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Abstract

Sound and space are fundamentally intertwined, at both a physical and perceptual
level. Sound radiates from vibrating materials, filling space and creating a contin-
uous field through which a listener moves. Despite a long history of research in
spatial audio, the technology to capture these sounds in space is currently limited.
Egocentric (binaural or ambisonic) recording can capture sound from all directions,
but only from a limited perspective. Recording individual sources and ambience is
labor-intensive, and requires manual intervention and explicit localization.

In this work I propose and implement a new approach, where a distributed
collection of microphones captures sound and space together, resynthesizing them
for a (now-virtual) listener in a rich volumetric soundscape. This approach offers
great flexibility to design new auditory experiences, as well as giving a much more
semantically-meaningful description of the space. The research is situated at the
Tidmarsh Wildlife Sanctuary, a 600-acre former cranberry farm that underwent
the largest-ever freshwater restoration in the northeast. It has been instrumented
with a large-scale (300 by 300 m2) distributed array of 10-18 microphones which
has been operating (almost) continuously for several years.

This dissertation details methods for characterizing acoustic propagation in a
challenging high-noise environment, and introduces a new method for correcting
for clock skew between unsynchronized transmitters and receivers. It also de-
scribes a localization method capable of locating sound-producing wildlife within
the monitored area, with experiments validating the accuracy to within 5m.

The scale of the array provides an opportunity to investigate classical array
processing techniques in a new context, with nonstationary signals and long
interchannel delays. We propose and validate a method for location-informed
signal enhancement using a rank-1 spatial covariance matrix approximation,
achieving 11dB SDR improvements with no source signal modeling.

These components are brought together in an end-to-end demonstration system
that resynthesizes a virtual soundscape from multichannel signals recorded in situ,
allowing users to explore the space virtually. Positive feedback is reported in a user
survey.
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Notation

I have relied on standard notation where possible, but notation
varies from field to field. Given that this research spans multiple
fields with sometimes conflicting notation, and in the interest of
ensuring consistency within this document, I define some terms
and notation here that is used throughout the dissertation.

Functions (interchangeably called signals) are considered to
be mathematical objects that we can perform arithmetic on, and
which can be evaluated at a given value with the common f (t)
notation. Unless otherwise noted or clear from context, signals are
assumed to be complex-valued (thus results should generally also
apply to real-valued signals as a special case). Both continuous
and discrete signals act as vectors in the linear algebra sense.
Generally arithmetic operators can be applied to functions, for
instance ( f + g)(t) is equivalent to f (t) + g(t). We do not use
the relatively-common convention of using e.g. f (t) to refer to a
function - f (t) is the result of evaluating f at t.

We also frequently treat random processes as signals. Perform-
ing arithmetic and evaluation adds an additional level of indirec-
tion - If x and y are random processes, z = x + y gives another
random process, and sampling from z is equivalent to sampling
from x and y and adding the result. i.e. z0 ∼ (x + y) is the same
as x0 + y0 for x0 ∼ x, y0 ∼ y. Evaluating a distribution as x(t)
gives distribution over the results of evaluating samples of x. We
also use standard notation for various properties of distributions,
such as the expected value E[y] which produces a signal, or E[y(t)],
which gives the expected value of the process y at time t. Note that
if it is unclear which variable the expectation is being taken over, it
can be given explicitly, for example Ei[v(i)] is the expected value of
evaluating the signal v at a random point i.

We also define notation for a number of useful operators on
functions, all of which are linear, and apply in both discrete and
continuous domains:

Fx Fourier Transform of x



resynthesizing volumetric soundscapes 13

F−1 x̃ Inverse Fourier Transform of x̃. (We commonly will use f̃ to
represent the Fourier transform of f ).

Rx Reversal of x (reflection across zero), i.e. Rx(t) = x(−t)

Dx Creates a linear operator (a matrix in the discrete case) with x
along the main diagonal. This is particularly useful to represent
elementwise multiplication, i.e. Dxy(t) = x(t) ∗ y(t).

These operators bind more tightly than function application, so
F f (ω) is evaluating the Fourier transform at the frequency ω, not
taking the Fourier transform of f (ω), (recall f (ω) is a value in the
range of f , not a function).

The scaling convention used in F and F−1 is defined such that
Parseval’s identity holds.

The adjoint of x is represented as x. For scalars this is a com-
plex conjugate, and for vectors and matrices it is the hermetian
transpose.
‖x‖ is the L2 norm of x.
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Introduction

Sound and space are fundamentally intertwined, at both a physi-
cal and perceptual level. Sound radiates from vibrating materials,
filling space and creating a continuous field through which a lis-
tener moves. The technology to capture these sounds in space
however, is currently limited to one of two approaches. One is
an egocentric single-perspective recording, such as with binaural
(or more recently ambisonic) microphones. The other is a labor-
and expertise-intensive process of placing individual microphones
on sources and adding an ad-hoc collection of general ambience
microphones. This leaves open the question of how the record-
ings are related spatially, which requires yet more design and
engineering.

In this work I propose and implement a new approach, where
a distributed collection of microphones captures sound and space
together, resynthesizing them for a (now-virtual) listener as a
rich volumetric soundscape. The soundscape is constructed by
decomposing the acoustic scene into its constituent components,
collectively auditory objects. This approach provides great flexibility
to design new auditory experiences, as well as giving a much
more semantically-meaningful description of the space. The
concept of the soundscape has been widely explored, most notably
starting with Shaffer 1, and more recently in an analysis synthesis 1 R. Murray Schafer (1977). The Tuning

of the Worldcontext 2, which also provides an excellent example of the labor
2 Andrea Valle, Vincenzo Lombardo,
and Mattia Schirosa (2009). “Simu-
lating the Soundscape through an
Analysis/Resynthesis Methodology”.
Copenhagen, Denmark

required for effective volumetric soundscape capture. While this
prior work covers the concept of soundscape (and more broadly
acoustic ecology), from a perceptual and cultural context, I focus
here primarily on the technical methods and tools necessary to
capture and analyze such soundscapes.

Since 2013 my colleagues and I have been exploring various
facets of technologically-mediated perception, with applications
in remote presence as well as sensory augmentation. This work
was articulated by Dublon and Paradiso 3 as tapping into environ- 3 Gershon Dublon and Joseph A.

Paradiso (July 2014). “Extra Sensory
Perception: How a World Filled with
Sensors Will Change the Way We See,
Hear, Think and Live”

mental sensors as an extension of the human perceptual system.
More fundamentally we’ve been exploring what it means to really
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be somewhere at all.
Most of this work has been site-specific, and in a wetland

restoration context. The Tidmarsh Wildlife Sanctuary is a 600-acre
former cranberry farm that underwent the largest-ever freshwater
restoration in the northeast. Since 2012 our group has instru-
mented the site with environmental sensors (e.g. temperature,
humidity, soil moisture), microphones such as the one depicted
in Figure 2, and cameras 4. We are collaborating with a variety 4 Brian Mayton et al. (May 2017).

“The Networked Sensory Landscape:
Capturing and Experiencing Ecological
Change Across Scales”

of other researchers from other institutions that are investigating
ecological questions related to the restoration.

We’ve built a number of interfaces for users to interact with
Tidmarsh remotely such as Hakoniwa5, and Doppelmarsh6 7. 5 https://vimeo.com/212681207

6 https://vimeo.com/240549912
7 Don Derek Haddad et al. (2017).
“Resynthesizing Reality: Driving Vivid
Virtual Environments from Sensor
Networks”

These interfaces provide an augmented-reality (AR) and virtual-
reality (VR) experience respectively. They allow users to engage
with different aspects of Tidmarsh from afar. Both systems bring
the live microphone streams into the virtual environment, and also
generate music that responds to the real-time sensor data 8. We’ve 8 Evan F Lynch and Joseph A Paradiso

(2016). “SensorChimes: Musical Map-
ping for Sensor Networks”. Brisbane,
Australia

also worked on the on-site experience in the HearThere project 9

9 Spencer Russell, Gershon Dublon, and
Joseph A. Paradiso (2016). “HearThere:
Networked Sensory Prosthetics
Through Auditory Augmented Reality”;
Gershon Dublon (2018). “Sensor(y)
Landscapes:Technologies for New
Perceptual Sensibilities”. Doctoral
Dissertation. Cambridge, MA

which uses head-tracking bone-conduction headphones to let a
user tap into far-away sounds or sonified sensor data while they
are at the marsh. This is one of the most direct instantiations of the
sensors-as-human-perception vision.

While these projects provided experience and insight into the
listener’s experience of Tidmarsh, the lack of a clear mapping
between what the microphones captured and what the listener
should hear was a recurring issue. This was the initial motivation
for the work in this dissertation. The high-level goal is to combine
the signals from each microphone and resynthesize a plausible and
meaningful auditory scene at an arbitrary listening position. The
microphones are scattered across an area of the marsh roughly 300

by 300 m2, which includes both open marsh and a forested area, as
seen in Figure 1.

The framework I am adopting treats this as a problem of simul-
taneous localization and source separation. The goal of source
separation is to extract a target sound from a mixture of noise and
interfering sounds. The separated foreground signal such as a bird
call is combined with its location to create a virtual sound source
that can be rendered from the perspective of an arbitrary listener
position. The residual background noise at each microphone is
used to create a diffuse background soundfield. An off-the-shelf
audio engine is responsible for rendering the auditory scene to the
listener.

This leads to the question of what defines a foreground sound.
In this work I consider foreground sounds to be those that are

approved-1-gc81edd6
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Figure 1: A map of Tidmarsh showing
our microphone locations. The mapped
area is about 500 by 350m2.

Figure 2: A sampling of equipment
deployed at Tidmarsh. (Clockwise from
upper left) Some microphones ready
for deployment, a microphone in a tree
in the forested area, a 32-channel USB
audio interface with attached encoding
computer, a microphone on a pole
in the marsh, an expansion interface
providing an additional 16 channels
which is connected to the primary
interface via Cat5 cable. (Figure used
with permission from Mayton et. al)

approved-1-gc81edd6
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spatially-compact (they can be modeled as a point source). This
is obviously not the only definition of foreground sounds, and
not necessarily the most appropriate for all circumstances, but I
argue that it is very useful in the soundscape resynthesis context.
The purpose of segregating the foreground sounds is to be able to
provide more accurate spatial cues to a listener as to the sounds
location. Thus for sounds that are not spatially compact (such as
wind, or a large flock of birds) it is less important to accurately
spatialize them, and they can be treated as diffuse background
sound.

Problem Statement

Our VR and AR applications allow the user to move arbitrarily
around the monitored area, yet we only measure the soundscape
at the individual microphone locations. For a given listener lo-
cation, we need a way to map point measurements onto a stereo
signal that the listener can hear through headphones. Further,
this rendering should reflect the relative locations of listener and
source. The first approach we tried was to create a source at the
location of each microphone, a sort of virtual speaker. This is
straightforward to do with commercially-available game audio en-
gines. These engines can spatialize such sources into headphones
relative to the listener’s virtual head position, providing spatial
perception. They also provide control over the effective area that
a source appears to emit from, permitting either point sources or
diffuse sources.

This approach has several problems. For sounds only audible in
a single microphone, this approach has the effect of localizing the
sound at the location of the microphone instead of the source. For
sounds audible through multiple microphones the situation is even
worse - delayed copies of the sound from each microphone create
a kind of "virtual multipath", perceived by the listener as echos or
reflections.

In this work I propose a more informative approach: given a set
of microphone signals at known locations, the system uses all of
them together to estimate a meaningful and convincing 3D sound-
scape that can be experienced at arbitrary locations. Meaningful
indicates that result should provide a listener with a perception of
what is actually happening on the site. Convincing indicates that
the listener should have a sense that what they’re hearing could
plausibly be what they would hear were they actually present
on-site.

These criteria were chosen in part because they provide a useful

approved-1-gc81edd6



resynthesizing volumetric soundscapes 18

tension and keep the work focused on the experience of a listener.
For instance, a verbal description of the sounds on the site and
their locations is a meaningful representation, but is not connected
to the perceptual experience of being on site. Conversely, a com-
pletely synthetic but carefully-designed soundscape could be very
convincing but is disconnected from reality.

Applications

Outside of the VR and AR context that initially motivated this
work there are a number of other applications in wildlife monitor-
ing and conservation. The proposed approach, when combined
with a classification system 10 would allow detailed monitoring of 10 Clement Duhart et al. (Oct. 2019).

“Deep Learning for Environmental Sens-
ing Toward Social Wildlife Database”.
Paris, France; Stefan Kahl et al. (2019).
“Overview of BirdCLEF 2019: Large-
Scale Bird Recognition in Soundscapes”

the movements and micro-habitats of different species. While there
is an abundance of literature on acoustic localization for wildlife, it
is typically performed over short durations (on the order of hours),
and often with a specific target in mind that is manually anno-
tated 11. Others, such as the HARK system 12 perform separation 11 Daniel J. Mennill et al. (Apr. 2006).

“Accuracy of an Acoustic Location
System for Monitoring the Position
of Duetting Songbirds in Tropical
Forest”; Travis C. Collier, Alexander
N. G. Kirschel, and Charles E. Taylor
(July 2010). “Acoustic Localization of
Antbirds in a Mexican Rainforest Using
a Wireless Sensor Network”
12 S. Sumitani et al. (May 2019). “An
Integrated Framework for Field Record-
ing, Localization, Classification and
Annotation of Birdsongs Using Robot
Audition Techniques — Harkbird 2.0”

and direction-of-arrival finding, but only support small arrays
with sources in the farfield.

Modern source separation techniques using deep learning have
enabled new tools for music production 13 14 but so far spatial

13 https://web.archive.org/
web/20200319181238/https:
//www.izotope.com/en/products/
rx/features/music-rebalance.html
14 Romain Hennequin et al. (2019).
“Spleeter: A Fast and State-of-the Art
Music Source Separation Tool with
Pre-Trained Models”

information (if used at all) has been modeled either with instanta-
neous mixtures, or within the framework of farfield arrays, where
the inter-microphone delay is small compared to the wavelengths
of interest. The proposed approach could be applied to multi-
channel recordings for the purposes of bleed (inter-microphone
interference) reduction, or remixing.

It could also enable new recording techniques where an area
is instrumented with a spaced array of microphones rather than
recording each source with its own microphone. A spatially-aware
representation would also enable new types of analysis of a space,
either for the purposes of capturing its "essence" and resynthesiz-
ing an infinite non-looping soundscape, or for compression and
prioritization. These representations could be particularly rich
when combined with the perceptual and semantic features that
affect how a listener hears and remembers sounds 15. Object-based 15 Ishwarya Ananthabhotla, David B.

Ramsay, and Joseph A. Paradiso (2019).
“HCU400: An Annotated Dataset
for Exploring Aural Phenomenology
through Causal Uncertainty”

representations such as Dolby Atmos have recently been gaining
traction in the gaming and home theater spaces, but the tools to
capture a space in these formats have been lagging.

This type of array could also be applied to conferencing sys-
tems, or factory monitoring contexts where the sound produced
by individual machines can give valuable information about its
operating state.
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Research Questions

With this context, we can further focus the research by working to
answer the following questions:

What field measurements are necessary to support localization and separation?
Outdoor environments have complex acoustics due to irregu-
lar landscape variations and complex geometry. Simulating
acoustic propagation at a particular site would require an
impractically-accurate 3D model, so on-site measurements play
an important role in system design and validation.

How do farfield beamforming DSP techniques extend to our nearfield and aliased condition?
Many sensor array techniques assume that the source is far
from the array, so the incoming wave can be considered to be
a plane wave. Additionally the spacing of the array is typically
small relative to the signal wavelengths. This work explores
the nearfield regime (the sources are within the sensor array)
and in the presence of significant spatial aliasing. Which ex-
isting techniques are applicable and where do they need to be
modified?

What elements are necessary to resynthesize a meaningful and convincing spatial soundscape?
This work is rooted in the perceived experience of a listener.
Rather than attempting to solve the ill-posed question of min-
imizing actual reconstruction error (e.g. in the mean-squared
error sense), my approach is to elicit in the listener a percept
that is meaningfully connected to the wildlife and ambient
environment on-site. This work develops and implements a
framework for soundfield resynthesis, demonstrated by an end-
to-end application that resynthesizes a soundscape captured on
site.

The remainder of this document is organized around these
questions. Part I describes the microphone installation and other
infrastructure installed at Tidmarsh, as well as a variety of acoustic
measurements that were performed to characterize the site. The
second research question is addressed in Parts II and III, which
describe acoustic array algorithms for performing localization and
separation, respectively. Finally, Part IV describes an interactive
application that renders the separated sounds from the perspective
of a listener.
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Part I

Characterizing the
Environment



Background: Impulse Response Measurement

The success of a localization and separation system is contingent
on assumptions about acoustic propagation at the specific site be-
ing monitored. We performed a variety of measurements on site to
characterize the propagation and validate or refute these assump-
tions. There are many techniques in the literature and practice
to measure impulse responses. Most are functionally equivalent
given the assumption that the system under test is noiseless, lin-
ear and time-invariant, but they perform differently when these
assumptions are violated. I have implemented several approaches:
exponential sine sweep 16, maximum-length sequences 17, Golay 16 Angelo Farina (2000). “Simultaneous

Measurement of Impulse Response
and Distortion with a Swept-Sine
Technique”
17 Martin Holters, Tobias Corbach, and
Udo Zölzer (2009). “Impulse Response
Measurement Techniques and Their
Applicability in the Real World”. Milan,
Italy; Wayne Stahnke (1973). “Primitive
Binary Polynomials”

codes 18, random phase multisine 19, and simple dirac delta (for

18 Edgar J. Berdahl and Julius O. Smith
(June 2008). Transfer Function Measure-
ment Toolbox; M. Golay (Apr. 1961).
“Complementary Series”; S. Foster (Apr.
1986). “Impulse Response Measurement
Using Golay Codes”
19 I. Mateljan (1999). “Signal Selection
for the Room Acoustics Measurement”

comparison).
The same general framework is used by all these methods:

1. Generate a stimulus. This stimulus should have energy in all
the frequencies of interest.

2. Play the stimulus through the system under test, and record the
response. We refer to this as the stimulus response.

3. Analyze the stimulus response to extract the underlying impulse
response, which estimates what the system’s response to a true
impulse would be.

Assuming the system is time-invariant, the stimulus response
will be periodic with the same period as the stimulus, so it is com-
mon to average multiple repetitions for to improve the effective
signal-to-noise ratio. This is because the energy due to the stimu-
lus will add coherently while the noise will not. Ideally analyzing
the unmodified stimulus should result in a perfect dirac delta.

Dirac Delta
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Figure 3: Time-domain plot of a dirac
delta. The black dots indicate digital
samples and the grey line traces the
corresponding continuous-time signal.

The simplest way to record an impulse response is to generate a
signal that approximates an actual impulse. The recording can
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then be used as-is without further processing. The main disad-
vantage of this method is that all the energy of the stimulus is
concentrated in time, so must have very high amplitude in order
to get an adequate signal-to-noise ratio. Sufficient instantaneous
power is difficult to achieve with a speaker while remaining in
its linear region, and even with an acoustic source such as a bal-
loon pop or starter pistol, there is danger of driving the capture
equipment into nonlinearity. Balloons and pistols also offer much
less control of the stimulus spectrum. This limits their applica-
bility for capturing impulse responses intended for simulation
via convolution, though they can still be useful for characterizing
reverberation statistics like decay time and direct-to-reverberant
ratio.

One benefit of these true impulse approaches is that if the
system is time-variant, they capture the actual response at the
measurement time.

Exponential Sine Sweep
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Figure 4: Time-domain plot of an
exponential sine sweep.

The exponential sine sweep (ESS) method spreads the stimulus
energy over time with a sinusoid whose frequency is modulated
from low to high. The signal has energy in all the swept frequen-
cies. The spectrum is not at all flat however, which must be com-
pensated for when analyzing. An ESS response is analyzed by
convolving with a time-reversed version of the stimulus, where the
amplitude is modulated to compensate for the non-flat stimulus.
The group delay of the analysis filter has the effect of shifting each
frequency to turn the input sweep into an impulse. The primary
benefit of ESS is that it separates out any nonlinear effects of the
system. Because the sweep goes from low to high, any harmonics
of the stimulus show up in the noncausal region of the impulse
response, and can be cropped out, or used for nonlinear system
modeling.

The main downside of the ESS method is that it is sensitive to
impulsive noise during the measurement process. Because analysis
consists of convolving the stimulus response with an inverse
filter that’s a downward frequency sweep, any impulsive sounds
that occurred during the recording process will generate audible
artifacts are a copy of the downward sweep. Thus this method is
not very suitable if there is likely to be uncontrolled background
noise in the system.

Another downside of ESS is that there are a large number
of variations and parameters that need to be selected, such as
start/stop frequencies, fade times to prevent discontinuities, and
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the exact curve of the frequency-modulating exponential. On the
other hand, this makes it much easier to control the bandwidth of
the stimulus, and thus the impulse response.

Maximum-Length Sequence
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Figure 5: Time-domain plot of a
maximum-length sequence. The
black dots indicate digital samples and
the grey line traces the corresponding
continuous-time signal.

The Maximum-Length Sequence method (MLS, also called
Schroeder’s Method) uses a linear-feedback shift register simi-
lar to what is often used by pseudo-random number generators,
which can be done very efficiently (though on modern computers
this is less of a consideration, particularly when the stimulus is
generated once and re-used many times). Analysis is performed
via circular cross-correlation, though because the stimulus signal
is ±1, the cross-correlation does not require any multiplications,
only sign-flips and addition 20. Because each sample of the sig- 20 Martin Holters, Tobias Corbach, and

Udo Zölzer (2009). “Impulse Response
Measurement Techniques and Their
Applicability in the Real World”. Milan,
Italy

nal is ±1, it has maximum digital "energy" for a given maximum
amplitude (low crest factor). However, if you consider the digital
signal as samples from a bandlimited continuous-time signal, the
amplitude is considerably larger than the sample values because of
inter-sample peaks, which must be accounted for when calibrating
playback equipment.

These sequences have the property that their circular autocorre-
lation has value 1 when the offset is 0, and − 1

L otherwise (where
L is the length of the sequence). This slight offset is because the
MLS sequence does not have a perfectly flat spectrum, but has an
attenuated DC component. At lengths typically used in acoustics
this offset is generally insignificant, and DC properties are not
generally relevant in acoustical systems.

Because this requires circular cross-correlation, typically the
stimulus consists of two or more repetitions of the sequence.

Random-Phase Multisine
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Figure 6: Time-domain plot of a
random-phase multisine stimulus. The
black dots indicate digital samples and
the grey line traces the corresponding
continuous-time signal.

The Random-Phase Multisine (RPMS) method generates a broad-
band stimulus in the frequency domain by synthesizing a flat
magnitude spectrum and randomizing the phase, then generating
the time-domain signal with the inverse FFT. This is easy to do,
and the analysis is a simple circular cross-correlation with the
stimulus signal. Additionally because the energy is spread across
all frequencies at all times it does not have the same artifacts
as the ESS method in the presence of impulsive noise. Like the
Maximum-Length Sequence approach, the response is analyzed by
performing circular cross-correlation, which for an identity system
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will recover a perfect impulse. Performing the cross-correlation
(generally performed in the frequency domain) is more costly
than MLS, which maybe relevant for embedded systems. However,
RPMS has the advantage that it is easy to design the spectrum of
the stimulus to match the needs of the measurement (e.g. using
"pink" noise rather than white). Shaping the spectrum of MLS
would require filtering the stimulus and response, which negates
its performance benefits.

Complementary Golay Sequence
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Figure 7: Time-domain plot of a Golay
sequence (parts A and B). The black
dots indicate digital samples and the
grey line traces the corresponding
continuous-time signal.

Golay sequences involve generating two stimuli, generally called A
and B, which have the property that the sum of their autocorrela-
tions is a dirac delta. This means that by doing our stimulus/anal-
ysis with each sequence separately, and then adding the results,
we get a perfect impulse measurement. One of the advantages of
this over MLS and RPMS is that it works under linear convolution,
so repeated stimuli are not necessary.

However, this approach is somewhat more sensitive to clock
skew errors because it relies on the alignment cancellation be-
tween A and B when recombining their responses. This has been
observed in the context of HRTF measurement 21, where it was 21 Pavel Zahorik (Feb. 2000). “Lim-

itations in Using Golay Codes for
Head-Related Transfer Function Mea-
surement”

shown to be more sensitive to time-variance.
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Audio Infrastructure Overview

The Responsive Environments Group has been maintaining a mi-
crophone installation at Tidmarsh in one form or another since
2013, and we have learned a number of lessons over the duration
of the deployment. Equipment has been damaged by rodents
chewing on the cables, as well as construction work and lightning
strikes, and we have iterated substantially on the deployment. This
part of the work has been particularly collaborative. The initial de-
ployment was performed by Gershon Dublon and Brian Mayton 22, 22 Gershon Dublon (2018). “Sensor(y)

Landscapes:Technologies for New
Perceptual Sensibilities”. Doctoral
Dissertation. Cambridge, MA

and since Spring 2018 it has been maintained and extended by
Brian Mayton and myself. Many aspects of the installation will be
described in more detail in Mayton’s upcoming PhD dissertation. I
designed and led the field experiments, with assistance from Brian
Mayton and many others in the Responsive Environments group
and the volunteers from the Living Observatory (a collaboration
between scientists, artists, and wetland restoration practitioners).

This chapter will describe the microphone array deployed at
Tidmarsh, as well as a series of field experiments we performed.
The experiments were designed to characterize the acoustic prop-
agation (for which we captured impulse responses at various
locations), as well as record ground truth audio at known loca-
tions that could be used to test the localization and separation
algorithms.

The on-site recording system includes between 10 and 18 micro-
phones (the number has varied over time). These are connected via
cables to an audio interface (Behringer X32 RACK) connected to a
small PC (Intel NUC running GNU/Linux). The PC compresses
the data and streams it to the lab, where it is archived. Because the
microphones are connected to a single audio interface, they are
synchronized, enabling accurate measurements of the time delays
between the arrival of a sound at different channels.

The microphones are a custom design by Brian Mayton and
consist of:

• EM272J Omnidirectional electret condenser microphone capsule
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from Primo Microphones Inc.
• Custom buffer circuit
• Aluminum enclosure (pipe cut to length)
• "Pigtail" cable with Switchcraft EN3C3MX waterproof 3-

terminal connector
• Reynolds OOMOO 30 silicone rubber

The capsule, buffer, and cable are soldered together and the
capsule and buffer are placed within the aluminum tube. The tube
is filled with silicone, with a jig ensuring that the capsules remain
exposed.

Figure 8: Four microphones deployed
at Tidmarsh. The boxes visible on the
poles include a waterproof panel-mount
connector for the microphone, as well
as cable glands to seal the cable coming
in, as well as the cables that continue on
to other microphones in a daisy-chain.

The initial installation used standard microphone cable to
connect each microphone to the audio interface in a "home-run"
configuration. The cabling was submerged throughout most
of the wetland area, and lightly covered with leaves and brush
where above ground, and in the forested area. The most frequent
issue we encountered was damage from rodents chewing on the
cables. Also the cables were difficult to splice in the field, as all the
conductors needed to be soldered and the splice sealed. In 2018

we replaced most of the cables with 24AWG gel-filled direct-burial
shielded cat5e cable. The cat5e cable has higher series resistance
(19Ω/100m vs 13Ω/100m for high-quality mic cable), but lower
capacitance (52pF/m vs 162pF/m) and is designed to manage
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much wider bandwidth than what we find in audio. This has a
number of advantages.

• The sheath of the cable is designed for long-term outdoor use,
and seems less susceptible to rodent chewing, or simply less
attractive to rodents.

• In the case the cable is pierced, the gel filling prevents water
from wicking further down the cable by capillary action.

• We are able to use the four pairs within the cat5e cable to carry
balanced audio for four channels, allowing us to "daisy-chain"
the microphones rather than needing a home-run for each
microphone.

• There are a large number of tools developed by the telecommu-
nications industry that we are able to leverage to ease mainte-
nance. For example, splice boxes are available with waterproof
glands and small punch-down blocks inside, so only the shield
wire needs to be soldered. We have also been able to use stan-
dard punch-down blocks for making connections inside the
larger boxes, enabling greater flexibility and ease of mainte-
nance.

• The controlled impedance and high bandwidth (100MHz vs.
50kHz) enables the use of a time-delay reflectometer, which can
identify the location of cable faults by sending a sharp pulse
along the able and measuring the reflection emitted by faults.

• When cable damage is limited to one pair of conductors and
another pair is available, we can switch the microphone connec-
tions at the ends of the cable without requiring a splice.

Source localization depends on accurate knowledge of the
microphone locations. We used a real-time kinematic (RTK) GPS
system developed by Brian Mayton, which measures local delays
in GPS signal at a stationary GPS radio with known location.
These delays are caused by distortions in the atmosphere, and are
time-varying. Measurements from the stationary GPS radio are
relayed in real-time to the mobile GPS device, where they are used
to apply correction factors, permitting location accuracy to within
0.5m.
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Speaker Preparation

Field recordings were performed using a Bose S1 portable speaker,
with recordings stored on and played from an iPhone XR into the
speaker’s analog input. To prepare for data collection, I performed
preliminary tests, primarily to validate speaker linearity, and
capture calibration responses that could be used to compensate for
the transfer function of the speaker itself (though I did not end up
making use of these calibration responses).

Measurements were performed in the Multipurpose room on
the 6th floor of building E14 at the MIT Media Lab, which is a
large room (18.6m by 18.2m) with carpeted floor. The speaker
and microphone were placed 2.1m" off the ground and 1.8m from
each other (measured speaker face to mic capsule). This should
allow the measured impulse response to be truncated to remove
the effects of the wall reflections, though reflections from the floor
would not be able to be removed without sacrificing information
about the low-frequency response of the speaker.

Figure 9: Speaker and microphone used
for speaker measurements

The first test was to prepare Maximum-length-sequence (MLS)
stimuli at a range of gain levels, and to verify that the measured
sound levels were as expected. This was primarily to validate that
our audio pipeline was not introducing any automatic gain control
or limiting that would affect our experiments. All hardware gains
were kept constant, and the signal gain was varied by scaling the
audio files used for playback. Measurements were performed us-
ing a handheld SPL meter placed next to the microphone capsule.

From Figure 10 we observe an ambient noise floor of about
56dB SPL (C-weighted). Once the gain was sufficient that the
energy at the meter was dominated by the speaker output, we see
the output increasing as expected.

I then performed exponential sweeps to characterize the sys-
tem’s linearity. Figure 11 shows four of the resulting recordings.
We see that with an 80dB range displayed, there is visible distor-
tion with a sample gain of about -25dB. In this case the reference
level was a full-scale (0dBFS) sine sweep, though the absolute level
is not very meaningful because the total output is also affected
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Figure 10: Speaker output SPL against
sample gain

by the playback device gain as well as the speaker input gain. De-
vice and speaker gain levels were recorded so that signals could
be generated with confidence they would not be distorted. This
information was used to set a maximum amplitude used for the
following field experiments, which were set to keep the amplitude
under -30dBFS.
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Figure 11: Spectrograms of exponential
sine sweep recordings at different gain
levels. Each shows an 80dB range,
shifted to account for the gain of each
recording, to emphasize the relative
power of the distortion signal vs. the
main signal.
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Impulse Response Capture

Acoustic propagation on the site was characterized by measuring
impulse responses from a variety of locations, recording on all
microphone channels simultaneously. The measurements were
taken by two means - the simplest was a slapstick (a percussion in-
strument made from two wooden planks connected with a spring
and hinge), which was used to generate impulses. Additionally
stimuli were prepared using maximum-length sequences (MLS).
See Part II for more background comparing different methods of
measuring impulse responses.

Figure 12: Speaker set up in the field

Measurements were performed with a Bose S1 portable speaker.
The stimulus recordings were played from an iPhone XR, via the
speaker’s analog input.

Visual inspections of preliminary recordings using the slapstick
indicated that the decay time was around 0.75s, so MLS stimuli
were generated with a period of 65535 samples (1.36s at 48kHz
sampling rate). The stimulus contained 80 repetitions, for a total
length of 109s).

Each MLS stimulus was preceded by a 10s 1kHz pilot tone to
provide a synchronization reference.



Clock Skew Compensation

Because of the large scale and dense foliage present at the field
site, it is impractical to use a cable between the playback speaker
to the system recording from the microphones. However, if the
playback and recording devices are running at slightly different
clock frequencies (due to crystal manufacturing variance, tempera-
ture, etc.), it will appear as if the response has been slightly slowed
down or sped up (time dilation). This is known as "clock skew" 23 23 D. Mills (Mar. 1992). Network Time

Protocol (Version 3) Specification, Imple-
mentation and Analysis. Tech. rep.

(also "clock drift" or "frequency offset" 24 in some contexts).

24 Michael A. Lombardi (2010). “Time
and Frequency from A to Z”

It’s difficult to get specifications for clock accuracy on many
audio devices. Some high-end devices like the Tascam CG-2000

25

25 https://tascam.com/us/product/
cg-2000/

report an accuracy of 0.01 ppm (parts per million), which provides
a rough upper bound for pro audio clock accuracy. Professional
audio interfaces have also been observed to vary by 15-30ppm 26. 26 Nicholas J. Bryan, Miriam A. Kolar,

and Jonathan S. Abel (2010). “Im-
pulse Response Measurements in the
Presence of Clock Drift”

Most handheld consumer devices are accurate on the order of
10ppm, with some outliers up to 500ppm 27. This gives a worst-

27 Mario Guggenberger, Mathias Lux,
and Laszlo Böszörmenyi (2015). “An
Analysis of Time Drift in Hand-Held
Recording Devices”

case relative drift of 1000ppm.
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Figure 13: Multiple skewed frames
superimposed. Summing them together
creates a comb filtering effect

Time variance in the context of impulse responses can be charac-
terized as having two different effects, described as "within-frame"
and "between-frame" effects 28. Clock skew between the play-

28 Peter Svensson and Johan L. Nielsen
(May 1996). “Errors in MLS Measure-
ments Caused by Time Variance in
Acoustic Systems”

back and capture systems causes both types. Assume that we
are extracting the impulse response from the stimulus response
by means of convolution with some kind of matching filter that
acts as the inverse of the stimulus. The first effect of clock skew is
that the filter no longer matches the stimulus signal - it is slightly
stretched or compressed in time. This will tend to cause spread-
ing in the resulting impulse response. The second effect is due to
the synchronous averaging typically performed when measuring
impulse responses. If the response is assumed to be periodic with
period P, but has true period P′, each frame will have a delay of
P′ − P relative to the previous one. When the frames are summed,
this will in effect create a comb filter. These effects, and methods
to compensate for them have been investigated in the context of
sine-sweep measurements 29, where the clock drift can be modeled 29 Hannes Gamper (2017). “Clock

Drift Estimation and Compensation
for Asynchronous Impulse Response
Measurements”. San Francisco, CA,
USA; Nicholas J. Bryan, Miriam A.
Kolar, and Jonathan S. Abel (2010).
“Impulse Response Measurements in
the Presence of Clock Drift”

as an allpass filter with the appropriate group delays.

https://tascam.com/us/product/cg-2000/
https://tascam.com/us/product/cg-2000/
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Bryan et. al 30 propose a skew estimator using an impulse or 30 Nicholas J. Bryan, Miriam A. Kolar,
and Jonathan S. Abel (2010). “Im-
pulse Response Measurements in the
Presence of Clock Drift”

chirp train, where the skew is estimated by recording through
the system, performing peak picking, and measuring the time
differences between the peaks. Gamper observed that the stimulus
itself could be used for skew estimation by estimating the delay of
each frame, minimizing the objective function given by Equation
1 (adapted to be in discrete rather than continuous terms). The
response is first sliced into R frames of length P, corresponding to
each repetition of its nominal period.

d̂ = argmin
d

R−1

∑
r=1

N−1

∑
k=0

∣∣∣∣x̃0(k)− exp
(

2π jdr
k
N

)
x̃r(k)

∣∣∣∣2 (1)

Here x̃r is the discrete Fourier transform of the rth frame of
the response (assuming the nominal period), N is the FFT size
(larger than P). This objective function compares each frame to
the first one, shifting the rth frame by dr samples. Performing this
operation in the frequency domain enables sub-sample delays to
be found, as the complex exponential term represents the time
delay as a linear phase shift.

In practice, this function has three main issues. First, this func-
tion gives the first frame special status as the reference. This is not
necessarily justified, particularly in a noisy environment where
any particular frame might be corrupted by noise. Secondly, for
measurements with a large number of frames, small variations in
d result in large shifts in the later frames (r is large). This gives
greater weight to later frames. The third issue is a practical con-
cern - in our context the sensitivity to small variations in d resulted
in an objective function that was difficult to optimize - for the
analyzed data it had a very narrow trough surrounding the true
minimum, with many nearby local minima.

Rather than comparing each frame to the first, we propose
comparing each frame to the next frame. This is equivalent to
comparing the entire signal with itself, shifted by one nominal
period.

d̂ = argmin
d

N−1

∑
k=0

∣∣∣∣x̃(k)− exp
(

2π j(d + P)
k
N

)
x̃(k)

∣∣∣∣2 (2)

As above, N is the the FFT size, though now we are transform-
ing the entire signal rather than working with individual frames.
This has a performance consideration because the FFT and IFFT
scale at O(n log n) where n is the total signal length, whereas the
Gamper objective function performs the FFT on fixed-size blocks
so it is O(n) in the total signal length. The proposed objective
function could be approximated at the same cost as Gamper by
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performing the FFT in each block and comparing each block to the
next, at the expense of some additional framing effects.

Recall that P is the nominal period. If we define x̃d(k) =

exp
(

2π j(d + P) k
N

)
x̃(k), we can then define the time domain

versions of x̃ and x̃d as x and xd respectively. So our objective
function can be written as

e(d) =
N−1

∑
k=0
|x̃(k)− x̃d(k)|2

Invoking Parseval’s identity, the energy of a signal is the same
in the time and frequency domains, so this is equal to

e(d) =
N−1

∑
n=0

∣∣∣F−1(x̃− x̃d)(n)
∣∣∣2

Because the Fourier transform is linear this becomes:

e(d) =
N−1

∑
n=0

∣∣∣F−1 x̃(n)−F−1 x̃d(n)
∣∣∣2 =

N−1

∑
n=0
|x(n)− xd(n)|2 (3)
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Figure 14: This shows the objective
function to be optimized to determine
the period of a clock-skewed impulse
response. The delay per period (X axis)
shows how much each frame is delayed
relative to its expected position given
the nominal period. These plots were
generated with simulated MLS data
with 80 repetitions and period 65535.
The response was skewed by 25ppm
via resampling, correspondig to a per-
period delay of 1.64 samples (shown by
the grey bar in each plot).

So Equation 3 shows us that the proposed frequency-domain
objective function is equivalent to the Average Squared Distance
function (ADSF), which is widely used in time-delay estimation
but to my knowledge has never been applied to clock skew es-
timation. The ASDF has been shown to be generally provide a
more accurate estimated delay than the cross correlation 31, but 31 Giovanni Jacovitti and Gaetano

Scarano (1993). “Discrete Time Tech-
niques for Time Delay Estimation”

the difference is generally less than one sample. |x − xd|2 is ban-
dlimited to twice the bandwidth of x, which limits how sharp the
trough containing the minimum can be. The algorithm is initial-
ized by first performing a discrete autocorrelation, which can be
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efficiently computed via the FFT, or for a small number of lags
can be computed directly in the time domain. The correlation is
then up-sampled by 4 to detect inter-sample peaks, and the max-
imum in a window near P is chosen as an initial estimate for the
period. This estimate should be within 0.25 samples of the true
period, which can then be found with by simple Newton’s Method
optimization of Equation 2.

Figure 14 shows a comparison of these objective functions in a
neighborhood of the true period, for different signal-to-noise ratios.
In informal testing the narrower peak of the Gamper function
does not lead to greater accuracy, though more investigation is
necessary to determine the trade-offs more fully.
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Figure 15: Clock skew correction
applied to several stimulus responses.
This shows the result of extracting
the impulse response from the MLS
stimulus response, with and without
the clock skew correction. These
examples are channels 2, 3, 10, 11, and
13 from source location 020-E.

Figure 15 shows some examples from our dataset of on-site
MLS recordings, where the clock skew was estimated to be -
26ppm during these recordings (note the skew is expected to drift
with time and temperature). Notice that the peak power to noise
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ratio is improved by 30dB in the best cases, but results vary and
further characterization is needed. The degree of improvement
is sensitive to variations in the skew estimate - in informal tests
changing the skew by 2ppm caused the peaks to be 3-6dB smaller.

One possible improvement to the proposed skew estimator
would be to incorporate that phase transform (PHAT). While at
first it may not seem like this would provide much gain because
the stimulus is broad-band, it would help reduce the impact of
interfering signals with harmonic energy.

Additionally, we currently assume a constant clock skew for the
duration of the recording. While this model works well to account
for skew due to to the actual hardware crystal, modeling a time-
varying skew may help account for other time-variances, such as
changing wind speed or direction.
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Results

Clock Skew Estimation
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Figure 16: Histogram of clock skew
estimates. Estimates outside ±150 were
excluded.

For each impulse response measurement, the clock skew was
estimated using the process described in Part I. Figure 16 shows
a histogram of the estimates, and displays a clear peak at the
median value. No ground truth is available so it’s impossible to
report an absolute error, but from the examples shown in Part II
we see that resampling the recording based on this skew estimate
provides substantially improved impulse response signal-to-noise.

Figure 17 shows the results grouped by their location and
speaker direction, displayed in chronological order of when they
were recorded. All recordings were performed in a single day.
We do not see any evidence of drift in the clock skew over the
recording period, which is consistent with earlier work 32 that 32 Nicholas J. Bryan, Miriam A. Kolar,

and Jonathan S. Abel (2010). “Im-
pulse Response Measurements in the
Presence of Clock Drift”

reported relatively constant clock skews over a five-hour period,
but significant variations day-to-day. For environments with more
severe temperature variations the effect of temperature on clock
skew could be modeled explicitly, which has a long history in the
sensor array literature.
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Figure 17: Summary of clock skew
estimation for all impulse response
recordings. Estimates outside ±150
were excluded.
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Impulse Response Summary Statistics

To analyze the acoustic propagation at the field site, we developed
a simple iterative algorithm to estimate the relevant statistics.
Following the general model given by Traer and McDermott 33, we 33 James Traer and Josh H. McDermott

(Nov. 2016). “Statistics of Natural
Reverberation Enable Perceptual
Separation of Sound and Space”

consider each frequency band of the impulse response separately,
and assume that it contains an impulsive direct signal followed by
an exponential decay, which is linear in the logarithmic domain.

Noise Floor The noise power is reported in dB without reference,
but is comparable within the dataset.

Decay Time to -60dB (RT60) The time it would take for the rever-
berant tail to decay by 60dB. This is computed from the slope of
the log-linear decay.

Direct-to-Reverberant Ratio (DRR) The ratio of the peak power
to the reverberant power at the peak time, computed from by
the log-linear decay.
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Figure 18: Example of impulse response
fitting in a single band (here 1.78kHz).

Figure 18 shows an example result from this fit process, for a
single band. In our analysis we implemented the filter bank via
the STFT, with 1024-sample windows and 512-sample hop size.
The fitting algorithm works by refining the boundaries of a region
assumed to contain the decay (between the peak and the noise
floor intercept - the time that the decay goes below the noise floor).
The peak is determined by a simple maximum, and the noise
floor intercept is initialized to be an over-estimate. A linear fit is
performed in the decay region and the noise floor is estimated as
the average power for the region after the intercept. A new noise
floor intercept is determined by the intersection of the decay fit
and the noise floor. The process is iterated until the noise floor
intercept converges or increases.

We then ran the analysis on all our impulse responses, which in-
cluded the MLS recordings as well as a number of direct impulses
recorded with a slapstick. In total we collected 854 single-channel
impulse responses. 221 have a peak power at least 30dB above
the median power. Of these, 187 were recorded with the slapstick
impulse and 34 were recorded with the MLS stimulus. 0 2 4 6 8 10
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Figure 19: Plot of the RT60 for each
band across the dataset. Recordings
with an overall peak SNR below
30dB were removed because they did
not provide accurate fits. Similarly
frequencies above 10kHz often had
very little impulse energy and so were
ignored. The shaded area for each plot
shows the 25th to 75th percentile range
for each frequency band.

Figure 19 shows the results of the RT60 measurement, where
we see the same general shape found in Traer and McDermott.
Notice a substantial difference between the MLS and slapstick
measurements. The MLS results align more closely with the prior
work, which used a similar process, and showed RT60s generally
below 0.5s for outdoor rural environments. It is not clear which
measurement is more reliable, though there are fewer points of
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possible failure with the slapstick measurement. Two potential
confounders are that the slapstick recordings were performed at
different source locations on the site, and on a different day with
less wind. In theory the RT60 should be independent of the SNR
(assuming there is sufficient signal to accurately estimate it), but
it is possible they are not sufficiently decoupled by the estimator.
Another possibility is that the reverberation is due to time-varying
factors that are removed by the averaging in the MLS process.

Recording Archive

We have accumulated over 10TB of audio data since 2012. Over
6TB is a multichannel stream stored in Ogg Opus format, with a
total of 25,000 hours recorded (as of March 2020). During most
of that time there have been between ten and fifteen microphones
active. They are captured continuously to a 30-channel stream (the
silent channels are compressed very efficiently by the Opus codec),
as well as being streamed online as a stereo mix.

Because cables and other equipment have been damaged at
times throughout the installation, not all of the recorded audio is
usable. Water ingress often manifests as loud intermittent pops,
clicks, and crackles, and open and short circuits frequently cause
loud 60Hz hum. In the future we would like to train some simple
classifiers to build a map of the data, so that it can be more easily
incorporated into downstream applications, and also released as a
dataset of more manageable size.
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Figure 20: An incomplete map of
data captured from the multichannel
microphone array between July 2016

and April 2019.

Figure 20 shows an overview of the multichannel array data.
The bottom line labeled "audio" highlights the regions where the
system was capturing audio (black regions indicate outages). The
"birds" heatmap indicates label density from a machine-learning
classifier 34 that detects the presence of bird calls (as well as other 34 Clement Duhart et al. (Oct. 2019).

“Deep Learning for Environmental Sens-
ing Toward Social Wildlife Database”.
Paris, France

labels). The classifier was occasionally modified throughout this
monitoring period, so it’s difficult to distinguish site variations
from changes in the classifier. There does seem to be a visible drop
in avian activity in the 2018/2019 winter, which is consistent with
observations on site (though there are also two regions in that
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period where the classifier was not operating). Future work is
planned to run a consistent classifier on the dataset as a whole.
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Limitations and Future Work

Analyze IR Quality Additional work is to be done analyzing the
impulse response dataset. One useful tool is to evaluate coher-
ence, which measures the per-band correlation between input and
output of a linear system. In this context the input is fixed and pe-
riodic, so coherence becomes simply the between-period variance
of the response within each band. Listening tests performed by
convolving these impulse responses with speech indicate that they
are biased towards low frequencies, likely due to less-coherent
high-frequency response, possibly due to errors in the skew esti-
mation or actual time-variance in the system (both of which would
disproportionally affect high frequencies).

Characterize Skew Estimation Further work is necessary to
characterize the skew estimation procedure and compare more
rigorously against prior work. Additional improvements are also
likely available by pre-processing the data to reduce noise, and
developing a heuristic to identify which channels are likely to
provide useful skew estimates.

More survey data The data collected for this work used 22 dif-
ferent source locations and 13 different microphone locations, but
a more systematic protocol would help resolve some remaining
issues. The main issue is that the MLS recordings and slapstick
recordings were performed on different days and different loca-
tions, so it is difficult to compare them. If it does turn out that
time-variance plays a significant role in outdoor impulse responses,
it would have significant impact on the methods used to capture
them.



Part II

Acoustic Localization



Background: Cross-Correlation and Delay Estimation

The cross-correlation is a widely used building block for many
DSP algorithms, though there are several subtleties that must be
considered when using it in practice, and connections between
disparate fields that can provide additional insight.

In signal processing, cross-correlation is often defined simply
as convolution with one of the arguments time-reversed and
conjugated. Equation 5 shows that the cross-correlation at time
τ can also be framed as an inner product with one of the signals
delayed by τ.

Convolution

(x ∗ y)(t) = ∑
τ

x(τ)y(t− τ) (4)

Cross-Correlation

(x ? y)(τ) = ∑
t

x(−t)y(τ − t) = ∑
t

x(t− τ)y(t) (5)

Here x(t) is the adjoint, or complex conjugate, of x(t). We also
change the variable to τ for cross-correlation because conven-
tionally it refers to a time delay, not a moment in time. In this
framework, the cross correlation takes two signals, giving a result
that indicates their similarity (an inner product) for different time
shifts, or lags. When cross-correlating a long signal with a shorter
one, the peaks can be thought of as locating instances of the short
signal within the longer one, a process often called template match-
ing.

The Linear Algebra Perspective

Convolution and cross-correlation with a signal are linear func-
tions and can be implemented by matrix multiplication.
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We can define an operator Tn that takes a vector v and produces
a matrix with n shifted copies of v as its columns, as in Equation 6.

T4


2

1
3


 =



2 0 0 0
1 2 0 0
3 1 2 0
0 3 1 2
0 0 3 1
0 0 0 3


(6)

We can then express the convolution of vectors f and g, of
lengths N and M respectively, as in Equation 7.

f ∗ g = TM f g = TN g f (7)

We can interpret this matrix multiplication as one vector giving
the coefficients for a linear combination of shifted versions of the
other (which is one way to describe convolution). Notice also that
the number of rows in the convolution matrix (so also the length
of the result) will be L = N + M− 1.

There are two main points of view when multiplying matrices,
and the perspective depends on the problem being modeled.
Consider the equation y = Ax. One way to think about this
equation is that x gives a list of coefficients that define a linear
combination of the columns of A. This is the perspective that leads
to the interpretation of Tn above.

Rather than the column-focused interpretation, we can instead
focus on the rows. Consider some matrix B, with y = Bx. Here
again x denotes the adjoint, which is the complex conjugate for
scalar values, and the Hermetian transpose for vectors and ma-
trices. From this perspective, each element in the result gives the
inner product between x and a column of B (for complex vectors
the inner product is defined as in Equation 8).

〈 f , g〉 = f g =
N

∑
i=1

figi (8)

Note that for a real-valued matrix-vector product Ax it’s often
convenient to think of the elements of the result as being the
inner products of x and the rows of A, but for complex-valued
A that interpretation is off by a conjugate, thus the slightly more
complicated B formulation given here.

The cross-correlation f ? g can be described as a collection of
inner products between g and time-shifted versions of f . Com-
bining the T operator introduced above with the inner-product
interpretation of matrix products leads to the definition given in
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Equation 9.

f ? g = TM f g (9)

This introduces an issue however, because TM f is L × M, so
TM f cannot be multiplied by g directly. Notice however that we
can add all-zero columns to TM f while adding the same number
of zero elements to g without changing the result. If we add these
zero elements such that TM f is square with dimensions L× L and g
is length L, then Equations 7 and 9 both hold.

We can clean up some of this notational messiness by introduc-
ing a new operator C which is similar to Tn in that the columns of
the result are shifted versions of the operand, but C uses a circular
shift rather than adding additional rows, as seen in Equation 10.

C


2
1
3
0

 =


2 0 3 1
1 2 0 3
3 1 2 0
0 3 1 2

 (10)

The result is known as a circulant matrix. With this, we can
define convolution as f ∗ g = C f g and cross-correlation as f ? g =

C f g, under the assumption that f and g are both zero-padded to
length L. If f and g are equal length but not zero padded, these
same definitions give circular convolution and circular cross-
correlation, respectively. To make the connection further, we can
notice that the rows of C f are reversed and shifted versions of
f , so multiplying by C f is equivalent to convolving with time-
reversed and conjugated f .

One interesting insight that arises from this formulation is that
if the convolution matrix C f for some signal f is unitary (its adjoint
is its inverse), then C fC f h = h, implying that f ? ( f ∗ h) = h. If h
represents the impulse response of some unknown system, we can
excite the system with the stimulus f , giving f ∗ h, and then use
cross-correlation to extract h. This is reminiscent of the impulse
response measurement techniques described in Part I. Another
equivalent definition of a unitary matrix is one where the columns
form an orthonormal basis for CL. Recall that the columns are
shifted versions of f , so f is orthogonal to all shifted versions of
itself (i.e. f ’s autocorrelation function is an impulse). This is a
restatement of the "shift-orthogonality" property that motivates
the use of Maximum Length Sequences (which are approximately
shift-orthogonal, and the Random Phase Multisine method.
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The Statistics Perspective

In probability and statistics it’s common to think about correlation
and covariance, which describe how multiple random variables
vary together35. The correlation of two random variables is de- 35 This description has an important

caveat: covariance and correlation only
describe linear relationships between
variables. For example, if X is a random
variable and Y = X2, their correlation is
zero though they are deterministically
related. They are uncorrelated yet not
independent.

fined as E
[
YX
]
. This definition applies whether X and Y are

scalars or vectors. For random vectors X and Y, this gives an outer
product, and the result is a matrix RXY, with RXY(i, j) = E

[
YiXj

]
.

Similar definitions exist for covariance, which require subtract-
ing the mean from the signals of interest. In a signal processing
context we are often dealing with zero-mean signals, in which case
the covariance and correlation are equivalent. Also note that some
authors define correlation as a normalized covariance. Here how-
ever we use the terminology of Oppenheim and Verghese 36, which 36 Alan V Oppenheim and George

C Verghese (2010). Signals, Systems,
and Inference: Class Notes for 6.011:
Introduction to Communication, Control
and Signal Processing Spring 2010

refers to the normalized covariance as the correlation coefficient.
Complex-valued random variables also require an additional

metric called the pseudo-covariance 37, defined as E
[
YXT] (note

37 Robert G Gallager (2008). Circularly-
Symmetric Gaussian Random Vectors.
Tech. rep.

the non-hermetian transpose) to be fully-specified. However, this
can be (and often is implicitly) ignored for random variables that
are circularly-symmetric, i.e. their real and imaginary parts are
uncorrelated.

The terms cross-correlation matrix and autocorrelation matrix (and
sometimes without the "matrix" qualifier) are frequently-used
when the random variables in question are signals, though the
above definition of correlation still applies. Autocorrelation refers
to the case where X = Y (which typically isn’t named in the scalar
case). In this case the correlation matrix is square, hermetian, and
has the variance of each component along the diagonal.

Wide-sense stationary (WSS) signals (and pairs of jointly-WSS
signals) permit a further simplification: because the correlation
RXY(i, j) depends only on the difference (i− j), it is often written as
a function of a single variable as in Equation 11.

RXY(τ) = RXY(i, i− τ) = E
[
YiXi−τ

]
(11)

This is equal for all i, which implies that for jointly WSS sig-
nals the correlation matrix RXY has Toeplitz structure (constant
diagonals).

Recall that the signal processing definition of the cross-correlation
is (x ? y)(τ) = ∑t x(t− τ)y(t). This can be interpreted as an empir-
ical estimate of the expectation in Equation 11 (modulo a scaling
factor). So the DSP cross-correlation estimates the diagonals of the
correlation matrix.

This perspective also informs normalization. If x and y are
length N and M signals, respectively, that are assumed to come
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from some jointly WSS random process, the scaling factor needed
to estimate the correlation matrix from the cross-correlation varies
with the lag, based on the amount of overlap between the two
signals. Consider the case where M = N. At zero-lag, the signals
exactly overlap so R̂XY(0) = 1

N (x ? y)(0). For nonzero lag only a
portion of x and y overlap, giving the more general expression in
Equation 12.

R̂XY(τ) =
1

N − |τ| (x ? y)(τ) (12)

This equation is valid for −N < τ < N. Notice that as |τ|
approaches N there are fewer observations being averaged, increas-
ing the variance of the estimator. In this context it’s often best to
ignore the edges of the correlation as they are not reliable and can
be high-magnitude relative to the rest of the signal.

This is somewhat related to "Time-Varied Gain" as used in sonar
rangefinding, except that in that context the energy loss is due
to propagation, and in this case it is due to the reduced signal
overlap. Note that this scaling factor is only appropriate for signals
where the correlation is largely time-invariant within the analysis
frame. In a delay estimation context this corresponds to signals
where the target occupies most of the frame. If the target signal is
short-duration, such that it is entirely within the overlap of both
signals for the relevant lag range, this correction is not appropriate
and will bias against zero-lag.

Time Aliasing

Given signals x and y, the cross-correlation can be computed
efficiently with the Fourier transform:

(x ? y) = F−1(D(Fx)(Fy)) (13)

Where D· creates a diagonal matrix, so D(Fx)(Fy) is an ele-
mentwise product.

In a DSP context F represents the Discrete Fourier Transform
(DFT), where the signal is considered to be periodic in both time
and frequency. As given, this operation will perform a circular
cross-correlation - as one signal is shifted relative to the other it
will wrap around. Often this is undesirable (e.g. if the signals
are not actually periodic), and zero-padding is required to avoid
time-aliasing.
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The Generalized Cross-Correlation

There is a rich body of literature on improved cross-correlation
variants, generally with the goal of sharpening the cross-correlation
peak so that the time difference is easier to estimate. The General-
ized Cross Correlation adds a filter to the cross-correlation process,
and has been previously used in gunshot detection systems 38. 38 Giuseppe Valenzise et al. (2007).

“Scream and Gunshot Detection and
Localization for Audio-Surveillance
Systems”

There has also been recent work 39 that estimates the same time-

39 Zhong-Qiu Wang, Xueliang Zhang,
and DeLiang Wang (Sept. 2018). “Ro-
bust TDOA Estimation Based on
Time-Frequency Masking and Deep
Neural Networks”

frequency mask used for source separation as a pre-processing
step to improve cross-correlation.

The basic assumption behind delay estimation using cross-
correlations is that the delay between channels will appear as
a peak in the cross-correlation function. Finding the peak can
be made more challenging in the presence of noise, or because
of oscillations caused by strong narrowband components. The
Generalized Cross-Correlation (GCC) 40 adds a pre-filtering step 40 C. Knapp and G. Carter (Aug. 1976).

“The Generalized Correlation Method
for Estimation of Time Delay”

with the goal of making the peak more easily detectable. This is
generally expressed in the frequency domain as:

(x ?Φ y)(l) =
∫

Φ(ω)x̃(ω)ỹ(ω)ejωtdω (14)

Where Φ is the filter, which is generally a function of x and y.
With the Phase Transform (GCC-PHAT) approach, pre-filter is
designed such that the magnitude spectrum of the cross power
spectral density (the Fourier transform of the cross-correlation) is
set to 1.

Φx,y(ω) =
1

|x̃(ω)ỹ(ω)|
(15)

One way to understand GCC-PHAT is that it’s a cross-correlation
where we weight all the frequencies equally, so peaks in the cross-
correlation occur where the most frequency bands are consistent
with that lag. Often a signal has strong periodic components that
create oscillations in the cross-correlation, making it more difficult
to identify the peak. Frequencies with low energy are not neces-
sarily less valuable for delay estimation (as long as they are not
corrupted by noise). It’s common for real signals to be dominated
by their low-frequency components, which tends to spread out
the cross-correlation peak, so applying GCC-PHAT is widely used
to sharpen the peak. In this context one can think of the regular
cross-correlation as weighting each frequency’s importance to the
cross-correlation by its energy.

Figure 21 shows the cross-correlation compared against GCC-
PHAT. At this time scale it does not appear that GCC-PHAT offers
much of an improvement (both correlations have sharp peaks).
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Figure 21: An example of the regular
Cross-Correlation compared against
GCC-PHAT. The spectrograms at the
left show signals from two different
microphones.

When we look more closely however, as in Figure 22, we can see
that the regular cross-correlation has strong oscillations that are
not present in the GCC-PHAT. Counting the oscillation cycles,
we see that they correspond to a periodic component at around
2kHz, which corresponds to the dominant frequency visible in the
spectrograms.
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Figure 22: The same signals as Figure
21, but zoomed into a much smaller
time range. .
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Background: TDoA and Nearfield Localization

Acoustic localization (determining the location of an audio source)
is important in two distinct ways for this project. Most directly,
the location estimate determines where to place the virtual sound
source in the auditory scene. Additionally, the location of the
sound informs the source separation process by providing a
geometrically-consistent estimate of the time differences between
channels. This can be used to time-align the channels, including
the channels without significant signal energy.

The previous chapter focused on delay estimation between
pairs of microphones. This chapter describes using those delays to
estimate the location of a source using a Time Difference of Arrival
(TDoA) method. One approach would be to perform pairwise
delay estimation between all pairs of microphones (for example,
using the peak of the cross-correlation function). The location is
then estimated as the one that is most consistent with the delays.
This is referred to as an indirect approach 41. The downside to this 41 M. Cobos, A. Marti, and J. J. Lopez

(Jan. 2011). “A Modified SRP-PHAT
Functional for Robust Real-Time Sound
Source Localization With Scalable
Spatial Sampling”

is that it forces a choice of delay for each pair - for instance, if an
interfering source causes dominant peaks in several microphone
pairs, any secondary peaks due to the target source are ignored
completely.

Rather than rely on peak picking for each pair of input channels,
direct methods integrate information from all microphone simul-
taneously. One benefit to the direct approach is that it does not
require a priori knowledge of which channels contain the target
signal. This information is often used to pick a particular channel
as a reference channel 42, or to avoid introducing noise from noisy 42 Keisuke Hasegawa et al. (2010).

“Blind Estimation of Locations and
Time Offsets for Distributed Recording
Devices”. Ed. by Vincent Vigneron et al.
Lecture Notes in Computer Science.
Berlin, Heidelberg

channels. In a large distributed array it is likely that only some
subset of the microphones have significant target energy relative to
the noise, but we don’t know which ones they are. Because of this,
it is helpful to be able to integrate all the signals without needing a
channel selection step.

To better understand these techniques, first consider a single
pair of microphones at positions m1 and m2. For a source at po-
sition p, the time difference of arrival (the delay between when
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the source signal arrives at m1 and m2) is given by ∆t1,2(p) =
1
c (‖p−m2‖ − ‖p−m1‖), where c is the speed of sound. Note that
this applies whether in 2D or 3D.
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Figure 23: This plot shows a heatmap
of the proposed Spatial Likelihood
Function, using only the highlighted
microphone pair. The heatmap shows
evaluations of the function on a 1m grid
in a 400 × 400 m2 neighborhood of the
microphone installation. The source au-
dio is a bird call played from a speaker
at a known location, recorded by the
array. The spectrograms on the lower-
right display the channels highlighted
in the heatmap. On the upper right
the squared cross-correlation is dis-
played, computed using the GCC-PHAT
algorithm.

The TDOA ∆t1,2(p), is not unique to p, but is shared by all
points on a hyperboloid that passes through p and is symmetric
around the line through m1 and m2. This is visible as the high-
lighted hyperbola in Figure 23. Two special cases are worth
highlighting: if ∆t1,2(p) = 0, then the signal arrived at the mi-
crophones simultaneously, indicating that p must be somewhere
on the plane bisecting m1 and m2. This can be seen in Figure 26,
where we observe a peak at zero-lag in the cross-correlation, as
well as a straight line highlighted, bisecting the microphones. Note
that in this case the zero-lag source is not the dominant one. If
∆t1,2(p) = ± ‖m2−m1‖

c (i.e. the largest possible delay), then p must
lie on a beam emanating from m1 or m2, going directly away from
the other microphone. This condition is visible in Figures 25 and
26. This is the degenerate case of the hyperboloid where the bend
becomes infinitely sharp and it becomes a beam.

0 100 200 300 400
0

100

200

300

400

Easting (m)

N
or

th
in

g 
(m

)

Microphones
True Position

-0.2 -0.1 0.0 0.1 0.2
   
   
   
   

Lag (s)

G
C

C
-

PH
A

T

0
5

10
15
20

Fr
eq

 (k
H

z)

0 1 2 3
0
5

10
15
20

Time (s)

Fr
eq

 (k
H

z)

Figure 24: The spatial likelihood
function, as in Figure 23, but with a
different pair of microphones.
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Figure 25: The spatial likelihood
function, as in Figure 23, but with a
different pair of microphones.
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Figure 26: The spatial likelihood
function, as in Figure 23, but with a
different pair of microphones.
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Steered Response Power

One important direct method is known as the steered response power
(SRP). The SRP is a function of location (or direction in a farfield
direction of arrival context) that computes the output power for a
given multichannel input with the array is focused at that point.
To focus the array, the microphone signals are delayed appropri-
ately based on a known speed of sound and distance from the
source position. The delayed signals are then summed, and the
power of the resulting mixture is computed. If the hypothesized lo-
cation corresponds to the source’s actual location, and the transfer
functions from the source to the microphones differ only by a pure
delay, the delayed microphone signals should sum coherently, so
the SRP should be maximized at the source location.

We can define the SRP function for microphones with signals
{x1, x2, ..., xI}:

SRP(p) =
1
N

N

∑
n=1

∣∣∣∣∣ I

∑
i=1

xi
(
n− ∆t1,i(p)

)∣∣∣∣∣
2

(16)

The first microphone is arbitrarily chosen to be the reference
that all other signals are shifted against. Note that the shifts are
based on the geometry of the array and the hypothetical position,
not the content of the signals. When computing this function
at a large number of points, it becomes more efficient to use an
alternate formulation that is given in terms of the generalized
cross-correlations of all the microphone pairs 43: 43 Joseph Hector DiBiase (May 2000). “A

High-Accuracy, Low-Latency Technique
for Talker Localization in Reverberant
Environments Using Microphone
Arrays”. PhD. Providence, RI

SRP′(p) =
I

∑
i=1

I

∑
j=i+1

(xi ? xj)
(
∆ti,j(p)

)
(17)

This formulation isn’t completely equivalent, but captures the
portion of SRP(p) that varies with p. With this method the cross-
correlations can be pre-computed, and evaluating the function at
each point is N(N−1)

2 table look-ups (one for each cross-correlation)
summed together.

One major issue with the SRP framework is that it assumes that
the transfer functions between the source and microphones differ
only by a delay, so after compensating for the delay the signals
add constructively. When the microphones are far apart this prop-
erty does not hold. To avoid these phase errors, I experimented
with a variant of SRP where the term under the summation was
the power of the cross-correlation, but found that this required a
variety of ad-hoc weighting factors and normalization for accept-
able performance.
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Spatial Likelihood Function

Alternatively, we can define a spatial likelihood function (SLF) 44. The 44 Parham Aarabi (2003). “The Fusion
of Distributed Microphone Arrays for
Sound Localization”

SLF treats the source location as a model parameter, for which we
can compute a likelihood given the observed microphone signals.
In practice the models used for SLFs often generate very similar
formulations to the SRP, but the probabilistic framework provides
additional flexibility. Aarabi also includes a "spatial observability
function" that accounts for the distance between each microphone
and the source when computing the SLF. However, even distant
microphones can often contribute useful information, and the
observability for a given microphone would need to be a function
of the local noise conditions at the microphone and the spectrum
of the source.
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Proposed Spatial Likelihood Function

The SLF is quite general, and allows a variety of probabilistic
models to be used. As noted by Aarabi, we’re generally interested
in comparisons in likelihood between different locations, so it
suffices to estimate some monotonically function of the likelihood,
rather than the likelihood itself. In this work we consider the
simple model where the GCC-PHAT cross-correlation between
each microphone pair represents an independent observation. The
noise variance of the cross-correlation is estimated as the median
power, so it is robust to cross-correlation peaks. We then compute
a likelihood for each sample

SLF(p) =
I

∏
i=1

I

∏
j=i+1

fN
(

xi ?Φ xj
(
∆ti,j(p)

)
|σi,j
)−1 (18)

Where fN (·|σ) is the PDF of a normal distribution with stan-
dard deviation σ, and σi,j is the standard deviation of the cross-
correlation between channels i and j. Because the PDF gives the
likelihood under a noise model, we take the inverse so the esti-
mated source location corresponds to the maximum of this SLF,
rather than the minimum. In practice we compute this in the loga-
rithmic domain, in which case it becomes a nested summation that
looks very similar to Equation 17. This seems to work sufficiently
well in practice and did not require ad-hoc weighting schemes,
though performance could likely be improved with a more sophis-
ticated model that accounts for the peak location explicitly. This
would address one of the current weaknesses which is that high-
amplitude cross-correlation peaks can sometimes dominate the
response. Figure 27 shows the proposed spatial likelihood function
using all microphones.

Handling Aliasing

The SLF is evaluated on a 2D grid approximately on the plane
of the microphones. The result is a heatmap showing where the
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Figure 27: A heatmap generated by
sampling the SLF function for audio
recorded in the field at Tidmarsh, using
all pairs of microphones. The ground
truth location is plotted, as well as the
estimated position (the maximum of
the SLF), and the microphone locations.
Dimensions are in meters.

source is likely to be under the model. This can be interpreted
as a 2D sampling of the continuous SLF function, which has
much greater bandwidth than is reasonable to sample. With a
grid spacing of 1m, the distance diagonally across the grid is

√
2,

which corresponds to sampling the cross-correlation at 225Hz,
which would cause severe aliasing if not addressed. Intuitively
the issue is that the cross-correlation peaks are usually very thin
when visualized on the 2D heatmap, and can be missed by the
sampling grid. To address this we lowpass filter and downsample
the cross-correlation power for each pair before computing the
Gaussian PDF (the PDF is then evaluated on the square root of the
smoothed power).
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Ground Truth Data Capture

To test the accuracy of the proposed localization system, as well
as the quality of source separation, we collected ground truth
data - known signals played from known locations. The signals
consisted of 12 recordings spanning a variety of signal types,
including bird, amphibian, insect, and human vocalizations. They
were also selected to span a range of broadband and narrowband
characteristics, with some being percussive in nature and others
harmonic. As with the impulse response recordings, these were
played through a Bose S1 portable speaker, and each playback
location was measured using differential GPS.

Bird recordings were from the Cornell Guide to Bird Sounds:
Master Set for North America 45: 45 Cornell Guide to Bird Sounds: Master

Set for North America (2014). Ithaca, New
York• American Crow - 143215301

• Blue Jay - 43214771

• Canada Goose - 43183481

• Chipping Sparrow - 43233791

• European Starling - 43224221

• Red-winged Blackbird - 43240421

• Semipalmated Sandpiper - 43196781

Speech sounds came from the LJ Speech Dataset 46: 46 Keith Ito (2017). The LJ Speech Dataset

• Speech LJ037-0171

• Speech LJ025-0076

We also used several sounds from Freesound.org:

• cricket 47 47 FunkApache (2017). 393389__funka-
pache__cricket.wav• tree frog 48

48 alienistcog (2014).
241974__alienistcog__2014-tree-frogs3.aiff• frog, lakeside 49

49 kayceemixer (2014).
251495__kayceemixer__kc-animal-frog-
lakeside-penticton-2013.wav

Each file was edited to roughly 8 seconds, and in some cases
cleaned up using RX7 Spectral Repair from iZotope, Inc. to remove
background noise. They were also each normalized to the BS.1770-
2/3/4 Loudness standard, to an integrated loudness of -24 LUFS
with true peaks limited to 0dBFS (full scale), again with RX7.



Results

To characterize the performance of the localization algorithm,
we measure the error between the estimated location and the
ground truth location for each recording in the naturalistic audio
dataset. The ground truth was measured with the RTK GPS and
is accurate to within approximately 50cm. The likelihood function
was evaluated with 1m resolution within the surveyed area. For
each recording we also computed a quality metric, sorting all the
channels by their source-to-distortion ratio (SDR) and taking the
mean of the first three. This is because 2D localization requires
the signal to be present in at least 3 microphones. We refer to
this metric as SDR3. SDR for each channel was computed using
the mir_eval python package 50, which measures the amount of 50 Colin Raffel et al. (2014). “MIR_EVAL:

A Transparent Implementation of
Common MIR Metrics”. Ed. by Hsin-
Min Wang, Yi-Hsuan Yang, and Jin Ha
Lee

energy in the mixture that can be explained by the target, allowing
for convolution by a 512-point FIR filter. That is, it projects the
mixture into the subspace spanned by 512 time-shifted versions of
the target signal, and gives the ratio of the energy in the subspace
to the energy in the orthogonal subspace.

Figure 28 shows that the localization is mostly random below
-12dB SDR3, and by -6dB it has become quite accurate. Figure 29

shows only the lower-right portion of the results plot, and shows
that the error converges to about four meters. This remaining
error is likely due to a combination of measurement errors in the
microphone positions, errors due to the 2D assumption (in reality
there are a few meters elevation difference between microphones),
and quantization error in the spatial likelihood evaluation.
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Figure 28: Localization results. Each
data point is a multichannel recording
from the naturalistic recordings dataset.
Location accuracy is plotted against
the mean SDR of the best 3 channels,
under the assumption that the quality
in several channels is important for
high-quality cross-correlations and
localization. Violin plots show the data
quanitized to 2dB increments, to better
visualize trends, and light grey bars
show a histogram with the total number
of results in each bin.
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Figure 29: The same data as Figure
28, but focused on the area where
localization was successful.
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Limitations and Future Work

Elevation The primary limitation in this implementation is that
it does not estimate source elevation, and in fact elevated sources
will degrade the system’s ability to estimate their position pro-
jected onto the ground plane. Considering a volume rather than
a surface of potential source locations would require a different
approach because the state space would be too large to discretize
and exhaustively check, so an iterative optimization scheme would
likely be required.

Array Shape Calibration The systems precision is limited by
the precision of the microphone location measurements, which
can be improved through array shape calibration. This is a well-
studied problem, and solutions exist to calibrate sensor locations
even using unknown sources (providing there is redundancy in
the array and sufficient strong sources) 51. 51 Y. Rockah and P. Schultheiss (June

1987). “Array Shape Calibration Using
Sources in Unknown Locations–Part
II: Near-Field Sources and Estimator
Implementation”

There is a limit to the precision improvements possible through
calibration however. Further improvements may require extra
parameters such as wind speed and direction, and temperature.

Improving Noise Robustness These localization results provide
a target (roughly -6dB) for what the SDR needs to be in order for
acceptable localization. The system could be made more robust
to noise by pre-processing the individual channels prior to the
cross-correlation to bring more channels above this threshold. This
pre-processing would need to incorporate assumptions about
the target signals, and would be a good candidate for machine
learning, where single-channel source separation techniques
continue to improve.

Specifically, GCC-PHAT helps reduce the influence of periodic
components in a cross-correlation, but also amplifies noise. With
an estimate of the signal and noise power spectra, a Wiener-like
scaling term could be added to the PHAT pre-filter, so that low-
SNR frequencies get removed rather than amplified. That is, we
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could modify the standard GCC-PHAT filter as follows:

Φwph(ω) =
Ps(ω)

Ps(ω)|X(ω)|+ Pn(ω)
(19)

Here Ps and Pn are signal and noise power estimates, respec-
tively, and X is the cross-correlation spectrum.

Localization Probability Model Currently the probabilistic
model for the spatial likelihood model is very rudimentary (just
using the noise estimate and looking for unlikely locations). This
still struggles to make the best use of low-amplitude peaks, which
could be just as valuable as the high-energy peaks, given a more
sophisticated model that models the peaks explicitly. Improve-
ments in the model would likely drive the SDR threshold for
successful localization downwards, as the model would make
better use of low-SDR data.

Moving Sources The localization system currently assumes that
sources are stationary within a given analysis window (3 seconds
in these experiments). In this implementation, moving sources
would likely manifest as broader peaks in the cross-correlation
(and subsequently the spatial likelihood function). One simple
approach would be to use shorter analysis windows to reduce the
period over which the sources are assumed stationary. However,
there is a trade-off because longer windows provide more context
and better noise performance. The maximum inter-channel delay
is roughly 1 second, so the analysis window must be longer than
that to ensure that a given source is present in all microphones.
This limitation could be addressed by using different signal win-
dows for different regions of the SLF. This would permit shorter
cross-correlations, but more of them would be necessary because
they wouldn’t be shared across the whole SLF.
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Part III

Foreground/Background
Separation



Background: Subspaces and Matrix Factorization

Often a signal of interest can be defined in terms of a linear combi-
nation of a small number of component signals. A length-N signal
has N degrees of freedom, but if it can be described as the sum
of M components, where M < N, it has a more compact descrip-
tion with only M degrees of freedom. For example, a real-valued
sinusoidal signal with known frequency but arbitrary phase and
amplitude can be represented as a linear combination of sin and
cos terms. In other words, all such signals can be thought of as
vectors that lie in a 2D subspace, with sin(ωt) and cos(ωt) as ba-
sis functions. With this model the signal can be described with
just two degrees of freedom. If such a signal is observed mixed
with noise, the mixture can be thought of as a linear combination
of a component within the signal subspace, and an orthogonal
component due to the noise. Projecting the mixture into the signal
subspace can thus be considered a denoising operation. This signal
model can be represented as x = s + n = Av + n, or
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Figure 30: Subspace denoising of a
sinsoid at a known frequency in white
gaussian noise, with 20 random noisy
mixtures. (a) shows the noisy mixture
and (b) shows the signal estimates
(grey) and true signal (black).


x(0)
x(1)

...
x(N − 1)

 =


A0(0) A1(0)
A0(1) A1(1)

...
...

A0(N − 1) A1(N − 1)


[

v0

v1

]
+


n(0)
n(1)

...
n(N − 1)


(20)

Where the columns of A are sin(ωt) and cos(ωt). For a general
A, the matrix that projects into the signal subspace (the column
space of A) is given by P = A(AA)−1 A 52. If the columns of A 52 Note that if A is not invertible then

A−1 does not exist, so we can not
simplify with (AA)−1 = A−1 A−1

. If A
is invertible, then its columns span the
whole space so P is the identity matrix.

are orthogonal to each other (as they are in this example), then
AA is a diagonal matrix with the energy of each basis function on
the diagonals, so (AA)−1 simply gives a normalizing factor for
each component. If the columns are also normalized (which they
are not in this example) than AA is the identity matrix and the
projection simplifies to P = AA.

Figure 30 shows an example of this process. It should not be
surprising that it is possible to recover a good estimate of the



resynthesizing volumetric soundscapes 63

original signal through substantial noise, because we are using a
tightly constrained model of the signal (that it is a sinusoid at a
given frequency). However, when an accurate model is available,
and when that model can be represented as a linear combination
of basis functions, projection is a powerful but straightforward way
to take advantage of the model.

The applicability of this technique would be limited if one
always required the signal subspace a priori. Fortunately a trade-
off is available: if multiple (preferably many) instances of the noisy
mixture are available, the basis can be estimated from the data, as
seen in the next section.

Principle Component Analysis

The structure of the correlation matrix can provide valuable insight
on the distribution of the data. First consider that for a particular
deterministic vector x, xx gives a matrix where the ith column is
xxi. Because each column is a scaled version of x, it is rank-1. The
correlation is an expected value E

[
XX
]
, so it is a weighted average

of all such rank-1 matrices. If all observations of a length-N vector
X are multiples of the same vector x0, then the correlation matrix
will itself be rank-1. In general if all observations of X are linear
combinations of M vectors for M ≤ N, the correlation matrix will
be rank-M.

As an example, consider a hypothetical vector-valued random
variable X of uncorrelated data, as seen in Figure 31. The correla-
tion matrix E

[
XX
]

is a diagonal matrix giving the variance of each
component.
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Figure 31: Observations of a 10-
dimensional gaussian distribution
with diagonal correlation. (a) gives the
correlation matrix (darker colors are
greater correlation) and (b) displays 200

observations as waveforms.

Now assume we’re unable to observe X directly, but only
a related variable Y = AX (where Y is significantly higher-
dimensional than X). So each observation of Y is a linear com-
bination of the columns of A, with the coefficients given by X.
Notice that the columns of A corresponding to the high-variance
components of X will contribute more to the distribution of Y. In
the limiting case where only one component of X had nonzero
variance, each sample from Y would just be a scaled version of the
corresponding column of A. This property where the observed
quantity is a linear combination of a small number of (often un-
known) components is known as low-rank structure - one primary
application of PCA is to recover this structure from the observed
data. Another way to think about this property is that because the
observed data is made of linear combinations of the columns of
A, the data lies in a lower-dimensional subspace spanned by those
column vectors, and we should be able to identify that subspace.
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Figure 32 shows an example derived from X with A given by a
random 100× 10 matrix.

The correlation matrix of Y is given by

RYY = E
[
YY
]
= E

[
AXAX

]
= E

[
AXX A

]
= A E

[
XX
]

A

= A RXX A (21) 10 20 30 40
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Figure 32: 200 samples of a 100-
dimensional gaussian distribution
constructed as a linear transformation
of the data plotted in Figure 31. Note
the plaid pattern typical of low-rank
matrices.

So the question is - Given RYY (which we can estimate from our
observations of Y), what can we learn about A and X?. We can
perform an eigenvalue decomposition on RYY to get

RYY = QΛQ−1 = QΛQ (22)

Where Λ is a diagonal matrix giving the eigenvalues (which
are non-negative and real-valued), and the columns of Q give
the eigenvectors of RYY. Q−1 = Q (Q is unitary) because RYY is
hermetian. Thus Y is equivalent to a distribution with diagonal
correlation Λ, linearly transformed by the unitary matrix Q.

Recall that the goal was to recover the low-rank structure that
was used to generate Y. However, while the structure in Equa-
tions 21 and 22 are similar, in general Q 6= A and Λ 6= RXX. One
difference is that the ordering of the eigenvectors and their corre-
sponding eigenvalues could be permuted. More importantly, the
columns of Q are not the same as the columns of A.

While the eigendecomposition cannot recover A and x indepen-
dently, it does provide an orthogonal basis for the column space of
A, which is useful for projecting into that subspace. The eigenval-
ues indicate how much variance is explained by each eigenvector,
which can be used to estimate the rank of the subspace containing
the signal, and to choose which components are most important to
include when performing a low-rank approximation.
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Figure 33: Eigenvalues of the covariance
matrix RYY .

The eigenvectors are in fact the principle components, and in prac-
tice are typically sorted in descending order of their eigenvalues.
In low-dimensional spaces these are often thought of as the direc-
tions of most variance, but in a signal processing context it makes
sense to shift perspective and think instead of the principle com-
ponents as signals whose linear combinations form the observed
data.

Figure 33 shows the eigenvalues from Λ. Compare to the vari-
ances visible in 31, though as mentioned, the order is lost.
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Singular Value Decomposition and Low-Rank
Approximation

In the previous section we described Principle Component Analy-
sis, and showed how the principle components can be computed
from the eigendecomposition of the covariance matrix. In prac-
tice the covariance matrix is not generally given, but instead is
estimated from data. Here we define D as a N × M matrix with
M observations of an N-dimensional random variable X. The
empirical estimate of the N × N correlation matrix is then given
by R̂XX = 1

M DD = QΛQ (again using the eigendecomposition).
Recall that if the observations (columns of D) are linear combi-
nations of L components, they live in a subspace spanned by the
first L principle components. Define Q′ as the matrix of the first
L columns of Q. Because Q is unitary, its columns (and those
of Q′) are unit-norm and orthogonal, so Q′Q′D will project the
observations D into the L-dimensional subspace within CN . If
L = rank (D), then the columns of D are already within the sub-
space so the projection does nothing. If, as in the example at the
beginning of this chapter, we expect a signal of interest to lie in
a low-dimensional subspace, and we further expect that compo-
nent signals corresponding to our target will dominate, then this
process can both estimate the subspace and reduce the noise.

While this example was motivated by thinking of D as a collec-
tion of observations, the result was a low-rank approximation of
D, for which there isn’t any special interpretation of the rows and
columns. Rather than computing the eigendecomposition of the
correlation matrix, we can use the singular value decomposition
(SVD) of the data matrix D directly. The SVD gives D = UΣV,
where the columns of U and V are orthonormal bases for the
row and column spaces of D, respectively. Σ is a diagonal matrix
containing the singular values of D, which are the square-roots of
the eigenvalues of the correlation matrix (and are again assumed
to be sorted in descending order). To perform a rank-L approxi-
mation in terms of the SVD, we define U′ and V′ as the matrices
made from the first L columns of U and V, and Σ′ as the L × L
matrix with the top L singular values. The approximation is then
D′ = U′Σ′V′.

Figure 34 shows the result of denoising a signal by subspace
projection. Each observation of the signal is a sinusoid with ran-
dom phase and amplitude, but the same (unknown) frequency.
Because a sinusoid with arbitrary phase and amplitude can be
expressed as a sum of sin and cosine terms, the observations lie in
a rank-2 subspace. Because the frequency was not known a priori,
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Figure 34: Subspace basis estimation on
simulated data. The data consists of 200

observations of length-100 sinusoids,
where each signal had a random
amplitude and phase. The signals
were mixed with white gaussian noise
with average -6dB SNR. The subspace
is estimated from the data using the
singular value decomposition (chosen
a priori to be rank-2). (a) shows the
first 25 singular values, (b) shows the
estimated subspace basis, and (c) shows
an example before and after denoising.

the subspace was estimated from the data itself. Note that this
projection will not completely remove the noise. One reason is
that the subspace basis may not be estimated exactly. Additionally,
some of the noise may be within the signal subspace by chance.

Applications in Multichannel Signal Processing

Recall the signal model that motivated the subspace approach:
x1

x2
...

xN

 =


A1,1 A1,2 · · · A1,M

A2,1 A2,2 · · · A2,M
...

...
. . .

...
AN,1 AN,2 · · · AN,M




v1

v2
...

vM

+


n1

n2
...

nN

 (23)

So far we have considered x, n, and the columns of A to be time-
series, though there is nothing in the mathematics that has been
specific to that interpretation. Instead we can consider a model
widely-used in radio-frequency antenna array processing, where
each vector is an instantaneous measurement of a complex-valued
multichannel signal using an array with N sensors. Consider M
uncorrelated narrowband (sinusoidal) sources in an anechoic envi-
ronment. The spreading loss and time delay between each source
and each microphone can then be encoded in the magnitude and
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phase of a complex coefficient. This model is frequently used in
farfield array processing, though in that context the magnitude
differences between channels are often negligible. The ith column
of A (denoted A∗,i) collects these coefficients together such that
wi(t) = A∗,i(t)vi(t) gives the contribution of vi to x (also known as
the image of vi at time t).

This model gives rise to the classic beamforming approach
to signal enhancement and localization - for a given source lo-
cation or direction, source frequency, and array geometry, the
corresponding column of A can be computed without reference
to the data. We’ll refer to this function as a(θ), where θ captures
the relevant signal parameters. If the location of the source (rep-
resented by θ) is known, the array can be "focused" on it with
v̂(t) = a(θ)x(t). This can be understood as aligning all the chan-
nels of x so that they add coherently for a signal at the given
location. For this reason the vectors a(θ) are often called steering
vectors, because they aim the beam of the array. If the location is
not known, beamforming can be used for localization by finding
θ̂(t) = argmaxθ |a(θ)x(t)|2, that is, finding the θ that maximizes the
output power when it the array focused on that location. This is
exactly the steered response power discussed in Part II.

Multiple Signal Classification (MUSIC)

Note that beamforming does not require (or take advantage of) sta-
tistical properties of the model. The Multiple Signal Classification
(MUSIC) algorithm 53 starts by performing the eigendecompo- 53 R. Schmidt (Mar. 1986). “Multiple

Emitter Location and Signal Parameter
Estimation”

sition of the correlation matrix RXX, as before. If the number of
sources is not known it can often be estimated by inspecting the
eigenvalues to find the dimensionality of the signal subspace. The
intuition for this is that the steering vector for a given source is
invariant, so the image of that source on the array is a set of scaled
versions of the steering vector. Thus x(t) is a linear combination
of the steering vectors, with the source signals v(t) providing the
time-varying coefficients. From the eigendecomposition QΛQ and
the rank estimate L we can define projections QsQs and QnQn

Where Qs = Q∗,1:L and Qn = Q∗,L+1:N , and their columns span the
signal and noise subspaces, respectively. As mentioned earlier, the
columns of Qs are not in general the steering vectors correspond-
ing to the sources - they are a unitary basis for the subspace that
contains the steering vectors.

MUSIC takes advantage of the fact that the steering vectors
a(θ) are constrained (by the array geometry) to a low-dimensional
manifold within the larger CN space. That is, often θ ∈ R, in the
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case of 2D direction of arrival (DOA) estimation, or θ ∈ R2 for 3D
DOA (or 2D localization). Because the search space is small, P(θ)
can often be searched exhaustively (or sampled on a fine grid).

MUSIC defines a metric P(θ) =
∣∣Qna(θ)

∣∣−2 which can be
interpreted as the inverse energy of the projection of a(θ) into the
noise subspace, or the inverse squared distance from a(θ) to the
signal subspace. If the signal subspace was estimated accurately,
there should be L points where the manifold a(θ) pierces through
the subspace - at these points P(θ) goes to infinity.

So MUSIC takes advantage of the low-rank statistical structure
of the linear model, and also the constraints that physics puts on
the model. Of course this relies on having such a model that can
be leveraged to constrain the signal subspace.

Nonnegative Matrix Factorization (NMF)

As seen in the previous sections, a linear mixing process can be
represented as a matrix multiplication, and conversely recovering
the sources and mixing coefficients can be framed as matrix fac-
torization. Assuming the linear system is underconstrained, there
are an infinite number of factorizations that are consistent with
the observed signals, so the main research question then becomes
which constraints lead to the most useful decomposition. Nonneg-
ative Matrix Factorization decomposes a data matrix V into two
matrices V ≈WH. Interpreting the columns of V as examples, the
columns of W are basis vectors and H gives the mixture of basis
vectors for each example (referred to as encodings). W and H are
constrained to be nonnegative, so V is assumed to be nonnega-
tive as well. NMF was proposed in the context of decomposing
greyscale images of faces, where it was shown to successfully de-
compose the images into basis vectors representing variations on
noses, eyes, etc. (the faces in the image dataset were white with
dark features).

This approach has been widely-used in the audio source separa-
tion, and typically applied in the STFT domain. Audio data does
not satisfy the nonnegativity assumption (the STFT is complex-
valued), however it is common to model instead the total energy,
under the assumption that for uncorrelated signals their energy
adds linearly. Thus the mixture energy is modeled as a linear
combination of the energy in each signal. Because NMF works
entirely in the power domain and disregards phase, implemen-
tations generally re-use the mixture phase as the source phase,
which is only accurate for time-frequency bins that are dominated
almost entirely by one signal or the other. Signals for which this is
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true are known as w-disjoint orthogonal 54, i.e. the supports of the 54 Alexander Jourjine, Scott Rickard,
and Ozgur Yilmaz (2000). “Blind
Separation of Disjoint Orthogonal
Signals: Demixing N Sources from 2

Mixtures”

signals’ STFTs under window function w are disjoint sets. In fact
the central problem of binary-mask-based source separation can
be thought of as finding an invertible transform that takes the mix-
ture signal into a space where the signals are disjoint orthogonal,
masking each signal, then inverting the transform back into the
time domain. The STFT is a popular choice because many signals
(most notably speech) are approximately disjoint, however it is not
the only choice.

Extensions to Convolutive Mixtures

NMF has also been applied in a multichannel convolutive con-
text 55, though with stereo signals in a music source separation 55 Alexey Ozerov and Cédric Févotte

(2009). “Multichannel Nonnegative
Matrix Factorization in Convolutive
Mixtures for Audio Source Separation”

context. As in the approach proposed in the next chapter, they
handle the convolutive mixture as a linear instantaneous mixture
in each frequency band, with a complex-valued mixing matrix.
They use NMF to further factorize the source matrix using NMF,
which provides more consistency across frequency bands, and
provides an extra constraint that solves the permutation problem
inherent in other per-band source separation approaches such as
frequency-domain independent component analysis (FD-ICA),
where ICA is performed separately in each band. Using NMF as
a source model also allows the source and mixing matrices to be
identified individually.

Ozerov and others have introduced the concept of the spatial
covariance matrix, where the image of each source in the multichan-
nel mixture is considered a random vector, and the structure of its
covariance matrix gives important insight into the mixing model 56. 56 Ngoc QK Duong, Emmanuel Vincent,

and Rémi Gribonval (2010). “Under-
Determined Reverberant Audio Source
Separation Using a Full-Rank Spatial
Covariance Model”

They note that in the situation that the narrowband approxima-
tion holds, a convolutive mixture can be modeled with a rank-1
covariance matrix for each frequency band. When the narrowband
approximation does not hold, reverberations of previous STFT
frames are expressed as separate sources, increasing the rank of
the covariance matrix.
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Background: Signal Enhancement and Separation

Source separation and signal enhancement are closely-related and
overlapping fields, but here we make a distinction that follows
our definitions of interference and noise. Source Separation is
primarily concerned with the problem of extracting multiple
interfering signals. It is assumed that there are multiple signals
of interest and that we can make strong assumptions about their
structure (e.g. correlation in time, frequency, and/or space). In
signal enhancement however, we are given a mixture of a target
signal and noise - we can make only weak assumptions about the
structure of the noise. Insofar as signal enhancement is in effect
separating signal from noise, we generally focus on the properties
of the signal to extract it, and the noise is the residual from the
mixture after removing the target signal.

This work is primarily focused on signal enhancement - we seek
to extract a target signal from the background noise. Obviously the
ability to handle multiple simultaneous sources is desirable, so we
point to extensions where the techniques explored here could be
extended to a source separation context.

This chapter will cover several approaches, and provide ex-
amples from our ground truth dataset. They can be broadly
categorized 57 as spatially-oriented and source-oriented. Spatially- 57 E. Cano et al. (Jan. 2019). “Musical

Source Separation: An Introduction”oriented techniques focus on the inter-channel relationships, and
generally make weak assumptions about the source features.
Source-oriented techniques make use of stronger assumptions
about the spectro-temporal structure of the sources, which can
be determined a priori or learned from data. To take advantage of
inter-channel spatial information, we will use low-rank filtering
concepts introduced in the previous chapter.

There has also been a variety of approaches under the guise
of "speech enhancement", which can be thought of a form of
separation, where the speech is separated from background noise
or interfering signals.

One of the simplest is the classic Wiener Filter 58, which as- 58 Philipos C. Loizou (2007). “Wiener
Filtering”. 1stsumes a known signal and noise power spectrum and constructs a
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linear, time-invariant filter that admits each frequency to maximize
how much of the signal is passed, filtering out the noise. Of course
this leaves open the question of estimating the signal and noise
spectrum. It also assumes a stationary signal. For nonstationary
signals, the parameters of the Wiener filter can be updated across
time, giving the adaptive Wiener Filter 59. 59 Laurent Benaroya et al. (2003). “Non

Negative Sparse Representation for
Wiener Based Source Separation with a
Single Sensor”

An alternative technique is Time-Frequency Masking 60, where

60 Ozgur Yilmaz and Scott Rickard
(2004). “Blind Separation of Speech
Mixtures via Time-Frequency Masking”

the mixture is transformed into the time-frequency domain, mul-
tiplied by a (usually real-valued) mask, and transformed back
into the time domain. The task then becomes estimating the best
mask. Note that because multiplication in the frequency domain
corresponds to convolution (filtering) in the time-domain, time-
frequency masking is a form of adaptive filtering.

In recent work deep learning has become the dominant tech-
nique for source separation, whether estimating the time signal
directly, estimating a time-frequency representation, or when using
a mask. Ward et al. provide a good overview of the current state-
of-the-art methods, including subjective comparisons with human
listeners 61. 61 Dominic Ward et al. (2018). “SiSEC

2018: State of the Art in Musical Audio
Source Separation - Subjective Selection
of the Best Algorithm”

If a generative model is available for the target signal, one can
also view source separation as a parameter estimation problem,
where the goal is to use the mixture to estimate the parameters
of the model, and resynthesize the target from scratch. This has
the benefit that the "separation" is less susceptible to interference
artifacts. This also provides a framework to further constrain the
source estimates, as well as use the physics of the mixing process
which are often well-understood. These can often be trained
via expectation-maximization 62. Some birds with simple calls 62 Michael I. Mandel, Ron J. Weiss, and

Daniel PW Ellis (2010). “Model-Based
Expectation-Maximization Source
Separation and Localization”

might be well-modeled as amplitude- and frequency-modulated
sinusoids, though other calls such as crows and geese have more
complex harmonic structures that are less straightforward to
estimate.

This work will focus primarily on the time-frequency domain,
which provides a convenient framework for adaptive filtering,
given some assumptions discussed in the following sections.

Spectral Subtraction

Spectral subtraction is a simple technique for enhancing a target
signal in a noisy mixture in the time-frequency domain. It relies on
the observation that when the noise is uncorrelated with the target,
the energy of the mixture is the sum of the energies of the noise
and target. If a good estimate of the noise energy is available, then
the signal energy can be estimated by simple subtraction. When
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first proposed, this was implemented by computing the Fourier
transform of each frame, subtracting the noise power from the
mixture power, then converting back into the time domain via the
inverse Fourier transform, using the phase from the original mix-
ture 63. Frequency bins that would have negative power were set to 63 Steven Boll (1979). “Suppression

of Acoustic Noise in Speech Using
Spectral Subtraction”

zero. Shortly thereafter Berouti et al. 64 extended the technique by

64 Michael Berouti, Richard Schwartz,
and John Makhoul (1979). “Enhance-
ment of Speech Corrupted by Acoustic
Noise”

overestimating the noise power by a tunable factor α, and setting
the floor based on the noise estimate for each frequency, rather
than letting the power go to zero. These additions were primarily
intended to address the issue of musical noise, which a common
issue in spectral-subtraction where subtracting the average power
leaves behind "islands" in the time-frequency representation that
are audible as warbling tonal artifacts. Both these implementations
relied on a speech detector to estimate periods of "silence", which
were used to estimate the noise power spectrum.
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Figure 35: Spectrogram plots showing
the spectral subtraction method. The
three prominent harmonic bursts are
the target sound (a goose call). Insect
noise dominates the 6-8kHz band, and
the narrowband signals in the first
0.75s are an interfering bird call. (a)
is the original audio, (b) is the result
of spectral subtraction, and (c) is the
residual noise. This example was
generated with α = 6, β = 0.01. Noise
PSD was estimated for each band as the
minimum power after smoothing with a
250ms gaussian window.

Later Martin investigated an alternate approach to noise PSD es-
timation by observing that within each frequency band, the signal
frequently reverts to the noise floor, so tracking the minimum en-
ergy over a window gives an estimate for the noise floor over that
window 65. In practice it is necessary to smooth the energy over 65 Rainer Martin (1994). “Spectral Sub-

traction Based on Minimum Statistics”time to reduce the variance of the estimate. Note that by definition
this will be an underestimate of the noise floor (the minimum of
a set of samples will be below the mean). Martin proposed es-
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timators for the degree of underestimating, but here we simply
compensate by hand-tuning α, the oversubtraction parameter.

We implemented a similar scheme, assuming the noise power
spectrum was constant over a given sample of length 2.5s. The
spectrograms in 35 show the results. These were generated with an
aggressive α of 10, which helps substantially with musical noise,
but would likely cause audible artifacts in lower SNR mixtures.
Notice that most of the broadband noise has been effectively re-
moved, but the insect noise in the 6-8kHz band has left substantial
musical noise (visible as isolated dots on the spectrogram), be-
cause the energy is highly variable in those bands. Also notice the
shadows left by target sound in the residual - they are audible as
brief dips in the overall energy. Also note that because spectral
subtraction can only remove stationary noise, it doesn’t differ-
entiate between target and interfering sounds, as shown by the
interfering bird call in the first 0.75s. The traces in the first 0.75s
are not part of the target.

Wiener Filtering

Given a known random process x and a target signal y, both of
which are zero-mean and jointly wide-sense stationary (WSS) (their
mean, autocorrelation, and covariance are not a function of time),
the Wiener filter h is the filter that minimizes E

[
|h ∗ x− y|2

]
, and is

given by h̃(ω) =
Sxy(ω)

Sxx(ω)
, where Sxy is the cross-spectral density (CSD)

of y and x, defined as Sxy(ω) , E
[

x̃(ω)ỹ(ω)
]
, and Sxx is known

as the power spectral density PSD) of x 66. Note that this definition 66 Alan V. Oppenheim and George C.
Verghese (2015). “Wiener Filtering”also applies to deterministic signals, where the expectation just

provides the signal itself.
One application of the Wiener Filter is known as Wiener Decon-

volution, where an observed noisy signal x = b ∗ s + n is assumed
to be generated from a target signal s convolved with a known
impulse response b, with additive noise n. The Wiener filter h
minimizes ε = |ŝ− s|2 = |h ∗ x − s|2. This may at first not seem
very useful because the Wiener framework assumes we know the
target signal. However, under the assumption that s and n are
uncorrelated, the filter is computed as:

h̃(ω) =
b̃(ω)Sss(ω)

Sbb(ω)Sss(ω) + Snn(ω)
(24)

Notice that this does not require the Fourier transform of
s and n, only their power spectral densities, which can often
be estimated. Intuitively this filter corresponds to frequency-

approved-1-gc81edd6



resynthesizing volumetric soundscapes 74

domain division (decorrelation) for frequencies with high SNR
(Sss(ω) � Snn(ω)), and goes to zero for frequencies with low
SNR (Sss(ω) � Snn(ω)), which avoids the instability introduced
by naive frequency-domain division in bins where the noise is
large but the transfer function is small. Wiener Deconvolution is
also used for transfer function identification (or impulse response
estimation) in situations where the source signal is observable but
not controllable, e.g. in a teleconferencing application.

In the source separation context the same framework is also
often used, including the assumption that the signal and noise
are uncorrelated. The signal model generally does not include
a transfer function to be deconvolved however, which simplifies
equation 24 to

h̃(ω) =
Sss(ω)

Sss(ω) + Snn(ω)
=

Sss(ω)

Sxx(ω)
(25)

Because the power spectral density is real-valued, h is a zero-
phase filter. Intuitively it can be interpreted as a weighting factor
or soft-mask applied to each frequency band, where high-SNR
bands are allowed through, and low-SNR bands are attenuated.

Recall that this analysis assumed that s and n were WSS, an
assumption that is not applicable for source separation appli-
cations. In this context it is common to apply the Wiener filter
adaptively to a succession of time windows in the STFT domain.
In our case we have assumed the noise PSD to be stationary, so the
filter becomes

h̃(ω, t) =
Sss(ω, t)

Sss(ω, t) + Snn(ω)
=

Sss(ω, t)
Sxx(ω, t)

(26)

While the Wiener Filter provides the optimal linear filter for
extracting one signal from another (in the MSE sense), it relies
on the signal and noise PSD, which need to be estimated. The
minimum-smoothed-power estimator described in the previous
section provides a noise PSD estimate ˆSnn(ω) and spectral subtrac-
tion provides a signal PSD estimate Ŝss(ω, t) = Sxx(ω, t)− ˆSnn(ω).
To simplify notation we ignore the case where Sxx(ω, t) < ˆSnn(ω),
in which case the estimated signal and the filter coefficient are
both zero. This generates the Wiener filter described by Equation
27.
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h̃wiener(ω, t) =
Ŝss(ω, t)
Sxx(ω, t)

=
Sxx(ω, t)− ˆSnn(ω)

Sxx(ω, t)

= 1−
ˆSnn(ω)

Sxx(ω, t)
(27)

It’s informative to compare the results of applying spectral
subtraction directly (as in the previous section) vs. using the
Wiener framework.

0

2

4

6

8

1010

Fr
eq

 (k
H

z)

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

(a)

0

2

4

6

8

1010

Fr
eq

 (k
H

z)

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

(b)

0

2

4

6

8

1010

Fr
eq

 (k
H

z)

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

(c)

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

1010

Time (s)

Fr
eq

 (k
H

z)

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

(d)

Figure 36: Spectrogram plots showing
the Wiener Filter method compared
with spectral subtraction. (a) is the
original audio, (b) is the result of
spectral subtraction, (c) is the result of
Wiener filtering and (d) is the residual
noise. This example was generated
with α = 6, β = 0.0. Noise PSD
was estimated for each band as the
minimum power after smoothing with a
250ms gaussian window.

Both methods essentially modify the STFT magnitude on a
bin-by-bin basis, and can be thought of as zero-phase time-varying
filters. Spectral subtraction isn’t typically described as a filter,
but we can extract the equivalent filter by dividing the estimated
signal by the observed input.
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h̃specsub(ω, t) =
ˆ̃s(ω, t)
x̃(ω, t)

=

∣∣ ˆ̃s(ω, t)
∣∣∣∣x̃(ω, t)
∣∣

=

√
Ŝss(ω, t)√
Sxx(ω, t)

=

√
Sxx(ω, t)− ˆSnn(ω)√

Sxx(ω, t)

=

√
1−

ˆSnn(ω)

Sxx(ω, t)
(28)

This demonstrates that the filter implicit in the spectral sub-
traction process, as well as the Wiener filter using the same power
estimates, can both be expressed in terms of just the observed
signal and the noise PSD estimate. Additionally, we see that the
spectral subtraction filter is the square root of the Wiener filter.
Recent work 67 has investigated this relationship, as well as the 67 Mathieu Fontaine et al. (2017). “Ex-

plaining the Parameterized Wiener
Filter with Alpha-Stable Processes”

more general parameterized Wiener filter where the power of the
filter is included as a continuous parameter.

Figure 36 shows the result of the Wiener filter on the same
audio example, and offers a comparison with direct spectral
subtraction, using the same parameters. Due to the squaring
of the filter coefficients, the Wiener filter shows slightly more
noise suppression, but perceptually the examples are difficult to
distinguish.

An Aside on STFT Consistency

It is common in STFT processing to overlap the adjacent windows,
to maintain information that could be lost due to windowing,
and also so that adjacent frames are cross-faded on resynthesis,
reducing windowing artifacts. Because the STFT is overcomplete,
there are STFT signals that don’t correspond to any time-domain
signals. These STFTs are known as inconsistent 68. 68 Jonathan Le Roux and Emmanuel

Vincent (Mar. 2013). “Consistent Wiener
Filtering for Audio Source Separation”

Because the STFT is a linear transform, the set of consistent
STFTs lies on an N-dimensional subspace (where N is the length
of the signal). When a signal is modified in the STFT domain, it is
likely that the modified signal is no longer consistent. Performing
the ISTFT via overlap-add generates a time-domain signal, but
bringing the signal back into the STFT domain necessarily will not
give the same result as the modified STFT-domain signal.

As a concrete example, consider a synthetic STFT that is all
zeros with a single bin equal to one. Performing the ISTFT will
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generate a single ISTFT basis function (a modulated window). Per-
forming the STFT on that modulated window will have multiple
non-negative bins in the neighborhood of the original impulse,
due to the overlap of the windows and spectral leakage between
adjacent frequency bins.

Spectral subtraction provides an additional example, as seen in
Figure 37. The STFT produced by the spectral subtraction process
is not constrained to be consistent, so after a round-trip through
the time domain the signal is not maintained.
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Figure 37: Spectrogram of spectral
subtraction before and after the inverse
STFT. (a) Shows the STFT-domain
signal after spectral subtraction. (b)
shows the same signal after the ISTFT
is performed (and another STFT
performed for display). Parameters are
the same as 35.
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A Low-Rank Filter for Foreground Separation

The methods described in the previous chapters present various
approaches to this problem in a multichannel context, but there
are assumptions made that do not hold true for our problem,
and require modifications. In this chapter we define the assumed
signal model, and propose a method for separating spatially-
compact foreground sounds from spatially-diffuse background
sounds.

Signal Model

Let x1, x2, ..., xN be observed microphone signals, also called the
mixtures, and s1, s2, ..., sM be sources, with locations given by
p1, p2, ..., pM. Boldface variables are time-domain signals that are
considered to be monophonic and omnidirectional. The signal
model is defined as:

xi =
M

∑
j=1

hji ∗ sj + bi (29)

Where hji is the transfer function of source j to microphone i,
and bi is background noise which we assume to be independent at
each microphone.

Within the scope of this work we take the first source s1 as the
target, with any other sources considered interferers. Further, we
do not model the interferers separately and instead include them
in the background noise. The goal of the system is to estimate
the target signal, its position, and a background signal bi at each
microphone position, given the observed mixtures.

The image of a source is the signal at the microphone due to that
source, i.e. hji ∗ sj. The background at each microphone is in effect
the residual that is left once the image is removed. Once these
parameters have been estimated, they can be used as inputs to the
spatial audio renderer. The target audio becomes a point source
that can be placed at its true location, and the background sounds
can be placed as diffuse sources at each microphone location.
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Handling Large Inter-Microphone Distances

In many sensor array applications, the propagation delay being
estimated is small (relative to any periodicity in the signal) be-
cause the sensors are close together. In this case the delay can be
measured independently in each frequency component and in
narrowband applications often only one frequency is considered.
The delay is then given by ∆φ

ω , where ∆φ is the phase difference
in radians, and ω is the frequency in radians/s. If the delays are
longer than the period in question, the phase wraps around and
becomes ambiguous. This case is often called spatial aliasing. In
our case the delays are orders of magnitude longer than the peri-
ods of the signals of interest, so narrowband delay estimation is
impossible.

In the presence of spatial aliasing, estimating a unique delay
requires wideband signals, where delay in the time domain corre-
sponds to a linear phase shift in the Fourier domain. Fortunately
the signals of interest in this work are wideband (though they
often have strong periodic components), and thus the delay esti-
mation can be performed by cross-correlation. In cross-correlation-
based time delay estimation, strong periodic components in the
signals cause large oscillations in the cross-correlation function.
These oscillations make the task of identifying the cross-correlation
peak more difficult, but can be largely addressed by employing
GCC-PHAT, as discussed in Part II.

The other challenge presented by long inter-microphone delays
lies in the comparisons we would like to make between channels
to enable separation. Recall that subspace techniques like MUSIC
require the energy to be correlated between the channels, so the
window under analysis needs to allow for any delay. Longer win-
dows require more computation to process, and if the window is
long relative to the duration of the signal, much of the window
is noise. Additionally, for statistical estimations we assume the
properties to be estimated are stationary over the course of the
measurement. If they are not stationary, they can often be approxi-
mated as such, but longer windows degrade the approximation.

To account for this we assume the source-to-microphone trans-
fer function can be decomposed into a bulk delay and a zero-phase
filter. We use the localization estimate described in Part II to align
the signals, so the analysis window size can be chosen indepen-
dently of the delay times.

Errors in the estimated source location (generally less than
4m), measured microphone locations (generally less than 1m), or
the speed of sound (which is somewhat affected by temperature
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and wind) can cause the location-based alignment to be sub-
optimal. The alignment is improved by following the location-
based alignment with a fine-tuning that maximizes the cross-
correlation within a ± 6ms lag window.

Full Per-Channel Transfer Functions

The work reviewed so far considered a mixing model where
the contribution of each source to each observed signal could
be represented with a complex multiplication. In this work, the
signals of interest are wideband and the source is assumed to
have a different transfer function to each microphone. To this end,
we use the Short-Time Fourier Transform (STFT) to implement a
filterbank, and performed the subspace de-noising on each band
individually. The STFT was performed using a 1024-sample FFT
and 512-sample hop size. The audio was sampled at 48kHz, so
this corresponds to a 21ms window and 11ms hop. Each band was
demodulated to center it at 0Hz. The analysis was performed on
3-second samples, matching the length used for the localization
experiments.

If we consider Xk to be the multichannel output of the filterbank
at the kth band, with a single source the linear system becomes: |

Xk(t)
|

 =

 |Ak

|

 vk(t) +

 |
nk(t)
|

 (30)

As in the previous work, Ak is a complex-valued vector that
contains the mixing coefficients for the source into each micro-
phone. Assuming the source is stationary and the transfer function
is otherwise time-invariant, Ak should be constant. vk is the kth
band of the source.

Note that here we are making the frequently-used narrowband
approximation within each frequency band, which is the assump-
tion that the effect of an LTI system with transfer function h̃ on a
signal with Fourier transform x̃ can be captured by a single com-
plex coefficient h̃(ω0)x̃. That is, h̃(ω)x̃(ω) ≈ h̃(ω0)x̃(ω), which is
true for a sinusoid with frequency ω0, and approximately true for
narrowband signals with energy concentrated near ω0. The extent
to which the narrowband approximation is appropriate depends
on the bandwidth of the signal relative to how quickly the trans-
fer function h̃(ω0) is varying near ω0. That is, the approximation
assumes a narrowband signal and "smooth" transfer function.

Note that this definition has a dual in the time domain, given
by taking the inverse Fourier transform of both sides: (h ∗ x)(t) ≈
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h̃(ω0)x(t). For a stationary (complex) sinusoid x this is satisfied by
any h because any linear combination gives another sinusoid with
an amplitude and phase shift. For an approximately narrowband
signal this tells us that the length of the impulse response must be
short relative to the time scale of the modulations.

Notice that in both the time and frequency domain the ap-
proximation gives a multiplication by h̃(ω0). This duality is
important in the context of the STFT because each point in the
time-frequency plane can be thought of as part of the spectrum of
a windowed signal (frequency domain), and also as the output of a
filter in a filterbank (time-domain). The duality of the narrowband
approximation tells us that both perspectives are equivalent in the
signal’s response to a linear system.

Because we are assuming a single source, the first eigenvector
of the correlation matrix of Xk gives Ak. Because we are estimating
the covariance from the observed data, it is helpful to think in
terms of the SVD. Consider a N × T data matrix Dk, where N is
the number of microphone channels (12 or 13 for our experiments)
and T is the number of samples from the filterbank (equivalently
the number of frames in the STFT, on the order of 100-150 for our
experiments).

Given the observations of Xk, we can only estimate Ak and vk

up to a complex scalar factor - that is, their amplitude and phase
are free to vary inversely while still being consistent with the
model. This means that while the model is useful for removing
noise via subspace projection, it does not estimate the source and
transfer function individually, and the output of the system is a
multichannel signal, not a source estimate. Thus, the question
remains of how to choose which output channel to use as the
source for resynthesis. In this work we simply use the channel
from the microphone closest to the source.

Other methods like frequency-domain ICA do attempt to ex-
tract the source, but still work with each frequency individually. In
that case there remains a permutation problem, where the sources
extracted from each frequency band need to be grouped together.

Additionally, notice that the output at time t only depends on
the input at time t. While this model can capture short-duration
transfer functions such as the filtering caused by air absorption,
it does not model longer-duration effects such as reflections. This
means that for the output Xk(t), contributions due to earlier values
of vk are treated as noise.

In testing, we noticed that the target signal often appeared
strongly in the second eigenvector as well, likely due to strong
reflected components. We considered using a rank-2 estimate
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Figure 38: Spectrogram plots showing
the rank-1 filtering method. (a) is
the original audio, (b) is the result of
the rank-1 filtering with unweighted
SVD, (c) is with the iterative weighting
scheme and (d) is the residual noise
from the weighted version.

instead, however the additional signal energy was offset by ad-
ditional noise as well. For generating the background residual,
we thus skipped the second eigenvector when defining the noise
subspace, and instead used the third through the last. This helped
reduce the amount of target in the background substantially.

It’s important to note that if our signal subspace were higher di-
mensional (i.e. it contains linear combinations of multiple sources)
then this method can identify the subspace, but not recover the
original signals. The basis vectors given by PCA will be orthogonal
to each other (the eigenvectors give a unitary basis), which is of
course not in general not true about the original basis. To recover
the original basis signals we need to be able to apply some other
constraints based on a priori knowledge of the signals. As men-
tioned before, the MUSIC algorithm is one widely-used method
that can be applied when the basis functions are known to lie on
some lower-dimensional manifold. To apply this technique in our
context would require much more precise knowledge of the mi-
crophone positions (which could be achieved through calibration),
though the results may be corrupted by time-varying properties
like wind. To characterize the low-dimensional manifold we’d also
need an accurate model of the transfer functions from each source
location to each microphone location.
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Weighting

If there are non-gaussian interfering signals present in the ob-
served data, the rank-1 approximation will sometimes generate a
result that splits the difference between the target and the interfer-
ence. To reduce this effect, an iterative weighting scheme performs
the rank-1 filtering on all the bands, and then assigns a weight for
each time-frequency bin, based on the fraction of the total energy
for that bin that is within the signal subspace. The weights are
smoothed across frequency with a 31-point gaussian window, then
used for another rank-1 filtering process. This is iterated until the
weight matrix converges within a tolerance (typically 2-3 itera-
tions). The frequency-smoothing is based on the observations that
energy in adjacent bins is often correlated, so high-energy bins
that were correctly identified by the rank-1 filtering can add extra
weight to lower-energy bins. Additionally this helps counteract
some of the discontinuities across frequency that occur because
each band is processed independently.

Figure 38 shows the result of rank-1 filtering. With no weighting
we see very little noise reduction in bands with significant target
energy, creating horizontal bands. This is likely because the signal
subspace is not being estimated accurately. The iterative weighting
scheme improves inter-peak noise reduction substantially. Relative
to the spectral subtraction and Wiener filtering versions we can see
less reverberation and also very little musical noise. The residual
has lost a lot of energy in the bands dominated by the target,
even where the de-noised target doesn’t seem to be present. This
is likely due to energy within the second principle component,
which includes both target and background energy, and is not
included in either the signal or noise subspaces.
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Results

I evaluated the proposed Rank-1 filter on our dataset of natural-
istic recordings, along with two baseline methods. The methods
we compared were spectral subtraction, Wiener filtering with
smoothing, rank-1 filtering, and rank-1 filtering with the iterative
re-weighting scheme. The results are shown in Figure 39. Each dat-
apoint included in the violin plot is one channel of one recording.
There are 201 multichannel recordings, split into 787 3s segments
with a 1.5s hop size, giving 787 segments. Each segment has 12 or
13 channels. Processing the combined localization and enhance-
ment took several hours on a dual-core laptop with 2.7GHz Intel
Core i7 processor. To avoid confounding the results with errors
due to localization, the ground-truth location was used for the
Rank-1 methods, which require the signals to be pre-aligned.
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Figure 39: SDR Improvement by per-
forming signal enhancement on our
dataset of naturalistic recordings, using
four techniques: spectral subtraction,
Wiener filtering (using spectral subtrac-
tion for the signal and noise estimates),
rank-1 filtering, and rank-1 filtering
with weighting. All methods used a
1024-point STFT with 512-point hop
size, and cosine windows for both
analysis and synthesis. Noise PSD
estimation for the spectral subtraction
and Wiener filtering both used the
minimum power in each band after
smoothing with a 0.25s gaussian win-
dow. Both also used an oversubtraction
factor of four, with no minimum noise
floor. The Wiener filter was smoothed
in time and frequency with an 11-
point window. Rank-1 filtering was
performed separately on each band.
The input SDR is quantized in 6dB
increments for display.

We see that the weighted rank-1 filtering performed best across
all input samples. The dramatic improvements at very low input
SDR are somewhat surprising. One consideration is that with
rank-1 filtering all channels in the recording are denoised jointly,
so the higher-SDR channels can help improve the lower-SDR ones.
However, this does not explain the performance of the Wiener
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filter, in which each channel is processed separately. It is possible
that this is due to an artifact of the SDR metric - because it admits
the target with any 512-point FIR filter applied, it is possible
that these methods are somehow creating an easier signal for
the SDR estimator to find 69. Another observation is that all the 69 Jonathan Le Roux et al. (Nov. 2018).

“SDR - Half-Baked or Well Done?”
arXiv: 1811.02508 [cs, eess]

methods seem to approach 0dB improvement when the input SDR
approaches 6dB, implying that there is perhaps little improvement
to be had because the signal is already relatively clean.
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Limitations and Future Work

Multiple Sources We currently just look for the highest-energy
source within each band and attempt to enhance that signal. This
has a several issues:

• If there are multiple strong sources within a given frequency
band the SVD will try to split the difference. To resolve this
we’d need to include a partitioning step that assigns each bins
to its respective source.

• If sources are in disjoint sets of bands, the algorithm will en-
hance one source in some bands and a different source in other
bands. Resolving this requires doing more analysis across
bands, with better source modeling and/or with constraints
on the transfer functions implied by the per-frequency spatial
subspace basis.

Moving Sources As with the proposed localization method, this
approach to separation assumes the target source is stationary. The
spatial covariance matrix is estimated assuming it is time-invariant
within the analysis window, so moving sources will degrade
separation performance. This assumption could be relaxed to
allow the covariance matrix to change over time, though tracking
these changes would require a more sophisticated estimation
technique.

Correlations over longer time windows One major area where
our model does not fit reality is that we treat each STFT frame
as independent. Given the decay times observed in the impulse
response survey that is clearly not the case. One simple adapta-
tion would be to experiment with longer STFT windows. Another
approach would be to try to estimate the actual impulse response
from the data and account for the energy in previous frames ex-
plicitly. Transfer function estimation is a well-studied problem for
acoustic echo cancellation for videoconferencing. In that context,
you have access to both the input and the convolved output, but
similar techniques should be applicable in our context where we
have multiple samples of the output convolved with different
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transfer functions.
Source Signal Estimation Because of the nature of the low-

rank factorization, the magnitude of the phase of the source and
transfer function are not estimated independently, so they can
vary inversely and still be consistent with the observed signal.
Prior work 70 has demonstrated the value of combining a more 70 Alexey Ozerov and Cédric Févotte

(2009). “Multichannel Nonnegative
Matrix Factorization in Convolutive
Mixtures for Audio Source Separation”

opinionated source model with the physically-motivated mixture
model. Machine learning could be applied to learn constraints on
one or the other (or both) from the data, which would allow the
actual source signal to be estimated, rather than the image of the
source on each microphone.

Event Detection Currently the system does not have an explicit
event detection step, so some of the low-SDR results could be due
to cases where there is a gap in the sample that is longer than
the analysis frame. Results could be improved by handling this
explicitly. Within a practical soundscape resynthesis application,
event detection would be useful to decide when a point source
should be created by the rendering system. Recent work 71 has 71 Matthew Wijers et al. (Nov. 2019).

“CARACAL: A Versatile Passive
Acoustic Monitoring Tool for Wildlife
Research and Conservation”

shown successes in using a multichannel coherence metric in a
wildlife localization context.

Test On Ogg-Encoded Data Currently the system has been
tested with raw PCM audio recorded with known source signals.
We have a large dataset of audio encoded in ogg-opus format,
which the system should be validated on as well. Lossy encoding
may affect the phase at higher frequencies, where human percep-
tion is not very sensitive to it. That gives limited bandwidth which
would affect localization accuracy. It also might affect the signal
enhancement, though only the higher bands should be impacted.

Test on Degraded Array More research is needed to character-
ize the effect of microphone failures leading to a sparser array.
One way it might affect results would be less accurate target sub-
space estimation, because there would be fewer example of the
target present. Because the noise suppression is based on subspace
projection, we would also expect to see a reduced ability to re-
move noise, as the target subspace would be more aligned to the
observed channel vectors, so less noise would be projected out.
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Part IV

Rendering the Soundscape



Demo Application

To test the proposed resynthesis approach and demonstrate the
end-to-end functionality of the system, I developed a 3D applica-
tion that can be run on a standard personal computer. The user is
first given some context and introduced to the proposed system.
They are then free to explore a 3D representation of the monitored
area of Tidmarsh, from a first-person perspective. As the user
explores, a soundscape is rendered to headphones, reflecting their
location and orientation in the virtual world.

The application was built within the Unity engine, a develop-
ment environment which is frequently used for creating video
games. The engine provides functionality for creating a virtual
world and placing objects within it, as well as defining behavior
for those objects in code. In the context of virtual reality (VR) and
augmented reality (AR) applications, the auditory scene is made
up of auditory objects, or sources - objects in the environment that
produce sound (and do not necessarily have a visual manifestation
in the virtual world.

The audio is spatialized using the Resonance Audio SDK 72. 72 Marcin Gorzel et al. (Mar. 2019).
“Efficient Encoding and Decoding of
Binaural Sound with Resonance Audio”

In the context of virtual reality (VR) and augmented reality (AR)
applications, the function of the spatializer is to process a stream
of audio from each source in the scene, along with parameters
for each source, and render a playback stream for the listener.
Different spatializers support a variety of parameters for each
source, and often provide different source types. The most basic
is an omnidirectional point source, which has a location in virtual
space, and emits sound equally in all directions. Depending on the
spatializer, the sound designer may also be to specify a source’s
"size". When the user is far from the source relative to its size, the
listener hears the source from a well-defined direction. When the
user is near the source it becomes less strongly directional. For
example, a swarm of insects may be audible from a particular
direction from afar, but when one is within it, it is heard from all
directions.

The spatializer renders the auditory scene based on the sources’
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relative positions to the listener, taking into account both orienta-
tion (a source to the listener’s right should be perceived as such)
and distance (near sounds are louder than far ones because of
spreading losses). Some spatializers (including Resonance) can
also incorporate the geometry of the environment, including
reflections and reverberation.

In both the baseline and separated conditions a red sphere is
created at the target location as a visual indicator, as seen in Figure
40. This allows users to evaluate whether the perceived location
matched the actual location.

The output from the spatializer typically has as many channels
as the user’s hardware, i.e. a 5.1 "surround sound" system would
require six channels, and a listener wearing headphones would
require two.

Figure 40: Rendering of the target
location in the demo application.
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Resynthesis Approach

The source material comes from our naturalistic sample recordings,
where we played 12 different audio clips from several locations
on site, using a portable speaker as described in Part I. The audio
is stored on disk as Ogg Vorbis files, and distributed with the
application.

The listener can alternate between two different approaches to
rendering the soundscape, which are diagrammed in Figure 41.
The first is a baseline, where the signal from each microphone is
placed as a sound source at the microphone’s location, as well as a
model of the deployed microphones, as seen in Figure 42. In this
configuration the microphone becomes a sort of virtual speaker.
As mentioned in the motivation for this work, this limits the ability
to accurately perceive the source’s location, and creates undesir-
able echoes. In this implementation the size of each source is set
such that there is generally one source that the user is "within"
and the rest are heard directionally. This provides a continuous
soundfield that varies with location, but doesn’t give the percep-
tion that diffuse noises (such as wind or insects) are coming from a
particular point in space.

The proposed approach is implemented using audio rendered
off-line through the rank-1 filtering approach, with weighting.
This outputs two channels per microphone - one with the target
signal and one with the residual. Similar to the baseline, we place
a source at each microphone location, though in the proposed
approach we are using the residual, so very little energy from
the target signal should be present. These residual sources are
sized as in the baseline, creating a diffuse background soundscape.
The system renders the target as a point source at the true target
location. As a proxy for the source signal we use the de-noised
target signal from the closest microphone, which also reduces
the reverberation. The target location comes from the ground-
truth data, so we are testing the resynthesis independently of the
localization accuracy.
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Figure 41: Diagram of the resynthesis
approaches compared in the demo
application. On the left is the baseline
condition, where each microphone
is represented as a diffuse source.
When the user is far from these sources
they are each perceived directionally,
but when nearby they are rendered
monophonically. On the right is the
separated condition. The background
and foreground are first separated
with the approach descriped in Part
III. The background signals for each
microphone are rendered diffusely
as in the baseline, but the foreground
source is rendered as a point source at
the actual location. Because we do not
have access to the original source signal,
the denoised signal from the closest
microphone to the source is used as a
proxy.

Figure 42: Rendering of a microphone
in the demo application.
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Results

To evaluate the demo application, download links were posted to
a variety of mailing lists, primarily focused on audio technology,
auditory perception, and bioacoustics, as well as a list of MIT
Media Lab students, faculty, and alumni.

Users were asked to fill out a survey after the experience, which
is included in AppendixA. They were instructed to use head-
phones, and asked to only fill out the survey if they had been able
to do so. 47 people tried the application and responded to the
survey, and self-described their experience working with sound
as "none" (17, 36.2%), "audio hobbyist" (12, 25.5%), or "audio pro-
fessional" (18, 38.3%). All but one participant reported being able
to differentiate between the two methods. The main results are
summarized in Table 1.

Baseline Separated No Difference
Easier to locate target 5 (10.9%) 33 (71.7%) 8 (17.4%)
Sound Quality 10 (21.3%) 33 (70.2%) 4 (8.5%)
Better Background 19 (40.4%) 19 (40.4%) 9 (19.1%)

Table 1: User Survey Results, showing
the number of responses for each
question, out of 47 total respondents.

We see that most users found it easier to locate the target audio
via the separated method, with only 5 choosing the baseline.
There are likely two main effects at play here. The first is that by
removing the target from the signals played from the microphone
locations and concentrating it at one point, the spatial cues are
much more consistent. The other is that because we have access to
a source signal and its location, we are able to create a point source
at that location. In the virtual speaker implementation, even if the
source happens to be near a microphone and the signal is very
dominant in that microphone, the spatial cues would be weaker
because each microphone is rendered as a large-area audio source.
One could improve this situation to some extent by reducing the
radius of the virtual speaker audio sources, but the background
becomes less diffuse for the microphones that do not carry the
target signal as well.

It is encouraging that the overall subjective sound quality
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was reported as generally better with the separated approach
as well. Because sound quality is an ambiguous metric that
means different things to different people it is difficult to inter-
pret this precisely. From the free text responses it appears that
people perceived the delayed echoes present in the baseline as
unnatural-sounding, and others described the separated condition
as "more natural". One user did report some "phasey" artifacts
in the separated condition, and another compared it to wearing
noise-canceling headphones. The general trends seem to be that
the spatial distribution of the sound is more natural in the sepa-
rated condition, but some work remains to ensure that the "holes"
left by removing the target from the background don’t degrade
the background sound by leaving those areas of the spectrum with
less energy. This is also consistent with the split opinions on the
background sound.

In the free response section of the survey several users noted
that the baseline background was somewhat louder than in the
separated condition, which is likely due to energy removed in the
filtering process. However, louder audio is generally correlated
with better perceived quality, so the effect (if any) would be to bias
in favor of the baseline.

It is important to note that this study is a relatively informal
validation that we are on the right track. Because the participants
were not blinded, their awareness of which method was which
could bias their reported experience. This was primarily due to
lack of time to perform a formal study, and the desire for the
application to serve a dual purpose as a demonstration of the
system.
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Part V

Contributions and
Conclusion



Contributions

This research spans several domains, and this document contains
a mixture of introductions to existing techniques, descriptions of
methods we’ve used, and the quantitative and qualitative results of
our work. In this chapter we provide a high-level overview of the
main contributions and lessons we’ve learned, that we hope will
be of use to researchers and practitioners in the field.

Outdoor Audio Deployment

There have been many lessons we’ve learned deploying and
maintaining an outdoor audio deployment, in a distributed array
unique in its duration of (almost) continuous operation, if not its
overall scale. The first, and perhaps most mundane, is that cat5e
cable makes a simple and effective four-channel audio cable.
The electrical specifications are similar to standard audio cables
used in professional contexts, and there exists a wide variety of
tooling developed for the telecommunications industry that eases
installation considerably. In particular the use of a time-delay
reflectometer is highly recommended for troubleshooting cable
faults in the field. Animal damage is a common issue, and cables
should be buried below ground.

Replacing cables with wireless communication seem like an
obvious path to explore, but brings with it more challenges, partic-
ularly power, bandwidth, and synchronization. As demonstrated
in this work, clock skew can be a substantial issue, and estimating
the skew for each microphone individually adds an additional
source of potential error.

Acoustic Measurement

Impulse response measurement (and more generally system iden-
tification) have been a widely-studied area of research. However,
comparatively little work has been done in the audio community
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to handle high noise environments, and accommodating devi-
ations from the ideal linear, time-invariant system. This work
highlights the fact that transmitter/receiver synchronization is
an important consideration for long-duration stimuli. We have
demonstrated that for the long-duration signals necessary to
achieve acceptable signal-to-noise ratios, clock skew significantly
degrades the measured impulse responses. In response, this work
has also introduced a new scheme for detecting and correcting
clock skew, and validated the algorithm in a real-world applica-
tion.

Despite the popularity in the literature of a wide variety of
impulse response measurement techniques, it is important to re-
member that simple mechanical impulses can be effective for
measuring basic acoustic propagation, despite their relatively
low SNR. They are also not subject to distortions caused by time-
variance in the system. In addition to the time variance caused by
clock skew, our results suggest that environmental time-variance
could be a significant issue in outdoor IR measurement. Inves-
tigating this in more detail and characterizing the impact on
different measurement techniques would require further study. We
have also produced a dataset of multichannel outdoor impulse re-
sponses from known locations, which could be of use to acoustics
researchers.

Localization

Many ideas and methods from existing literature can be re-
evaluated and modified in the context of a large-scale array. One
valuable outcome is the establishment of SDR thresholds for
TDOA localization based on cross-correlation. This can help de-
termine when these techniques would be expected to work well,
and also provide a target for pre-localization noise reduction. This
document also provides a description of correlation bridging the
statistical, linear algebraic, and signal processing perspectives.
While not novel research, bringing these perspectives together
provides a deeper understanding and facilitates the application of
techniques between domains and communities.

Signal Enhancement

The scale of our microphone array and the delays involved bring
several novel challenges that are unusual in the field of multichan-
nel signal enhancement. Prior work typically focuses on farfield

approved-1-gc81edd6



resynthesizing volumetric soundscapes 98

sources and small interchannel delays, and with array geometry
known to a high precision (through design or calibration). This
research proposes and validates a signal enhancement algorithm
based on rank-1 spatial covariance matrix factorization, and
demonstrates that this family of approaches can be applied in a
large array context by first aligning the observed signals based on
the source’s location.

Soundscape Analysis and Resynthesis

The motivating application for this research is the ability to cap-
ture a spatially-varying soundscape and resynthesize it for a
listener, giving them the ability to experience it from an arbitrary
vantage point. Towards this end we have introduced a framework
for capturing, analyzing, and resynthesizing a soundfield. We
have presented an end-to-end implementation that resynthesizes
recordings from the field site. Though the current implementation
can only localize sources in the plane of the array, and the local-
ization and foreground/background separation are limited to a
single foreground source, these limitations are not fundamental
to the framework and there are clear paths to overcoming them.
Additionally, over the course of this research we have developed
a dataset of multichannel recordings with a variety of sounds
played at known locations. This dataset could be useful ground
truth for source separation research in an outdoor large-array
context.
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Conclusion

This research proposes more questions than it answers, tilling
fertile ground (sometimes literally) for a future research direction.
Most signal processing and acoustics research uses simulations
or audio recorded under controlled conditions, particularly in the
multichannel domain. Working in the field gives new insights and
exposes false assumptions. There are a number of improvements
to make, open questions to answer, and follow-on studies to
perform, but here I would like to chart out a larger-scale vision for
the future of this work.

The current implementation of soundfield resynthesis has been
shown to be an improvement over our previously-used baseline
in a remote-presence application. Additionally individual im-
provements in latency, fidelity, and multi-source capability are all
well within reach. With these improvements it will be feasible to
integrate this resynthesis in on-site auditory augmented reality
applications. These will provide transparent sensory augmenta-
tion (i.e. "super hearing") to enrich the listener’s experience and
connect them more deeply to the natural world around them.

In this dissertation I’ve described and validated the main build-
ing blocks necessary for capturing and analyzing a real site, as
well as reproducing it for a listener, retaining their ability to move
about the site freely and experience the soundscape from different
points of view. As we live more and more of our lives in online
and digital spaces, it is important to consider the sensory envi-
ronment in which we’re immersing ourselves. As the technology
to render convincing and detailed spatial soundscapes continues
to develop, we need frameworks and methods to capture those
spaces. This creates the opportunity for telepresence to connect
people to the real world, not just purely-virtual simulations and
video games.

By situating this work in a wetland, I do not intend to replace
a connection with nature, but rather to deepen it. One of the most
powerful vignettes from Gershon Dublon’s field experiments
was with a user who found themselves really attending to the
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soundscape of Tidmarsh for the first time, through the use of
an unobtrusive piece of thoughtfully-designed technology. Un-
derstanding nature is a form of literacy and takes practice. The
perception of an experienced birder or entomologist walking
through the forest is qualitatively different from someone who
spends their life behind a screen. I hope that this work can con-
tribute to a richer sensory experience that brings attention to the
diversity and abundance that might otherwise go unseen.
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Glossary

Direction of Arrival (DoA) A spatial vector pointing from a
source to the center of a sensor array. Generally measured in
degrees or radians of azimuth (for 2D DoA) or azimuth and
elevation (for 3D).

Farfield Given a sensor array, a source is in the farfield when
it is far from the array relative to the distances between the
sensors. In this regime arriving wavefronts can be thought of
as plane waves, and time delays between microphones provide
information only about the direction to the source, not its
distance.

Nearfield Given a sensor array, a source is in the nearfield when
the distance from the source to the sensors is similar to the
distances between the sensors. The wavefront emanating from
the source is spherical (assuming the medium is isotropic), and
time delays provide information about source location.

Time Difference of Arrival (TDoA) A localization framework
using the delay between when a target signal arrives at one
sensor relative to another. It does not require knowledge of
when the signal was emitted from the source.

Source Separation Extracting multiple signals of interest from a
mixture, which might or might not include noise as well

Signal Enhancement Extracting a single target signal from noise.

Steered Response Power (SRP) A spatial function (of location or
direction) that indicates how much power would be present in
the output if the array were focused (in the beamforming sense)
at that location or direction.

Beamforming A signal enhancement technique where noise
is reduced by focusing the array at a particular location or
direction. Focusing in this case generally means delaying and
summing the individual array element signals to be consistent
with that location and the array geometry.
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Target The signal of interest, generally within a mixture

Interferer A non-noise signal that is not the target

Spatial Likelihood Function A spatial function used in local-
ization (similar to the Steered Response Power) that gives the
likelihood of the target being at that location or direction, under
a particular model.

Interference Energy in a mixture signal that may have strong
correlations or that we may have a model for, but that is not the
target signal.

Noise Energy in a mixture signal that is not due to the target,
and generally considered to be only weakly correlated in time,
frequency, or space. More generally energy about which few
modeling assumptions are made.

Image The component of the observed mixture signal that is due
to the target. It often includes system effects such as reverber-
ation, and in a multichannel case the image is multichannel.
Source separation and signal enhancement are sometimes
framed in terms of estimating the image of the source, rather
than the source itself.

Spatialization The process of taking a source signal (generally
single-channel) and performing simulation to compute the
multichannel signal to present to a listener.

Localization Estimating the position of a sound source based on
audio received at the microphones (or ears).

Stimulus A signal that is injected into a system to measure some
properties of that system

Stimulus Response The signal observed from a system in re-
sponse to some stimulus

Impulse Response The signal observed from a system in response
to an impulse. Rather than measuring this directly it is often
estimated from a stimulus response.

Time Aliasing Algorithmic noise that is introduced when frequency-
domain processing is performed with insufficient resolution,
which causes energy from the end of a signal to "wrap around"
in time to the beginning.

Frequency Aliasing Algorithmic noise that is introduced when
time- or space-domain processing is performed with insufficient
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resolution, which causes energy from the positive frequencies
of a signal to "wrap around" in frequency to the negative. For
signals real-valued in time, the spectrum is conjugate symmetric
and often only the positive frequencies are considered. In this
case the frequency aliasing manifests as the high frequencies
being reflected across the Nyquist frequency. This is often just
called "Aliasing".

Spatial Aliasing Another name for Frequency Aliasing in the
context where a signal is being measured at different points in
space, but with insufficient resolution to uniquely determine the
frequency.

Power Spectral Density (PSD) The expected power density of
a signal as a function of frequency. That is, a measure of how
much power a signal is expected to have near a given frequency.
It is given by the Fourier transform of the signal’s autocorrela-
tion function, and is real-valued.

Cross Spectral Density (CSD) The frequency-domain correlation
between two signals.

Musical Noise A type of noise often associated with spectral
subtraction or other time-frequency processing that involves a
threshold below which energy is removed. The noise is created
by small "islands" in the time-frequency plane that are above the
threshold, creating the percept of chirps or warbles (sometimes
described as "watery" or "phasey" noise).

Wide-sense Stationary A signal whose mean and autocorrelation
function are not a function of time. This is an important and
widely-used signal model because it implies we can estimate the
autocorrelation function by taking inner product between the
signal and differently-delayed versions of itself.

Random process A random process is a distribution over signals -
i.e. sampling from the process produces a signal.
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Appendix A: User Survey

Users of the Soundscape Resynthesis Demo were asked to fill in a
survey with the following questions:

Do you give permission for your responses to be used in
Spencer Russell’s dissertation and other published papers?

• Yes

• No

How much experience do you have working with sound?

• None

• Audio Hobbyist

• Audio Professional

How many audio samples did you listen to?

• 1

• 2-4

• 5-10

• 11-20

• More than 20

How much did you move around the environment?

• I stayed mostly where I started

• I explored

Did you hear a difference between the Baseline and Separated
methods?

• Yes

• No

Which method had better sound quality?

• Baseline



resynthesizing volumetric soundscapes 105

• Separated

• No Difference

Which method made it easier to locate the target source (red
orb)?

• Baseline

• Separated

• No Difference

Which method provided better background sound? (wind,
etc., all the sound that’s not the target).

• Baseline

• Separated

• No Difference

Please share any additional thoughts about your experience
and expand on your answers above.

Free Text
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