison to this figure because in the AGST model, SCFEs are computed

for frequencies that lie from 3.4375 Hz to 83720 Hz, which includes frequencies that

lie outside the normal range of human hearing which is from 20 Hz to 20 kHz. Note

that because the highest computed frequency is 83720 Hz, the sample rate of the

system would have to be at least this value to avoid aliasing in the Augmented GST.

Typically in audio this would be 96 kHz.

The Augmented GST can be thought of as a movie, where the K x M frequency

analysis unfolds over time t. Each snapshot in time is a low level representation of

pitch, where the x axis includes the notes of the piano keyboard, but extended by

three octaves below the piano in order to be able to represent the pitch from the lowest

71



Figure 7-1: AGST Frequency Matrix that extends from 3 Hz to 83720 Hz

Figure 7-2: AGST Frequency Matrix that shows which frequencies lie from 20 Hz to
20 kHz
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Figure 7-3: Snapshot of AGST of piano note A2

note (A0 with a fundamental frequency of 27.5 Hz) to the highest note (C8 with a

fundamental frequency of 4186 Hz). For examples of the AGST taken as a snapshot

at time t = 0.1 seconds into a number of piano samples, see figures (7-3) through (7-

6). Note that piano note 37 corresponds to the note A2. Piano note 41 corresponds

to C#3. Piano note 44 corresponds to E3. And piano note 47 corresponds to G3.

The system is designed for the purposes of listening to Western music that is tuned

to an equal tempered scale based around the note A440, which has a fundamental

frequency of 440 Hz. Note here that I use the term augmented because the range of

frequencies computed are not just the fundamental frequencies of piano notes but also

frequencies that lie both below and above this frequency range. While it is said that

the frequency range of listening is from 20 Hz to 20 kHz, I would suggest that the

frequencies below 20 Hz and above 20 kHz are not perceived but are still computed

by a model such as this one.

7.2 The Summed AGST

In the Summed AGST, spectral energy is summed across the harmonics to produce

a single spectral energy estimate that is representative of all of the spectral energy
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Figure 7-4: Snapshot of AGST of piano note C#3

Figure 7-5: Snapshot of AGST of piano note E3
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Figure 7-6: Snapshot of AGST of piano note G3

that is produced by one harmonic series. See figure (7-9). What appears to be re-

vealed is a subharmonic series, or undertone series, that is related to the fundamental

frequency according to the following relationship: (f, 𝑓
2 , 𝑓

3 , 𝑓
4 ,. . . ). These harmonics

are not actually produced sonically by acoustic instruments, but they are revealed

here computationally through the Summed AGST. In section (7.4), it is shown that

it is possible to implement a simple monophonic pitch tracking algorithm using this

representation. It still needs to be shown that the Summed AGST is a useful rep-

resentation for perception of musical chords. Note that listening to a musical chord

may be akin to listening to a chimera, as described in [Bregman1990], and that the

relative strength of subharmonics may be a good input representation to a pattern

classifier.

7.3 Onset Detection

The onset represents the time at which a musical note is first perceived, and detecting

the actual onset time of a music note has been much debated with a myriad of ways to

compute it [Sandler2005]. Here, I proposed a representation of a spectral envelope

that could be used for onset detection, which is the summation over the spectral
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envelopes of the subharmonic series produced by the Summed AGST. See figure (7-

7).

Figure 7-7: Spectral envelope produced by the sum of the subharmonics

7.4 Pitch Perception

7.4.1 Pitch Tracking

An algorithm is proposed for pitch estimation that is based on the perceptual repre-

sentation that is revealed by the Summed AGST. See figure (7-8). First, the signal is

transformed by the AGST. Then, the Summed AGST is computed by summing the

harmonics of the AGST. The Summed AGST reveals a subharmonic series for the

input signal, which I propose as a perceptual representation of pitch. Using this rep-

resentation, an algorithm is applied to produce pitch estimates. Here, I use a simple

peak picking algorithm that computes the highest subharmonic in the subharmonic

series, which corresponds to the fundamental frequency of the input note. A better

approach might be to integrate information across the subharmonic series to compute

pitch. For examples of analysing monophonic signals, see (7-9), (7-10), (7-11), and

(7-12).
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Figure 7-8: Algorithm for pitch estimation

Figure 7-9: Summed AGST for piano note A110

77



Figure 7-10: Pitch estimation algorithm output for piano note A110

Figure 7-11: Summed AGST for major scale starting on A110
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Figure 7-12: Pitch estimation algorithm output for major scale starting on A110

7.4.2 The Case of the Missing Fundamental

A pitch is said to have a missing fundamental when its harmonics suggest a fundamen-

tal frequency that is not physically present in the sound itself. The brain perceives the

pitch by the periodic relationship between the higher harmonics. That is, a number

of different tones that each contain variations of periodically related harmonics may

be perceived as the same pitch even if the fundamental frequency is missing.

One way to know that the AGST is a perceptual model is that it solves such

problems related to pitch perception [Moore1994]. With this in mind, I investigate

the Summed AGST for a synthesized sum of sine waves with a harmonic series based

on the fundamental frequency of 196 Hz, but with the 196 Hz fundamental frequency

missing. See figure (7-13). I process this input with the AGST, and sum over the

harmonics to compute the Summed AGST. I find that the Summed AGST actually

computes the the fundamental frequency that is missing. See figure (7-14). This is

possible to show this because the harmonic series of G196 is represented multiple

times in the AGST Frequency Matrix, where for instance 98 Hz has a harmonic of

196 Hz, and 49 Hz has harmonics of both 98 Hz and 196 Hz.
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Figure 7-13: GST analysis of G196 synthesized with a missing fundamental

Figure 7-14: Summed AGST of G196 with missing fundamental with pitch perceived

as 196 Hz

The following is another example of a synthesized sound for G196, this time with

the lowest 4 harmonics missing. See figure (7-15). The Summed AGST still computes

the missing fundamental. See figure (7-16).
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Figure 7-15: GST analysis of G196 synthesized with a missing lowest 4 harmonics

Figure 7-16: Summed AGST of G196 with missing lowest 4 harmonics with pitch

perceived as 196 Hz

7.5 Analysis and Future Work

The Summed AGST is a useful as a perceptual respresentation of pitch. The idea is

that instead of computing pitch based on the GST, the Summed AGST is used instead
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because it integrates spectral information across the harmonics that are produced by

any given note and produces a subharmonic series which is well known in acoustics.

In the proposed model, pitch is extracted from this subharmonic series. Also note

that the pitch onset, which is a perceptual property that needs to be very exact, is

proposed to be extracted from the spectral envelope formed from the sum across the

subharmonic series.

Here, I return to the concept of Western harmony. The most common compo-

sitional tool that is used to create music in the West is the piano. The emotional

experience of listening to Western music is related to a response to 𝑓(𝑘, 𝑚, 𝑡), which

is the Augmented GST but thought of as a synthesizer. The AGST is an inversion of

the physical system that produces music on the piano because it is a machine listening

analysis model. That is, the system that listens to it is related to the system that pro-

duces it. Because it is a physical system, properties like pitch perception arise from

the physics where a perceptual model is an extension built upon a foundation of a

front-end signal processing model such as the Augmented GST. The Summed AGST

is then an example of a first level of perception where a perceptual representation

appears by summing across the M harmonics of the AGST.
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Chapter 8

Conclusions

The original goal was to build a system where frequency estimates are updated for

every sample that enters the system with the aim of computing a time-frequency

matrix with maximum time resolution. A method for accomplishing this is to use

the STFT with a step size of one sample. This, however, leads to computing an

FFT at every time step (i.e. with every new sample). To process N samples, the

cost of the STFT, if used in this way, is 𝑂(𝑁𝑀𝑙𝑜𝑔𝑀) where M is the frame size,

which corresponds to 𝑂(𝑁2𝑙𝑜𝑔𝑁) when N = M. I observe the periodic nature of the

Discrete Fourier Matrix and derive a linear update rule for computing a per sample

time-frequency representation that is similar in spirit to an STFT [Smith2011] and

a Sliding DFT [Jacobsen2003], which I call the Online Fourier Transform. I then

derive a method for computing this transform using phase updates. This in turn

led to a method for computing an online Geometrically Spaced Transform, which is

constant Q. The average cost of processing 𝑁𝑘 samples using the GST is 𝑂(𝐾𝑁𝑘),

where K is the number of frequency channels being estimated.

From the GST, I extract the Single Channel Frequency Estimator, which is the

algorithm which produces each row of the GST. I initially approach the problem of

pitch detection as follows. I build a matrix of K x M SCFE estimators. For example,

there is a bank of M estimators for each harmonic series of each of the K notes along

the frequency axis. I then sum the spectral energy of the harmonics to produces a

spectral graph that has K estimates. This is called the Summed AGST. Analysis
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of a pitched audio sample using the Summed AGST displays the subharmonics of

the input sample. I propose that this subharmonic series is used to compute pitch,

and I show a simple method where this is possible using peak picking. Finally, I

theorize that through careful mathematical modelling and analysis, it can be shown

that perception is just another part of computational processing, including auditory

scene analysis. This approach is possible if the correct input representation is derived

carefully. In the end, I refine the model and let K = 160, which corresponds to the 8

octaves of the piano, 3 octaves below the piano, and 3 octaves above the piano. The

extended three octaves that lie below the range of the piano are necessary in order

to be able to compute the AGST of the lowest note on the piano, with fundamental

frequency of 27.5 Hz, and the three octaves above the piano are necessary in order to

be able to compute the GST of the highest notes of the piano.

The Augmented Geometrically Spaced Transform is used here as a front end for

computational pitch perception, but it may be possible to use it as a general front-

end auditory model. One extension of this work would be to use it as a front end

for musical instrument identification, as in [Martin1998]. Also, [Scheirer1997]

computes spectral envelopes as the front end of his beat tracking system, which

is also what the AGST already does. So it may be possible to use the Constant

Q Spectrogram as a general front-end auditory processing framework for real-time

machine listening systems.

The auditory system evolved over time. The auditory system may have learned

to compute pitch, beats, timbre, and other perceptual properties as an evolutionary

process. It is interesting, for example, to compare the auditory processing of humans

to the auditory processing of other animals. With regards to sound and music, what

do animals perceive? [Walker2019] In terms of anthropology, how does the auditory

processing of one culture compare to another? It may be that for people who have

evolved to listen to music in the Western European tradition, auditory perception

operates one way and that for people in Africa, India, Bali, and other cultures, their

auditory perception is different [McDermott2019]. This may explain, for example,

why an auditory system that knows how to listen to classical music finds it challenging
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to learn to listen to an Indian raga, or Balinese gamelan, and that it takes time

to learn how to perceive and enjoy music from other cultures. Clearly, auditory

perception is complex and no one model can explain the perception of music in every

culture. In fact, it may be that everyone’s perception of music is slightly different,

depending on what music that person has listened to in their lifetime. What is

inherited and what is learned is an open question, this is a nature versus nurture

kind of argument. These thoughts may be part of a field of study that may be called

computational ethnomusicology, where modelling of auditory perception varies from

culture to culture [Kippen1992a] [Kippen1992b] [Kippen1994].

The scope of this thesis is broad and specific at the same time. The model pro-

posed here is based around music that is composed on the piano, which has been a

dominant instrument for music composition since its inception around the year 1700.

Its range of pitches run from 27.5 Hz to 4186 Hz. The history of keyboard-based

music composition goes back in time much further, to include music composed on the

harpsichord and clavichord. Music in the West has changed dramatically in the 20th

century, as music transitioned from classical music to new styles like blues, jazz, rock

n roll, reggae, atonal music, and a myriad of other styles and art forms. Also, the

emergence of the electric guitar as a dominant compositional tool for many styles has

changed music as well. The human perceptual system is challenged when it encoun-

ters new music that it doesn’t quite know how to listen to. There is excitement, for

example, when a person listens to something for the first time. The music gets filtered

through the auditory perceptual system, sent to the emotional system for processing,

and then registers in the brain as it is reconciled by memory. The thought then is that

auditory perception will continue to evolve, and is both an individual and cultural

process. As mentioned at various points in the text, the transform and frameworks

introduced in this thesis not only aspire to provide new insight into analysis of audio

signals and human perception of sound, but also promise to open new capabilities in

digital musical instruments.
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Appendix A

Synthesis

A.1 Monophonic Synthesizer

The SCFE Synthesizer (iSCFE) is a constant Q synthesis algorithm that is based

on inverting the algorithm for an SCFE. There is a mapping from complex valued

functions to real valued functions that produce monophonic audio, according the

equation (A.1).

𝑥𝑡 = 𝑒−𝑗𝜃𝑡(𝑠𝑡 − 𝑠𝑡−1 + 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁) (A.1)

where 𝑠𝑡 is the input signal. The algorithm is explained by the signal flow diagram

in figure (A-1).

Figure A-1: Signal flow diagram for SCFE synthesizer
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There are two main parameters that can be adjusted for synthesis. The first is a

pitch parameter, and the second is the integration time 𝑁 , which is set automatically

during analysis to make the SCFE analyser constant Q but can be set arbitrarily here

for the iSCFE.

I outline three methods for feeding the synthesizer input:

1. Let the input signal s be a real-valued function. For example, it is easy to feed

the system functions like linear ramps, quadratic functions, or any arbitrary

synthetic real-valued function.

2. Let the input signal s be a complex-valued function in the first 𝑠 = 𝑥𝑒𝑗𝜃, where

x is a synthetic real-valued function for the magnitude, and 𝜃 is a synthetic

real-valued function for the phase

3. Generate a complex-valued input function s by taking an FFT, or a series of

FFTs, of a real valued function. Here, the real-valued function could be an

audio sample. See (A-4) and (A-5).

Figure A-2: SCFE synthesizer i/o with quadratic based input function
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Figure A-3: SCFE synthesizer i/o with unusual real input

Figure A-4: SCFE synthesizer with processed trombone sample using successive FFTs
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Figure A-5: Spectrogram of synthesizer output
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A.2 Polyphonic Synthesizer

It turns out that the inverse GST algorithm can be modified to be used as a polyphonic

synthesizer, as in equation (A.2). See figure (A-6) as an example.

𝑥𝑡 = 1
𝐾

𝑒𝑗𝜃𝑡
*𝑇

(𝑠𝑡 − ⃗𝑠𝑡−1 + 𝑒𝑗𝜑𝑡𝑥𝑡−𝑁) (A.2)

Figure A-6: Polysynth output of a bank of 3 linear ramp input functions with fre-

quencies 110 Hz, 138.59 Hz, and 164.81 Hz (A, C#, E)
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Appendix B

Signal Reconstruction

It is possible to reconstruct the original signal of a Constant Q Spectrogram analysis

using additive synthesis [Roads1996]. The original audio in the reconstructed signal

bears a strong resemblance to the original but with some distortion. The algorithm

is as follows. For each frequency in the AGST Frequency Matrix, generate a sine

wave and modulate the signal by the magnitude response of the corresponding SCFE

analysis channel. Then sum the modulated signals together. Note that a reconstruc-

tion with 48 bands per octave gives good results. Note that there is an interesting,

flange-like effect at the beginning of the reconstructed signal, probably because the

bank of filters being used for the signal reconstruction resembles a comb filter.

1

2 %

3 % Constant Q Spectrogram Addit ive Synthe s i z e r

4 %

5

6 seconds = 30 ;

7 div = 48 ;

8

9 K = 88 ;

10 M = 20 ;
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11

12 % generate the AGST Frequency Matrix

13

14 f o r p = 1 :K∗ div /12

15 f o r q = 1 :M

16 F(p , q ) = 27 .5 ∗ 2^((p−1)/ div ) ∗ q ;

17 end

18 end

19

20 % load the input s i g n a l i n to x here

21

22 . . .

23

24 % sample code f o r s y n t h e s i s

25

26 out = ze ro s (1 , f s ∗ seconds ) ;

27

28 f o r k = 1 :K∗ div /12

29 f o r m = 1 :M

30 y = SCFE(x , f s ,F(k ,m) , div ) ;

31 s = sineWAVE(F(k ,m) , f s ∗ seconds , f s ) ;

32 z = s .∗ abs (y ) ;

33 out = out + z ;

34 end

35 end

36

37 out = out . / max( out ) ;
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Appendix C

On Music and Technology

The following section contains the original historical-based introduction to the thesis:

We are at a point in music history where humans extensively augment performance

of musical instruments with electronics to achieve new sonic textures and landscapes.

The history of the development of the guitar began with amplification, and then

included pedals to achieve effects such as distortion, delay, chorus, flange, and a

vast array of other means of altering the sound of the instrument. The first poly-

phonic synthesizer can be attributed to Hammond, who created the Novachord and

debuted it at the New York World’s Fair in 1939. Although tone-wheel technology

first appeared at the turn of the last century in Thaddeus Cahill’s Telharmonium

[Weidenaar1995], the Hammond model B-3 organ appeared in 1954. In the late

1960s, the Fender Rhodes was invented and became an influencial keyboard in mu-

sic history. For example, Miles Davis bought one for Herbie Hancock, and this can

be attributed to the beginning of jazz-rock fusion. A popular effect that was used

in conjunction with this instrument was the ring modulator, based on discoveries

in radio technology and analog signal processing. In 1969, Barry Vercoe composed

the computer-generated piece Synthesism at M.I.T. [Vercoe2014], and later went

on to develop the music synthesis language Csound. In the 1970s, the first analog

synthesizers were developed, including a massive and intricate system built by Joe

Paradiso, an electrical engineer and physicist at M.I.T., that generates avante-garde
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synthesized music [Paradiso2012]. In the commercial space, pioneers like Buchla,

Moog and Oberheim sent the first analog keyboards into the marketplace. The pro-

gressive rock era was born, as these keyboards were used as the driving compositional

force behind bands like Genesis, Supertramp, Emerson Lake & Palmer, and others.

In jazz, acoustic musicians went electric with the appearance of jazz supergroups like

Herbie Hancock’s HeadHunters, Joe Zawinul’s Weather Report, and Chick Corea’s

Return to Forever. One of the first pioneering electronic bands appeared in 1974,

Kraftwerk, who used synthesizers, vocoders, and other electronic means of creating

music based on advancements in computer music. Thus, music technology was the

driving force that gave rise to new sounds and new ways of music composition and

expression.

There is a synergy between technology and art. With the appearance of the

Yamaha DX-7 in 1983, which was the first widely adopted digital synthesizer (and

was based on FM synthesis), a new era of synth driven pop was born. (Note that the

first commercial digital keyboard/synthesizer was the Allen Digital Organ from 1971,

based around simple wavetable oscillators). Artists such as A-ha, Kenny Loggins,

Kool & the Gang, Whitney Houston, Chicago, Phil Collins, Luther Vandross, and

Billy Ocean used it. Many of the rock pioneers from the 1970s such as David Bowie,

Peter Gabriel and Stevie Wonder, and jazz visionaries like Herbie Hancock (who

formed the Rockit band) and Chick Corea (who formed the Elektric Band) continued

to re-invent themselves in the 1980s. Pat Metheny, in his Pat Metheny Group, began

using a synth guitar which was accompanied by keyboard and synthesizer wizard Lyle

Mays. Also, a notable Canadian band, Rush, experimented extensively with synthe-

sizers in the 1980s and used them to redefine their sound. Two notable examples,

as the use of synths, guitars, and electronics continued into the 1990s, include the

massively successful rock band Radiohead, and the highly experimental avante-garde

klezmer fusion band created by John Zorn, Electric Masada. The latter includes,

for example, an artist, Ikue Mori, who contributes electronic sounds from her laptop

in the context of a live, conducted, improvising ensemble. This software is digital

and software-based, a progression from the hardware-based electronics of the 1970s.
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Today, while most gear is digital, musicians continue to use technology that is based

both on analog and digital signal processing, in a wide range of styles including hip

hop, rock, pop, electronic, dance music, and a myriad of other styles.
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