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Chapter 1

Introduction

Listening in on the animated chatter amongst physicists at the main restaurant of the

European Organization for Nuclear Research (CERN) these days, one might guess

that the 2015 boost of the Large Hadron Collider (LHC) from 7 TeV to 13 TeV

has channeled energy not only into the protons subject to collision but also into the

physicists themselves, most of whom are tasked with studying the properties of these

collisions. Science, ultimately, is a human pursuit that - much like any other domain

of research - is subject to the creative ingenuity of the theorist or the analytical ca-

pacity of the experimentalist. An algorithm does not generally write itself1; rarely do

patterns in sometimes terabyte-sized datasets self-identify. New advents in machine

learning and artificial intelligence (AI) may begin to challenge such bold claims about

the inevitable role of the human in scientific research, but for the time being, even the

most sophisticated work in data analysis is dependent on the human either extract-

ing known features from data, or else methodically tuning an algorithm in the hopes

of stumbling on a new and meaningful pattern. In the domain of particle physics,

extracting a known feature may mean, for instance, that the researcher specifically

1If an algorithm is auto-generated, a human has still written the algorithm-generating algorithm
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searches for two photons with particular resonance mass, transverse momentum, and

polar angle collectively known with some degree of certainty to indicate the decay of

a pion. On the other hand, a more exploratory particle physics search to stumble on

new patterns could involve a researcher hunting through a minimum bias data stream

to locate either wholly unexpected excesses in energy, or evidence for the existence of

a more obscure particle whose existence is posited by a theorist. For example, perhaps

a w-boson extracted from the data is a decay product of a theorized particle from

an exploratory search. These two modes of analytical approach - one categorized by

application of known patterns to a raw dataset, and one categorized by more freeform

exploration, are prevalent in many fields of academic research, and both approaches

remain subject to the human capabilities of the researcher (which, as the reader may

well know, is in itself the basis for a wide field of research known as human factors in

computing).

In the first case, a researcher is subject to human error, and thus will seek to verify

and validate his results. Perhaps noise was improperly removed from the data, or

perhaps an algorithm was incorrectly encoded. In the second case, a researcher is

subject to his own often subjective choices about where to hunt for patterns. Visual

representation, praised for its ability to rapidly convey information, is commonly used

both for validation and for exploration. In addition to researchers receiving extensive

training in scrutinizing plots, visual display technologies long preceded technologies

for presenting data in alternative sensory modes, perhaps leading to the now promi-

nent conception of visualization as a cornerstone of academic research.

There is undoubtedly a place for visualization. In particle physics, The Feynman

diagram is a fine example of a graphical notation that has been constructed with

a specific application area in mind: it rapidly and e↵ectively describes complicated

particle decay processes on the basis of the fundamental particles and force couplings

involved. On the other hand, one begins to wonder whether alternative modes of data
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representation may better serve the researcher in specific contexts.

In the last few decades, a research community has formed to study sonification, the

representation of data as sound both for aesthetic and practical purposes. Sonification

has strong appeal: an audio signal is defined by a large number of parameters that

are readily-perceived by the listener, making it well-suited for represention of high-

dimensional data. One is also immediately convinced of the usefulness of sonification

in cases where the user wishes to receive data-driven feedback while performing a

task that occupies their visual attention, such as a neurosurgeon wishing to determine

whether an electrode has been implanted into the proper brain region.

But, critical to much of this thesis is the notion that sound is also an art form;

data-driven audio creates an opportunity for artists to engage with the same datasets

as do scientists, forming a new artistic medium for outreach, education, and artistic

expression. The increasing prevalence of real-time sensors everywhere suggests that

the time is ripe for such an artistic movement to to fluorish. The Quantizer project,

composing an extended chapter of this thesis (chapter 2), is a reaction to the growing

opportunity for real-time sonic expression, in this case for the purpose of exposing

high energy physics data as an artistic tool and for promoting physics to a broader

audience.

While there is a flurry of excitement around sonification, the bulk of existing liter-

ature presents tools and methods focused heavily on auditory display. However, in

practice, we ought to strive to place both our eyes and our ears where they are best

suited when analyzing data in order to maximize our bandwidth when studying a

high-dimensional dataset o✏ine, and maximize our attentive capacity when monitor-

ing data in real-time (such as in an experimental control room). The Rotator tool,

composing the bulk of this thesis, enables researchers to strategically divide incoming

data between their eyes and ears. Here we have studied the perceptual influences of

varied display modes on the researchers ability to characterize data.
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The motivation for an audio-visual analysis interface was born out of a significantly

more abstract proposal for a rotational interface consisting of data encoded in a

geometrically high-dimensional audio-visual entity. At any given moment, up to 3-

dimensions of data would be projected visually, and the remaining dimensions would

be projected into the auditory domain and used to control auditory features. The

user would then rotate this geometrically high-dimensional audio-visual object in

order to adjust the auditory and visual projections and thus perhaps begin to make

sense of the high-dimensional data as a whole. This idea is still of great interest, and

addressed in the concluding statements of this thesis, (chapter 8) but the perceptual

challenges for the listener are sure to be fierce, and therefore the application spaces

still somewhat vague. The Rotator application, in which users can drag audio and

visual boxes around the screen in order to dynamically set data display modes, is seen

as a more concrete iteration of the full-fledged abstraction that has more immediate

potential. In fact, three application areas for the interface are suggested in chapter 6

and one application area is studied more carefully in chapter 7.

It is critical to recognize that while application areas are deeply considered, this

thesis is ultimately aimed at presenting a tool used to study human perception of data

under varying display modes and is not a study in any particular application space.

E↵ective categorization of the influence of the tool on our perceptual capabilities is

a critical step in subsequently determining suitable application areas. Bearing this

framing in mind, the evaluation section of this thesis (chapter 7) studies the influence

of the tool on a users ability to characterize high-dimensional data. In the future,

the results of this evaluation could possibly guide sonification work in the previously

described geometrically high-dimensional audio-visual space.

This thesis serves as a preliminary contribution in its own right to the study of human

perception, both in the domain of scientific outreach and in the domain of scientific

research. However, I can ultimately imagine deepening Rotator into a ready-to-use
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tool for data analysis or monitoring in the field of physics, for example, using the

perceptual results of this thesis to guide the project.

16



Chapter 2

Quantizer

2.1 Resources

Two shorter papers on the Quantizer platform have been published and serve as

useful, compact references for the project (see [42] and [41]). The Quantizer webiste

is available at quantizer.media.mit.edu. Additionally, code is available on Github

[2]. The project’s Soundcloud account is available as well [3].

2.2 Overview

The Quantizer platform is an application that promotes the use of scientific data for

aesthetic purposes by enabling users to drive musical compositions using real-time

experimental particle physics data. From the earliest days of human artistic pursuit,

the vision of the artist is constrained by the tools available in the relevant epoch.

Early Egyptian painters only had certain earthly pigments available to them and

until 2600 BC could not synthesize blue pigment; the advent of the photographic
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camera in the early 19th century triggered a never-before-explored mode of artistic

expression; musical instrument quality and design throughout modern history is a

direct function of fabrication modes available.

However, one element of the artistic process that has remained true until very re-

cently is that the artist maintains complete reign over their artistic output. For

instance, the musician composes each note of a musical piece, and the painter draws

each brushstroke. Recent, significant advancements in real-time audio synthesis, com-

bined with the growing prevalence of real-time sensor data from sensors everywhere,

ushers in a growing opportunity to incorporate sensor data directly into a composer’s

artistic vision, enabling artists to design instruments that are then played by data

through predefined data-to-audio mapping schemes. The musician’s role in this case

is adapted from possessing full control over the musical piece to possessing control

only over the framework. The musician designs the instrument but data pluck the

strings. The resulting music reflects characteristics of the data driving it, but it is

ultimately an aesthetic experience.

The premise of the Quantizer project is to expose a stream of real-time particle

collision data from the ATLAS detector at CERN through a set of tools that enable

this data to drive unique musical experiences crafted by each composer. The audio

from select compositions is streamed to a website for real-time consumption by the

public, much like a radio with multiple available musical channels. One recalls that

the radio is heralded as a unifying force in early 20th century America. Families

once gathered around radios during times of political turmoil to listen to Roosevelt’s

famous Fireside Chats or to experience live streaming of musical performances. The

radio enabled a performer or speaker, for the first time in history, to address the

nation at once. Quantizer’s website can be framed in a similar - though more mild -

sense, encouraging a trend in which members of the public can simultaneously tune

into experimental data through an auditory channel for entertainment purposes or
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otherwise. For composers, it is now possible to interact with real-time experimental

physics data through tools that are founded on a new degree of playfulness.

2.3 Prior Art

This project builds upon a consider number of sound-based works inspired by physics

research that integrate experimental data to varying degrees.

2.3.1 Audio Inspired by High Energy Physics

Beginning in the early 1990s, a parody pop group of CERN employees known as Les

Horribles Cernettes performed physics-inspired music at high energy physics events,

with lyrics that lamented marriage with a high-energy physicist constantly distracted

by his experiments [37]. One of their most famous pieces, ‘Collider’, was performed

periodically at CERN until 2012 [45].

More recently, Ryoji Ikeda, winner of the Collide@CERN prize, has built an audio-

visual soundscape called Supersymmetry based on physics concepts learned during

an artistic residency at CERN [76]. Ikeda is well known for several works artistic

sonification of scientific data [88] [63]. The exhibit is staged in the upper level of a

dark parking lot and consists of two parts: an ‘experiment’- tables featuring moving

axes and hypnotic sounds and light patterns, and an ‘experience,’ consisting of fast-

changing sounds and patterns symbolizing complex data pouring into a control room.

On the one hand, Jonathan Jones, art critic of the Guardian newspaper, responded

to Ikeda’s exhibit in the following critical manner:

Ikedas installation Supersymmetry, staged in the darkened uppermost
level of a multistory car park, is apparently what you get when you intro-
duce an artist to the worlds most advanced particle research institute and
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its renowned Large Hadron Collider. A lot of sound and light, signifying
nothing. Why does CERN want artists to respond to it anyway?” [9].

On the other hand, Georgescu and Levi comment that the detachment between scien-

tist and object of study is magnified in experiments at CERN and renders alternative

modes of expression all the more compelling:

A good portion of today’s research in physics does not rely on direct
interaction with the objects of study, simply because these are outside the
reach of our senses and exist on extreme time and length scales. But in
particle physics and, in particular, at CERN, the distance between us and
the physical phenomena is pushed to another level of complexity. It is
perhaps this very complexity that inspired the work of Ikeda [54].

In these reactions to Ikeda’s work, one immediately recognizes a tension between

the hyper-rational spectator who sees artistic reaction to scientific experimentation

as devoid of meaning, and the connection-seeking spectator who observes that as ex-

periments grow in complexity and scale, we ought to find new ways to create tangible

and compelling associations between ourselves and the physical phenomena under

scrutiny.

2.3.2 Direct, O✏ine Use of Physics Data in Audio

While the aforementioned audio-based worked were broadly inspired by CERN, a set

of projects have made more direct use of scientific data to drive artistic vision.

Some of the pioneering work in scientific data sonification emerged from large scien-

tific research labs. In 1970, composer Charles Dodge worked with Bell Laboratories

to compose music using 2920 measurements of Earth’s magnetic field over the course

of the year. The data points were mapped to a four octave span, with interpolations

between the data points added to create tempo and register [62]. In the 1990s, sound
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artists used planetary data collected by NASA’s Voyager I and II to produce a series of

recordings called ‘Symphonies of the Planets’, in which ambient space sounds coming

from vibrations of the planets, electromagnetic fields of planets and moons, planetary

magneto-spheres, radio waves bounding between the planets and their inner atmo-

spheres, charged particle interactions of the planets, solar winds, and charged particle

emissions from the rings of some planets were used as content in a musical record [17].

Fiorella Terenzi, an astrophysicist and composer, has similarly developed techniques

for recording radio waves from distant galaxies for musical composition, coining the

term ’acoustic astronomy’ [89], and Stephen P. McGreevy has built RF receivers to

listen directly to sounds from the Aura Borealis (from which he as produced several

commercial recordings) and other types of what he calls ’electromagnetic smog [66].

In terms of more recent sonification projects a�liated with experiments at CERN, a

project was completed in 2010 as a collaboration between the ALICE experiment and

the University of Music and Dramatic Arts Graz, Austria in which simulated particle

trajectories through the ALICE detector’s time projection chamber are mapped to

spatialized audio [94]. The simulated dataset used for this project contains current

spike measurements caused by particles ionizing gas in the time projection chamber

of the detector. The resulting audio is spatialized with respect to the center of the

detector in order to enable perceptual grouping of the data into particle tracks, an

e↵ective means of using auditory pattern recognition to achieve a feeling for the

structure of the raw data. In order to further enhance the perceptual separation of

tracks, overtones are added to the base frequency and weighted based on a linear

mapping of the data as a function of the � angle of the data point in cylindrical

coordinates. Furthermore, the charge deposit of each electron influences the level of

impulse that excites a filter bank of resonators. In this way, we see that the physics

goal of recognizing the presence of track formations guide sonification choices. One

downside to the rendering methods used is that each event takes between 10 and 20

minutes to generate, thus eliminating the possibility for real-time processing.
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One parameter-mapping sonification by Rhoades uses quantities drawn from ATLAS

detector data to drive parametric variables in a custom Csound instrument. Rhoades

was granted access to several datasets collected by ATLAS, and used a number of

calculated physics parameters including transverse mass, electromagnetic fraction,

and missing energy in the sonification. The sonification process used for this project

is described in depth in [81]. The compositions include varying degrees of post-

processing and editing of the audio, a benefit of composing sonifications using o✏ine

data that is not possible in real-time applications.

Rather than use experimental data itself, Bill Fontana, another winner of the Col-

ide@CERN prize, produced sound art using compilations of audio recorded directly

from components of the collider including magnets and cooling systems [28].

In a similar spirit, Jo Thomas visited the Diamond Light Source synchrotron in

Oxfordshire, UK and discovered that audio output is already used by researchers to

monitor the beam. Inspired by this, she has incorporated audio produced from the

Diamond Light Source synchrotron into a sound art installation [30].

More recent audio projects making direct use of high energy physics data have soni-

fied the now-famous plot that provides 5 sigma evidence for the existence of the Higgs

Boson particle [29][46].

2.3.3 Historical Examples of Audio Use In Research at CERN

There exist additional sporadic examples of the use of audio for data monitoring in

the context of particle physics. For example, since 1928, Geiger-Mueller tubes have

enabled physicists to work on machinery in risky settings while using the auditory

channel to monitor risk of radiation exposure (early versions of the Geiger-Mueller

counter required such high voltage levels that a sparkover would result in an audible

bang.)
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In the 1960s, CERN developed a device called a sonic chamber for particle local-

ization. Specifically, in 1962, B. Maglic of CERN used audio recordings from two

microphones to determine the position of a spark to the accuracy and precision of the

chamber resolution by measuring the time interval between initiation of the discharge

and the arrival of the sound of the leading edge of the shockwave in the chamber gas.

The two delay times were used to reconstruct the position of the spark in the plane.

To perform this conversion, a gated oscillator was turned on by the chamber trigger

and o↵ by the probe signals, and dedicated circuitry kept track of the clock pulse

count [51].

Critically, the simplicity of using a sonic approach in the spark chamber experiment

meant that the chamber optical system (consisting of a relatively complicated array

of lenses, prisms, and mirrors) was no longer necessary. That said, sonic chambers

were better suited to detection of only single tracks due to the di�culty of controlling

reflected wave fronts that arrive after the direct wave from the spark [51].

In limited settings, audio is used directly for detector calibration at CERN. For

example, microphones have been mounted in the LHC tunnel in order to monitor

the performance of collimators, devices that remove stray particles from the particle

beam. If a collimator is hit, it may be damaged, and rather than examining each col-

limator for damage, a study on the auditory output of the collimator-beam collision

was conducted. Beam impacts were successfully detected using acoustic sensors in

collimator test procedures in 2004 and 2006 [39]. The audio enables listeners to iden-

tify which of the hundreds of collimators was hit as well as deduce whether damage

was incurred. Other radiation-resistant sensors such as accelerometers attached to

the collimators were also used in experiments. Sounds from collimator experiments

in the LHC taken in 2011 are available here [10]. Additionally, a 2005 LHC Progress

Report made some interesting observations regarding direct audification of beam os-

cillations [53]. Specifically, particles in an accelerator follow sinusoidal motion known
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Figure 2-1: The LHC Tune Viewer interface used for auditory monitoring purposes
in the LHC BBQ experiemnt

as betatron oscillations. If the number of periods of these oscillations per turn is

an integer number then the amplitudes of these oscillations will increase due to the

magnetic forces keeping the particle trajectories stable. Work to stabilize the beam is

further complicated by the fact that each bunch of protons contains many billions of

such particles, each with slightly di↵erent energies that will thus have slightly di↵er-

ent oscillations due to variations in magnetic pull. Without any careful monitoring

procedures in place, the beam size gets bigger, which lowers the collision rate.

Diode detectors similar to those used in older radio receivers were developed, which

convert modulations of beam position into signals in the audio frequency range. As a

result of this nanometer-accuracy diode-based oscillation detection system, a feedback

system that auto-adjusts the magnetic field strengths was developed.

That said, prior to the development of an automated feedback system, researchers

noted in published papers the e↵ectiveness of monitoring the beam by directly listen-

ing:

During Base Band Q (BBQ) operation on the Super Proton Synchrotron
(SPS) it was found that a trained person using headphones can distin-
guish between the sound of betatron and synchrotron frequencies, as well
as many important events during an acceleration start, transition, and
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ejection. Once the sound of a normal machine cycle is imprinted on the
mind, it is very easy to catch any anomalies which can occur during ma-
chine tuning or due to various failures. This is mainly thanks to the
logarithmic characteristic of human hearing, which makes it possible to
capture small details which are nearly impossible to observe by eye when
presented in a graphical way. Listening to the beam can easily be done in
parallel to other activities, such as operating a computer and could give
new dimension to the work of machine operators! [53]

One continues to wonder whether further work on audification would in this way

allow control room operators to better monitor an accelerator experiment much like

a car mechanic uses sounds to guide their subsequent repair work.

2.3.4 Audio generated from Real-Time Scientific Data Streams

Real-time particle data has been sonified to limited extents. It is common for experi-

ment control rooms to support simple, real-time, auditory alerts, as in the case of an

ATLAS control room alarm sounding when a particle beam is discarded, for exam-

ple. Real-time audio feeds from microphones placed in natural environments are also

relatively common [77]. Very limited examples exist incorporating real-time physics

data into musical compositions. For instance, the cosmic piano sonifies incoming cos-

mic rays in real-time for live performance settings [40]. However, only recently have

projects worked to continuously convert real-time, large-scale sensor data to sound.

For example, the Tidmarsh project allows musicians to generate spatialized sonifica-

tions of real-time environmental data to enhance one’s sense of presence while moving

through a virtual representation of a natural environment [80]. Both Tidmarsh and

Quantizer are sonification platforms that seek to involve many composers.

Broadly, it is apparent within the sonification literature that aesthetic considerations

have taken on growing importance [59]. The project under discussion fits within the

aforementioned, nascent domain of real-time scientific data sonification and is the
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first known platform to enable sonification of real-time experimental physics data

for aesthetic purposes. Also, although as mentioned, many musical pieces have been

built atop high energy and astrophysics data, to our knowledge, Quantizer is the first

framework that supports multiple compositions to simultaneously map to incoming

data.

2.4 ATLAS Experiment Overview

The ATLAS detector is one of the two general purpose detectors built along the LHC.

The ATLAS collaboration is using the detector to probe some of the most profound

questions one can ask about the nature of our universe by recreating extremely high

energy conditions that do not occur naturally on Earth. What is the nature of dark

matter? Are there extra physical dimensions? What is the origin of mass? Are

there any deeper symmetries that govern the laws of our universe? The ATLAS

collaboration is enormous; it is made up of over 3000 scientists from 38 countries.

The detector is approximately cylindrical in shape with a length of ⇠ 46 metres and

a diameter of ⇠ 25 metres. It is made up of several di↵erent detector layers including

an inner detector surrounded by a solenoid, an electromagnetic (EM) calorimeter, a

hadronic calorimeter, and a muon spectrometer [90].

Protons and lead ions are made to collide at the center of the detector, and the

energy in the collision generates rare particles with lifetimes that can be on the order

of 10�22 seconds and that rapidly decay to more common and detectable particles

like photons and electrons. Each layer of the ATLAS detector serves a purpose for

understanding the byproducts of the initial collision. The inner detector measures

the trajectories of charged particles generated in the collision. The solenoid is used to

bend the trajectories of the charged particles for particle identification and momentum

measurement purposes. The calorimeters are used to measure the energies of particles;
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Figure 2-2: Layers of ATLAS detector showing trajectories of di↵erent particle types

the EM calorimeter measures the energies of particles that interact predominantly

electromagnetically and the hadronic calorimeter measures the energies of particles

that interact mostly via the strong interaction. The muon spectrometer measures the

trajectories and momenta of muons with the aid of a system of toroidal magnets.

ATLAS physicists work to reconstruct rare particles from their lower energy decay

products in order to develop evidence for the existence of new physics phenomena. To

do so, physicists apply known theoretical models for particle decay that are commonly

illustrated via Feynman diagrams [67] and branching ratios.

The ATLAS detector uses a right-handed coordinate system with its origin at the

nominal interaction point in the centre of the detector and the z-axis coinciding

with the axis of the LHC beam pipe. Cylindrical coordinates (r,�) are used in the

transverse plane, � being the azimuthal angle around the beam pipe [90]. The polar

angle, ✓, is defined from the +z axis.
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2.5 Quantizer: Data Structure

During ATLAS data taking, a small subset of particle collision information is routed

to a set of machines responsible for generating the real-time audio streams featured

on the project’s website. This outreach-designated data stream contains roughly 1

collision event every 25 seconds and Quantizer is the first known project external to

ATLAS to be granted access to real-time data from the experiment.

The following data streams are extracted by the Quantizer system, chosen for their

direct relevance to fundamental physics analyses:

• Liquid Argon EM Calorimeter This detector measures the energy deposited

by particles that interact primarily electromagnetically, such as electrons and

photons. The positions and magnitudes of energy deposits are streamed.

• Hadronic Endcap Calorimeter This detector measures the energy deposits

of the particles that interact primarily via the strong interaction and are only

used in the two ends of the cylindrically shaped ATLAS detector. The positions

and magnitudes of the energy deposits are streamed.

• Particle Tracks The inner detector is used to reconstruct charged particles as

tracks. The track trajectory and the track momentum are streamed.

• Resistive Plate Chamber These detectors are part of the muon spectrometer

and are only used in the more central region of the cylindrically shaped ATLAS

detector. The positions of the detector hits are streamed.

2.6 Quantizer: Architectural Overview

Figure 2-3 shows the overall architecture of the Quantizer system.
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Figure 2-3: Flowchart showing flow of data through the Quantizer platform

Data is routed from the live XML event stream to a set of Python scripts responsible

for parsing and processing the data and producing a time-series of messages sent over

Open Sound Control (OSC), a common networking protocol used in audio synthesis.

These scripts are known as the tool’s ’Python interface’. In order to exert control over

this data processing step, composers can either set a series of Python flags summarised

in table 2.1, or can choose to include their own code in analysis.py to guide the set

of data cuts applied. The latter approach may be of particular appeal to composers

with more physics experience.

Once the OSC stream is generated (whether through the tool’s default settings or

through customizations), the composer can interact with the resulting OSC messages

in what we call for convenience the ‘OSC Interface’ (see Figure 2-3.) Composers

experienced with tools like Max MSP [21] and Pure Data [20] can build custom data-

to-audio mappings that interface with this OSC stream. Alternatively, a series of

default Pure Data patches have been built in the process of working with a set of

early composers. One patch, for example, produces a MIDI stream that triggers

Ableton Live [18] synthesizers in order to produce audio. Another patch allows the

composer to receive the parsed and processed data stream at once and build custom

musical timing in Pure Data. See section 2.8 for screenshots.

Three compositions are streamed to the project’s associated website via Broadcast

Using This Tool (BUTT) [75] and the Icecast streaming server [19]. A website screen-

shot is shown in Figure 2-4. Jack Audio [22] is used to route the audio to BUTT,
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Figure 2-4: Screenshot of the Quantizer webpage. the four tabs contain 3 live audio
streams and 1 o✏ine audio-visual interface. The status indicator indicates whether
real-time data is available (currently reads ‘Recent Collisions’ in red). Two plots to
the left of the page show basic statistical information for the data produced after
all parsing and processing steps have been applied for one of the compositions. The
amount of real-time statistical data that can be made public is limited due to protec-
tions placed by ATLAS on recently taken data). Finally, the image to the right of the
screen shows an event display generated by ATLAS for the collision event currently
producing audio. Details on the sonification process are included at the base of the
page (not pictured).

and the website itself is built atop Python Flask [83]. In order to update some basic

web-based data plots and the web-based ATLAS detector status indicator, Gevent

[8] and the WebSocket protocol [16] are used. (The web-based status indicator alerts

viewers as to whether real-time data or recent data is currently streamed based on

whether collisions are taking place in ATLAS). In this way, the system takes raw

XML data and produces multiple web-based, real-time audio streams.
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2.7 Details on Python Data Processing

As introduced in section 2.6, rule-based selections are applied in order to extract

the most compelling data from the collision event file. Some of these data cuts are

described below.

Due to the complicated geometry of the detector, ATLAS physicists often place se-

lections on the geometric trajectories of the particles in the event to ensure that they

passed through a region of the detector in which measurements are trusted or will

produce relevant physics. Similar geometric selections are made by the sonification

platform’s default Python interface. For example, all the tracks and calorimeter en-

ergy deposits are required to have a polar angle direction/position of 0.18094 < ✓ <

⇡� 0.18094. (see, for example, [24] for a reference on geometric selections commonly

used in ATLAS physics analyses). Since the RPC data stream only contains geo-

metric coordinate information, for events with excessively high RPC counts, a radial

geometric cut is applied.

When performing particle searches, ATLAS physicists will often require a particle

in an event to have a minimum energy or momentum in order to better isolate signal

events from background events. In a similar way, the Python interface selects a subset

of the data that meet minimum energy and momentum requirements. For example,

each track is required to have a momentum in the transverse direction above 1 GeV/c.

For the liquid argon calorimeter, only particles with energy between 0.05 and 0.1 GeV

are preserved; for the hadronic endcap calorimeter, only particles with enery between

0.61 GeV and 1.2 GeV are preserved; for particle tracks, tracks with energy between

5 GeV and 40 GeV are preserved. In this way, the composer can work with a known

energy range when composing with the system.

Once cuts based on detector geometry, particle energy, and particle transverse mo-
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Figure 2-5: Data streaming order when the composer sets the Python ‘spatialized’
flag to ‘true’. First, inner detector data is streamed, followed by calorimeter data.
Lastly, RPC data is streamed. Each individual layer is streamed with respect to the
layer’s theta coordinate. Alternative streaming modes are supported as well.

Argument Description
–geo Set scanning geometry used

–maxbeats Set max data points per stream
–spb Set seconds per beat

–uniform Impose a beat by discretizing data
–spatialize Stream with respect to detector layer

–layertimeratio Ratio of relative time spent per layer
–overlap Turn o↵ event queuing
–sendall Bypass timing
–preamble Frontload event-level parameters

Table 2.1: Sampling of Command line Arguments

mentum have been applied, the remaining data processing is driven by a set of

musically-inspired preferences specified by the composer and shown in table 2.1.

Most notably, data is either discretized with respect to the detector geometry and

streamed as a time series of OSC messages on a beat structure, else it is streamed

purely with respect to a cylindrical geometric coordinate selected by the composer

(eta, phi, r). Streaming with respect to the detector’s radius is treated as a mode

suitable for spatialized audio, since if selected, the data is streamed from the inner-

most layer to the outermost layer, as depicted in Figure 2-5. Some modes, including

‘–sendall’, ‘–preamble’, ’and ‘–uniform’, were integrated as result of close partnerships

with composers who expressed their musical desires throughout the development pro-

cess and influenced the scope of the tool.
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2.8 Sample OSC Mapping Interfaces

Musicians with composition experience often opt to design their own creative, experi-

mental projects that interface with the OSC message streams produced by the Python

code base. Their ability to successfully do so serves as a measure for the flexibility of

the platform. We have worked closely with two composers to develop compositions

that showcase the diversity of projects that can be built using data. These two case

studies are highlighted in this section. Additionally, two default OSC interfaces built

by the author are briefly described. All mapping interfaces are capable of reading in

the OSC streams produced by the Python parsing scripts previously described.

2.8.1 Cosmic

An audio stream called “Cosmic” was produced as a custom Max/MSP [21] patch

by Evan Lynch (see Figure 2-6). The audio is spatialized in order to approximate

the sensation of the listener’s head positioned at the center of the detector. Mix-

ing parameters for software-defined audio synthesizers are determined by additional

event-level parameters that were added to the system (an example is the ‘e↵ective

sum’, a measure of the sum of all track energies.) In order to support this com-

position style, a number of additional command line tools were also added to the

Python interface including streaming event-level parameters a few seconds before the

remaining data in order to appropriately tune the synthesizer, ‘spatializing’ the au-

dio by streaming the data with respect to detector layer (beginning with the inner

detector and moving outwards), and controlling the amount of time spent streaming

information from each detector layer. The cosmic stream helped us to strategically

broaden the default Python feature set available to composers and also serves as a

first example of a composer successfully interfacing a custom synthesizer with the

OSC streams.
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Figure 2-6: ‘Cosmic’ synthesizer produced in Max MSP by Evan Lynch as a Quantizer
OSC interface. ‘Cosmic’ is one of the 3 real-time streams featured on the Quantizer
website
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Figure 2-7: Audio-visual OSC interface produced by Akito van Troyer.

2.8.2 Audio-Visual

An animated audio-visual experience was produced by Akito van Troyer as an exten-

sion of a pre-existing project called Constellation [93]. This project makes further

use of the layer-by-layer data streaming built for Cosmic, but in this case the data

trigger audio clips in a soundscape of dots (see Figure 2-7). Each dot is associated

both with a detector layer and with a particular sound clip. Sound clips are clustered

according to their spectral properties, and the user can also explore the soundscape

by clicking on dots.

The graphical interface is an artistic 2D interpretation of the detector where each

ring of dots represents a di↵erent detector layer. The inner detector is represented by

yellow dots, the calorimeters by green and blue dots, and the RPCs by pink dots.

When a new collision event file is received, particle tracks are first drawn as lines

in the innermost layer. Next, calorimeter energy deposit magnitudes control the

diameters of triggered dots. Finally geometric positions of RPC hits control dots
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fired in the outermost layer.

Additional command-line options were added in order to support this artistic vision,

including the restriction of the total number of data points per OSC stream in order

to keep the sound produced more manageable, as well as some additional functions

to project 3-dimensional detector data onto a 2-dimensional surface.

2.8.3 Default Interfaces

Two default interfaces are shown here. The customized timing interface allows com-

posers to bypass the Python data timing algorithms and develop custom triggers to

summon the next data point. Banging the ‘store all’ method (pictured in Figure 2-8)

returns the next data point. For example, one could imagine developing a resonator

with a decay parameter that is excited based on the incoming energy deposit value;

su�cient decay of the excitation could trigger the subsequent data point, which then

triggers the subsequent excitation.

Figure 2-9 Shows a screenshot of an interface that the Quantizer team traditionally

refers to as ‘the default interface’. It allows composers to adjust tempo, set data/MIDI

ranges per stream, control a beat structure using the calorimeter data, etc. This tool

was successfully used as a DJ’ing interface when the platform was presented at the

Montreux Jazz Festival in July, 2015. An improv pianist played along to real-time

audio generated from particle collisions, and a DJ adjusted the data-to-audio mapping

throughout the performance [60].
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Figure 2-8: Excerpt from the ‘Customized Timing’ Interface

Figure 2-9: Pure Data Default Interface that exposes simple mapping controls to
composers with less experience in Pure Data
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2.9 Evaluation: Real-Time

Stage Time Delay

Collision!Data File �minutes

Data Transfer �seconds

Queuing �10’s of seconds

Sonification �seconds

Stream to Web �10’s of seconds

A key feature of the project is the real-time nature of the data. It is previously

established that the real-time nature of ATLAS data visualizations available at atlas-

live.cern.ch increases public engagement and as such, we suspect that the same is

true of real-time audio. Thus, design decisions have been made to optimise for real-

time behavior. In a real-time setting, there is no opportunity for audio editing. The

composer must rely entirely on the incoming data stream to trigger their instruments,

which provides a new variety of musical challenge for the composer and a real reward

when executed well. The real-time nature of the Quantizer project also sets the stage

for the Rotator project described in the remainder of this thesis in which one imagined

usage scenario is the real-time monitoring of experimental control room data.

Below is a description of the extent to which this platform manages to operate in

real-time. The first delay is introduced between the time of particle collision and

the time that the corresponding data file is made accessible. Once the data file is

available, a small delay is introduced for copying the file to the appropriate machines.

Next, the data file is queued for conversion to audio. Currently, the queue has a

maximum length of two files, meaning that the worst case queuing time is equal to 2x

the event audio duration. Next the input file is read, the data extracted and filtered,
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and the audio generated. This file access and sonification process is relatively quick.

A final audio bu↵ering delay is introduced by the Icecast streaming server as well as

browser caching behaviours.

Based on the data in table 2.9, the sum of all delays can be treated in the following

ways:

1. Time of collision ! time of web-stream: minutes

2. Time files are accessible ! time of web-stream: tens of seconds

3. Time files are accessible ! audio generated: seconds

The total delay (1) is a bit slow, but this is largely due to the necessary time to

perform partial physics reconstructions, and generating and uploading the resulting

data. These tasks are performed by ATLAS and are beyond our control. The audio

bu↵ering delay (2) of the order of 10’s of seconds is common for existing Internet

radio stations [23]. Finally, a few-second processing delay (3) is negligible for the

current application since new data files are only made available to us roughly every

25 seconds. The queuing delay is easily minimised by tuning the event audio duration

to closely match the time between events entering the queue.

2.10 Evaluation: Public Outreach

The web-component of the project was released on May 20th, 2016. It is important

to reach a large audience in order to meet the outreach goals of the project. To

help promote the project to its intended audience, articles were published by MIT

[48], CERN [79], Nature Physics Books/Arts [74], Popular Science [73], Smithsonian

Mag [72], Engadget [49], and Gizmag [50]. As of June 16th, 2016, the site has
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received 28,693 page views. We have also received ⇠40 requests via email to either

use the project to compose audio, use pre-existing sound samples, or use the data

stream. These messages are summarized around common themes below, and some

email excerpts are included.

• Theme: enthusiasm for the scientific outreach goals of the project e.g.

“Thanks for doing the things that keep science refreshing and fun”

This genre of feedback suggests that we are meeting our outreach goal of pro-

moting interest in physics among a public audience. Outreach is increasingly

important for large-scale experiments heavily dependent on external funding.

• Theme: Wishing to extend concept to other scientific projects “I’m

working on the the Belle2 experiment and I’m an electronic music producer -

I love your idea. Is there a way I could fork your project? I would love to do

something similar for Belle2”

This genre of feedback suggests that the project inspires further work in the

space of creating real-time radio channels for the public to listen to experiments.

• Theme: wishing to either use prerecorded clips or generate custom

compositions for other musical projects e.g. “Definitely interested in pro-

ducing music from real time data from ATLAS. A friend and myself are an

electronic improvisational ensemble and we are always seeking new ways to

introduce the element of chance into our live performance”

This genre of feedback suggests that the prerecorded audio clips we have pro-

duced are useful for integration in other sound-based works.

• Theme: Questions regarding how structure is obtained and proposals

for alternative sonification approaches e.g. “I like this idea but you just

get neat musical stu↵ pretty much no matter what signal you throw into this,
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right? Stu↵ with structure sounds neater then just noise I suppose, but maybe

you could set one transient to each type of particle? instead of modulating

pitch/frequency only modulate the amplitude, or only modulate the pitch in

octaves. I think an overall sound e↵ect more like an ordered Geiger counter

then the (albeit pretty) stu↵ would be good; if you want to hear the structure

of the data.”

This genre of feedback suggests that we could be placing more thought into the

sorts of data-to-audio mappings that each interface promotes. In particular,

though the principle goal of this project was to produce aesthetically satisfy-

ing compositions, listeners nevertheless crave an ability to better interpret the

structure of the collision event from the audio stream. It is a principle challenge

of this project to on the one hand provide composers with enough flexibility to

express their artistic visions, while on the other hand guide the composer to-

wards compelling mappings. Our ability to do so is somewhat limited by the

real-time dataset in question: timing information for di↵erent elements of the

collision is noticeably lacking from the data stream. That said, some possi-

bilities already exist for composers to elucidate structure in the data. As an

example, they may discover that the number of charged particles decreases with

increasing momentum, or that there are clusters of energy deposits in individual

collision events. These patterns, if highlighted e↵ectively by the composer in

the audio, can also teach listeners about the physics of the collisions. As future

work, we ought to further develop the tool to help more directly motivate com-

positions that give listeners a sense of the structure in the data, elucidated by

psycho-acoustic properties of the audio like perceptual clustering and stream

segregation. A direct sonification of the data streams might similarly prove

compelling to listeners.

41



2.11 Summary

The Quantizer platform has enabled the development of three real-time musical

compositions driven by real-time data from the ATLAS detector, as well as one

o✏ine audio-visual interface and one live performance. The web-component

of the project has extended the reach of the platform to tens of thousands of

viewers, and we anticipate extending the website to include works by additional

composers in the future. Reflecting back the divergent feedback written about

Ikeda’s project in section 2.3.1, one is motivated to consider what purpose

a tool like this serves: it appeals to the listener who seeks to more directly

experience femtometer-scale physics phenomena taking place within kilometer-

scale experiments; it promotes a new genre of playful musical composition in

which the musician is now seen as an instrument designer and no longer as

an instrument player, or more specifically, as a composer who algorithmically

specifies the overall contour of their composition, which is then fleshed out and

explored by real-time data.
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Chapter 3

Rotator: Overview

3.1 Background and Contextualization

While walking down the streets of Boston, we are unfailingly submerged in a

three-dimensional, 360� sonic cacophony of city life that is commonly referenced

in academic literature as an auditory scene. Unlike audio, however, visual in-

put is directional, providing a field-of-view of only 130-135� vertically and 200�

horizontally with respect to the center of one’s gaze. When a car screetches, we

impulsively jolt our heads to bring the source of the noise into our field-of-view.

In this way, we are accustomed to using visual and sonic information in tandem,

placing our eyes where they are most beneficial and tuning our attention to pre-

cise features embedded within the sound. Can we build scientific research and

monitoring tools that similarly harness both modes of information transmission,

enabling us to maximally benefit from our sonic and visual capabilities?

Recalling once again certain well-known auditory scientific tools like stetho-

scopes, Geiger counters, and experimental control room alarms, it is clear that

the emerging field of sonification is ripe with opportunity to study practical uses

43



of audio in scientific research. That said, the field of sonification is often met

with skepticism by scientists heavily accustomed to visual information display

techniques. Suppose that, rather than make a case for the inherent superiority

or inferiority of audio as an information display mode, we instead strive to cre-

ate a more natural and customizable harmony between our eyes and our ears

when analyzing or monitoring data.

Sonification researchers often take note of shrinking device screen sizes, provoca-

tively using this trend as evidence that we will need to find auditory alternatives

for certain visualizations. I wish to further extend this observation by contex-

tualizing data sonification within the framework of Responsive Web Design,

an umbrella term referring to the construction of a webpage that can smartly

customize its visual rendering on the basis of a device’s screen real-estate (see

Figure 3-1). An audio-visual data analysis tool like Rotator is suggestive of

the role that sonification may grow to play as a natural extension to the Re-

sponsive Web Design Framework. At one extreme, visual data floods across

enormous monitors. At the other extreme, there is no screen, and all content

is relegated to an auditory periphery. An array of audio-visual intermediary

states lay between these two extremes.

Suppose, for illustrative purposes, that a researcher is in a control room moni-

toring the stability of a sensor network deployed in a city. In the control room,

the researcher users a set of large monitors to watch the data. A sensor node

deployed in a park begins to exhibit some suspicious behavior, so the researcher

opts to leave the control room to investigate the physical device. While en route,

he takes out his phone to continue monitoring the network. Due to the phone’s

more limited screen real-estate, a large subset of the sensor data is automatically

shifted to his auditory periphery, and the visual data is resized and rearranged.

Furthermore, much like within the aforementioned physical scenario in which a

screeching car causes a person’s head to turn, so too might a researcher swipe a
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Figure 3-1: An illustration of the prominent concept of Responsive Web Design: the
design of a webpage to intelligently scale to an arbitrary screen size. An interface like
Rotator helps to frame sonification as a natural extension of this model

peculiar-sounding audio stream into his visual field for multimodal inspection.

Before turning to application areas within scientific research, we briefly ask:

how might such a capacity for perceptual manipulation manifest in the physical

world if sensory modes for data presentation could be more precisely selected?

Perhaps you wish to place your visual gaze on a tractor so as to avoid intercept-

ing its path but you wish to mute its fierce and ear-splitting sound. Perhaps you

wish to increase the volume of the pleasant bird chirps up above but have no

need or desire to actually see the birds. Suppose, in order to hone in on a task,

you wish to render your auditory input directional as well, accepting sound only

from source within your visual field of view. Here the auditory scene has been

treated as a series of discrete sound sources whose presentation modes can be

edited and adjusted at will on the basis of your personal preferences or on the

basis of your information processing capabilities.

45



3.2 Rotator Tool Overview

3.2.1 Perceptual Adjustment Interface

While we have considered some extreme examples of sensory mode manipula-

tion in the physical world for at-will control of human perceptual experience,

for the purpose of this thesis we consider how the same principles in sensory

control ought to influence scientific data analysis and monitoring, in particular

for datasets with a large slew of parameters requiring our consideration. The

Rotator project is chiefly concerned with how our perception of the structure

of a dataset can be informed and influenced by the presentation modes of its

constituent data streams.

Consider a simple analysis task consisting of n data streams. How can these

n streams be perceived? If each stream has 3 possible presentation modes:

auditory (‘A’), visual (‘V’), and both auditory and visual (’AV’), then the to-

tal number of presentation modes is 3n. Furthermore, there are an enormous

number of approaches one can take for representing a data stream visually

or sonically. Though the total number of perceptual modes is thus quick to

skyrocket even for small numbers of data streams, for most datasets, certain

presentation options are more immediately worth considering. As one example,

all data can be presented sonically, and tiny subsets of data can simultaneously

be scanned visually on an as-needed basis. Alternatively, k data streams can

be presented sonically and the remaining n� k data streams can be presented

visually. Are there particular presentation states that can increase our attentive

capacities, namely, the number of streams that we can accurately perceive at

once in an analysis task? Can the movement of some data streams into our

sonic periphery free up our eyes to complete an alternative task? Far beyond

the scope of this thesis, are there methods for predictively modeling how to best
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Figure 3-2: Excerpt from the Rotator interface applied in this case to a wearable
sensing system: users resize and slide auditory and visual boxes around a graph of
data stream nodes in order to dictate in which sensory mode each nodes will be
presented. For example, in the upper right corner, the auditory window has been
stretched to include all the data nodes, and the visual window has been shrunk to
contain just a single node

present a dataset to a user on the basis of how it is changing over time, or is

consistency of presentation mode most critical?

The Rotator tool provides users with control over how each stream in a dataset

is presented through an interface consisting of auditory and visual sliding win-

dows as pictured in Figure 3-2. The audio is spatialized with respect to the

center of the sliding audio window, which creates a structured auditory scene

around the user. The audio spatialization also aids the user in perceiving the

data streams as segregated sound sources [82]. The concepts of auditory scene

analysis and auditory stream segregation are addressed as part of the Related

Work summary in chapter 4. Detail on data sonification approaches in literature

are also discussed in chapter 4.
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3.2.2 Expected User Work Flow

Stepping back, we will now contextualize this sensory mode selection map within

the scope of the Rotator interface as a whole. Figures 3-5 and 3-6 show raw

and annotated screenshots of Rotator in its most recent form. The expected

workflow is as follows: a user loads in a dataset that they seek to analyze or

monitor. The streams within the dataset are assumed to have a geometric in-

terpretation. For example, the data may be derived from a physical sensor

network, may possess a mathematical graph structure, or may represent di↵er-

ent stages of a process that can be laid out as a schematic. The user begins

to explore the dataset by moving and resizing the auditory and visual windows

around the node network. For instance, the user may find that listening to a

spatialized sonification of all of the data nodes while only looking at a visual

representations of a few nodes at a time is most comfortable. Besides sensory

mode adjustments, the user can explore the data by changing the window size

currently visualized or sonified, making adjustments to the data-to-audio map-

ping settings in the audio control panel, choosing to view the Fourier transform

of any individual data stream, enabling a ‘play’ mode that scans the data and

simulates a real-time monitoring scenario, or cluster the data nodes, among

other controls. When both audio and visual modes are enabled, a vertical red

line slides across the visual plots to provide an approximate indication to users

of the data region currently being sonified.

3.2.3 Clustering Tool

A user may wish to reduce the total number of streams sonified in a given

moment, since current literature suggests we will begin to experience cognitive

overloading with as few as 4 streams. To do so, a node clustering mode has been

implemented. A user can click on a series of nodes which will visually expand
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Figure 3-3: Clustering workflow, pictured for the Alpha Magnetic Spectrometer ap-
plication area (see chapter 6.3). A user selects two data nodes and generates a cluster.
The nodes are now treated as a single entity such that if any node in the cluster is
present in the visual or auditory windows, then all the nodes will be highlighted

them in size. Then, a user can click ’finalize node cluster’ in the cluster control,

which will heretofore group the selected nodes and treat them as a single data

stream. A clustering workflow is pictured in Figure 3-3.

The average value between the selected streams will be used both for visual

and sonic display. After consideration, averaging was chosen over display of

correlation functions in order to preserve the user’s confidence that the x-axis

represents time or frequency. In order to nevertheless understand correlations

within a cluster, the Pearson product-moment correlation coe�cients between

each pair of nodes in the cluster will be displayed, giving the user a sense of

the structure of their cluster. The Pearson correlation coe�cient is a standard

statistical measure of the linear correlation between two variables X and Y,

giving a value between +1 and 1 inclusive, where 1 is total positive correlation,

0 is no correlation, and 1 is total negative correlation. It is defined as

⇢
X,Y

=
cov(X, Y )

�
X

�
Y

(3.1)

An example of the visual representation of two temperature data streams that

have been clustered together is pictured in Figure 3-4. As a sample use case

for this clustering feature, consider the Alpha Magnetic Spectrometer (AMS)
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Figure 3-4: An arbitrary number of data streams can be clustered. In this image,
two temperature data streams (left) are clustered into an average stream (right) with
Pearson correlation coe�cients listed.

temperature monitoring scenario that will be described in section 6.3. AMS

is a high energy particle detection experiment aboard the International Space

Station. It contains a high number of temperature nodes that are carefully

monitored, and there may be regions of AMS that are close in proximity and

therefore follow very similar temperature variations. On the one hand, this

structure to the data may emerge on its own simply by listening to the high

number of streams at once. On the other hand, the listener may find that

monitoring tasks are more easily accomplished by clustering together regions of

the detector for the purpose of reducing the total number of auditory or visual

sources. If the Pearson correlation coe�cients between cluster nodes were to

change dramatically, the user can choose to delete the cluster and reexamine

each node independently from one another.

3.2.4 Sonification Options

The premise of sonification is to develop data-to-audio mappings that make

use of the high dimensionality of an audio signal. Audio synthesis approaches

developed for particular Rotator application areas are described and justified in

chapter 6, and sonification theory is developed in chapter 4. General sonification

50



controls available in the interface include tempo adjustment, per-stream audio

gain adjustment, a toggle for turning on and o↵ audio spatialization, modulation

depth and fundamental frequency controls for oscillator-based synthesizers, and

the ability to listen to a direct audification of each stream (note: synchronization

with graphics still not available for this mode). Here, a ‘synthesizer’ refers to a

mechanism that can take data as input and produce audio as output.

3.3 Possible Interface Extensions

Currently, the synthesizer applied to each data stream is hard-coded in the

dataset, and it is easy enough to modify these hard-coded synth selections.

However, one can immediately imagine an interface extension that allows the

user to define the data-to-audio mappings directly within the interface. It is

important to be mindful of the number of controls exposed to the user due to an

e↵ect known in software development as ‘feature creep’, in which additional fea-

tures bloat rather than simplify an interface. Therefore, interface enhancements

focused on automating controls are more immediately desirable than features

that provide additional user controls.

That said, another natural extension to the interface would be an ability to draw

free-form auditory and visual regions atop the node map rather than remain

restricted to rectangular regions, though for this our spatialization model (in

which audio is spatialized with respect to the center of the rectangle) would

need to be reconsidered.

3.4 Summary of Goals

We have taken some time in this chapter to hint at large-scale contextualiza-

tion of an audio-visual tool within the fields of sonification and multimodal
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perception, as well as to summarize the layout and available functionality of

the Rotator tool in its current from. Before proceeding, it is important to bear

in mind the scoped goals for the current iteration of this project, which are

summarized as follows:

– Build a readily installable tool that supports flexible, per-stream audio and

visual display modes

– Customize the tool for three specific, illustrative application areas

– Conduct a preliminary study within one of the application areas regarding

the impact of data presentation mode on the user’s qualitative assessment

of data structure as well as on cognitive load

The first goal, namely, the construction of the basic tool, is described in Rotator

Architecture (chapter 5). The second goal, customization of the tool for specific

application areas, is summarized in Prospective Application Areas (chapter 6).

Finally, a preliminary investigation on the influence of display mode on one’s

perceptual experience and on one’s experience of cognitive load is described in

Evaluation (chapter 7).
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Figure 3-5: Rotator Interface (pictured for AMS application), with and without an-
notation

53



Figure 3-6: Rotator Synth Control Panel, with and without annotation. Note that as
pictured, synth controls are currently labeled for the wearable biosensor application,
whereas graphics are for the AMS application. In practice, one would align synth
labels appropriately
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Chapter 4

Prior Art

“When we enter a room, we seem to see it all at once; we are not permitted this illusion

when listening to a symphony. “Of course,” one might declare, for hearing has to thread a

serial path through time, while sight embraces a space all at once. Actually, it takes time

to see new scenes, though we are not usually aware of this. That totally compelling sense

that we are conscious of seeing everything in the room instantly and immediately is

certainly the strangest of our “optical” illusions. Music, too, immerses us in seemingly

stable worlds! How can this be, when there is so little of it present at each moment?”

— Marvin Minsky, Music, Mind, and Meaning

We have long puzzled over the interplay between our visual and auditory senses.

As Minsky eloquently states, perception of a visual scene does not in fact occur

instantaneously. Instead, human eyes rapidly dart around a scene in an e↵ect

known as ‘saccades’ in order to enable the brain to build up a corresponding

mental map. Why can audio feel stable to the listener despite its temporal na-

ture? Why can a series of discrete audio streams blend together into a cohesive

whole? This chapter addresses theory and prior work in the study of auditory

perception and attentive capacity.
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4.1 Theory: Auditory and Visual Interplay

Studies have repeatedly shown that humans can only monitor four to five items

simultaneously before experiencing visual overload [92][43]. Generally, research

addressing this perceptual limitation has focused on methods for pre-processing,

filtering, and auto-labeling data in order to render only the most critical infor-

mation to the user. However, it is also important to recognize that the visual

system and the auditory system can serve complimentary roles in data display.

While visual displays work well for providing detailed renderings of local areas

of a dataset, aural scanning may be better suited for finding regions of inter-

est with short temporal durations in a large dataset. In audio, Cariani et al.

write that the human benefits from expectancy violation e↵ects in the auditory

cortex: ‘On all timescales, repeating patterns of sound and their evoked audi-

tory events build up strong representational expectancies of their continuation.

This e↵ect is created even with arbitrary and highly artificial repeating sound

patterns’ [38]. Changes in pitch, intensity, and duration create distinct neural

signatures, like mismatch negativity (MMN), that are similar to neural e↵ects

seen in linguistic and musical violations and suggest the existence of a broad

neural mechanism for the buildup of temporal pattern expectancies. MMN is

an e↵ect through which a fronto-central negative potential arises in the brain

with a latency of 150-250 ms and can be triggered even if the subject is not

consciously paying attention to the auditory stimulus [38].

Expectancy-violating e↵ects can also be used in visualizations to highlight con-

tent in one’s visual periphery. The Perifoveal display built at the Media Lab

(figure 4-1) renders data di↵erently based on whether it is in the forefront of

the users vision or on the outskirts of their gaze. Any noteworthy peripheral

data can summon attention through changes in brightness, detail, and size [61].

While the Perifoveal display attempts to make more explicit use of the visual

56



Figure 4-1: The Perifoveal display encodes information into the user’s visual periphery
that can summon an onlooker’s attention

periphery, it can be argued that audio is uniquely well-suited to monitoring data

in one’s attentive periphery since perception of audio emanating from a source

does not required directional fix. One immediately recalls the famous ‘cocktail

party e↵ect’ through which it is possible to deliberately fix one’s attention on

a particular sound source even when, for example, many conversations are tak-

ing place at once. Relatedly, expectancy-violating stimuli such as hearing one’s

name voiced can involuntarily summon attention. An attention-grabbing au-

ditory e↵ect has been described in the literature as an ‘auditory event’, which

for non-speech audio is defined as ‘a mental construct typically produced by

temporal acoustic contrasts that distinguish subsequent from preceding sound

patterns’ [38].

4.2 Auditory Scene Analysis

Auditory Scene Analysis (ASA) describes a set of heuristics that model the or-

ganization of incoming auditory data into a scene around the listener. Within

an auditory scene of discrete and su�ciently segregated sound sources, the lis-

tener’s attention can shift from source to source [32]. Pioneering work on audi-
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Figure 4-2: Both images drawn from work by [32]. Left: van Noorden Diagram phases
for pitch. Tones falling in region 2 are perceived as segregated, tones falling in region
1 are perceived as unified, and tones within the fission and temporal coherence bound-
aries are ambiguous to the listener and dependent on attention. Right: Comparison
of von Noorden diagrams for pitch and noise brightness

tory scene analysis was conducted by Bregman in 1994 [36]. Cariani’s biological

framing of ‘expectancy violation’ in the previous section is qualitatively simi-

lar to Bregman’s ‘old-plus-new’ heuristic’: when new components are abruptly

added to a spectrum of partials, the ASA system is skilled at deducing which

partials are a continuation of the previous signal and which are newly added.

The newly added partials are perceived as a separate sound. Both authors con-

clude that the onset of sound is a crucial moment in auditory scene analysis

[36].

E↵orts have been made to model perceptual segregation of streams in terms of

common auditory parameters. For example, the van Noorden Diagram maps

the perception of two tones with respect to their pitch di↵erence and intertone

onset interval into regions where one or two streams are perceived, as well as an

ambiguous region in which perception is dependent on attention [26]. While the

van Noorden diagram is typically used to map stream segregation with respect

to pitch di↵erences, Barass et al. have made an e↵ort to broaden the palette of

such diagrams to other audio properties including brightness of a noise grain,

and then to amplitude and inter-level di↵erence panning of the noise grain [32].

Their experiment was conducted by asking subjects to select an intertone onset
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interval and then to adjust a variable parameter until segregation between two

streams can no longer be discerned. This data is collected over many trials.

The resulting van Noorden diagram for brightness of noise grain is very similar

to the original pitch diagram (see figure 4-2), suggesting that similar perceptual

processes may be involved. Some di↵erences exist in the resulting van Noorden

plot when loudness is varied, and stereo panning demonstrated that sources

greater than 60 degrees apart more readily segregate into separate streams.

Von Noorden diagrams can be useful in guiding sonification mapping algorithms

away from regions of perceptual ambiguity. In addition, perceptual equivalence

classes that have been identified can be useful in motivating mapping choices.

For example, it is di�cult to distinguish low-frequency harmonics even if they

have di↵erent phase spectra. It is also di�cult to distinguish harmonic, low fre-

quency sounds with the same fundamental frequency since they usually produce

the same pitch despite di↵erences in spectral content [38].

4.3 Spatialization for Enhanced Segregation

The auditory cortex creates an auditory scene based on the rich content of in-

coming audio into each ear. When two sound sources have di↵erent internal

representations in the auditory cortex, they will also have separate sets of per-

ceptual attributes. When the sounds are fused together by the auditory cortex

into a single representational object, their respective attributes will blend to-

gether as well. Similar harmonic structure and similar onset time are two of the

strongest factors that cause the fusion of incoming audio to objects and events.

Together, these generate a unique timbre for the event [38].

When two frequency components lack common harmonic structure and onset

time, the listener may hear the distinct properties of individual instruments

such as pitch, timbre, loudness, duration, and location [38]. However, interfer-
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ence and masking between multiple audio streams can impede the listener from

fully segregating the streams. An example provided by [35][34] is binaural inter-

ference, a phenomenon in which the presence of a low-frequency noise interferes

with perceived interaural time di↵erences for a simultaneously presented high

frequency narrow-band noise.

Spatialization can be used to minimize interference and masking e↵ects. The use

of spatialization to regulate stream segregation has a number of specific advan-

tages. Firstly, it is an independent parameter in the sense that the spatialization

of a particular stream can be modified without risk of the change interfering

with other parameters. (Conversely, if pitch and loudness are modified inde-

pendently, interaction between these two dimensions may cause ambiguity in

the resulting stream) [32]. Secondly, it provides the user with a physical map

for the sound sources which can aid in the sonic learning process.

The capacity for spatialized audio to aid in the perception of segregated streams

has been evaluated only a handful of times in literature. In particular, a study

of discrete signal identification in audio showed that when audio streams were

separated at greater than 60 degree angles, participants were able to identify

significantly more independent sources than when no spatialization was imposed

[86]. While there is an intuitive argument for the potential for spatialization to

aid in stream segregation, there are also some risks to consider. For example, in

visual search experiments, the introduction of spatialized search items has been

shown to increase response time but decreases accuracy in users. Furthermore,

when two streams are spatially segregated, the division of attention required to

monitor each stream is at risk of increasing cognitive load (due to the increased

demands on ones spatial reasoning). A further limitation is that our capacity for

temporal reasoning between spatially segregated streams has been demonstrated

to be inferior as compared to cases where multiple data parameters are encoded

into a single auditory stream. Therefore, there are a considerable number of
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Figure 4-3: Screenshot from the Personify Sonification Platform built at CSIRO [31]

drawbacks in using spatialized audio [86].

A study on spatialized audio identification that is most closely related to the

current discussion compared user identification of two pitch segregated signals

that are spatially segregated from two pitch segregated signals emanating from

a single source [86]. Researchers found improved signal classification accuracy

when audio streams are spatially segregated. Trials were also performed where

the timbral properties of the set of two pitch contours were modified, (though

within each trial the two streams had the same timbral properties). Fourteen

timbres were tested altogether by altering modulation index, the ratio of fre-

quency of the carrier to the frequency of the modulator and oscillator envelope.

Certain timbral properties were perceived more clearly than others when audio

was spatialized, and the timbres that resulted in best and worst results were

analyzed further. When spectral centroids were extracted, it appeared that

longer attack periods correlated with improved perception of the signals.
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Figure 4-4: Screenshots from Sandbox Sonification Platform built at Georgia Institute
Of Technology [95]

4.4 Data Sonification Platforms

Up until now our discussion has focused predominantly on prior work in the

study of auditory perception. Rotator, in more practical terms, is intended as

a sonification platform.

A number of data sonification platforms have been developed in the past. Four

examples are the Sonification Sandbox (a Java application developed by the

Georgia Institute of Technology, figure 4-4) [95], SonArt (a platform developed

at Stanford University, figure 4-5 [33], Personify (a scientific data sonification

platform built at CSIRO, figure 4-3 [31], and MUSE (A musically-driven data

sonification platform created by UC Santa Cruz) [78]. Each tool makes use of

visual information to aid in the user experience. For example, Personify asks

users to customize a visual representation of a data-to-audio mapping space

where axes correspond to musical properties, and the Sonification Sandbox al-

lows users to view line plots of data streams as they are being sonified. How-

ever, unlike the sonification platforms mentioned above, the Rotator platform

is specifically aimed at diversifying the way that users distribute data across

their senses, which we have yet to see as the focus area of a sonification tool.
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Figure 4-5: Screenshot from Sonart, a sonification platform built at Stanford [33]
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Chapter 5

Architecture

5.1 Architectural Overview

Rotator is a client-side application built in Javascript and architected in React

[12] and Flux [7]. The most heavily used low-level APIs are D3 and Web Audio.

The decision to build Rotator as a web-based application was reached for a few

principle reasons. Firstly, real-time, web-based audio technology has improved

tremendously over the last decade and is rapidly becoming a standard. Secondly,

previous experience integrating together desktop synthesis tools like Pure Data,

Max MSP, and Ableton Live suggest that the installation process for a new user

is arduous; a web-based application requires only a browser. Finally, extending a

niche visualization tool like ROOT1 was entertained as a possibility and may still

be considered in the future. Web Audio does have some drawbacks, however.

First of all, it is still under active development and therefore lacks certain basic

audio streaming features that are commonplace in desktop audio processing

software. Secondly, it is designed for browser integration, and therefore more

1ROOT is a C++ framework used for visualization in particle physics [14].
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Figure 5-1: Generalized Flux/React Architectural Paradigm (Note that the above
diagram is not specific to the Rotator application)

work is required for integration into apps.

5.1.1 React

React is a Javascript framework released in 2013 to aid developers in create

large, data-driven client-side applications. A React user interface is built up

from a hierarchy of modular, reusable view components. Each component con-

tains both view logic as well as a render function that generates markup code, a

break from traditional web design paradigms in which strict separation between

Javascript and HTML code is expected.

To the extent possible, developers pass data to the root of the React compo-

nent hierarchy and each component passes down data to its children as required.

This architecture can be particularly e�cient when the data used to render the

application changes over time; rather than directly update the Document Ob-

ject Model (DOM) as in traditional Javascript applications, React uses a virtual

DOM, a lightweight abstraction of the DOM in which a di↵ operation (an oper-

ation that detects changes) can more rapidly reveal updates to the application

state in between sequential component re-renderings. React takes full control

over DOM updating for this reason. Note that in the context of the Rota-

tor project, the lack of DOM access proved repeatedly troublesome since any

tool or library that requires DOM access must either be integrated outside the
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scope of the React framework and managed separately, else hacked to cooper-

ate with React’s rendering protocols. Even certain features of standard libraries

used for this project like d3 require deliberate steps to integrate. Increasingly,

React-compatible libraries are being released, though often with only partial

feature support. For example, [57] is a first pass at Web Audio/React integra-

tion that proved too minimal for the purposes of the Rotator project but is

still reflective of a growing trend in the developer community towards building

React-compatible libraries. For the time being, the onus is often on the devel-

oper to choose alternative integration strategies in order to benefit from React.

Nevertheless, it is an immensely popular tool choice.

5.1.2 Flux

Flux is a design pattern that allows React applications to benefit from cen-

tralized and tightly-managed data storage. It is composed of a data store,

developer-defined actions called by React’s view components to modify the data

store, and finally a dispatcher that regulates communication with the data store.

See Figure 5-1 for the general dataflow.

5.1.3 React + Flux in Rotator

Together, Flux and React provide a scalable and portable framework for web

development. Objects remain highly decoupled from one another, and data

flows approximately uni-directionally through the view component hierarchy,

easing the process of tracking down bugs and optimizing the application’s re-

rendering speed.2

Figure 5-2 shows a simplified flowchart of the React view components designed

2Note that in the Rotator application, some breaks from this uni-directional paradigm were
required, e.g. for the purpose of supporting audio synchronization across multiple React components.
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Figure 5-2: Simplified React view component hierarchy for the Rotator application.
Note that additional communication loops exist that are not pictured

for the Rotator application. There are three principle data flow chains: one

controlling sound synthesis, one controlling visualizations, and one controlling

the node map used to navigate within a dataset. A combination of callback

functions and store updates enable communication between sibling components.

5.2 Data Stream Format

Each data stream’s header is formatted with a title, a set of (x,y) coordinates

representing the node’s position, and a synth type, followed by an array of

data points. Figure 5-3 shows a schema for the expected CSV format as well

as an example of a stream called ”Body Temperature” drawn from a sensor

at geometric location (4.55, 6.9) to be synthesized using the beat synthesizer.

Possible extensions to the interface could include drag-and-drop node place-

ment and a user-adjustable or smartly automated synthesizer mapping control,

each of which would serve as an alternative to hardcoding corresponding pa-

rameters in the data file. However, each application area considered in this

thesis included a geometrically fixed node map and strong reason to keep the
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Figure 5-3: Data file schema (left) and example implementation of schema (right)

synth:data mapping fixed. Therefore, the current implementation su�ced.

5.3 Graphics Architecture

Graphics are generated using d3: a common, low-level Javascript library for

building data-driven visualizations from bottom up [6]. Certain d3 features

including the brush component require DOM access, impossible within React.

The React implementation of the d3 Brush component [13] was broken at the

time of engineering and has a number of limitations. Therefore, a trick was

used to exclude d3-dependent components from the React hierarchy while still

benefiting from data passed through the component chain. React’s standard

shouldComponentUpdate method is set to always return false, whereas the

componentWillReceiveProps method calls the appropriate component reren-

dering functions. In this way, React no longer controls the components, and the

component is therefore free to mutate the DOM while still receiving updated

props passed through the chain of React components. See listing 5.1.

shouldComponentUpdate(nextProps , nextState){

return false

};

componentWillReceiveProps(nextProps) {

if(nextProps !== this.props){

this._updateChart(nextProps)

this._updateTicker(nextProps);

}

}

Listing 5.1: A technique for excluding d3 components from the React component

hierarchy so that the d3 component can mutate the DOM

68



5.4 Synthesizer Architecture

Sound synthesis is performed using Web Audio. In the current software archi-

tecture, each data stream’s associated audio synthesizer component is mounted

and activated when the user wishes to sonify the stream. Six synthesizer types

are currently available: noise, envelope, clicks, oscillator, and beats, and

direct. Each synth’s gain is independently adjustable.

5.4.1 Noise Synth

The white noise synth populates an audio bu↵er of size 100,000 with random

values and then channels the bu↵er through a low-pass filter with a cuto↵ fre-

quency driven by the data. Rapidly changing data results in a windy sound.

5.4.2 Envelope Synth and Click Synth

The envelope synthesizer defines an envelope’s attack, decay, sustain, and re-

lease times, ramping up an oscillator to a frequency driven by the incoming

data. The click synth is another iteration of the envelope synth but with pa-

rameters shorter in duration, and applied to a bu↵er filled with white noise.

The click synth envelope parameters are defined in listing 5.2.

envelopeModulator.attack = .005 // seconds

envelopeModulator.decay = .005 // seconds

envelopeModulator.sustain = 0.1 // multiply gain.gain.value

envelopeModulator.release = 0.01 // seconds

Listing 5.2: Click synth envelope parameters
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scale_factor = (.01 * modDepth * fund_freq) / maxVal

scaled_data_pt = 2 * maxVal (cur_data_pt - maxVal) / (maxVal - minVal)} + maxVal // scales the data between

minVal and maxVal

output_freq = fund_freq + scaled_data_pt * scale_factor // varies output frequency from the fundamental frequency

based on modulation depth

Listing 5.3: Calculation of output frequency for oscillator synth based on a maximum
value, fundamental frequency, and modulation depth set by the user (note that minVal
is hardcoded)

osc_1_output_freq = fund_freq

osc_2_output_freq = fund_freq + (1/10) * (Math.exp(Math.abs(6 * (scaled_data_pt + 0.6))) - 1) * scale_factor

Listing 5.4: Calculation of output frequencies for the two oscillators composing beat
synth based on fundamental frequency and scale factor

5.4.3 Oscillator Synth and Beat Synth

The oscillator synth has user-defined fundamental frequency and modulation

depth and uses incoming data to modulate the pitch of the oscillator. The beat

synth creates a beat e↵ect between two oscillators using data to modulate the

small frequency gap between each oscillator. The further that the incoming

data is from a preset threshold value, the higher the frequency of the beats.

Furthermore, basic wave shaping distinguishes data values above and below

the threshold; values below the threshold trigger two sinusoidal oscillators, and

values above the threshold trigger two triangle oscillators.

The methodology used to incorporate user-defined parameters is summarized

by listing 5.3 for the oscillator synth. The data-driven beat modulation for the

beat synth is controlled by listing 5.4. Note that the modulation depth chosen

by the user often exceeds 100% since within a particular data window, the data

may only contain a fraction of the stream’s total range.

5.4.4 Direct Synth

The direct synth populates an audio bu↵er that is played back at a rate deter-

mined by the user-defined tempo. This synth is not yet compatible with the

70



moving graphical ticker and is also technically an audification rather than a

sonification. Therefore direct synthesis is treated as alternative mode for the

software accessible in the upper control panel.3

5.4.5 Custom Synthesizer

To properly integrate an entirely new audio synthesizer component into Rotator,

a set of data parameters must be specified as props. Both the required and

optional parameters are summarized in listing 5.5. Information about the data

region contained in the d3 brush element, the location of the audio periscope

necessary for adjusting spatialization, and all user-defined synthesizer tunings

are passed into each synth component. Callback functions are used by the first

initialized synth to help maintain app synchronization. Most importantly, each

synth must be passed the audioContext object that is defined higher up in the

component hierarchy. The audioContext is Web Audio’s principle structure for

storing a complete chain of audio e↵ects built up by all active synthesizers.

class GenericSynth extends Component{

propTypes{

//ID and AudioContext

ID: React.PropTypes.number.isRequired ,

context:React.PropTypes.object.isRequired ,

//range of values in the user -defined sliding window

inWindow: React.PropTypes.array.isRequired ,

// spatialization parameters for controlling panner

spatialcoords:React.propTypes.object.isRequired ,

center:React.propTypes.object.isRequired ,

spatialize:React.propTypes.bool.isRequired

//User -defined synth settings

scale_factor:React.PropTypes.number ,

ff:React.PropTypes.number ,

gain:React.PropTypes.number ,

// synchronization callback functions used by first synth

setbeat:React.propTypes.func ,

3Note: Web Audio streams at a sampling rate of 44,100hz and does not allow adjustments to this
sampling rate. An attempt was made at resampling the audio using the audio � resampler React
library [5], but this approach was ultimately abandoned in favor of simple playback rate changes
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setNextTime:React.propTypes.func ,

// synchronization accessors for all synths

spb:React.PropTypes.number.isRequired ,

nextTime:React.propTypes.number.isRequired ,

approxbeat:React.propTypes.number.isRequired ,

}

}

Listing 5.5: PropTypes for Synthesizer Component Compatible With Rotator

5.5 Custom Audio Scheduler/Synchronizer

A principle goal of this application is to enable the user to listen to multiple

data streams synchronously in order to, for example, hear correlations between

streams. A sample-accurate scheduler was therefore deemed important. How-

ever, building a sample-accurate audio synchronizer/scheduler within the hier-

archy of React components designed for this application poses an engineering

challenge, in particular due to the order-of-magnitude 10’s of milliseconds delay

in sibling component rerendering. In terms of design goals, the user should be

able to take the following actions while the audio is playing and expect the

audio to remain synchronized across streams:

– Add one or more data streams

– Remove one or more data streams

– Change tempo

– Change window size

5.5.1 Standard Practices Used

As mentioned in the prior section, all Web Audio nodes are defined within an

audioContext, and each audioContext has an associated high-precision clock
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that can normally be used to schedule sample-accurate audio. While there are

no formal standards for how to design a reliable audio scheduler, a common

practice is to use Javascript’s setTimeout function to periodically poll whether

the time of the next note to be played is within a preset schedule-ahead time.

If true, then the note is scheduled using web audio’s high precision clock, and

the nextNoteTime and beatNumbers are advanced. An evident trade-o↵ exists:

a high-schedule ahead time results in fewer dropouts from browser lag but in-

creased latency when a user tries, for example, to change tempo. Functionally,

as long as the schedule-ahead time is large enough to accomodate Javascript’s

clock imprecision, this approach will work. However, a great deal of customiza-

tion that will be described in this section is required in order to make this

type of scheduler keep a set of synthesizer components built in React in syn-

chrony (or, for that matter, a set of modular synthesizer components built in

any framework)4.

5.5.2 Customizations

A set of oscillator synths were devise a plan for the additional engineering

needed to create a reliable metronome across React components. Firstly, since

the Browser restricts the number of audioContexts that can be active at any

time, and since we wish for all synthesizers to access the same clock, it makes

sense to define a single audioContext in the app MainContainer and to pass a

reference to the audioContext to the set of active audio synthesizers lower in

the component chain (as previously shown in 5.5).

However, trouble arises since there are small but critical delays in rendering

time between each node’s synthesizer component when React re-renders the

chain of components, and also because the synth components cannot directly

4see Figure 5-2 for a reminder of the Rotator view component hierarchy and the set of sibling
synth components that must be kept in synchrony
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communicate with one another but must communicate through callback func-

tion contained in parent components. Let’s consider the design goals listed

above and the decisions made to accommodate each design goal.

5.5.3 Additional Info on Add a Stream

Two cases exist: either the audio stream is the first to be added, or there

already exist other streams. For the first audio stream, the beatNumber of the

metronome is assumed to be 0, and next beat time is calculated based on the

current time. The first audio stream will begin triggering a callback function

living in the MainContainer that stores information about the subsequent beat’s

number and time.

When other streams are added, the next beat’s number and time are instead

retrieved as props sent up to the MainContainer from the first synthesizer and

back down from the MainContainer to the remaining synthesizers in order to

initialize the new stream, allowing the streams to remain synchronized. This is

a hard task: the new component must accurately know which beat to play and

at what time to play it despite the lack of access to any single accurate clock

due to the order-of-magnitude tens-of-milliseconds delay in component reren-

dering. Roughly, the solution used is to test conditions with respect to a heavily

rounded timestamp (thus accurate across all components) but still use very pre-

cise mathematically calculated timing information for actually scheduling audio

events. In sum this design deviates somewhat from the unidirectional dataflow

ideal that one strives to achieve when designing in React, but the use of callback

functions for communicating between sibling components is still considered to

be within standard practice.

An alternative design option would have been to extract the scheduler code in

its entirety to the MainContainer and to periodically rerender each synth with
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the time the next sonified data point should be scheduled and the value of the

data point. This may have simplified the rerendering flow and eliminated the

need for MainContainer callback functions, but has the downside of making the

audio synthesis code itself less flexible and more confined to the beat structure

set in the mainContainer. For example, what if a sonification tactic for one

synthesizer involved going o↵ beat, or changing the rate of data playback? At

the time of design, the perceived benefit of flexibly allowing the synthesizers to

deviate by adjusting their own scheduling information merited the additional

work to allow the scheduling code to live in the synthesizer component. Given

the synthesis techniques ultimately selected, it is now clear that extracting the

scheduler code into its own component would be a worthwhile step. This change

may also improve audio synchrony with the graphical ticker added late in the

engineering process. In its current iteration, the ticker refresh rate is limited

and can cause app freezing when larger many visual plots are displayed at once.

5.5.4 Additional Info on Tempo Setting + Window Size

If the tempo is changed, one runs the risk of React synth components hearing

the change milliseconds before or after one another and thus rapidly growing

out of sync. Without an explicit design change, this problem was likely to set in

within 5-10 user-driven tempo changes. In order to preserve synchrony, code in

the MainContainer and synthesizer ensures that tempo changes only take e↵ect

1 beat after the most recently played beat. This design decision constrains how

high the tempo can be set while preserving synchrony, but has su�ced.

A user may shrink the current window size while the synchronizer is scheduling

notes in the previously contained data region. To accommodate this, we set the

beatNumber to 0 any time it either equals or exceeds the currently reported

window size: if(this.beatNumber >= this.props.inWindow.size).
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Chapter 6

Application Areas

In this section, two prospective application areas for the Rotator tool are sum-

marized as case studies, and a third application area is presented in the form of

a brief summary. A biosensor dataset [15] serves an example of o✏ine analysis

of a high-dimensional dataset for validating extracted features and for under-

standing the interplay between parameters. A simulation of Shor’s algorithm

[11] serves as an example of sonification of a quantum system as a more natu-

ral representation of quantum superposition. A temperature dataset from the

AMS control room illustrates the possibility of using a tool like Rotator to as-

sign one’s auditory and visual senses to separate frequency scales [4]. The node

map used for each application area is pictured in Figure 6-1.
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Figure 6-1: Node maps from each of the three application areas considered

6.1 Biosensor Data Analysis

6.1.1 Motivation

Despite their increased prevalence in academic research, machine learning algo-

rithms often obscure the significance of features extracted from data and leave

the researcher with minimal understanding of why an algorithm succeeds or

fails. Furthermore, data analysis in machine learning is often extremely di�-

cult and error prone, since in order to extract meaningful features the researcher

must be able to see interactions between many of the raw signals recorded, and

the potentially hundreds of features that can be extracted from them.

For this reason, and despite its limitations, data visualization is still regularly

relied upon for validating the truthfulness and accuracy of extracted features.

As an example, in the specific task plotted in Figure 6-2, the researchers involved

originally computed the steps feature incorrectly and only corrected the error

after plotting the raw data alongside the computed features.

However, it is also clear from Figure 6-2 that attempting to examine a large

number of signals visually is in itself an arduous task. Despite plotting only

two raw data signals and only four of the approximately 400 features related to

the problem at hand, the figure is cluttered and confusing, and the researchers
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Figure 6-2: Example of raw biosensor data plotted alongside a set of extracted fea-
tures, all with respect to elapsed time. The user can understand the interrelations of
only a limited number of streams when plotted visually

working with it are likely to miss important information. While alternative

visualization approaches may exist, any plot of e.g. six parameters at once is

likely to be visually overwhelming. Dimensionality reduction schemes can help,

but in this case the raw data streams and features are obscured. Our task is to

integrate a dataset combining raw data and computed features into the Rotator

platform to enable the researcher to distribute data between their senses.

6.1.2 Dataset

A dataset was provided by the A↵ective Computing group. This data was

collected from a user study participant equipped with the A↵ectiva Q wrist-

worn physiological sensor that records accelerometer, skin temperature, and

Electrodermal Activity (EDA) data (a standard measure of variations in skin

conductance in the skin of the wrist). The principle task of the researchers who

own this dataset is to develop models that predict a person’s stress, happiness,

and ultimately, depression [64].

Because physical activity (steps), sedentary activity (stillness), and movement

speed are all relevant to depression, the researcher must correctly extract these
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from the data. Similarly, a peak with a particular waveshape in the EDA signal

represents an Electrodermal Response (EDR), which occurs due to increased

Sympathetic Nervous System (SNS) activity and can be indicative of increased

emotion and stress; therefore EDRs must be correctly detected as well. However,

EDRs that occur during movement or when the persons body temperature is

high are less likely to relate to stress. This sort of understanding of the inter-

relation of multiple features and signals at once plays a central role in deducing

how to best analyze the data.

6.1.3 Integration of Biosensor Data Into Interface

The Rotator interface was originally intended for applications in which data

derived from a network of sensors is analyzed. However, the dataset under

discussion is derived exclusively from a single wrist-worn sensor. Therefore,

a geometric layout was imposed in which each data node is spread across a

human body contour line, as shown in Figure 6-1. The advantage of a scattered

geometric layout is to allow for spatialization of audio which as described in

chapter 4 should enhance the listeners capacity to segregate data streams. A

physical map associated with a physical body is also thought to expedite the

training process for learning the per-stream sonifications (though this advantage

has not been explicitly tested). The disadvantage of this approach is that it

may lead users to believe that the dataset was derived from a multitude of

sensors situated around the body. For the purpose of this thesis, the geometric

layout choice is simply explained to participants of an associated user study

(see chapter 7 for additional discussion).

Custom sonifications were developed for each stream in order to maximize the

listener’s capacity for stream segregation based on theory addressed in chapter

4. The sonification scheme is summarized in table 6.1, sample audio files will
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be available at URL: http://resenv.media.mit.edu/#Projects#rotator

and an example of sound waves juxtaposed with their corresponding input data

streams is shown in Figure 6-3. Each synth’s architecture will be familiar from

chapter 5. This data lends itself very well sonification in that many data types

are present: transients (steps, EDR), continuous rapidly varying signal (ac-

celerometer, EDA) continuous, slow-changing signal (body temperature), and

binary signals (artifact detection). Clicks and pulses are used for the transient

data, which are particularly readily perceived when spatialized with respect to

the listener.

The EDA signal is sonified as white noise with a cuto↵ frequency modulated by

the data. The user may intuitively draw a connection between the rushing-water

sound of white noise and the activity level of the skin. Furthermore, it has been

demonstrated in prior literature, and also is rather self-evident, that transients

and noise are most readily distinguished by the listener. Recalling discussions

from chapter 4, this phenomenon is largely due to the fact that transients are

most likely to have distinct onset times. Next, the accelerometer data is sonified

as a high-frequency-band oscillator with modulated frequency. The continuous

and rapidly changing nature of the raw accelerometer data lends itself well to

to this simple oscillator audification. The body temperature was sonified using

the low-frequency-band beat e↵ect synth described in section 5.4. In this way,

the beat frequency increases based on how far the temperature deviates from

its average value. Furthermore, the wave shape change distinguishes positive

and negative deviations from the average. Thus, the user can readily deter-

mine how far body temperature has drifted, and in what direction, e↵ectively

creating sonic axes, since perception of deviation is of particularly paramount

importance for evaluating this particular stream. In other cases, it is expected

that users will be able to learn to identify deviations from the expected sound

with su�cient accuracy even without sonic axes imposed. The frequency band
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Accelerometer continuous Oscillator with modulated frequency
EDA continuous Filtered white noise with modulated cuto↵

Temperature slow-changing Beat e↵ect + wave shaping
Steps transient Clicks generated using envelope function
EDR transient Oscillator-driven pulse

Artifact Detector binary TBD

Table 6.1: Biosensor Sonification Scheme Summary

of the temperature synth is kept su�ciently separated from the high frequency

accelerometer synth, bearing in mind the Von Noorden diagram for pitch seg-

regation (section 4.2). Taken together, this application area allows for the user

to both verify the accuracy of extracted features (in many cases the feature

extraction algorithms are far from perfect), as well as derive a feeling for the

stress and activity levels of the person under study by growing acquainted with

the auditory interplay between variables as well as by distributing data between

their visual and auditory senses. This application area is the subject of a user

study conducted to evaluate the Rotator interface. Therefore, more detail is

provided in chapter 7.

6.2 Shor’s Algorithm

Audio may be a very suitable data display mode for quantum systems. This pre-

sumption is largely due to the nature of quantum superposition, a phenomenon

in which a quantum particle exists in many states at once with some probabil-

ity of a measurement yielding each state. As we have just seen in section 6.1,

audio can be layered in a way that enables the simultaneous experience of many

streams at once. Here we use Rotator to sonify the quantum states that arise

in a famous quantum factoring algorithm called Shor’s algorithm.
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6.2.1 Background and Related Work

Mathematically, a quantum system is comprised of a set of state vectors and

corresponding probability amplitudes. In time-dependent systems, a time-

dependent term evolves the quantum superposition such that the probability

amplitudes for each term change predictably. Equation 6.2.1 shows a general

representation of a time-dependent quantum state with c
(0)
n

e
�iEnt

h corresponding

to the evolving coe�cients of each state, and  
n

(x) corresponding to the states.

 (x, t) =
1X

n=1

c(0)
n

e
�iEnt

h  
n

(x) (6.1)

It is notoriously di�cult to convey quantum superpositions in a visually convinc-

ing manner. Usually, visualizations of the system’s corresponding probability

distribution functions (PDFs) or density matrices su�ce (for example, see the

QuTiP tool Python Quantum Toolbox [65]). For a two-level quantum system,

the Bloch sphere can be used to encode the amplitudes of the |0i and |1i states

as well as the state’s overall phase. Finally, a nontrivial number of attempts

at more complex visualizations for higher-dimensional quantum systems have

been described as well, including but not limited to [52][47][85][55]. However,

only a small number of quantum system sonifications have been attempted

([44][70][84][68][96]).

6.2.2 Overview of Shor’s Algorithm

The most fundamental building block of a quantum algorithm is a qubit- a quan-

tum bit that, when measured, will yield one of two states, frequently written in

Dirac notation as |0i and |1i or as vectors:
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Figure 6-4: Example of Bloch sphere visualization that can convey the state of a
single qubit
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However, prior to measurement, the qubit can exist in any vector state spanned

by this two-dimensional vector space.1 In order to perform more complex com-

putations, one can construct a high-dimensional system of multiple qubits by

taking the tensor product of a set of qubits. Corresponding high-dimensional

linear operators can also be generated by taking the tensor product of low-

dimensional operators. The high-dimensional operator can act on all states in

a quantum superposition simultaneously through an e↵ect known as quantum

parallelism, and quantum parallelism is at the heart of the speedups experienced

in quantum algorithms relative to their classical counterparts.

Shor’s algorithm is a famous algorithm that factors numbers in polynomial time,

faster than the classical algorithms which run, at best, in sub-exponential time.

A brief summary of the algorithm su�cient for readers of this thesis is provided

in this section, but consult e.g. [71] for a very commendable treatment.

Suppose that we wish to find the prime factors of N. Firstly, we make an im-

portant observation regarding the series
P

x

ax (mod N):

1these vector states correspond to points on the Bloch sphere
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X

x

ax

(mod N)|
n=15,a=2 = 2

0
(mod 15) + 2

0
(mod 15) + 2

1
(mod 15) + 2

2
(mod 15)

+ 2

3
(mod 15) + 2

4
(mod 15) + 2

5
(mod 15) + 2

6
(mod 15) + ...

= 1 + 2 + 4 + 8 + 1 + 2 + 4 + 8 + ...
X

x

ax

(mod N)|
n=21,a=2 = 2

0
(mod 21) + 2

0
(mod 21) + 2

1
(mod 21) + 2

2
(mod 21)

+ 2

3
(mod 21) + 2

4
(mod 21) + 2

5
(mod 21) + 2

6
(mod 1) + ...

= 1 + 2 + 4 + 8 + 16 + 11 + 1 + 2....

(6.2)

As illustrated in the above two examples for N=21 and N=15, there is a pe-

riodicity r that arises in the series
P

x

ax (mod N) which we call the ‘order’.

Critically, the order of N is proven to evenly divide (p� 1)(q� 1), where p and

q are the prime factors of N. For example, for N = 21, we see in equation 6.2.2

that the order r is 4, the prime factors of N = 15 are 5 and 3, and indeed

(p � 1)(q � 1) = 8 which is divisible by 4. Similarly, for N = 21, the order r

is 6, the prime factors of N = 21 are 7 and 3, and indeed (p � 1)(q � 1) = 12

which is divisible by 6. To make use of this series to compute prime factors, we

take the following steps2:

1. Choose an integer x < N

2. If x, N have common factors, then GCD(x,N) give factors of N

3. Else, x is coprime to N, so we compute the order r of xj (mod N)

4. Once a suitable r is known, then taking GCD(xr/2, N) yields factors of N

All would be well if there were a fast classical order-finding algorithm, but it

turns out that for large N, the order may be nearly as large as N itself.3 For a

fast order-finding algorithm, we turn to quantum mechanics. Figure 6.2.2 shows

the circuit diagram for the quantum order finding algorithm. Two registers of

qubits are prepared in the 0 state (let’s say that t qubits compose the first

register and n qubits compose the second register). Next, a H⌦(8) operator4 is

2GCD is ‘greatest common denominator’ operation for which a fast classical algorithm exists
3famously, the di�culty in factoring large numbers is the principle behind RSA encryption
4Notation: ⌦ indicates a tensor product. H⌦(n) corresponds to taking the tensor product of n

Hadamard gates, yielding a higher-dimensional operator
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Figure 6-5: Quantum circuit diagram for Shor’s algorithm. Algorithm stages that are
sonified are marked with green circles (one green circle per quantum register at each
stage  that is sonified)

applied to the first register. The Hadamard operator is a simple matrix operator

that expands the set of qubits into a superposition of all basis states with equal

amplitude given by 1p
2t

such that the state remains normalized. This stage of

the algorithm corresponds to state  1 in Figure 6.2.2.

Next, a unitary linear operator V
x

is applied, where:

V
x

= (|ji |ki) = |ji
��k + xj

↵

and |ji and |ki are the states of each of the registers of the quantum system.

Application of V
x

yields, generally:

| 2i =
1

2t

2t�1X

j=0

|ji
��2jmodN

↵

The quantum nature of the system allows for all powers to be computed si-

multaneously and stored in the superposition. Furthermore, there is now a

periodicity in the second register. Regrouping terms with respect to the second

register, a linear sequence in the first register also becomes apparent. This is

most clearly seen by example for e.g. N = 21:
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 2 =

1

512

[(|0i + |6i + |12i + ...+ |504i + |510i) |1i

(|1i + |7i + |13i + ...+ |505i + |511i) |2i

(|2i + |8i + |14i + ...+ |506i) |4i

...

(|5i + |11i + |17i + ...+ |509i) |11i]

(6.3)

Performing a measurement on the second register yields any of the above states,

each of which has the same periodicity. The quantum state after the second

register measurement is  3 in Figure 6.2.2.

Finally, in order to unveil the periodicity that we seek, we apply a quantum

Fourier transform (QFT) operator, which results in a probability distribution

containing very sharp peaks a distance 2t

r

apart ( 4). Measurement of the state

after the QFT operator is applied ( 5) is extremely likely to yield one of these

peaks, which is subsequently used to calculate r (sometimes with additional

iterations of the algorithm required).

6.2.3 Integration With Rotator

We now bring the discussion back to the Rotator tool. Shor’s algorithm is an

interesting choice for sonification. On the one hand, it is a quintessential quan-

tum algorithm with a periodic structure that can be elucidated sonically. On

the other hand, the high bit numbers per register required even for small N

result in very large superpositions of states to work with. The states have equal

amplitude at many stages of the algorithm (as compared to e.g. the quantum

harmonic oscillator where a time-dependent term modulates the probability

amplitudes as the system evolves), and the periodic structure in the algorithm

does not lie in the probability amplitudes of the states, but instead in the series

of states themselves. To make this periodicity apparent in audio, we must iter-

ate through the states in superposition rather than play them simultaneously,
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which breaks from our initial motivation to sonify quantum systems in the first

place! In the literature, only one other example of a sonification of Shor’s

algorithm exists [96] and in this case the composer chose to sonify each and ev-

ery quantum gate contributing to the algorithm rather than sonify the stages of

quantum states, a wholly alternative sonification approach that arguably misses

an opportunity to elucidate the notion of quantum superposition.

Still, a quantum algorithm circuit diagram is ideal for integration with Rotator,

since it serves as a node map that can guide users in exploring di↵erent stages

of the quantum algorithm. The following initial approach was taken:

First, a Javascript-based simulation of Shor’s algorithm was located within a

quantum computation tool called jsqubits [11]. The simulation was modified to

output data at each of four stages labeled  in the included circuit diagram.

Sample files were read out as three 1D-arrays corresponding to first register

states, second register states, and amplitudes for N = 35.5 First register and

second register states were placed in appropriate locations in the circuit diagram

node map for  1,  2,  3, and  4, and amplitudes were placed as nodes below

the map. A mod N operator was applied to  2 and  3 in order to make a

periodicity more apparent in audio.

 4’s amplitude stream corresponding to the output of the QFT was sonified

using the ‘clicks’ synth. Since there is predictable variation in the spread of

each peak in the QFT output, a single click indicates a narrow peak and 2-3

clicks indicate a peak with more spread, with click count corresponding to the

sampling rate of the signal. The remaining streams were sonified using oscillator

synths, where the oscillator’s pitch is modulated based on the data stream

being sonified. The pitch band separation between oscillators, the periodicity

in many of the streams, and the audio spatialization all contribute towards

5Since jsqubits is implemented in Javascript, full integration of the platform into Rotator would
be relatively straightforward in the future.
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keeping the streams segregated, in particular given that a user is likely to only

require listening to a maximum of 2-3 streams at a time in this application.

Figure 6-6 shows excerpts of visual and audio captures from some example

use cases. These include listening to the first register before and after the

second register is measured as well as listening to the second register before

and after it is measured. In each of these cases, one can see that the placement

of the Rotator audio window will generate spatialized audio in which the user

hears the state of the quantum system at  2 to their left, and the state of

the quantum system at  3 to their right, almost as if the sequential states

existed in superposition (which is not a viable interpretation of the physics of

the system, but is nevertheless an interesting method for creating a feeling of

presence within the algorithm as one seeks to understand its progression). The

previous quantum state is heard to the listener’s left, and the next state is

heard to the listener’s right. As a reminder, the first two examples in figure 6-6

correspond to sonification of the actual states of each register of the quantum

system. One can also separately sonify the amplitudes of each state in either of

these sonifications; although the amplitudes within each term of state  2 and

 3 are equal, the change in amplitudes between  2 and  3 cues the listener

into a net reduction of possible states after register two has been measured,

given that the states are normalized. The final example in Figure 6-6 shows a

user listening to the amplitude stream and first register stream of  4 after the

QFT has been applied, hearing the sequential amplitude peaks that are known

to be multiples of 2t

r

. In sum, one can use Rotator to explore the sequential

quantum states of an algorithm. It may be more fitting to call this application

area a sonification of the quantum order-finding algorithm since iterations of

the order-finding algorithm that are often needed to determine the factors, as

well as the final steps used in the algorithm to compute the prime factors of N
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are omitted6.

Although the integration approach we have just described was suitable for the

Rotator platform, it left more to be desired in terms of our initial motivation

to use auditory superposition to convey quantum superposition. As articulated

earlier, the high bit counts required in many quantum algorithms at first made

it hard to imagine the usefulness of auditory superposition in an application

area like this one. However, looking back at equation 6.2.2, we see that at

the  3 stage of Shor’s algorithm, the total number of bits in register 2 for

e.g. N = 35 is reduced to 12. For smaller N, an opportunity is created to

hear the 12 corresponding first registers in superposition, where the value of

the second register is used as a control bit to set the fundamental frequency of

a oscillator with pitch modulated by the sequential states of each term’s first

register. Modifications are required in the Rotator application to support this

approach. The output consists of 12 oscillators that have a small pitch shifts

with respect to each other, due to the shifts between each first register term

apparent in equation 6.2.2. While not yet fully developed, this approach is

closer to [84] in the relevant literature and is a more versatile implementation

approach for any future quantum system sonifications in Rotator.

6.3 AMS Temperature Data (Brief Summary)

A brief description of a third application area is given in this section

6.3.1 Introduction

The alpha-magnetic spectrometer (AMS) is a particle physics detector aboard

the International Space Station responsible for detecting particles that may con-

6these final steps are purely classical, which motivated the omission
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tribute to our understanding of dark matter, anti matter, and cosmic rays [91].

Much like any experiment demanding constant monitoring, an AMS control

room located at CERN is constantly manned. AMS is installed on the ISS main

truss. Among other parameters, a set of temperature nodes located throughout

AMS are carefully monitored for any signs of overheating or malfunction. A

dataset consisting of 8 temperature nodes located throughout the detector was

provided. The AMS RAM and WAKE sides of the detector, which contain ra-

diating panels, are facing away from the truss. AMS PORT and STARBOARD

sides are instead facing along the truss length. On the STARBOARD side there

is another payload that causes thermal conditions to be di↵erent. In summary,

di↵erent sides receive di↵erent sunlight depending on their relative angle with

respect to the Sun and on the actual geometry of the payloads installed in the

station, and this changes across an orbit and as a function of spacecraft attitude.

The position of each node on the detector impacts the temperature of the node,

and furthermore there are oscillations in the data at di↵erent timescales cor-

responding to 92-minute orbitals (high frequency) and lower frequency drift in

orbit of the International Space Station that progressively changes the average

ISS angle with respect to the sun direction (known as the beta angle).

6.3.2 Motivation and Sonification

Rather than aim for maximal stream segregation, we suspect that an array of

temperature nodes lends itself to a sound that blends together, creating the

feeling of being surrounded by a temperature field. As users grow accustomed

to this ambient hum, they will be able to identify warmer and cooler regions of

the detector, and can hear the temperature changes move around the detector

as its orbit changes. Sudden change of the ISS attitude (referring to orientation

in space) may result in sudden changes to AMS temperature readings. ISS
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attitude changes may, for instance, be in response to a request for facilitating

the docking of an incoming vehicle.

To sonify the data, a simple mapping was created using eight spatialized oscil-

lator synths, with temperature controlling the pitch of each synth.

6.3.3 Multi-Scale Perception

This dataset was particularly appealing due to its behavior at multiple time and

frequency scales. In order to perceive both scales at once using visual tools, it

is necessary to either zoom in and out, else look back and forth between two

plots at di↵erent time scales. A tool like Rotator can be used to give the

user a zoomed view of the low frequency oscillations of the AMS temperature

data, while an accompanying visualization simultaneously provides the user

with larger timescale, low frequency behavior. This behavior is most readily

accomplished by increasing the modulation depth of the stream’s sonification

in order to amplify smaller-scale changes in the sound. Meanwhile, a lowpass-

filtered signal can be visualized in order to remove higher frequency behavior

from the visualization. In this way, the user is able to simultaneously track

temperature variations of a temperature node at two di↵erent timescales, while

only monitoring a single auditory and single visual track.

In the context of this thesis, it was decided to hone in on the biosensor ap-

plication area due to the diversity of data available and to save any further

exploration of multi-scale perception for future work.
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Chapter 7

Evaluation

7.1 Introduction

The biosensor application area was selected in order to test Rotator because

this application area is the most developed and thus has the widest diversity

of sonification schemes built for it. Specifically, a small-scale user study was

conducted in order to gauge the influence of adjustable perceptual modes on a

user’s ability to draw conclusions about the structure of a dataset.

7.2 Methodology

The biosensor dataset used in this study consisted of one day of activity from

a person who self-reported as very stressed, and one day of activity from a

person who self-reported as very calm in an e↵ort to maximize the diversity of

data samples. Broadly, the task given to users was to classify approximately

six-minute-long excerpts from the biosensor time series dataset on a 5-point
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Figure 7-1: Control panel for user study. Under di↵erent perceptual conditions, users
rank biosensor data samples based on perceived stress and activity levels in the sample

ranking of stressed/relaxed and active/still1. The first ~45 minutes served as a

training session. The training session consisted of the following steps:

– Introduction to audio samples drawn from each of the five streams one-by-one

– Introduction to visual samples drawn from each of the five streams one-by-one

– Discussion of table 7-1 used as a qualitative guide for ranking stress/activity

– Introduction to audio and visual samples from a high-stress, low-stress, high-

activity, and low-activity participants

– Opportunity to listen to samples of all audio streams playing simultaneously

Table 7-2 shows a reference given to all users for evaluating trials on the basis of stress

and activity. The table is based on a heuristic commonly used for evaluating stress

conditions on the basis of a user’s EDA signal. Note that in addition to the stressed

and active heuristics, a heuristic for a more charged emotional state was given (high

temperature/EDA, low accelerometer motion). Users were instructed to consider a

participant with a charged emotional state as having some increased likelihood of

being stressed.

It is important to note that there are many biological caveats that are omitted from

this study. For example, during sleep, people are known to experience ‘EDA storms’,

huge surges in EDA reading that, if body temperature is low, could easily be con-

founded with a stress response when analyzed by a näıve researcher. For the purposes

of a perceptual study, confounding factors like sleep status were not important (and

in fact an ’isSleeping’ stream was subsequently added to the interface). It is only

1Note that the user could set arbitrary rates for scanning the data
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Figure 7-2: Excerpt from an information sheet provided to users

important that the provided identification instructions be consistent across all user

study participants.

After the training session, users were asked to rank between five and ten data samples

under four perceptual conditions: (1) all streams presented as audio (‘A’), (2) all

streams presented as plots (‘V’) (3) all streams presented as audio and up to one

stream at a time simultaneously presented visually (‘AVS’) (4) A subset of streams

presented as audio and up to one stream at a time presented visually; the visual

stream cannot also be sonified (‘AVD’). Conditions (3) and (4) distinguish between

a scenario where the user is observing a plot that they simultaneously hear and a

scenario where the user is seeing a plot that they do not simultaneously hear. As

long as the conditions of each trial were met, the users were free to move around the

audio and visual boxes (see figure 3-2 as a reminder) as well as adjust the synthesizer

mapping parameters available in the control bar. Figure 7-2 shows the input panel

that was integrated into the Rotator interface for the purpose of the user study. The

‘Done Analyzing Sample’ button loads in an arbitrary 6-minute-window of data for

the next test. Browser localStorage was used to collect responses.

After each of the four trials, the users were asked to fill out a NASA task load index

(NASA-TLX) survey, a widely used assessment tool with over 6000 citations used

for ranking perceived cognitive workload to complete a task [56]. At the end of the

study, users filled out a final survey regarding their subjective experience performing

the required task under each condition.
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7.3 Results

Due to the small sample size of this user study, it is important to recognize that

results are suggestive of trends, but should not be taken as conclusive.

7.3.1 NASA TLX Results and Discussion

To evaluate the subjective cognitive workload experienced by users after each task,

each participant filled out the NASA TLX four times: once after each trial. The

rounded and weighted NASA TLX scores for each participant are provided in Figure

7.1. We make a few key observations from the results in Figure 7.1: firstly, the partici-

pants’ self-reported audio experience correlates in all 5 cases with their perceived task

load ranking of the audio-only trial - that is, participants with more audio experience

endured less cognitive workload when presented data sonically, and participants with

less audio experience endured more cognitive workload when presented data soni-

cally. This result confirms a widely verified conclusion in sonification literature that

extended training periods and comfort working with audio contribute to one’s ability

to make use of sonification tools. Note that while in all cases, NASA-TLX cognitive

load measurement for the auditory-only scenario were highest, 4 out of 5 users also

stated that of all the conditions, their performance in the all-audio condition seemed

to improve the most (this result, a survey question, is not pictured).

Secondly, and very critically, we observe in Figure 7.1 that for 4 out of 5 participants,

the ‘AVS’ task was ranked as requiring nearly equivalent cognitive load as the all-

visual task (the AVS task, as a reminder to the reader, is the task in which all audio

was sonified but one stream at a time could also be visualized, almost like a ‘peeking’

mode). For the one participant for whom this was not the case, the ‘AVS’ task

was still ranked the easiest to complete among the three out of four trials involving

audio (NASA TLX of 69 compared to NASA TLX 77 for ‘AVD’ and NASA TLX

of 83 for ‘A’). Furthermore, in addition to self-reporting no prior audio experience,

this subject verbalized extreme lack of familiarity working with audio throughout the
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Participant TLX (‘A’) TLX (‘V’) TLX (‘AVS’) TLX (‘AVD’) Audio Experience?
1 61 51 43 n/a A lot
2 69 42 46 52 A lot
3 73 33 33 48 None
4 58 51 50 54 Some
5 83 38 69 77 None

Table 7.1: Summary of NASA TLX weighted scores for each of 5 user study partic-
ipants under four di↵erent perceptual modes, which self-described audio experience
marked for each participant. TLX scores are out of 100, with higher TLX scores in-
dicate greater perceived cognitive workload, and lower scores indicate less perceived
cognitive workload. See body of text for descriptions of perceptual modes

Figure 7-3: Perceptual conditions in which participants felt they improved through
the duration of the study, as reported in a post-study survey

2 hour testing period. Further validating the NASA-TLX results indicating relative

comfort under the ‘AVS’ condition, in the post-study survey, 4 out of 5 users included

the ‘AVS’ state among trials in which they felt performance improved over time (see

Figure 7-3).

This result is a promising first indication that there is merit to a tool like Rotator.

One may have expected, given our familiarity with interpreting visual data, that par-

ticipants would have strongly preferred the all-visual case. Instead, as summarized

in Figure 7-3, most expended nearly equal subjective e↵ort when only one plot was

visualized at a time (compare the ‘AVS’ mode and ‘V’ mode in Figure 7-3). Further-

more, the all-audio trial was self-reported by all participants as requiring the most

e↵ort.
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Figure 7-4: Ranking of the five synthesizers on the basis of how readily identifiable
they are when played in tandem

There are a number of confounding factors to consider. Firstly, participants are only

exposed to one possible visualization methodology, so it is possible that a di↵erent

visualization approach would impact results. Secondly, the ‘A’ task was performed

prior to the ‘AVS’ and ‘AVD’ tasks for all participants, meaning that they may have

grown more accustomed to the audio during the latter tasks. However, based on

textual user reports, the visual peeking feature in the ‘AVS’ mode was particularly

useful as a means of validating any auditory cues. One participant writes ‘I definitely

felt the most confident in the ‘AVS’ scenario, because I could get a quick sense from

the audio and then allay any questions/concerns with a few targeted visual queries.’

another writes: ‘The visual information was especially helpful in verifying what I was

hearing.’

7.4 Evaluation of Synthesizer Choices

Users were asked to rank each of the 5 synthesizer types on the basis of how easily

identifiable they are when played in synchrony. Rankings are shown in Figure 7-4.

Interestingly, there was great consistency among the ratings, despite the discrepancies

in prior audio experience and perceived task workload. All users rated the steps most

easy to identify (sonified using the clicks synth) and 3/5 users rated the EDA second

easiest to identify (sonified using the noise synth). Thus the windiness of white noise

with modulated cuto↵ frequency, and the abrupt and spatialized transients, are most

easily distinguished by participants. On the other hand, temperature data, sonified
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using the beat synthesizer, was least readily identifiable by participants. This is a

curious result given that we recall the decision to impose sonic axes on the beat

stream in order to ease the user’s ability to determine whether temperature is low

or high. There is some possibility that the accelerometer (sonified using an oscillator

synth) interfered with user perception of the beat synth. Given the wide distribution

in reported identifiability of the accelerometer, this possibility is inconclusive. A far

more likely explanation involves the additional steps required to learn the features of

the beat synthesizer e.g. remembering what high and low beat frequencies indicate,

as well as remembering and identifying the two wave shapes corresponding to high

and low. Perhaps with additional training the stream would become more readily

identifiable.

7.5 Evaluation of Task Completion Times

Many users requested additional training time beyond the alotted 45 minutes for any

future studies, and in particular would appreciate immediate performance feedback

during the training. It is interesting to look at performance time across trials as a

metric for e↵ectiveness of training. Figures 7-5 and 7-6 show measures of performance

time across trials and modes. Interestingly, participants with more experience working

in audio (participants 03 and 07 in figure 7-5) actually took longer to complete the

audio-based trials despite rating the task as requiring less cognitive e↵ort according

to the NASA-TLX. This may be due to an increased capacity for discerning auditory

di↵erences and therefore a desire to listen more carefully. Or, as one participant with

some audio processing experience stated: “sorry I took so long, but the audio mode

was more fun.”

Overall, we again see that for most participants, the time required to complete the

‘AVS’ mode was very comparable to the time for completing the task all visually (see

Figure 7-5). However, 7-6 shows only hints of improved performance speed over time,

at least in the small number of trials users were exposed to in the study.
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Figure 7-5: Ranking of average time spent in each mode for each participant Note
that participant 03 did not complete the ’AVD’ trials. Also note that participants 03
and 07 self-reported as having more audio experience

Figure 7-6: Per-Participant Times Across Trials
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7.6 Evaluation of Task Accuracy

It is di�cult to verify the accuracy with which users completed each task since there

is no source of ground truth for the stress or activity level represented by the data.

However, we can treat certain measures such as step count, EDR count, and average

temperature as quantitative measures of each data stream and compare how readily

users perceive each parameter under di↵erent perceptual conditions. Recall Figure

7-2 showing the relationships between parameters that users were seeking to identify.

When all 3 parameters (step count, EDR count, and average temperateure) were

plotted with respect to the user study participant’s rating of activity and stress, no

patterns were immediately discernable (see figure A-1, included as an appendix, for

an example). Thus we immediately turn instead to single-parameter plots.

The numbers of detected steps that a person takes serves as the closest coarse 1-

dimensional measure of their activity level. However, if users purely ranked according

to step count, they would be misperforming, and failing to take into account the

additional biosensor parameters. Therefore, these two dimensional plots should be

treated as very approximate. Figure 7-7 shows how users ranked activity level based

on step count for each sensory mode. Audio rankings show the most spread in ratings,

suggesting the highest degree of perceptual ambiguity. Curiously, both ‘V’ and ‘AVD’

rankings (plots 2 and 4) show the most linear relationship between step count and

activity rating, despite the fact that we saw above that users rated ‘V’ and and ‘AVS’

as areas where they predicted most comfort. Users were free to adjust the audio

and visual windows during both ‘AVD’ modes and ‘AVS’ modes so it is unknown

exactly how users were choosing to perceive the steps synth within any given trial.

Still, the linearity of the ‘AVD’ plot lends credence to the merit of data presentation

modes with auditory and visual separation. However, looking at equivalent plots

comparing EDR count to stress rating (Figure 7-8), the most linearity occurs in the

purely auditory and purely visual modes, with worst performance in the ‘AVD’ mode,

suggesting that the synthesizer type guides which perceptual mode is most e↵ective.
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With more data from an expanded user study, we could perform a principle compo-

nent analysis to better understand how all data parameters contributes to the user’s

likelihood of ascribing a high rating to a data sample’s stress or activity measures.

7.7 Summary of Results

The most promising conclusion from this user study is the noteworthy jump in per-

ceived task ease, NASA-TLX workload, and in some cases actual performance for the

‘AVS’ presentation mode. In particular, the ability to peek at individual data streams

dramatically raised a user’s comfort and performance time when compared with the

audio-only mode. Rotator is expressedly designed to promote dual perceptual modes

just like the ‘AVS’ mode, in which the large majority of data streams are relegated

to one’s auditory periphery and only a few data streams are visualized. Furthermore,

there is a lot of evidence to suggest that performance would improve both in speed

and accuracy if the total experimentation time were to extend beyond the two-hour

sessions allocated per participant of this study.
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Figure 7-7: Scatter plot and heat map showing step count (x-axis) plotted with respect
to user ranking of activity level(y-axis) for modes ‘A’ (top) ‘V’ (second) ‘AVS’ (third)
and ‘AVD’ (bottom)
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Figure 7-8: Scatter plots and heat maps showing EDR count (x-axis) plotted with
respect to user ranking of stress level(y-axis) for modes ‘A’ (top) ‘V’ (second) ‘AVS’
(third) and ‘AVD’ (bottom)
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Chapter 8

Concluding Thoughts

8.1 Future Thoughts: Rotator4D

I end this thesis by stepping very far back and thinking as abstractly as possible

about how the Rotator tool can grow.

Human perception is limited. In particular, our Newtonian physics engines are

genetically designed, or perhaps trained through real-world exposure at a young

age, to operate in three dimensions, with little intuition for higher dimensional

spaces. Evidence over the last century that the universe in which we live is

itself a higher dimensional structure suggests that our three-dimensional per-

ception may be a matter of biological convenience. Rotator4D would probe

whether we can train and manipulate the human senses to perceive higher di-

mensional structures by strategically encoding overflow spatial dimensions into

sound. For instance, a 4-dimensional dataset could be encoded as an object in

a 4-dimensional audio-visual space. User-defined rotations would adjust both

the sonic and visual mappings. Rotator4D would be an evolution of the original

Rotator application. In both cases, the goal of the tool is to extend our attentive
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capacities. In the original Rotator application, we aimed to do so by encoding

independent linear data streams into the auditory and visual spaces, whereas

Rotator4D would focus on geometrically high-dimensional mappings. The orig-

inal Rotator tool may be immediately useful for data monitoring and analysis

scenarios previously addressed. Rotator4D would be more experimental and

less tied to particular applications.

A tool like Rotator4D would raise questions about whether we can extend our

capacity for spatial reasoning. Could our neural machinery learn to interpret a

fourth spatial dimension encoded in an auditory space, or is our neural machin-

ery inherently optimized to encode the 3-dimensional reality that we experience?

Biologically speaking, this question amounts to whether our spatial encoding

mechanisms are based on underlying geometric rules and operations, like dis-

tance measurement and rotations, or whether they are specifically based on

development of a 3-dimensional topological map. Anflalo and Graziano tested

the theory that we are capable of four-dimensional spatial intuition by develop-

ing a visual maze interface with a fourth direction [25]. At any stage, the user

can perform rotations with respect to any axis in the four-dimensional space

to reorient their view in the maze. Four dimensional topology is represented

using a carefully described color-coding and visualization technique, and the

map’s topology is restricted to straight lines and orthonormal segments. Using

the widely accepted premise that path integration (the ability to mentally sum

the lengths and turns of a path through space), is a reliable marker of spatial

acuity, users were asked to complete this four-dimensional maze and then, to

the best of their abilities, point a vector back to the starting point of the maze.

They were given feedback after each trial on the error in their approximated

angle. Their ability to perform this path integration task accurately over many

trials fit a two-phase transition: after 20 attempts, users performed as well as

a bot that partially calculates the appropriate angle using 3D spatial reasoning.
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After many more trials, however, users achieved a performance accuracy that

exceeds optimal performance in a 4D maze completed using only 3-D ability.

The results provide evidence that our underlying spatial processing machinery

is capable of learning path integration in four dimensions. A handful of other

attempts have been made to measure human ability to intuit four-dimensional

space, sometimes by allowing the user to move along one axis and experience

sequential 3-dimensional cross sections of the 4-dimensional shape [27].

Using the knowledge that our neural system may be equipped to develop 4-D

spatial intuition, could an auditory signal replace one of the spatial dimen-

sions? How could this extra dimension be rendered? Approaches to consider

include spatialization, mappings to the timbre/frequency domain, di↵erent in-

struments/notes, sequential patterns, etc. How can this auditory mapping be

coupled into visual perception so additional auditory dimensionality is intrin-

sically derived from what is seen? Does the human brain have su�cient in-

tegration between visual and auditory processing to even make this possible?

Evidence of vision-impaired individuals gaining some level of learned ‘visual-

ization’ from the ambiance heard from a series of vocalized clicks points to

intriguing possibilities here [69], such as realized in other mammals like bats

[87] and dolphins [58].

8.2 Concluding Statements

This thesis has summarized two sonification tools. Firstly, the Quantizer project

was summarized, which is a tool aimed at real-time, data-driven artistic expres-

sion. The Quantizer project’s associated website reached a large audience and

is the first tool to expose real-time sonification of high-energy-physics data to

the public. Secondly, the Rotator project was introduced, which is aimed at

studying how moving some data into ones auditory periphery impacts percep-
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tion of a dataset. Initial studies using the Rotator tool suggest that users may

be comfortable analyzing a high-dimensional dataset even if most of the data is

presented auditorily and they are only allowed to look at a single dimension of

a data at a time. Finally, a few possible application areas for the Rotator tool

were considered.

A large variety of methods can be used for presenting and exploring data soni-

cally and visually, and optimal presentation modes are probably task/goal de-

pendent. We have considered only a few possible areas here. It is also possible

that faster, real-time integration of data into the tool could expand its po-

tential influence. Audio samples described in this thesis will be available at:

http://resenv.media.mit.edu/#Projects#rotator
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Appendix A

Unused Plots from User Study
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Figure A-1: User rating of activity level WRT average temperature, step count,
and EDR count for modes ‘A’ (upper left) ‘V’ (upper right) ‘AVS’ (lower left) and
‘AVD’ (lower right). Higher values on the color bar represent a higher activity rating.
Although this plot most accurately reflects how relevant parameters correlate to user
ranking, no conclusions were drawn since there are no clear trends
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