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Abstract
Lighting, and its emergence as a digital and networked medium, represents an ideal

platform for conducting research on both sensor and human-derived methods of control.
Notably, solid-state lighting makes possible the control of the intensity, spatial, and color
attributes of lighting in real-time. This technology provides an excellent opportunity to
conduct new experiments designed to study how we perceive, judge, and subsequently
control illumination.

For example, given the near-infinite variation of possible lighting attributes, how
might one design an intuitive control system? Moreover, how can one reconcile the
objective nature of sensor-based controls with the subjective impressions of humans?
How might this approach guide the design of lighting controls and ultimately guide the
design of lighting itself? These questions are asked with the benefit of hindsight. Simple
control schemes using sliders, knobs, dials, and motion sensors currently in use fail to
anticipate human understanding of the controls and the possible effects that changes in
illumination will have upon us.

In this work, the problem of how humans interact with this new lighting medium is
cast as a human-computer interaction. I describe the design and validation of a natural
interface for lighting by abstracting the manifold lighting parameters into a simpler set of
controls. Conceptually, this “simpler set” is predicated on the theory that we are capable
of discerning the similarities and differences between lighting arrangements (scenes).

I hypothesize that this natural ordering (a metric space in a latent multidimensional
basis) can be quantitatively extracted and analyzed. First, in a series of controlled ex-
periments, I show how one can derive this mapping and I demonstrate, using empirical
evidence, how future sensor networks will eventually emulate our subjective impres-
sions of lighting. Second, using data obtained in a user-study, I quantitatively derive
performance estimates of my proposed lighting user-interface, and statistically contrast
these performance results with those obtained using a traditional interface comprised
of sliders and buttons. I demonstrate that my approach enables the user to attain their
illumination goals while substantially reducing task-time and fatigue.
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Title: Associate Professor, Program in Media Arts and Sciences
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1

Introduction

The work detailed in thesis describes and tests a theory of how and why a better
user-interface for lighting control exists. In this work, a series of experiments will
demonstrate that human impressions of lighting are efficient representations of lumi-
nous conditions and constitute the basis for an entirely new method of lighting control.
The instantiation of such a user-interface is derived using a quantitative and analysis-
driven approach. The resulting interface is a compact representation of the appearance
of luminous conditions. Outwardly, the resulting user-interface is simple to use and
extremely efficient compared to existing methods of lighting control.

Using empirical evidence, this thesis also argues for the generality and automation
of this technique by demonstrating the fundamental relationship between a subjective
model (human) and an objective model (sensor) of the luminous conditions.

Accordingly, the first part of this thesis concentrates on the background and theory
required to experiment, analyze, and understand how such an interface is possible and
why it is useful. The second part of this work details three experiments in which a pro-
totype is quantitatively designed using the underlying experimental data. This approach
to the design and control of lighting is then tested against a common method of lighting
control.
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1. INTRODUCTION

1.1 What is Experiential Lighting?

The study of human factors in lighting focuses on four primary areas. Generally, these
are: the physical properties of the electromagnetic spectrum (radiometry), the photons’
neurophysical effects in humans (photometry and colorimetry), lighting and health, and
the psychological effects “seeing” and “experiencing” (visual perception). Broadly,
lighting control involves aspects of all four of these fields. It represents an indirect link
or “communication interface” between the human and the (computer-actuated) lighting.

The motivation for this research is predicated on the observation that our control
methods for lighting lag behind the capabilities of our lighting technology. Nowhere is
this more apparent than in the design and control of solid-state lighting.

The research proposed here addresses the specific problem of multivariate lighting
control. By multivariate, I am implying the simultaneous control of several physical
parameters: radiant energy, wavelength, and location (in space). Such lighting systems
contain a panoply of individual parameters to control, each of which range several orders
of magnitude. An honest question is whether we actually need such complexity and
further, how might we organize such a system for human use?

From the human’s perspective, the variation of these physical parameters manifest
sensations and carry the perception of brightness, color, and pattern. It is tenable that we
might be able to design a simpler and a more natural system by attempting to understand
how we judge and perceive lighting. Such an endeavor not only advises the future design
of lighting controls (and improves their usability), but suggests how we might design
sensor-enabled environments to emulate this behavior, or more radically, provide an
optimal configuration of the lighting attributes that maximize affect (e.g., for museums,
showrooms). Such an approach can also be extended to reconcile multiple individuals
whose lighting goals may differ.

Crucially, it represents the first steps towards emulating our behavior and relation-
ship with lighting, by attempting to statistically and empirically explore the precepts of
our judgment of lighting. Although I have highlighted some examples, I also believe
that this approach may be influential in further studies of context and lighting control.

My central thesis is that we may derive and construct a natural interface for lighting
control by emphasizing a holistic approach; that luminous conditions should be judged
as a whole, and not by their constituent parts. In the words of Buxton (1986), I am also
advocating that “we must learn to match human physiology, skills, and expectations
with our systems’ physical ergonomics, control structures, and functional organization.”
What can be said of gestures and human-computer interaction can also be said of humans
and lighting. The luminous minutia emphasized by present lighting controls are (possi-
bly) unnecessary if we observe how humans naturally interpret lighting conditions. The
plan, of course, is to test this hypothesis.

I argue that a successful lighting interface is one that is ultimately organized by
the principals of how we judge and determine the differences between illuminants. It is
then hypothesized that an empirically determined geometry that reflects these judgments
represents a natural interface for controlling illumination and one that is significantly
more appropriate for human control.
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1.2. Motivation and Opportunity

Figure 1.1: Example lighting interface to control preset “zones” of lighting found in MIT Build-
ing E14 (Image credit: Brian Mayton, MIT)

1.2 Motivation and Opportunity
Present-day lighting control solutions typically afford users a linear one to one mapping
to adjust the brightness of a single luminaire, or even the room. Modern illumination,
comprised of networked, and color adjustable solid-state lighting presents a challenge
to existing user-interfaces. For example, perceptual color spaces such as CIE 1931 and
CIE 1964 (Wyszecki et al., 1968) effectively represent color well, but ignore a critical
factor in specific lighting installations: the designer and inhabitants are also concerned
with the spatial characteristics of the room (e.g, wallwashing versus direct overhead
lighting) in addition to intensity and color. How might these attributes be reconciled in
a user interface?

On the other side of the spectrum, we often encounter the lack of personal control in
office settings is borne out of the concern that personalized lighting is wasteful, and that
occupants will simply select excessive amounts of illumination without regard. This has
been demonstrated to be incorrect, and even shown that occupants prefer some level of
lighting control (Veitch and Newsham, 2000).

Where things go horribly wrong is when building dwellers are confronted with ex-
cessive and burdensome controls. These interfaces consist of too many poorly labeled
and undecipherable choices for adjustment of the lighting (Figure 1.1). These interfaces
very general –which, in many cases is a great thing– for it allows an expert an unlimited
palate to specify the lighting presets. It also incorrectly assumes (a) the average user
has the patience to use such control and (b) a linear configuration control is the most
intuitive mapping. It is difficult to use. Why?

A short discourse will help address this question. A simple explanation was offered
in 1956 and has come to be known as Miller’s law (Miller, 1956). In this short treatise,
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1. INTRODUCTION

Miller describes, from an information-theoretic approach (Shannon, 1948), that the av-
erage persons information channel capacity is roughly 2 to 3 bits of information, which,
Miller points out, corresponds to roughly our ability to distinguish between four to eight
objects using our short term memory. Explaining poor design and user-interface was
not an objective of Miller’s. These theories would later evolve from Gibson’s theories
of perception (Gibson, 1971, 1977), and were ultimately made popular by the writings
of Donald Norman (Norman, 1988, 1992, 1993). Norman’s work lays the foundation
and approach to user-centered design. To paraphrase Norman’s work, I refer to psychol-
ogist Ian Gordon who states, “the essence of Norman’s position is that humans naturally
do some things wells, others badly. Bad design fails to recognize this fact (Gordon,
2004).”

Regarding the controls in Figure 1.1, it is obvious why this design leads to so much
frustration. Why must we perpetuate this mapping? Why should we emulate a control
strategy for lighting (Holmes, 1884) that was designed to control simple incandescent
technology (Edison, 1880) nearly 125 years old? These questions motivate the thoughts
and ideas explored in this work.

One more point is in order – it has been recently suggested that as a lighting tech-
nologies become more efficient, we tend to use more lighting. This is an example of a
positive feedback. This is analogous to widening a highway, and within a few months,
observing that, rather than a reduction of congestion, the highway is now congested with
even more cars. The theory behind our appetite for photons is due to Tsao et al. (2010).

In light of this evidence, one might readily contend that management and control of
lighting – specifically the user-interface and control-strategy – is a key area of research.
Thus, a reasonable goal in the design of the user-interface is a solution that not only
allows a user to specify what they want, but to do so efficiently and without burden to
the user.

1.3 Motivating Example
Consider three simple lighting presets consisting of eight sliders which control the flux
of some arbitrary lighting arrangement in room. Let us assume that we can measure
two simple attributes in the room, table brightness and wall brightness. Further assume
that we collect these measurements using either an objective set of measurements (e.g.,
collected using a sensor) or a subjective set of measures (e.g., collected using human
impressions).

This idea (Figure 1.2) presents a linear configuration of sliders (three scenes total)
and the corresponding measurements of two attributes, table brightness and wall bright-
ness. For each of these attributes, we now have measures about the relative distance
between the three lighting presets.

If we further assume that one can center these data (i.e., the mean is zero) and, that
these two attributes are independent from each other (either by experiment design, or
through some algorithmic processing), we can then represent the two metric distances
simultaneously (Figure 1.3). In this new configuration, we now have a metric space
consisting of the underlying scenes represented by coordinates on these two axes.
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1.3. Motivating Example

Preset 1

Preset 2

Preset 3

(a)

Scale #1 (Table Brightness)

Preset 3

Preset 1

Preset 2

0

(b)

Scale #2 (Wall Brightness)

Preset 1

Preset 2

Preset 3

0

(c)

Figure 1.2: The initial problem setup. In (a) three presets of lighting arrangements. In (b) and
(c), we have hypothetically measured two orthogonal attributes in the space, table brightness and
wall brightness.

Let us further assume in this example, that we can derive a mapping which relates
Ω, the metric space the scenes and Γ, the state space of the luminaire setpoints. In other
words, our measurement function implies f : Γ→ Ω. This supposition subtly implies
that Ω is some lower-dimensional projection of a multidimensional (non)linear manifold
Γ.

In Figure 1.3b, suppose we now wish to estimate the state-space Γ within the shaded
region bounded by Ω. This goal is analogous to a interpolation in Ω. Specifically,
we seek to estimate f̂−1, the inverse mapping which implies Ω→ Γ. Practically, this
implies that there exist a continuum of lighting presets bounded by these presets.

In this work Ω is assumed to be a latent and unobserved variable. In the motivating
example, it was suggested that Ω can be measured without noise and is completely
recoverable. This is likely not the case. Through a set experimental procedures, we
analytically derive an estimate of Ω from both objective and subjective measurements.
We then estimate f̂−1 from Γ and Ω. This mapping allows a user to control and adjust
the lighting in a compressed state space Ω and perceive the effects of indirectly adjusting
Γ.
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1. INTRODUCTION

Axis 2 (y)

Preset 1

Preset 2
Preset 3

Axis 1 (x)
(table brightness)

(wall brightness)
(a)

Axis 1 (x)
(table brightness)

Axis 2 (y)
(wall brightness)

Preset 1

Preset 2
Preset 3

(b)

Figure 1.3: A two-axis representation of two attributes of a hypothetical space.

1.4 Subsets and Sensors: Duality in Lighting
User-Interfaces

Consider a discrete slider of 8 bits of resolution used to control the intensity of a sin-
gle luminaire. In this example there are 255 possible states of brightness (assume the
brightness matches the logarithmic function of the eye). In a system consisting of 8 lu-
minaires and 8 sliders, there are approximately 17 quintillion states (17 billion billion).
Intuitively, we know that a large portion of these states are not preferred by many users,
and this leads to the notion of a typical set of lighting configurations (Figure 1.4). A
lighting design expert essentially finds a set of lighting configurations that are elements
of the set of all states. Given some unknown utility function of lighting design, f (D),
the expert compresses the set A into a typical set B whose cardinality|B|< |A |.

There exist other –automatic ways– of identifying these subsets, but require explicit
definitions of f (D), such as the minimization of power consumption. For example,
consider scenario in Figure 1.5, where the user can place a wireless illuminance at an
arbitrary position in the room. In prior work, we1 demonstrated how a simple linear
program can automatically adjust the lighting in a room (Aldrich, 2010; Zhao, 2010;
Aldrich et al., 2010; Lee et al., 2011; Mayton et al., 2013) using senor-nodes and wear-
able sensor-bracelets. The key insight was that the controllable lighting was modulated
such that the sensor-node could easily identify the corresponding contributions of light
at a point incident to the surface. Dimming was controlled via buttons (Figure 1.5b)
which set the constraints of the linear program.

Other mapping functions exist, such as pointing (Mayton et al., 2013) and learning

1The Responsive Environments Group at the MIT Media Lab.
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Typical set:
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Figure 1.4: Presets are a random variable drawn from a set of “preferred” luminous conditions.

(a) (b)

Figure 1.5: In (a), a hypothetical use-case with controllable and background illumination. In (b),
the prototype sensor node to measure intensity, color, and control the lighting.

patterns of movement in lattice-type networks of motion-sensors (Aldrich et al., 2013).
All of these systems are perceived as simple and easier to use because, either through
the direct measurement of illuminance or motion, or by allowing the user to gesture, the
resulting set of lighting states B is smaller than full set of states A .

In this thesis, the set B ∈A , is chosen apriori, without the aid or intervention of a
sensor network, since the primary goal is understanding how to design a lighting user-
interface which allows the user the ability to interpolate over the states in B. However,
given some lighting design/control strategy f (D), it is possible to automatically aquire
B (Figure 1.6).

Moreover, this thesis argues that the available user-interface to adjust and manipu-
late the luminous conditions is inefficient and demonstrates the effectiveness of a user-
interface analytically inferred by our impressions of lighting in a space. In this work,
the relationship between the slider states, Γ and the orthogonal basis Ω is measured and
computed. In other words, these representations are duals (Figure 1.7). The approach
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Figure 1.6: Acquisition of new lighting presets using a sensor-network. The sensor-node infers
the contribution from the lighting in various positions in the room. Given some simple control
strategy (e.g., a linear program). The user can quickly configure a series of preset lighting con-
ditions. (The number of luminaires and corresponding slider interface in this figure are simply
illustrative of the technique.)
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 (x,y)’ΩΓ

Figure 1.7: The relationship between the slider state Γ and subjective state Ω.

and methods in this thesis allow one to build a user-interface that can map any arbitrary
configuration of states onto the simpler basis. For example, one might automatically ac-
quire Γ through the use of a sensor network and project these data onto Ω. Furthermore,
as a user-interface, one might configure the lighting globally according to Ω and then
fine-tune the system by small adjustments in Γ.

1.5 Thesis Outline
The rest of the thesis is organized as follows. In Chapter 2, I present related work
on subjective measurements of lighting and objective-mappings using sensor networks.
In Chapter 3, I discuss the ontology behind this work and present a framework that
addresses the goals of the motivating example. I then present the results of three ex-
periments, which contrast the various ways of observing these latent dimensions, and
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discuss the performance of lighting control user-interfaces that utilize these mappings.
Chapter 4 describes how I developed a prototype lighting user-interface using sub-

jective responses collected using immersive 3D computer graphics. Chapter 5 studies
how these impressions can be collected and mapped in the physical space, using real
lighting conditions. Chapter 5 also describes and quantifies the fundamental connection
between a subjective mapping of lighting scenes and an objective mapping, a crucial
step in moving towards a general methodology. In Chapter 6, I present the performance
results of using the subjective mapping derived in in the previous chapter. This chapter
contrasts the performance of my proposed lighting control user-interface with a tradi-
tional approach of lighting control. Additionally in Appendix A, I present a preliminary
analysis of user-interface preferences as a follow-up study to the experiment discussed
in Chapter 6.

Chapter 7 summarizes the results of this thesis.

1.6 Hypotheses
The research presented in this thesis is based on the assumption that is useful and pos-
sible to develop a lighting user-interface that simplifies the number of parameters to
control in solid-state lighting systems. This conviction is founded on the following hy-
pothesis which will be discussed in the concluding Chapter 7.

Feasibility Subjective impressions of lighting can be measured and used in the design
of lighting control. The evaluation of these impressions indicates people base their
decisions on criteria that are complimentary, but independent of perceived brightness
and color.

Justifiable Effort There exists an identifiable relationship between the objective (sensor-
based) and the subjective (human-based) models of lighting-scene appearance. Estab-
lishing this relationship implies that sensor-networks may automatically build and infer
the lighting control user-interface without requiring human assistance.

Relevance The user-experience is better than (traditional) direct-control mappings of
luminous intensity. This can be measured in a user study by analyzing task-time, and
other human-factors.
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Related Work

This thesis builds on the rich tradition of psychophysical lighting research and ex-
tends this work into the area of controls and actuation. An overview of human factors
and lighting is presented, focusing on perception of lighting. Next, a short survey of
recent sensor-based lighting research is presented. Contrasting these two fields is im-
portant; to what extent might a sensor network model and mimic the perceptual space
as described in the lighting literature? Recent work in fields unrelated to lighting have
investigated the actuation, control, and design by incorporating subjectivity into their
modeling procedure. The future of user-centered design will incorporate both subjec-
tive and objective data parsimoniously.
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2.1 Overview
The work in this thesis builds on the rich tradition of psychophysical lighting research
and extends this work into the area of controls and actuation. Prior research in lighting is
concerned with identifying the dimensions that subjects perceive the lighting in a space.
This thesis shows that these techniques are extremely relevant for the design of control
systems.

To contrast the traditional goals of lighting research, I summarize the field of sensor-
based lighting control – where the goal is often controlling “intensity” and minimizing
power. These represent objective measures used to control lighting. Are the subjective
measures plausible? Do the objective measures reflect human intent? This Chapter
presents evidence from both sides.

2.2 Higher-Order Perception of Lighting
An excellent summary of both the lower-order and higher-order effects of lighting in
humans is given by Boyce (2003). Boyce explains (and these are generally accepted
principles) that perception is affected by stimulus but not the stimulus alone. First, per-
ception depends on the state of the adaption of the visual system. Second, the stimulus
for perception in the real world is rarely a single item, seen in isolation, but a complex
structure in which objects are seen against different backgrounds. Third, perception
is guided by our present knowledge and past experience of the luminous environment
which determine the assumptions we make about objects and the ways they are usually
lit.

Ultimately, the basis for the existence and measurement of these dimensions may
be suggested by Kaplan and Kaplan (1982); Kaplan (1987) whose work focused on the
role of cognitive processes in environmental appraisals. In this specific cognitive model,
appraisal occurs across four dimensions: coherence, legibility, mystery, and complexity.
The model emphasizes information-processing: brightness certainly allows us to obtain
more information. Mystery and complexity may arise by varying the spatial and size
attributes of the space.1

2.2.1 Lighting, Perception, And The Energy Crisis of the 1970s
In the late 1950s, Osgood found that meaning in language is perceived along three di-
mensions: evaluative (good-bad), potency (heavy-light), and activity (fast-slow) (Os-
good, 1957). Osgood’s experiments utilized a multivariate method of analysis known as
factor analysis (see Hair et al., 2009) to attempt to identify a causal relationship between
words and their meaning. Nearly 40 years ago, researchers began to apply these meth-
ods to lighting – their goal was clear: find satisfying and pleasing rooms that cut energy
costs.

1Figurative “goodness” is described by the Gestalt theorists, for an example of “goodness” and its
link to information theory see pp. 45-51 of Gordon (2004).
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One of the first researchers to adopt these psychometric methods was John Flynn.
He reflects on the underlying goals of the work.

As we look back on the development of electric lighting in 20th cen-
tury American building, we see the year 1973 as a prominent and signif-
icant turning point. Prior to 1973, American practices were based on an
assumption of plentiful and inexpensive electric energy; and this in turn
led to a widespread attitude that electric light was inexpensive and read-
ily available. . .the post-1973 period has therefore produced many questions
regarding the value of lighting.” (Flynn, 1977)

Nearly all the works summarized below account for brightness, or a dimension on which
people evaluate a visual environment. Another appears to be something with variety,
meaning the non-uniformity in the light distribution away from the work surface. After
that, there is basically no agreement. The relevant historical papers are Flynn et al.
(1973); Hawkes et al. (1979). The work was extended to pictures Hendrick et al. (1977)
and to nonuniform scenes Flynn (1977).

One of the broader ideas that emerged from this period of research was that it ap-
peared that preferences and way that we interpreted lighting appeared to be similar –
that it was shared. In the wake of such metaphorical analysis, researchers began to chal-
lenge the broad acceptance of the semantic differential scale in favor of scaling methods
of paired-comparison data (Rea, 1982; Tiller, 1990; Tiller and Rea, 1990; Houser and
Tiller, 2003).2

2.2.2 The Post-Flynn Era
Indeed, a comparison of recent dimensional modeling of lighting perception backs off
from the heady optimism and near metaphorical descriptions of lighting. Nearly thirty
years later, similar exploratory experiments were carried out by Veitch et al. (1996), who
generally found similar dimensions, and discussed a third deemed, “complexity.” Loe
et al. (2000) described work conducted in a physical space and indicated scales that are
described as “visual lightness” and “visual interest.” Quite recently, the proliferation
of solid-state lighting has led some researchers to conduct similar studies related to its
naturalness and colorfulness (Dangol et al., 2013) and a factor analysis of how we may
perceive dynamic lighting installations (Wang et al., 2013).

Multivariate modeling continues to happen in various guises. Rather than discuss
perception, some proponents of correlation-based methods describe lighting in terms
of atmosphere. Atmosphere is defined as the experience of the surrounding in relation
to ourselves, through the perception of external elements and internal sensations. An
atmosphere does not necessarily give rise to a particular feeling, it only has the potency
of changing people’s affective state (Vogels, 2008).

Vogel’s thesis is that traditional methodologies to measure mood and emotion cannot
be used and proposes the use of derived scales to measure the human’s response. Rather

2For an excellent response and defense of the semantic differential, and the difficulties is assessment
of lighting, see DK Tiller’s comments on the work of Houser and Tiller (2003) at the end of the paper.
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than apply a factor analysis (requires large sample sizes), the author performs ANOVA
on the principal components of the response data, assuming normality (of ordinal data).
Such an analysis tests where the centroids or points on the orthogonal basis are different
than one another. Within the lighting community, the treatment of ordinal scale as ratio
scale appears common. This technique is also reflected in Wang et al. (2013) and Dangol
et al. (2013).

2.2.3 Lighting, Interaction, and Our Insatiable Appetite of Photons

The work under in this section is an amalgam: it’s part lighting research, part pervasive
computing (see Sec .2.3 for a focused Ubicomp review). In the nascent stages of solid-
state lighting Bergh et al. (2001) and Schubert and Kim (2005) both opined the future
and flexibility of solid-state lighting. Today, lamp efficacies are nearly suited for tradi-
tional lighting applications (Haitz and Tsao, 2011). Indeed, a recent analysis suggests
that as we improve the efficiency of lighting, we tend to consume more lighting (Tsao
et al., 2010). This is counterintuitive; one would expect efficient technologies to save
money. If one puts any stock in this analysis, then one might conclude, based the control
opportunities for lighting and the growing need to manage all this light, that control and
interaction will be the next key area of lighting research.

In what will become a landmark paper in this burgeoning area3, Newsham et al.
(2004) describe a series of experiments where subjects rated their preferred lighting
scenes (on a computer). The computer scenes allowed for adjustment of the surface illu-
minance of the various facets of the scene (ceiling, desk, side partitions, etc.). Through
the aid of a genetic algorithm, it was shown that subject’s arrived at their preferred light-
ing conditions simply by rating what was preferred and what was not. Furthermore,
there was similarity between these preferences across people. A factor analysis revealed
that the underlying causes of ratings on both the grey scale computer simulation as well
as the physical office setup were similar. Finally, these subjective ratings of brightness,
uniformity, and attractiveness were found to be significantly related to the luminance in
the images. Villa and Labayrade (2013) recently described a multi-objective approach
to balancing perceived brightness and “coziness” in an office setting (using ray-traced
computer images). Again, the authors employ a genetic algorithm to find Pareto-optimal
solutions of multiple objective functions. The biggest drawback in the two approaches
described here is that genetic algorithms are not suitable for run-time performance (e.g.,
their application in lighting controls is doubtful). In Villa and Labayrade (2013), the
independent variables are regularly spaced, for example the setpoints of the luminous
conditions and the dependent variables are preference or energy. In this work, bi-linear
interpolation makes sense, as the independent variables form a grid of points. In this
thesis, since the main focus is to build a user-interface, the independent variables are
ordinated lighting scenes (which are irregularly spaced) and the dependent variables are
the luminous set-points.

3Despite being published nearly 10 years ago, at the time of writing, this paper is cited by only 11
authors. Alas, the fields of pervasive and ubiquitous computing have not converged on this field.
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Nearly 14 years after a landmark framework for tangible interaction (Ishii and Ullmer,
1997; Ullmer and Ishii, 2000), these powerful ideas of interaction have appeared in the
lighting community. The first basic analysis of modern lighting control systems (Dugar
and Donn, 2011) brought the vision and ideas of the general human-computer interac-
tion (HCI) community into the lighting world. Their focus is specifically on tangible
computing, but they propose a rather narrow framework. I would suggest future analy-
sis of lighting controls focus adopt a morphological analysis of the control space (see
the seminal HCI work by Card et al. 1991 and Mackinlay et al. 1990 for an example).
Dugar et al. (2012) recently published a user-study based on their physical prototype of
a lighting control tangible user interface (TUI). HCI purists may argue if it is actually
a TUI, or an example of gesture-based interaction, however it is certainly a step in the
right direction.

2.3 Pervasive Computing and Lighting Control
Within the last five years, there has been considerable progress by the pervasive comput-
ing community using sensor-networks to control illumination. An updated review will
be included in the dissertation, but the work reviewed below gives sufficient breadth.

To date, occupancy-based controls represent the majority of automatic building light-
ing control systems. Early studies of stochastic modeling and lighting are reported in
Newsham et al. (1995); Reinhart (2004); Singhvi et al. (2005). The work conducted at
the turn of the millenium broadly reflects the underlying goals and principals of perva-
sive computing (Weiser, 1991; Abowd et al., 2002). In what follows, I present a small
survey of the sensor networks and lighting. Crucially, one should notice how the per-
vasive and ubiquitous computing communities tend to marginalize the human in these
cyberphysical systems.

Increasing research and commercial deployments of sensor networks have motivated
the use of networks that monitor lighting conditions and the development of closed-loop
lighting control. In these systems, illuminance-sensors are placed (generally in a fixed
position) in the area of interest in order to detect the luminance surface and feedback the
lighting information.

Dynamic and adaptive lighting enabled by environmental sensors offers additional
energy savings. Early work by Crisp and Hunt in the 1970s focused on estimating
internal illuminance from artificial and external light sources in order to reduce un-
necessary lighting and excess energy expenditure (Crisp, 1977; Hunt and Crisp, 1978).
This early work discussed the use of photosensors to monitor the natural daylight in the
office place. With the availability of low-cost photosensors and an influx of low cost
embedded devices, this simple form of intensity feedback was extended to networks
of fixed color incandescent and fluorescent lights. Singhvi et al. (2005) designed and
tested closed loop algorithms to maximize energy efficiency while meeting user light-
ing requirements in an incandescent lighting network. Park et al. (2007) developed a
lighting system to create high quality stage lighting to satisfy user profiles. Wen and
Agogino (2011) researched fuzzy decision making and Bayesian inference in lighting
control networks. Machado and Mendes (2009) tested automatic light control using
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neural networks, as did Mozer (1998) where light switches and thermostats in his house
provided reinforcement for a neural network that incorporated motion sensors to build a
user activity model to automatically control utilities.

Wen et al. (2006) researched fuzzy decision making and Bayesian inference in light-
ing control networks as well as designed a versatile plug-and-play wireless-networked
sensing and actuation system and included a control method incorporating multiple
management strategies to provide occupant-specific lighting (Wen and Agogino, 2011).
Miki et al. (2007) studied the trade-offs between energy consumption and lighting pref-
erences for multiple users using a linear program to calculate the optimal intensity set-
tings in a lighting network. Similarly, Pan et al. (2008) used a linear program and con-
sidered the power consumption as the objective and the user-preference as constraints.
Both algorithms require the knowledge of the positions of the occupants, which can be
detected using RFID tags or other similar user localization systems.

Increased efficacy and performance of solid-state lighting has reinvigorated interest
in intelligent dimming, color control, and networked lighting (Schubert and Kim, 2005).
Caicedo et al. (2011) consider the problem of energy-efficient illumination control based
on localized occupancy models. In this work, an occupant’s trajectory is modeled as a
Markov chain and tracked using ultrasound while a linear program controls the dim-
ming level. Bhardwaj et al. (2010) use a predetermined illuminance setting and context
(i.e., reading by a lamp) which can compensate for changing ambient light levels or the
presence of additional LEDs.

2.4 Beyond Lighting: Incorporating Preference and
Opinion in Design and Control

Although not directly related to lighting or lighting control, the short survey of works
here share a similar philosophy with the work outlined in this proposal. The primary
link is that all the works here suggest ways to incorporate some notion of perception,
map it to some physical parameters, and then perform some actuation or decision using
the subjective human criteria.

The design of objects, artifacts, and products certainly benefits from this type of ap-
proach (Hsiao and Chen, 1997; Achiche and Ahmed, 2008). The broad goals of these
works seek relate the perceptual or emotional attributes of an object to its physical at-
tributes. Using these perceived dimensions, one can proceed to design an optimal chair
or virtual character – one that directly speaks to how we understand the artifact.

A similar approach can be taken with the design of virtual characters – for example,
what makes them memorable to us? This requires modeling emotion, mood and per-
sonality, as well as social relationships. The frameworks for conducting such research
are potentially beneficial for the design and incorporation of our subjective responses to
lighting (see Kasap et al. 2009 for more detail).

Chaudhuri et al. (2013) present an approach for modeling and design of whimsical
creatures and toys using computer graphics by mapping the semantic attributes of the
individual components of these objects (e.g., the head, tails, body, feet) and show how
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the design of such objects is more enjoyable, faster, and intuitive when the user can
design these attributes using scales (“actuators”) that reinforce the emotive and affective
attributes of the character. This of course, has strong similarities to the design and
control of a lighting system in which we vary the primary dimensions in which we
perceive and judge the differences of lighting.

The nascent field of “visual stylometry” is concerned with the study of how comput-
ers can understand the authenticity of artwork (Graham et al., 2012). What is important
here is that in order to study this problem, the authors have to describe the visual process-
ing of an entirely perceived phenomenon – style – in a way that ordinary computers can
understand. If one were to adopt a computational framework of human vision (e.g., Marr
1982) and study how spectrometry and computer vision can emulate lighting control
based on our comparative judgments of scenes, these hybrid perception+computation
studies of computers are of great considerable interest.
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3

A New Framework For Lighting Control

The ontology governing this work is developed and presented in this chapter. The
fundamental aspects of psychology and human-computer interaction relevant to the de-
sign and analysis of lighting control are presented.
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3.1 Perception, Interaction, and Control: A
Framework

Unlike the field of human-computer interaction, research in lighting control does not
carry a rich tradition of toolkits, taxonomies, and performance studies. This is not a
comment on the quality of lighting control research, but rather a statement about the
organization of the field. Thus, to formalize a research endeavor in this space, I am
proposing a layered-framework which spans the metaphysical and technical. In this
approach, the layers proceed downwards, with each layer successively refining and re-
inforcing the entire framework.

The framework (see Figure 3.1) consists of four layers, with the highest layer com-
prising the metaphysics of the framework and lowest layer, the technical substrate.

Theory of Direct Perception and Ecological Optics
↓

Structural Processing Theory
↓

Reality-based Interfaces and Interaction
↓

Measurement and Mathematical Modeling

Figure 3.1: The proposed framework for conducting research on human interaction with lighting
control.

3.2 Invariants and Affordances as Mechanisms to
Define Interaction

The theory of direct perception and ecological optics (Gibson, 1986, 1977) are natural
frameworks to approaching a study of our (indirect) interaction with lighting. To Gibson,
the words “animal and environment” form an inseparable pair. Ecological optics is
an approach to study an animal’s perceptual systems in its physical environment. Of
course, artificial lighting is not the natural environment, but the transmission of photons
is essentially the same.

To study our interaction and perception of lighting Gibson would advocate to “find
out about the patterns of light that arrive at the eye from the environment and ask what
potential information about the environment is contained in these patterns (Gordon,
2004).” Specifically, these patterns indicate the higher-order properties of an object.
These properties are known as invariants. Artificial lighting, and the space in which
we perceive it, contains invariant information. Furthermore, Gibson defines the concept
of an affordance, which is the meanings that an environment has for an animal. In the
words of Gibson (1971), “Affordances of things are what they furnish, for good or ill,
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that is, what they afford the observer.” Affordances are simply the meanings that an en-
vironment has for an animal and it is these meanings that guide behavior. It is obvious
that specific arrangements of lighting indicate affordances.

Most importantly, Gibson asserts that invariants and affordances, “these seemingly
abstract properties of things and events” (Gordon, 2004), are there to be perceived di-
rectly. Thus, within such a theory, it is logical to conclude that the higher-order proper-
ties of lighting are there to be perceived directly from the patterns of stimulation arising
from the objects and the room itself. Gibson’s theories provide us with an ontology –
we can rationally argue that higher-order perceptions of lighting may exist.

At the highest level, I am asking a basic question: what is a suitable representation
of the affordances of lighting as inferred by the patterns artificial illumination in the
physical space? In other words, is the (learned) structure of meaning from a patterned
set of stimuli a suitable representation for human interaction with a complex object?
I am interested in ascertaining whether the organization and representation of lighting
scenes (by their affordances) is adequate for the design and application of multivariate
lighting control. Such an approach, at this point, transcends the interface in which we
may realize such goals.

Having defined a metaphysical approach for studying lighting, we can turn our atten-
tion to a theory put forth by experimental psychology: the manner in which we perceive
multiple attributes of an object. The insight born out of this theory gives us a firmer
theoretical framework in which we can anticipate the effects of multivariate lighting
control.

3.3 Processing the Perceptual Structure of
Multidimensional Stimuli

Every object can be described by its attributes. For example, a lighting scene has bright-
ness, saturation, hue, size, and location. It was found that the spatial structures that
describe the perception of an object’s multidimensional attributes vary depending on the
attributes under study (Attneave, 1950; Shepard, 1964).

The theory of processing perceptual structure (Garner, 1974) suggests that the way
a multidimensional stimulus is perceived and processed depends on the nature of its
component dimensions; in some cases it is perceived and processed holistically and in
other cases, in terms of its structural components. Further studies revealed that the at-
tributes of visual objects combine perceptually to form a unitary whole (e.g., lightness
and saturation of colors), while others remain distinct (e.g., size and rotation of shapes).
These distinctions between multidimensional stimuli are known as integral and separa-
ble. If the underlying dimensions of test stimuli are integral, then classification is based
on similarity; subjects tend to form “clusters” of integral stimuli sets in experiments.
On the other hand, if the dimensions of the stimuli are separable, then discrimination is
based on the dimensional structure. Moreover, mental models of how these differences
are perceived have been proposed and experimentally verified. In Figure 3.2 , separable
attributes, such as the size and rotation of the squares in the figure are modeled as a
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Figure 3.2: Examples of separable and integral attributes of objects.

city-block (Manhattan) distance metric (also the `1-norm). Thus, in this example, the
distance between both squares A and B is given as ‖A−B‖1. Likewise, the Euclidean
norm (`2-norm) best describes the perceived distance between integral attributes. Per-
ception of various attributes of a room is likely to adhere to basic theory of integral
stimuli.

Stimuli rich in similarity structure do not have a single attribute which dominates;
with dimensional structure the attributes are directly perceived and cannot be ignored.
Furthermore, stimuli can exist anywhere along the continuum of integral or separable.

This theory ultimately tempers the expectations for what we may reasonably expect
to measure in the studies. The proposed lighting stimulus must be capable of being
understood by the subjects, and have an empirical basis in support of the measurement.

Notably, structural processing theory was extended by Jacob et al. (1994) to in-
clude interaction. Jacob et al. found that the dimensionality and structure of the control
must reflect the dimensionality and structure of the stimulus. These results were demon-
strated using free-gesture to control simple attributes of objects displayed on a computer
screen. When dimensionality of the task matched the dimensionality (affordance) of the
user-interface, human performance is improved. For lighting, this means that our per-
formance is ultimately governed by how well the interface reflects the integrality of the
luminous conditions. I believe this important concept has been overlooked in much
lighting practice. In Figure 3.3 , I interpret Jacob et al. results and the corresponding
user-interfaces. The point is that integral control, for example, like the sliders in Fig-
ure 3.3 is perceptually the wrong affordance for the adjustment of luminous conditions.
On the other hand, the parametric control offered by the axes, assuming the perception
of lighting consist of integral stimuli, is the proposed affordance to control and adjust
lighting.

The effects of these user-interfaces are experimentally verified in (Chapter 6). Subse-
quently, Chapter 4 and Chapter 5 discuss experiments designed to find a suitable basis to
simultaneously represent the perceived attributes of the luminous conditions of a room.

36



3.4. Reality-based Interfaces
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Figure 3.3: The dimensionality of perception and corresponding user-interfaces.

3.4 Reality-based Interfaces
Given our philosophical and experimental viewpoints of how humans may understand
and process multivariate lighting, we now turn our attention to the interface for control.
The goal is not to define the exact interface, but to introduce a viewpoint that organizes
a large body of interaction styles.

Of importance is that any framework gracefully reconcile both the human and per-
vasive computing-inspired (e.g., sensor-based) interfaces in lighting. It is neither my
goal to alienate the human from the sensor, nor the sensor from the human. I am simply
stating that how we perceive lighting, the space, and the objects within this space should
be taken into account.

Broadly, the notion of reality-based interaction attempts to identify the unifying con-
cepts that tie together a large subset of emerging interaction styles. Some examples of
reality-based interaction styles are:

Virtual, mixed and augmented reality, tangible interaction, ubiquitous and
pervasive computing, handheld or mobile interaction, perceptual and affec-
tive computing as well as lightweight, tacit, or passive interaction.

(Jacob et al., 2008)

Conceptually, all these styles build on the users’ (pre-existing) knowledge and experi-
ence of the everyday world (e.g., physics, their bodies, the surrounding environment,
and other people). For lighting control, this implies that the interface should directly
make use of our perceived affordances of lighting. This strengthens the relationship be-
tween the human and the photon – the interface symbolically represents the locus of the
human, the environment, and the lighting.

In other words, it should follow that the appropriate design of the interface should
expressly model the integrality and separability of the lighting stimulus. Succinctly,
form follows function. The lighting interface should allow the user to express their
goals and desires naturally – what better an input method and interaction than one that
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seeks to identify the basis of the meaning of the illuminants and their subsequent digital
representation?

3.5 Measurement and Mathematical Modeling
Traditionally, the tools for understanding and quantifying the human experience with
lighting are adopted from a branch of psychology known as psychophysics. This ex-
perimental framework provides the tools to study lighting preferences. Questionnaires,
rating scales, magnitude estimation techniques, and paired comparisons resemble com-
mon techniques to quantify the subjective aspects of lighting. The two most popular
techniques being the semantic differential and multidimensional scaling (MDS) (see
Hair et al. 2009). The use of the semantic differential technique implies that the exper-
imenter knows (or seeks to measure) the relationship of a set variates that are causally
linked to a set unobserved variables.

The use of MDS implies that the subject is free to use their own internal criteria to
judge the difference between two objects. In the proposed work, the use of MDS as
an experimental method for designing lighting control is evaluated. It is expected this
technique is easier to generalize in actual practice.

In principle, either an individual or group can perform a series of paired comparisons
which rate the similarity of pairs of lighting scenes (presented either simultaneously or
sequentially). The scaling procedure performs an ordination of the data, the differences
between the pairs are related to distance in some dimensional space. The basic concept
and modeling workflow is given in Figure 3.4.

Lighting 
scenes

Multiple
comparisons

Ordination
(scaling) Mapping Control

Figure 3.4: A sketch of the procedure.
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4

Human Subjects Test I: A Control Prototype in a Virtual
Model

This chapter is the first of three empirical chapters which describe evidence in sup-
port of the theory and framework described in the previous chapters. In this first ex-
periment, subjective impressions of lighting are collected from participants who viewed
luminous conditions in an immersive three-dimensional “virtual” board room on a com-
puter monitor. The technique describes the use 29 scales and the subsequent dimension-
ality reduction to extract the principal components of lighting control. The statistical
details of the analysis first presented and the first prototype user-interface is disclosed.
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4. HUMAN SUBJECTS TEST I: A CONTROL PROTOTYPE IN A VIRTUAL MODEL

4.1 Introduction
A recent series of papers have presented results of using computer-graphics in conjunc-
tion with the evaluation of the subjective impressions lighting conditions (Newsham
et al., 2010; Engelke et al., 2013; Villa and Labayrade, 2013; Murdoch and Stokkermans,
2014) Recently, the use such procedures was discussed as an opinion piece (Boyce,
2013). Entitled, “A Virtual Opportunity,” Boyce the describes the challenges of per-
forming experiments involving humans and impressions of lighting. Notably, these ex-
periments are expensive, difficult to scale, and typically recruit only a subset of the pop-
ulation. These are valid criticisms. However, the wide-spread applicability of accurate
and visually compelling still-images of virtual models is becoming prevalent.

In this chapter, we detail the results of a pilot study designed to study the feasibility
of creating a prototype lighting controller designed from human impressions of lighting.
Our primary objective was not a photo-accurate rendering of the luminous conditions,
but the measurements of these impressions in an immersive three-dimensional environ-
ment.

The experimental results presented in this chapter are motivated by the initial work
of Flynn et al. (1973). In effect, this chapter first replicates the experiment of Flynn et al.
and then extends the results into the realm of control and actuation.

4.2 Experiment Setup
The experiments were carried out in a dark, windowless office, at the MIT Media Lab.
The physical measurements of the space in which participants viewed the scenes was
approximately 4.2m ×2.8m. The room height was 2.6m. The room temperature was
maintained at 22−23◦C via building HVAC.

4.2.1 The Virtual Lighting Room
A virtual, windowless board room was designed using the Unity game engine with sur-
face area 12.5 m2 (length=4.6 m, width 2.7 m). The room height was approximately
2.6 m. The initial concept was interpreted from Flynn et al. (1973). The room was
furnished to resemble a board room, with a long rectangular table placed in the center
of the room (approximately 2.2 m×0.90 m). The table height was roughly 0.70 m high.
Ten office-type chairs were also present in the model. Decorative furnishing consisted
of two paintings on the on a single wall in the room. The model also featured two laptop
computers (turned on), a readable newspaper, and some office supplies. (Figure 4.1)

Notably, during the experiment, participants were free to move about the space,
controlling their position and viewing angle using the mouse and keyboard.

4.2.2 Equipment
The experiment was carried out using a PC running the Unity lighting model. Partic-
ipants viewed the lighting scenes on a 3D-capable monitor (Asus VG236H) and wore
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Figure 4.1: Illustrations of virtual board room designed in Unity to evaluate lighting conditions
(after Flynn et al., 1973).

active-shutter 3D glasses (Nvidia P854). Participants viewed the computer-model at
distance of approximately half a meter. For each tested scene, we collected brightness
measurements from four distinct locations in the model using a Konica Minolta LS110
luminance meter and adjusted for the effects of the 3D glasses.

4.2.3 Lighting Scenes

The experimental design of the lighting scenes followed Flynn et al. (1973). In the
model, we specified 4 distinct luminaire types to replicate the six original lighting con-
figurations. These four luminaire types were: downlighting, diffuse overhead, long
wallwash, and short wallwash. Our replication of Flynn’s original six scenes tested in
the experiment are shown in Figure 4.2.

At the time of the experiment, Unity did not allow for absolute specification of the
lighting models, so the lighting scenes were designed using relative setpoints in the
boardroom model. Then, we sampled the brightness from the monitor using the lumi-
nance meter at four distinct points for each of the six scenes. Using this process, we
attempted to model the luminous conditions provided in the original Flynn study. The
brightness measurements (from the viewpoint of the observer) are given in Table 4.1.
As a rule of thumb, the measurements were found to be approximately 20 times brighter
without the glasses.

4.2.4 Participants

Forty students and staff from the MIT campus (21 women and 19 men) ranging in age
from 21 to 45 years old voluntarily participated in this experiment. All were assigned to
the same experimental tasks. The study was conducted in a darkroom at the MIT Media
Lab over a three-week period by Media Lab researchers.
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(1) Overhead (low)

(4) Overhead + 
End Wallwash

(2) Wallwashing 

(5) Overhead + Di�use
(high)

(3) Overhead di�use (low)

(6) Overhead +
Di�use +
Wallwash

Figure 4.2: The six lighting scenes evaluated in the study (after Flynn et al., 1973).

Table 4.1: The measured scene brightness for the six test conditions adjusted for the attentuation
of the 3D glasses; measurements can be adjusted by multiplying each entry by a factor of 20.

Scene Brightness (cd/m2)

table long-wall short-wall ceiling
midpoint midpoint midpoint midpoint

1 1.3 0.3 0.2 0.3
2 2.6 5.0 7.4 2.4
3 2.7 2.4 2.5 9.1
4 2.4 0.5 5.9 0.6
5 10.7 11.8 10.0 11.2
6 5.2 7.1 6.5 5.4
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4.2.5 Procedure
Altogether, forty subject rated each of the six lighting scenes using 29 bipolar scales.
These scales were derived from (Flynn et al., 1973; Hawkes et al., 1979), but are not
considered an exhaustive pool of rating criteria for lighting. Each bipolar pair was rated
on a scale of -3 to 3, where zero was neutral. An example pair in the experiment could
be“pleasant” and “unpleasant,” and a negative score indicated the participant’s attitude
to the negative attribute; similarly a positive score, the positive attribute.

The experimenter reviewed the experiment instructions with the participant. All par-
ticipants were told that the experiment was designed to measure their subjective judg-
ment of computer-generated imagery. The participants were not made aware that the
lighting would be varied across the six scenes. Then, participants were given a two
minute period to walk around a demonstration-room to learn how to control their posi-
tion and viewing angle using the mouse and keyboard. This time also allowed partici-
pants to adjust to the effects of the 3D glasses.

Participants could view each scene as long as necessary, and when ready, removed
the glasses and reported their scores on a small portable computer running the survey
software. This procedure was iterated until each participant completed all six scenes.
Each experiment required approximately 30 minutes.

The order of the six lighting scenes were drawn at random. For each scene, the order
in which scales appeared in the survey were also randomized.

4.2.6 Evaluation
The two primary goals of the experiment were the analysis of the subjective data re-
garding participants’ impressions of the room and, the prototype design of a lighting
composed of the two major axes which measured the largest variation in their responses.
Several assumptions are required to carry out the analysis and are stated below.

4.2.6.1 Dimensionality Reduction of Responses

In this exploratory analysis, it was anticipated that subject’s impressions as measured
by the 29 scales were correlated. A principal component analysis was carried out to
understand the major sources of the observers’ response variation. Altogether, each
participant contributed 6× 29 (174) data points. We now state our assumptions in this
phase of the analysis.

The observations treated as independent. This assumption allows the researcher to
study the responses using a simple two-way analysis (e.g., a 240× 29 design) versus a
three-way analysis of the data (e.g, a 6×29×40 design). Alternative approaches for a
three-way principal component analysis include multifactor-analysis (Abdi et al., 2013;
Acar and Yener, 2009).

4.2.6.2 Assessment of Component Scores

There are several assumptions are required to perform this analysis with the primary
disclaimer that the results are not confirmatory, but suggestive (the major caveat are that
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the calculated F-scores, which are used to determine statistical significance are likely
inflated in this analysis). This work guided the design of further experiments in this
dissertation.

In the next phase of the analysis, the four principal component scores are first tested
using a multivariate analysis of variance (MANOVA) to determine if at least one scene
caused an effect. If an effect is found, one then tests each of the dimensions individ-
ually (ANOVA). The analysis determines if at least one scene had some effect on the
group-means of the lighting scenes. For each principal component in which an effect
was measured, we follow up the statistical test with a Tukey’s Honestly Significantly
Different (HSD) test to determine which lighting scenes are statistically different. We
now review the assumptions behind this evaluation.

Performing an analysis of variance on the principal component scores has prece-
dence in recent lighting literature (Vogels, 2008; Dangol et al., 2013; Wang et al., 2013),
however the conclusions that can be drawn from the results are limited – one only gains
insight as to which scenes vary amongst the components, but is left with no evidence as
to which specific variable caused the effect.

The major assumption in this analysis is that the principal component scores are
independent; this is clearly not the case in the actual experiment design, since each
participant was tested six times during the experiment. However, since application of
PCA assumes independence, the assumption of independence is carried forward in the
ANOVA.

4.2.6.3 Design of the User-Interface

The final objective of the analysis is to estimate the mapping between a configuration
of points, Ω (e.g., the principal components) and the corresponding setpoints of the lu-
minaires Γ (e.g., their red, green, and blue control values). In other words we seek a
solution of the form f : Ω→ Γ where f is the mapping between our configuration of
the lighting scenes and their control values. The intent is the function f provides a
mapping for control of the luminaire setpoints, such that the function provides a means
to manipulate the state-space of Γ. Thus, this section describes the design of a light-
ing user-interface derived from either objective or subjective mappings of the lighting
scenes. In particular, we focus on solutions where Ω is two-dimensional.

Using the first two components, appearance and intensity, we evaluated three dis-
tinct mapping strategies. Recall that 4 groups of luminaires were present in the study:
downlighting, diffuse overheard, long wallwash, and the short wallwash. In the exper-
iment, only relative intensity of these four fixtures were varied, therefore a subsequent
control strategy required estimating four unique control surfaces. In this procedure, the
dependent variable, the relative intensity setpoint of the luminaires, is a vector Zi for
i = 1,2, . . . ,4 where i indexes the luminaire type. The dependent variable X describes
the mean principal component score for each lighting scene. We estimate four distinct
surfaces. Subsequent operation requires the user to specify an (x,y) pair, and the control
system then sets the four luminaires to the corresponding intensity determined from the
surface fitting procedure. An example control surface for a single luminaire fit using
bilinear interpolation is presented in Figure 4.3.
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Figure 4.3: Example surface fitting procedure for luminaire (bilinear interpolation).

In this prototype, we evaluated a linear fit (fitting a plane through the intensity z-
axis), a linear interpolant, and a spline interpolant. Each of these estimation procedures
produces different experiences for the user, and makes different assumptions about the
continuity of the fitted surface.

For example, a linear plane fit through the data minimizes the sum squared error of
the intensity axes, however, in such a procedure, the original test conditions are unreach-
able (recall the plane is fit through the data themselves).

A linear interpolant is best suited for indepedent variables (e.g., the appearance and
intensity components) that are regularly spaced (like a grid). Unfortunately, we cannot
assume apriori that the resulting principal components of the lighting conditions will be
a set of regular points.

Finally, a spline-based interpolant does not require regularly-spaced data and as-
sumes the mapping f : Ω→ Γ that is everywhere continuous and differentiable.

4.3 Results

4.3.1 PCA Results
The 40 participants altogether evaluated altogether 6 lighting scenes on 29 questions.
For each scale, the values range between−3 and +3, where the negative value is indica-
tive of the “negative” side of the bipolar adjective and vice a versa for a positive score.
A score of 0 represented neither positive nor negative, but a neutral response.
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Figure 4.4: Plot of parallel analysis, 4 components were used in this analysis.

The component analysis was carried out using the PSYCH package in R (Revelle,
2014). The parallel analysis of the data revealed that four dimensions is a suitable fit
(Figure 4.4). The data was centered and scaled. The 29 questions loading higher than
±0.50 were then interpreted for each of the 4 components, identified as, appearance,
intensity, clarity, and order (Table 4.2). Internal consistency reliabilities were good for
the first two components (Cronbach’s alpha (α > .8), but rather poor for the third and
fourth components (α ≤ .62). Although the third and fourth components describe some
variance in the data set (16% each), the reliability of these dimensions is not suitable.

4.3.2 A Two Dimensional Visualization
The lighting conditions can be described in two dimensions using their the appearance
and intensity components. These form the lighting control axes which ordinate the six
lighting scenes evaluated in the study (Figure 4.5). The reference coordinates (mean
and standard deviation) of the four derived components per lighting scene are given in
Table 4.3

4.3.3 Statistical Analysis of Lighting Scenes
MANOVA Results The results were examined using a simple one-way MANOVA to
test for any effect of scene in the four component scales. We obtained a significant effect
scene F20,936 = 10.0, p < .0001. The rest of the analysis proceeds as follows: for each
of the four components (appearance, intensity, clarity, and order) perform a one-way
ANOVA and for any significant result, follow-up with a post-hoc evaluation of which
scenes were statistically different.

ANOVA Results The statistical analysis of the four derived components are reported
in Table 4.3. For each significant ANOVA result, the test was followed up with Tukey’s
Honestly Significant Difference test with a the Holm correction of the p-value for mul-
tiple comparisons (15 comparisons for each component). Thus, if any of the average
scores for each component were affected by the lighting, we could then investigate
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Table 4.2: Rotated component loadings for 29 questions.

Item (Adjective Pair) (1) Appearance (2) Intensity (3) Clarity (4) Order
1 pleasant/unpleasant 0.9 – – –
2 like/dislike 0.89 – – –
3 friendly/hostile 0.87 – – –
4 satisfying/frustrating 0.87 – – –
5 relaxed/tense 0.87 – – –
6 beautiful/ugly 0.86 – – –
7 harmony/discord 0.79 – – –
8 interesting/monotonous 0.73 – – –
9 rounded/angular 0.64 – – –
10 sociable/unsociable 0.64 – – –
11 spacious/cramped 0.51 – – –

12 bright/dim – 0.84 – –
13 public/private – 0.72 – –
14 faces clear/faces obscure – 0.69 – –
15 cheerful/somber 0.5 0.69 – –
16 radiant/dull – 0.67 – –
17 quiet/noisy – -0.61 – –
18 clear/hazy – 0.54 – –

19 distinct/vague – – 0.72 –
20 focused/unfocused – – 0.64 –
21 formal/informal – – 0.61 –

22 simple/complex – – – 0.71
23 static/dynamic – – – 0.63
24 uncluttered/cluttered – – – 0.61
25 usual/unusual – – – 0.57

26 horizontal/vertical – – – –
27 serious/playful – – – –
28 large/small – – – –
29 long/short – – – –

% Variance Explained 44 24 16 16
Cronbach’s alpha 0.94 0.84 0.62 0.61
Note: Only loadings above a 0.5 criterion are shown
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Figure 4.5: Graphical illustration of the axes (first two components, appearance and intensity)
with the six reference scenes. In (a), the x-axis corresponds to the derived component, intensity
and the y-axis corresponds to the component, appearance.
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Table 4.3: Between groups variable, Scenes, and the main effect on appearance, intensity, clarity,
and order.

Main effect Scenes

Wilks’ Λ F P-value η2
p Scenes M SD

Multivariate 0.379 F20,936 = 10.0 < .0001

Appearance – F5,234 = 2.34 < 0.05 0.05 1 -0.15 1.10
2 0.04 0.95
3 0.27 0.91
4 -0.06 1.06
5 -0.35 1.09
6 0.26 0.79

Intensity – F5,234 = 57.6 < 0.01 0.55 1 -1.17 0.51
2 0.25 0.89
3 -0.14 0.62
4 -0.64 0.66
5 1.06 0.69
6 0.64 0.69

Clarity – F5,234 = 1.61 = .16 0.03 1 -0.16 0.97
2 0.17 1.03
3 0.31 0.84
4 -0.15 0.97
5 -0.18 1.21
6 0.02 0.98

Order – F5,234 = 3.66 < 0.05 0.07 1 0.26 1.17
2 -0.13 0.86
3 -0.40 0.90
4 -0.19 0.85
5 0.38 0.96
6 0.09 1.09

which lighting conditions were different. One can judge these reported results by con-
sulting Figure 4.6.

Overall, scenes caused the largest effect in the intensity component, followed by
order and appearance (e.g., the intensity component measured the greatest differences
in the scenes).

Appearance We measure an effect of scene in appearance (F5,234 = 2.34, p< .05, η2
p =

.05), implying that the average scores of this component differed by varying the lighting
conditions. Two weakly significant differences were found between lighting scenes 5
and 3 (p < .10) and scenes 6 and 5 (p < .10). No other comparisons were significantly
different.

Intensity The different lighting scenes significantly effected the intensity scale (F5,234 =
2.34, p < .05, η2

p = .55). Overall, this scale was affected the most by changes in the
lighting conditions. All fifteen comparisons were significantly different. In other words,
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Figure 4.6: The mean scores (centered and scaled) for the four scales (appearance, intensity,
clarity, and order) under different lighting conditions (scenes 1-6).
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Comparison of 3 Fitting Methods: 
Principal Component Scores and Intensity for the Short Wall Wash Fixtures
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Figure 4.7: The interpolated surfaces fit using a linear regression, a linear interpolation, a
spline interpolation for the short wall-wash fixtures. All three mappings yield different user-
experiences during control.

all lighting scenes, according to the intensity scale, are statistically different (.05 < p <
.001).

Clarity No significant effect was found (F5,234 = 1.61, p = .16, η2
p = .03).

Order Changing lighting conditions produced a significant effect on the order com-
ponent (F5,234 = 3.66, p = .05, η2

p = .07). Two significant differences between lighting
scenes were obtained with this scale. Scenes 3 and 1 (p < .05) and scenes 5 and 3
(p < .01) varied significantly.

4.3.4 Design of the 2-Axis Prototype
We present a visual summary of the fitted surfaces for a single fixture type (short wall-
wash) in Figure 4.7. In the figure, the relative intensity of the short wallwash fixture
(the z-axis) is estimated according to the location of the six lighting scenes. The prin-
cipal components in the figure, PC1 and PC2 reference to the appearance and intensity
components described previously. Importantly, each fitting procedure leads to every dif-
ferent energy profiles, via the superposition of the the four luminaire types. Thus, in a
linear interpolation scheme, the enegy profile represents a plane. The resulting energy
contour derived using either the linear or spline interpolant is non-linear.

Finally, we developed a prototype lighting controller using a mobile phone to control
the lighting of the Unity game engine. We designed the axes using the touchOSC library
and the phone transmitted wireless lighting control data to the in-game model of the
room. We could then visualize the effects of the three fitting procedures. An early
prototype (Figure 4.8) allowed control using the axes, and several buttons to evaluate
different models.

Users could control the lighting in real-time, altogether, the prototype ran on a simple
laptop and we demonstrated the initial concept (Figure 4.9).
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(a) (b)

Figure 4.8: Early prototype of the lighting controller designed using the appearance and intensity
axes.

Figure 4.9: The complete prototype.
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4.4 Discussion
Overall, we designed a prototype lighting control system based upon the participants
subjective impressions of lighting. This experiment serves as illustration that such a
prototype system is feasible, which encouraged us to pursue the design of a system
using a physical room. We observed several important pieces of evidence which were
used guide the future studies.

First, in the post-hoc procedure we noticed the principal components interpreted as
“appearance” and “order“ appear to describe scenes in which participants responses de-
pended on the physical configuration of the luminaires. For example, in the order com-
ponent, we observed significant differences between scenes scenes 1 and 3 and scenes 5
and 3. Using Figure 4.5 as a guide, we see the primary differences between scenes 1 and
3 are the use of overhead lighting versus wallwashing. In scenes 5 and 3, we observe
the primary differences of what appears to be the effects of uniform wallwashing.

Ultimately, despite the subjective ratings of appearance using adjectives, it appears
that participants discriminated between the brightness of the scenes and also the fixture
types employed in the lighting scene. This promising result is suggestive of simpler
means of collecting these subjective ratings, such as the use of pairwise comparisons in
which participants simply rate the similarity between the scenes themselves. These find-
ings are consistent with Newsham et al. (2004), in which Newsham et al. found that ob-
serves responses depended heavily on contrast between the ceiling illuminance and the
walls. Our interpretation is also consistent with Houser and Tiller (2003) where Houser
and Tiller found that participants were capable of discriminating between balanced and
imbalanced lighting arrangements as well as downlight versus uplight configurations.

While we pursued an adjective-based description of the scenes, it appears that par-
ticipants are more likely to observe the spatial variation of the room as affected by the
different luminaire types. In a study where the color temperature of the lighting remains
fixed, it is likely that participants can readily observe the differences between contrast
(the ratio of the work surface to the walls and ceiling) and the overall brightness of the
scenes. These results suggest a simpler framework. Evidence by Garner (1974); Shep-
ard (1964), suggests that participants may be perceiving the brightness and constrast of
the lighting arrangements integrally, that is simultaneously. In our experiment, the hue
was fixed, however we varied the value (lightness) and chroma (saturation) of the scene.
Our evidence is suggestive that there is a physical basis for measuring and analyzing
these subjective impressions by varying these attributes in a controlled manner. These
ideas will be explored in Chapter 5.

4.5 Summary
In this chapter, a method of collecting subjective responses about the lighting using a
computer-based model was presented. We described the design of six lighting scenes in
which participants rated 29 attributes of the scenes. We then described the four principal
components extracted from this data and presented an approach which maps the intensity
component of the lighting model to first two principal components, interpreted in this
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work as appearance and intensity. We then described how we made these models useful
to a user, and presented a description of the working prototype.
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5

Human Subjects Test II: Physical Space

This chapter is the second of three empirical chapters describing the measurement
and development of a lighting control user-interface designed analytically determined
via human subjective impressions. The chapter details the use of multidimensional scal-
ing to analyze the latent structure of pairwise comparisons of luminous conditions. The
corespondence of this model with a objective model derived from sensor measurements
is also discussed. Finally the the chapter presets the development of the user-interface
employed in the performance testing and evaluation of the lighting controls.
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(a) (b)

Figure 5.1: Illustrations of lighting room at the Media Lab. In (a), a perspective from the door of
the room. In (b), a view across the table showing the ceiling recesses (ventilation and lighting).

5.1 Introduction

This chapter describes the design and measurement of human subjective impressions of
lighting in the physical space. The goal of the analysis is to infer the dimensional basis
(the latent variates) that subjects employ when rating the similarity of lighting scenes. A
second goal of this chapter is describe an experiment in which physical measurements
of the luminous are employed to derive an objective model of the room. It is shown in
this chapter that the two approaches are similar. Finally, the analytical derivation of the
user-interface is presented, determined directly from the subjective response data.

5.2 Experimental Setup

5.2.1 Office Room

A single, windowless office room with surface area 11.6 m2 (length= 4.2m, width=
2.8m) at the MIT Media Lab was converted into a lighting laboratory. The room height
was 2.6m. The room temperature was maintained at 22−23◦C via building HVAC.

The room was furnished to provide a work space. A rectangular white table was
positioned in the room centered underneath the downlights. A rectangular file cabinet
was also included. A single dark gray office-type chair was placed at the work surface
of the table for participants to sit at. The table height was approximately 0.70 m high
(distance from ceiling to table was 1.9 m). Decorative furnishing consisted of artificial
flowers in a flower stand, three paintings, and several colored decorative objects (a green
bowl, a blue vase, and a yellow vase). During the experiments, office related materials
were placed in the room such as magazines, books, and color photographs. The green
bowl was filled with fruits (Figure 5.1)
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(B)

(A)

E14-548 Plan

Figure 5.2: Room plan. The cutout designated (A) corresponds to the two linear downlight;
cutout (B) corresponds to the six wall wash fixtures.

5.2.2 Measurement Equipment

The spectral power distribution (SPD) of the light settings was measured using a USB4000
spectrometer from Ocean Optics calibrated using an Ocean Optics HL-2000 Tung-
sten Halogen (NIST traceable S/N F-211). The detector is a Toshiba TCD1304AP
(200−1100nm). The spectrometer was calibrated before measuring the scenes. Work
surface illuminance on the table was derived directly from the SPD of the lighting
scenes. The surface illuminances were measured by a Konica Minolta LS-100 Lumi-
nance Meter. These equipment comprise the “sensor” portion of the experiment.

5.2.3 Luminaires

Ceiling-recessed luminaires consisted of two linear recessed downlights (Color Kinet-
ics Skyribbon Linear Direct Powercore) with dimensions 1.2 m × 0.10 m, and six re-
cessed wall-washing fixtures (Color Kinetics Skyribbon Wall Washing Powercore) with
dimensions 0.56 mm × 0.10 mm. Each luminaire had five controllable wavelengths
and capable of both intensity and color temperature (2500 K – 10000 K) adjustments.
Color consistency across both fixture types/intensity was maintained internally by the
luminaires. Precision control of color temperature was not requirement in the design of
the lighting experiments. The lighting plan is provided in Figure 5.2.

The lighting system was controlled by a Color Kinetics Data Enabler Pro which was
wired into the local area network at the Media Lab. The lighting system was controlled
via software written at the Media Lab running on a PC which sent data packets to the
Data Enabler. Control of the lighting via wireless devices (e.g., tablets and phones) was
also possible by transmitting data directly to the PC, which in turn sent the data to Data
Enabler. Real-time lighting control was possible.
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Figure 5.3: Spectra collected at the work surface for 3000 K and 6500 K at 600 lx.

Table 5.1: Photometric characteristics of the 8 lighting scenes.

Scene CCT Downlight Wallwash Average Power
ID contribution contribution horizontal demand

(%) (%) illuminance (W)
(in lx)

1 6500 K 90 10 202 (180 + 22) 82
2 602 (541 + 61) 138

3 10 90 203 (21 + 182) 102
4 604 (52 + 542) 215

5 3000 K 90 10 205 (182 + 23) 78
6 595 (542 + 63) 124

7 10 90 205 (23 + 182) 96
8 604 (63 + 541) 196

5.2.4 Lighting Scenes (Stimuli)

In order to acquire the psycho-visual data, eight lighting scenes were created. The eight
scenes represent a balanced sampling amongst two color temperatures (3000 K and
6500 K), two work surface illuminances (200 lx and 600 lx) and, two contrast configu-
rations (wallwash and downlight). Example spectra, measured at the work surface are
provided in Figure 5.3 .

The constrast variable was designed such that, for either of the two illuminance
levels, 90% of the illuminance was contributed by one fixture type and 10% of the
illuminance was contributed by the other. This design, including the measured work
surface illuminance, and power consumption of these set points is given in Table 5.1.

The lighting scenes presented to the subjects is reproduced in Figure 5.4.
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(1) (2) (3) (4)

(5) (6) (7) (8)
Figure 5.4: The eight lighting scenes tested in the experiment.

5.2.5 Participants
In total, 32 participants from the university were involved in the experiment, including
20 students and 12 persons from the staff (either from administration or other research
labs). Participants ranged from 19 to 60 years of age with roughly 15% of the partic-
ipants wearing glasses. All subjects reported normal color vision. About 9 subjects
reported familiarity with lighting basics, and two considered themselves experienced in
lighting design. All participants can be considered inexperienced in subjective percep-
tual studies.

5.2.6 Procedure
The procedure section can be decomposed into two procedures: (1) An objective pro-
cedure to collect sensor data to subsequently derive a model of the room and (2) a
subjective procedure of collecting data to derive an appearance model using the study
participants.

5.2.6.1 Objective Test Protocol

The spectral power distribution was collected using the spectrometer for each of the
eight lighting scenes. In addition, for each of the 4 walls, ceiling, and table, five bright-
ness measurements were collected using luminance meter. These five measurements
correspond to each corner of the room facet and the middle point (see Figure 5.5).

Thus, the protocol details a sampling procedure that describes changes in illumi-
nance, color, and contrast of the room.

5.2.6.2 Subjective Test Protocol

A single protocol was employed for the subjective evaluation; during the experiment the
subjects were asked to compare the similarity of two lighting scenes and also, indicate
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Figure 5.5: Schematic of measuring brightness data. Points 1-5 correspond to the sampled
points. This process was repeated for all 4 walls, ceiling, and table.

which of the two lighting conditions they preferred. Subjects were instructed that to
consider themselves in a typical office environment.

To measure similarity, the participant compared two lighting scenes and indicated
their impression of similarity. The subject was given the prompt, “indicate on a scale of
1 to 7, where 1 is the same and 7 is the most different, the similarity between the two
lighting scenes.” Altogether, each participant completed 28 comparisons. The order
in which the pairs of lighting scenes were presented were varied randomly across the
participants. For any given comparison, scenes were presented sequentially to each
participant, and the participant could go back and forth between the scenes as many
times as needed.

To measure preference, subjects indicated whether they preferred the first or second
scene in the comparison.

5.2.7 Evaluation

The evaluation can be decomposed into four primary objectives. First, we seek a model
of appearance using the sensor data. Second, we seek a model of appearance using the
subjective (human) data. Third, we relate the objective and subjective models using
linear regression. Fourth, we seek a mapping of the subjective impressions of lighting
data that can be employed to control the lighting in the room.

Crucially, the third objective demonstrates the possibility of relating subjective im-
pressions of lighting conditions with those as measured using the sensors. The third
objective provides the means to generalize the regimes. The fourth objective embodies
all facets of this work; it represents a new lighting user-interface based on a subjective
mapping of lighting conditions. As stated earlier, we seek a solution comprised of two
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dimensions.

5.2.7.1 Derivation of a Sensor-Based Model

The sensor-based (the objective data) model is a crude approximation of how humans
may judge the simple changes in lighting stimuli. Therefore, the basic requirement is
that the model must describe the differences in brightness between the facets of the
room, as well as, changes in illuminance and color. To explore this idea, principal
component analysis was selected to initially extract and model independent dimensions
of variation in the dataset. In this study, a model is derived using a both illuminance and
spectral data. The dataset is comprised of 96 row entries and 18 column entries. In all,
1728 points were collected (96×18).

Each scene is comprised of 6 row entries in the matrix. Each of these six entries
corresponds to the facets of the room (left wall, right wall, front wall, back wall, ceil-
ing, and table, respectively). The first five columns of each row correspond to the four
corner and center luminance measurements. The remaining 13 columns corresponds to
spectral data down-sampled to 25 nm increments (range 400 nm to 700 nm). This sim-
ple structure is then replicated for all 8 scenes (see Figure 5.5 on the facing page for an
illustration of the corner measurements).

Thus, the dataset is designed so that the variation in brightness is described in the first
five columns and the variation in color and work surface illuminance in the remaining
13 columns. We believe this to be a straightforward approach to modeling the room’s
appearance using a sensor network, it is capable of describing – in a linear fashion with
PCA – how a machine might learn unique scenes and describe presets.

When the data are projected onto their first two eigenvalues, we obtain a repre-
sentation of the scenes in two dimensions. This approach represents an unsupervised
approach to organizing and subsequently, controlling lighting.

5.2.7.2 Derivation of a Human-Based Model

The pairwise comparisons of similarity (the subjective data) represent a simple “dis-
tance” measurement of the difference between two lighting conditions. Rather than
propose an apriori model using scales (see Chapter 4), subjects are free to use their own
criteria. Since our experimental stimuli are well controlled, we expect participants’ im-
pressions of similarity will be influenced by the variations in color temperature, bright-
ness, and contrast. Thus, we are interested in modeling the extent to which changes in
these variables affect the participants.

The goal of the analysis is to deduce (1) the independent dimensions in which sub-
jects perceived the experiment and (2) the distance between all eight lighting scenes in
this latent basis. In other words, we seek a model in which the subjective data can be
mapped to a coordinate system, such that the resulting coordinate systems reflects the
perceived distance between all 8 stimuli. The resulting mapping is known as a configu-
ration. A representation in two-dimensions represents a viable configuration for lighting
control.
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Multidimensional scaling (MDS) is a modeling approach specifically intended to
solve these problems. It is common procedure in analysis psychophysical data collected
in pairwise fashion. Specifically, in this analysis, we model the data using the IND-
SCAL algorithm (Carroll and Chang, 1970) which is specialized form of MDS intended
for use in datasets comprised of repeated measurements of subjects. This algorithm as-
sumes that individuals share a common space (i.e., geometry) but that respondents may
individually weight some dimensions differently (or not at all).

In this analysis, we analyze both two and three dimensional representations of the
data; the two dimensional configuration being of critical importance for the design of a
lighting user-interface.

5.2.7.3 Correspondence of Both Models

One would like to relate the models derived using both the objective and subjective data.
For example, in future work, a model of the subjective response might be constructed
entirely from sensor-based models (or vice versa). In order to accomplish this endeavor,
one must relate the two models and test if they measure similar things. This can be ac-
complished through simple linear regression and hypothesis testing; the resulting model
then describes the weighting, βi, required to linearly transform the input. Classical tests
of significance then follow.

Furthermore, one might wish to test both the objective and subjective approaches
in different rooms with different lighting configurations, perhaps replicating the exper-
iments described in this chapter. Such an approach would in turn, generalize the rela-
tionship between the models. The belief in this case, is that the β s derived in such a
model were stable across all lighting configurations and rooms.

In this analysis, we outline a simple approach for testing the relationship between the
objective and subjective models in a single room. We employ a simple linear model: Let
m represent the number the lighting scenes described by both X and Y . Let x1,x2, . . . ,xr
be a set of r predictors, where r corresponds to the dimensionality of X believed to be
related to response variable Y1,Y2 . . .Yp where p corresponds to the dimensionality of Y .
In this formulation, we have a simple multivariate regression problem,

Y1 = β01 +β11x1 + . . .βr1xr + ε1 (5.1)
Y2 = β02 +β12x1 + . . .βr2xr + ε2

...
...

Yp =β0p +β1px1 + . . .βrpxr + ε3 (5.2)

where β0p corresponds to the pth intercept and βip the estimated coefficients of Xrp for
Yp.

For example, assume we estimate a configuration of eight lighting scenes (m = 8)
using the subjective responses in three dimensions using the INDSCAL algorithm. Let X
represent this data with m = 8 rows and and r = 3 columns. Similarly, let Y represent
a matrix of the average component score for scene mi using the first three eigenvalues
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(p = 3). As long as the p dimensions of Y are independent, the model above holds.
Thus, solving these 3 regressions requires estimating 3 β s per regression. This can be
done using ordinary least squares.

One last comment is in order: there is no requirement that p = r, in fact likely solu-
tions may have p > r, and in the example above, might correspond to p > 2, indicative
of a higher-dimensional sensor model and a two-dimensional subjective model.

5.2.7.4 Modeling A 2-Axis Lighting GUI

The final objective of the analysis is to find a maps the configuration of points, Ω (e.g.,
the principal components) and the corresponding setpoints of the luminaires Γ (e.g.,
their red, green, and blue control values). In other words we seek a solution of the form
f : Ω→ Γ where f is the mapping between our configuration of the lighting scenes and
their control values. The intent is the function f provides a mapping for control of the
luminaire setpoints, such that the function provides a means to manipulate the state-
space of Γ. Thus, this section describes the design of a lighting user-interface derived
from either objective or subjective mappings of the lighting scenes. In particular, we
focus on solutions where Ω is two-dimensional.

We can make no apriori assumptions about the regularity of the points in Ω, which
precludes the use of classical linear and cubic interpolants. Furthermore, in a two-
dimensional configuration of Ω, a linear fit (fitting a hyperplane) to Γ is prohibitively
restrictive (i.e., fitting a plane through Γ is unlikely to map the full dynamic range of
control values). We are relegated to the use of splines to model f to find a smooth
surface passing through the irregularly sampled points in.

In a two-dimensional lighting GUI, we seek a solution that maps distinct points
x1,x2, . . . ,xN ∈ R2 and the corresponding control value z1,z2, . . . ,zN ∈ R in a “suffi-
ciently regular” fashion such that f : R2 → R. This leads to a series of interpolation
equations f (xk) = zk for k = 1,2, . . .N. One approach to solve such problems is bi-
harmonic spline interpolation (Sandwell, 1987). We employ Sandwell’s method in this
work.

In the specification of the lighting scenes, we distinguished between downlighting
and wallwashing luminaires. These two groups require separate interpolants. Further-
more, in the specification of the lighting control system we must fit six different inter-
polations (the red, green, and blue channels for each of the fixture distinctions). In other
lighting configurations, the amount of interpolated surfaces to calculate will vary, but
the approach remains the same.

5.3 Results
The results are organized as follows: first, the principal components of the lighting
scenes derived using the objective study (sensor mapping) are presented. Second, the
results of the subjective study (human study) are presented. Third, the relationship be-
tween the two scales is presented. Finally, a sample configuration of the subjective
mapping of lighting scenes and control values is presented.
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5.3.1 Appearance Derived Using Sensor Data
First an interpretation of the component loadings is given. Next, the component scores
of the eight lighting scenes as learned by the model is presented and interpreted. Finally,
an example configuration of a two-dimensional representation of the model is given and
interpreted.

5.3.1.1 Component Loadings

As described previously, the sensor data is a two dimension matrix of 96×18 data points
describing the variation of the lighting conditions. Recall that the first 5 columns of the
matrix describe the variation in brightness and the remanining 13 describe the variation
in the spectral power distribution. The data are measured on difference scales, hence,
before processing the data was centered and scaled (e.g., the z-scores were calculated).
We present an unrotated loading of the principal components in Table 5.2 and describe
the loading on each of the columns. A parallel analysis suggested the first three eigen-
values were sufficient, hence three principal components are presented.

In the first component, we see a loading characteristic of brightness, all the variables
in the analysis load positively in the first dimension. This is expected. Next, in the
second component we see a loading in the first four variables related to brightness, the
variation in the room’s facets accounts for the variations in contrast of original eight
lighting scenes. Finally, in the third component, we see that the major variations are
accounted for by the changes in the 465 nm and 615 nm wavelengths. Referring back
to Figure 5.3 on page 58, we find this is a plausible explanation as these wavelengths
discriminate between the warm (3000 K) and cool (6500 K) color temperatures.

In a rotated solution, we expect to find a large amount of variance explained by the
first eigenvalue (typically 80%). We find that the first three components represent 78%,
11%, and 10% respectively.

5.3.1.2 Component Scores for the Lighting Scenes

Next, we interpret the component scores of the PCA analysis. Recall these component
scores are merely a linear transformation of the scaled sensor data with the principal
components. We are primarily interested the mean component score for each lighting
scene for each of the three components (Table 5.3). The group-means describe the
location in the component space of the lighting scenes. In other words, these mean-
scores allow us to interpret the relationship and proximity of the lighting scenes in a
lower-dimensional basis.

Recalling the lighting scenes (Figure 5.4 on page 59) and using the sign of the scores
in Table 5.3, the learned structure of the scenes closely follows the experimental design.
For example, scenes 1 and scenes 2 differ in their contrast variable, but are both cool
white and of low illuminance (200 lx). Similarly, scenes 7 and 8 differ in constrast, have
similar illuminance values (600 lx) and are both warm white (3000 K).

Given the pattern of signs in Table 5.3 closely follows the experimental design, it is
highly plausible that the configuration of data in this analysis is an adequate representa-
tion of the variation of the room. Using this approach, we have derived a rudimentary
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Table 5.2: Unrotated component loadings of the room model based on sensor readings of the 8
lighting scenes.

No. Variable PC1 PC2 PC3
Illuminance

1 Top Left Corner 0.77 0.51 –
2 Top Right Corner 0.78 0.58 –
3 Botton Right Corner 0.71 0.63 –
4 Bottom Left Corner 0.73 0.62 –
5 Center 0.68 – –

Spectral Power

6 390 nm 0.90 – –
7 415 nm 0.89 – –
8 440 nm 0.97 – –
9 465 nm 0.60 – 0.76
10 490 nm 0.86 – –
11 515 nm 0.98 – –
12 540 nm 0.98 – –
13 565 nm 0.96 – –
14 590 nm 0.93 – –
15 615 nm 0.79 – -0.58
16 640 nm 0.92 – –
17 665 nm 0.94 – –
18 690 nm 0.95 – –
% Variance Explained 78 11 10
Note: Only loadings above a 0.5 criterion are shown

Table 5.3: Mean component scores of the 8 lighting scenes for each of the first three 3 principal
components using the sensor-based model.

Sensor (3D PCA)
Scene Dim 1 Dim 2 Dim 3

1 -0.95 -0.26 0.55
2 -0.83 0.40 0.68
3 0.66 -1.01 0.92
4 1.38 0.27 1.42
5 -1.11 0.05 -0.56
6 -0.94 0.63 -0.28
7 0.74 -0.96 -1.49
8 1.05 0.88 -1.25
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model of appearance – changes in brightness, gradient or contrast, and color temperature
are measured and learned by the unsupervised method (in this case principal component
analysis). The approach of using PCA is straightforward, but not exhaustive of other
machine learning algorithms for dimensional modeling.

5.3.1.3 Visualization of the PCA model

We are now ready to interpret the lighting scenes using these derived components. Al-
though the configuration of points in Table 5.3 on the previous page matches the exper-
iment design, graphing these solutions with the corresponding lighting scenes leads to
an immediate conclusion – the variation as modeled using the sensor data will rarely
reflect our actual perception of a logical configuration (this issue is discussed and reme-
died in Section 5.3.3 and requires a model of our subjective responses in addition to the
objective measures). This in congruency is depicted in Figure 5.6.

Studying this figure, the discord between our senses and the sensor-model is ap-
parent yet, easily explained. In the solution which graphs the first two components
(according to the loadings in Table 5.2 on the preceding page, the choice of y-axis is
arbitrary), we see that in two dimensions, the first component corresponds to brightness
and the second component, contrast. In two dimensions, the effect of color temperature
is marginalized; immediately at odds with how we actually perceive the lighting scenes.

If instead, one were to graph the second and third components, we now achieve a
solution that matches our perception of the scenes. Color temperature now dominates
the y-axis and contrast spans the x-axis. Intensity (see the dotted lines connecting scenes
in Figure 5.6b) spans the diagonal elements of the space.

One conclusion is immediately obvious: it is very difficult to design an intuitive
lighting controller using sensor data alone; it is a dead-end. The sensors can only de-
scribe the difference between the physical signal, and not anticipate our interpretation
(however, in Section 5.3.3, evidence will be given that shows how this data is a required
component in future analysis).

5.3.2 Appearance Derived Using Human Data
The similarity data obtained in the subjective experiment with humans was analyzed
using the INDSCAL algorithm (Carroll and Chang, 1970). The goal of the analysis
was to determine a configuration of the 8 lighting scenes according to their similarity
scores obtained in the user study. This approach recreated – directly from the pairwise
data of similarity – as estimate of the perceived structure (either in 3 dimensions or 2
dimensions) of the experiment using the “distances” reported by the participants. An
illustration of the method (the first 12 random paired comparisons) is given Figure 5.7.

The mean scores of the 32 participants are presented in Table 5.4. This table rep-
resents the average dissimilarity score in the study, it can be read in a column-row type
fashion. For example, scene eight and scene seven were reported more similar, than
scene eight and one.

For instance, it was hypothesized that participants would perceive the experimental
stimuli in three dimensions, but, it was unknown to what extent manipulations of color
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Figure 5.6: Example 2D projection of the objective (sensor-based) 3-dimensional PCA solution.
In (a), the first two components and in (b), components 2 and 3. The mapping in (a) uses the first
two components but leads to a solution in which a human would find confusing.
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Figure 5.7: Subjects indicated their impression of similarity on a paper survey (the first 12
responses of 28 are shown).

Table 5.4: Average dissimilarity ratings of 8 lighting scenes collected from 32 participants;
reported on a 7-point scale (7: very different).

scene 1 2 3 4 5 6 7 8
1 –
2 2.19 –
3 2.59 2.22 –
4 3.03 2.78 2.26 –
5 3.53 3.72 4.41 4.53 –
6 3.94 3.50 4.28 4.44 2.28 –
7 4.31 4.34 3.97 3.84 2.72 2.24 –
8 4.69 4.09 4.32 3.75 3.31 2.91 2.22 –

68



5.3. Results

temperature, brightness, and contrast would affect the participants.
The results of the subjective experiment are presented as follows: first, a full three-

dimensional solution is presented and discussed. A visualization, of the configuration
of points is presented to aid in the understanding of how changes in color temperature,
brightness, and contrast affected participants. Second, the results of a two-dimensional
fit are presented and discussed.

For brevity, the discussion of the modeling errors and evaluation of the fits are dis-
cussed in Appendix C.

5.3.2.1 Configuration in Three Dimensions

Given our prior hypothesis that variations in color temperature, brightness, and contrast
are perceived in independent dimensions by observers, we first sought a configuration
of the lighting scenes in three dimensions. An important assumption in this analysis –
regardless of the dimensionality of the space – that intra-scene distances are Euclidean;
this has practical importance in the design a of lighting user-interface, as well as, impli-
cations on the performance of the such a user-interface (see Chapter 3).

We proceeded by fitting a model that describes the distances between the pairwise
comparisons. Like any exploratory statistical analysis, the number of dimensions sought
is guided by prior theory and some measure of the algorithms performance (see App. C).

What was not known prior to the analysis was the extent to which changes of these
three variables affected the study. For example, was a change in color temperature
perceived as a larger effect than brightness, or contrast? A fully factorial design (see
Table 5.1) is often presumed to sample from stimuli found along vertices of some linear
space. The goal of this analysis was to then recreate this space via the pairwise similarity
data.

Most importantly, the analysis of the subjective experiment indicated the effects of
the changing one, two, or three attributes simultaneously – the similarity of the light-
ing scenes depends simultaneously on (a), the attributes varied and (b) the number of
attributes varied. One presumes the perceived differences of the lighting stimuli thus
resemble some cubic structure. In Figure 5.8, the resulting structure of the stimulus as
inferred by the algorithm is displayed.

A stem plot (Fig. 5.8a) shows the group-configuration of the lighting scenes and
logically follows the design of the experiment. Changes in the warm/cool dimension
were perceived as the most different, followed by intensity, and finally, contrast. In other
words, the perceptual space was not a cube, but perceived somewhat like a rectangle. A
visualization of the lighting stimuli coordinates is also presented in Figure 5.8. The six
figures describe a rotation of this structure, the longest distance due to a change in color
temperature.

5.3.2.2 Configuration in Two Dimensions

The results of a two-dimensional procedure are presented in Figure 5.9. In this config-
uration, the solution can be interpreted as a two-dimensional projection of the contrast
variable onto the brightness and color temperature axes. Scenes 2,4,6, and 8 consist of
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Figure 5.8: Results of MDS algorithm; in (a), a stem plot of the x,y,z configuration of the
stimuli with interpreted dimensions fo change. In (b)-(g), a visualization of the fitting procedure
and resulting 3-dimensional map.
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Figure 5.9: MDS representation of the 8 lighting scenes described by a two-dimensional con-
figuration. The contrast variable is folded into the solution; visually, the representation of the 8
scenes is logical and ordered.

90% wallwash and 10% downlight variations of low and high illuminance and cool and
warm color temperatures. Similarly, scenes 1,3,5,7 describe scenes consisting of 10%
wallwash and 90% downlight configurations. Interpretation of the axes is simple: the
horizontal axis corresponds to varying the color temperature (warm and cool) and the
vertical axis varies both brightness and contrast. Scenes 5-8 and scenes 1-4 reflect stim-
uli consisting of both illuminance and contrast manipulation, which leads to a natural
interpretation that the vertical axis adjusts “appearance.” Thus, along the vertical axis,
changes in brightness are no long strictly monotonic. Understanding the implications
of this mapping for lighting control – both quantitatively and qualitatively – are studied
extensively in Chapter 6.

5.3.3 Correspondence between the Objective and Subjective
Mappings

Using the model of Eq. 5.1, we provide statistical evidence of the generality of this
approach. The results in this section provide crucial evidence of a methodology that
can be used to automatically derive the perceptual dimensions (axes) of a human-based
appearance model for lighting. Thr analysis suggests that a simple linear rescaling of a
sensor-based mapping of lighting conditions is sufficient to derive an intuitive mapping
of lighting control.

71



5. HUMAN SUBJECTS TEST II: PHYSICAL SPACE

Table 5.5: Derived mean-component scores for the 3 dimensional PCA, and the scene configu-
rations for both the 3D MDS and 2D MDS model fits.

Sensor (PCA) Human (3D MDS) Human (2D MDS)
Scene Dim 1 Dim 2 Dim 3 Dim 1 Dim 2 Dim 3 Dim 1 Dim 2

1 -0.95 -0.26 0.55 -0.49 -0.43 -0.07 0.48 -0.45
2 -0.83 0.40 0.68 -0.45 -0.18 0.25 0.52 -0.16
3 0.66 -1.01 0.92 -0.57 0.17 -0.20 0.61 0.13
4 1.38 0.27 1.42 -0.49 0.43 0.11 0.48 0.43
5 -1.11 0.05 -0.56 0.44 -0.39 -0.22 -0.47 -0.43
6 -0.94 0.63 -0.28 0.56 -0.21 0.13 -0.57 -0.16
7 0.74 -0.96 -1.49 0.48 0.27 -0.27 -0.58 0.19
8 1.05 0.88 -1.25 0.52 0.34 0.27 -0.46 0.46

We present the results of two different procedures. First, we present the estimated
model coefficients which map a three dimensional PCA solution (i.e., the principal com-
ponents) of the sensor to the estimated configuration in the three dimensional MDS so-
lution (Model A). Second, we present the estimated model coefficients which map a
3-component sensor-model to the two dimensional MDS model (Model B). In this anal-
ysis, the dependent variables are the subjective dimensions and the independent vari-
ables are the principal components. For reference, the group-means and coordinates of
the results are reference in Table 5.5.

5.3.3.1 Model A (3 Subjective Dimensions)

In model A, we regressed the three principal components of the sensor-data with the
corresponding three subjective dimensions derived using MDS. In total, 3 models were
parameterized (one for each dependent variable of the subjective experiment). The re-
sults and statistical significance of the fitting procedure are given in Table 5.6.

All three models suggested an effect of at least one principal component (see the
F-scores), and we note the distinct effects of the orthogonal (e.g., unrotated) principal
components. Since the mean score of any of the MDS dimensions in Table 5.5 are zero,
we expect that the estimated β0 (the constant, or mean score) in each model to be zero,
and indeed, we find this fact. Thus, the statistical significant of the estimated β s for the
principal components is tested against zero.

For example, the first model (designated (1) in Table 5.6) describes the color tem-
perature dimension of the subjective experiment and we find the estimated coefficient
of the third principal component of the sensor-model is statistically different than zero
(p < .01) and suggests that this component is correlated with the color temperature
dimension in the subjective model. A similar interpretation then follows for all three
models presented. One could seek a more parsimonious solution by testing model fits
using fewer principal components. In general, we find evidence that supports the notion
of a linear rescaling from one scale to another.

To further aid in the interpretation of these results, consider the application of these
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Table 5.6: Multiple regression results using the 3D-MDS configuration.

Dependent variable:

D1 (Warm/Cool) D2 (Brightness) D3 (Contrast)

(1) (2) (3)

PC1 −0.028 0.323∗∗∗ 0.042
(0.094) (0.031) (0.043)

PC2 0.175 0.041 0.282∗∗

(0.142) (0.046) (0.065)

PC3 −0.450∗∗∗ −0.013 0.043
(0.092) (0.030) (0.042)

Constant 0.000 −0.000 −0.000
(0.091) (0.030) (0.042)

Observations 8 8 8
R2 0.868 0.965 0.829
Residual Std. Error (df = 4) 0.258 0.084 0.118
F Statistic (df = 3; 4) 8.748∗∗ 37.124∗∗∗ 6.485∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

models to estimate the subjective x,y,z location of scene 1 using the principal compo-
nents referenced in Table 5.5 In this case we have:

d̂1 =−0.03(−0.95)+0.18(−0.26)−0.45(0.55) (5.3)
=−0.27

d̂2 = 0.32(−0.95)+0.04(−0.26)−0.01(0.55) (5.4)
=−0.32

d̂3 = 0.04(−0.95)+0.28(−0.26) +.04(0.55) (5.5)
=−0.09 .

Thus, using the coefficients in Table 5.6, one can estimate d̂i for all i= 1,2, . . . ,8 lighting
scenes. With no loss of generality, if a varimax rotation was applied to the principal
components (the components are no longer orthogonal), we would then expect to find
that multiple principal components were then correlated with the subjective dimensions
presented in Table 5.6.

5.3.3.2 Model B (2 Subjective Dimensions)

In model B, we regressed the three principal components of the sensor-data with the
corresponding two subjective dimensions derived using MDS. The data used in this
analysis (PCA and 2D MDS) are reported in Table 5.5. Also, for reference, recall the
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visualization of the lighting scenes estimated using the 2D-MDS fit on on page 71. In
total, 2 models were parameterized (one for each dependent variable of the subjective
experiment). The results and statistical significance of the fitting procedure are given in
Table 5.7. For reference, the data used in this analysis is given in Table 5.5.

Table 5.7: Multiple regression results using the 2D-MDS configuration

Dependent variable:

D1 (Warm/Cool) D2 (Appearance)

(1) (2)

PC1 0.032 0.338∗∗∗

(0.107) (0.032)

PC2 −0.136 0.119∗

(0.161) (0.048)

PC3 0.473∗∗ −0.021
(0.105) (0.031)

Constant 0.00000 −0.00000
(0.103) (0.031)

Observations 8 8
R2 0.845 0.966
Residual Std. Error (df = 4) 0.292 0.088
F Statistic (df = 3; 4) 7.270∗∗ 37.542∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Interpreting this model proceeds similarly – we find evidence here that suggests our
prior interpretation of the 2D configuration of lighting scenes is correct. The horizontal
axis in Figure 5.9 corresponds with the third principal component, that is color temper-
ature. Unsurprisingly, we find evidence that the vertical axis (designated “appearance”
in Figure 5.9 corresponds primarily with PC1 and to a lesser extent, PC2.

Again, we find no evidence contrary to our hypothesis that a linear rescaling is suf-
ficient to move between the objective and subjective regimes according to the simple
lighting scenes evaluated in this study.

5.3.4 The 2-Axis Mapping for Performance Testing
During the experiment, the red, green, and blue set-points for the fixtures were recorded.
As stated earlier, the primary goal was to develop a two-axis lighting control interface
based upon the participants’ subjective responses in the study. After determining the
locations of the 8 lighting scenes, the surface fitting was performed.

Altogether, six interpolants were estimated. These six interpolants correspond to
the red, green, and blue channels for both the downlights and wallwash fixtures. For
illustration and interpretation, Figure 5.10 and Figure 5.11 depict the surface interpola-
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Interpolation of Wallwash Red Channel

Figure 5.10: Interpolated control settings for the wallwash red channel using the point-
configuration of the 2D MDS fitting procedure (the setpoint is normalized to 1). In (a), the
surface is plotted. In (b), the contour is plotted.

tion of the red and blue channels for the wallwash type of fixtures. These images were
chosen to illustrate the fitting procedure because they both illustrate non-monotonicity
of the appearance axis, and when viewed together, allow interpolation of the warm/cool
direction of the color temperature axis.

In the graphs, the z-axis, labeled “relative control point” is merely the normalized
setpoint (e.g., an 8 bit value) for the respective color channel of the luminaires. In the
appearance axis, at the positive-most and negative-most regions, we notice an increased
intensity in the red channel. Decreasing on the appearance axis, one encounters a “rip-
ple” due to the arrangement of scenes 7 (more downlight) and 6 (more wallwash).

The effect of adjusting the color temperature is also present, as the color temperature
axis is increased, we notice that the blue channel setting is increased.

5.4 Discussion
We find evidence that when subjective impressions of lighting are measured in a pair-
wise fashion, participants easily detect changes in the luminous conditions of the room
without the need for rating multiple scales. This is a clear advantage of applying MDS to
the study and derivation of the lighting axes. These results appear to be consistent with
Flynn (1977); Flynn et al. (1973), in which Flynn et. al. found that participants were
likely to describe the physical changes in the room along the dimensions of intensity,
warm and cool, and uniform/non uniform.

The work described here measures the participants perceived distances using a set
of eight well-controlled luminous conditions. This fact leads to the regularity and sym-
metry of the ordinated lighting scenes in two-dimensions. Given that participants easily
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Figure 5.11: Interpolated control settings for the wallwash blue channel using the point-
configuration of the 2D MDS fitting procedure (the setpoint is normalized to 1). In (a), the
surface is plotted. In (b), the contour is plotted.

describe the physical changes in the lighting configurations, it is expected that sensor
measurements consisting of luminous spectra and the brightness of the facets of the
room yield a sensor-based PCA solution that is highly correlated with the subjective
responses. Not only does this validate the procedure, it suggests there is a physical ba-
sis to measurement of these subjective dimensions. This approach is different than the
derivation of a uniform color space (e.g., CIE 1931 and CIE 1964) because we did not
focus exclusively on color. In our measurements we also incorporate some information
regarding the different configurations of the luminaires.

This simple fact makes generalization about the widespread applicability difficult,
but we suggest that a simple linear rescaling of the sensor data is adequate to the describe
the perceptual space. Thus, we have presented a methodology that can be extended to
testing in multiple rooms with different lighting configurations. This is a key area of
future work.

We also demonstrated the ability to fit a non-linear manifold with the set Ω, the or-
dinated scenes on a lower dimensional basis. Future work entails replicating this exper-
iment with additional color temperatures and validating the accuracy of this technique
to reproduce accurate white points along the blackbody curve. It is anticipated that this
problem is readily solvable.

5.5 Summary
This chapter presented the analysis and results of both a subjective study using well con-
trolled stimuli using humans and and objective measurements of luminous conditions
using sensors. The latent basis of both approaches was derived and presented. A linear
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model was proposed, which relates both the objective and subjective was presented and
studied. It was found, using the stimuli tested, that a simple linear rescaling of the objec-
tive measures sufficiently maps sensor-based measurements onto the subjective space.
Using a two-dimensional mapping, a prototype lighting control-system to interpolate
between the eight luminous conditions was presented. It was argued that these eight
conditions sufficiently represent the basic characteristics of office-type lighting.
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6

Human Subjects Test III: Performance Testing

The work detailed in this chapter is the third and final experiment presented in this
thesis. In this experiment, subjects are randomly assigned to complete a series of light-
ing tasks using either the proposed two-axis lighting interface or using a set of traditional
linear faders to adjust the lighting. The analysis therein describes the strong effect of
the axes in decreasing task time as well as self-reported tiredness. A full comparison of
the exit questionairre given to both groups is presented. The results are linked to other
theories of user-interface design and future work is presented
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6.1 Introduction
In the prior chapters, the intent has been to measure and extract the resulting arrange-
ment of luminous conditions using several different approaches. In this chapter, I present
the results of an experiment designed to measure the performance of the a two-axes
lighting controller derived using the results of Chapter 5.

6.1.1 Pre-Experiment Background
In a prior subjective study designed to derive the specialized axes of control, a series
of experiments were carried out in which subjects rated the perceived similarities of the
lighting conditions (Section 5.3). Using a specialized technique (multidimensional scal-
ing), the pairwise comparison data were analyzed with the goal of determining a config-
uration of the tested lighting scenes that described the original pairwise data collected
in the experiment. In other words, we transformed the pairwise data into a geometry in
which eight distinct lighting scenes were ordinated on a Euclidean coordinate system.
In this new geometry, the inter-scene distance is made as close as possible to observed
pairwise similarity data. A visualization of this procedure which arranged the 8 lighting
scenes in 2 dimensions is given in Figure 5.9.

Using these two dimensions, an interpolation procedure (biharmonic spline fitting)
determined the corresponding control-surface mapping for the red, green, and blue chan-
nel of both the downlighting and wallwashing fixtures in the room (Figures 5.10 and
5.11). Thus, for any (x,y)-pair on the derived axes, the state of the luminaires in the
room was exactly known. In effect, this dual procedure of first ordinating the lighting
scenes, and then deriving the corresponding set-points along this surface enables one to
adjust the lighting in the room via interpolating over their lighting presets.

6.2 Experimental Setup
Using the same office and same luminaires as decribed in Section 5.2, a user-experiment
was conducted to determine if the derived lighting control axes were an improvement
over the direct-control of intensity and color as commonly provided used a set of sliders
and buttons.

6.2.1 Equipment
In this experiment, the user-interface (GUI) under test ran on an Apple iPod device ca-
pable of capacitive touch and control. The lighting control software available to the user
was written using the touchOSC library available for mobile devices. This device trans-
mitted data wirelessly to a data logging PC which monitored the elapsed-time in each
trial and kept a log of the adjustments made by the participant, per-trial. The commu-
nication interface between the data logging PC and the iPod was bidirectional, so that
the state of the lighting conditions and user-interface were capable of being synchro-
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Figure 6.1: Software interface for logging time and position of the finger on the control-device.
Similarly, slider number and intensity were also logged. Bidirectional communication was pos-
sible between the host-computer and the control-device.

nized by the experimenters in each trial. The custom-written software for recording the
experiments is shown in Figure 6.1

The PC, in turn, transmitted lighting control data back to the Color Kinetics control
module (the Data Enabler Pro). These data were used to adjust the lighting conditions
in the room (for details, see Sec. 5.2.3).

The lighting interface provided real-time control of the luminaires.

6.2.2 The Lighting Control User-Interface
Two lighting control graphical user-interfaces were designed for this experiment. The
first user-interface is the experimental interface derived using subjective impressions
of lighting. The second user-interface is the control, it consists of single degree-of-
freedom sliders which adjust the individual luminaire’s flux and buttons to toggle the
color temperature. The description of each interface follows.

6.2.2.1 The Two-Axis Lighting Control GUI

The domain of the two-dimensional lighting configuration was linearly rescaled and
normalized to [0,1]× [0,1]. This did not fundamentally change previous findings, but
allowed for the mapping to span the entire range of the GUI running on the ipod. The
user-interface was designed such that the original eight lighting scenes (Fig. 5.4) are
reachable (from a controls standpoint) and the (nonlinear) interpolated control values
follow from the two-dimensional interpolation of these original conditions. The tested
interface is presented in Figure 6.2. The axes were unlabeled in the experiment.

In this control system, the user was capable of adjusting the appearance of the room
(brightness and contrast) and color temperature. To visually illustrate this mapping,
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Figure 6.2: The axes lighting control GUI. In (a), a description of the layout. In (b), the tested
layout.

nine control were selected from the GUI and photographed (Figure 6.3). The range of
brightness and change in appearance is shown. In the center of the two axes, the scene
is neutral (approximately 5000 K and 300 lx).

6.2.2.2 The Linear Slider GUI

The linear slider interface is the familiar collection of sliders used to adjust the intensity
of the luminaires. It was decided that a fair model of the slider user-interface was a direct
mapping of intensity to each of the 8 luminaires. Therefore, intensity control was set to
a 1:1 mapping, with 9 degrees of freedom (eight sliders and warm/cool adjustment). Ad-
justments in color-temperature were possible by pressing the warm or cool button on the
GUI. This interface and the mapping between sliders and the corresponding luminaires
are presented in Figure 6.4.

6.2.3 Participants

Altogether, 20 subjects were recruited across the MIT campus (8 female, and 12 male)
ranging in age (20-43 years). Half of the participants were students and researchers,
the remaining half were from administration and MIT (non technical) staff. Participants
were given a $5 dollar coffee card for their time and sessions lasted approximately 20
minutes. The participants were randomly assigned to either the control group (consisting
of experiments with the slider interface) and or the treatment group (the axes interface),
such that each interface was tested by 10 different participants. All subjects reported
being familiar with the use of capacitive-touch screens and graphical-user interfaces.
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(a) (b)

(c) (d)

(e)

(f) (g)

(h) (i)

Figure 6.3: Visualization of axes setpoints and corresponding lighting conditions.
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Figure 6.4: Linear slider interface and corresponding luminaire map.

6.2.4 Procedure
Two protocols were utilized across all trials. The first protocol, the task-time proto-
col, was designed to measure the participants performance using either the axes or the
sliders. The second protocol, the exit questionnaire, the consisted of five Likert items
designed to measure the participant’s attitude about the user-interface, administered at
the conclusion of the study. Subjects then completed an optional question and answer
session about the experiment.

6.2.4.1 Task-time Protocol

The experiment utilized a mixed between and within-variable design. The twenty sub-
jects were randomly assigned to either the sliders group or axes group for testing. Thus,
the between-subjects variable, controller-type consisted of two levels, sliders and axes.
Since illumination control is ultimately a subjective process for each user, users were
tested with lighting prompts using natural language. The first within-subjects variable,
prompt-type, described whether the type of prompt was an instructional or contextual
lighting task. The second within-subjects variable was task-number. Each subject com-
pleted 5 instructional and 5 contextual lighting tasks during the study. The prompts read
to the users are listed in Table 6.1.

The experiment instructions were read to the participants by the experiment and the
user was given two basic training tasks to become familiar with the lighting controls
and the experimental procedure. These training tasks were not included in the analysis
of task-time. Each subject then completed 10 lighting tasks, in which the participant
was read a prompt by the experimenter, and then adjusted the lighting until they were
satisfied with their response. These ten tasks were presented in a random order to each
participant. During each testing period, the task-time and user-manipulation history
were recorded for later analysis. Logging did not begin until pressed both the “begin-
testing” button and interacted with at least one control-element. Subjects indicated they
were complete with the task by pressing the “begin-testing” button a second time. After
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Table 6.1: Task instruction.

Type Task No. Description

Training

1 Create a dimly lit, but comfortable, scene where the table is
brighter than the walls using reddish (warm) lighting.

2 Make this room optimal for illuminating the painting in front
of you.

Context

1 Make this room optimal for reading a magazine or newspaper.

2 Make this room optimal for computer-based work.

3 Make this room optimal for socializing with friends.

4 Make this room optimal for drawing attention to the objects on
the table.

5 Make this room optimal for relaxation.

Instruction

1 Create a dimly lit, but comfortable, scene where the walls are
brighter than the table using reddish (warm) lighting.

2 Create a brightly lit, but comfortable, scene where the table is
brighter than the walls using blueish (cool) lighting.

3 Create a brightly lit, but comfortable, scene where the table is
brighter than the walls using reddish (warm) lighting.

4 Create a dimly lit, but comfortable, scene where the walls are
brighter than the table using blueish (cool) lighting.

5 Create a scene of comfortable brightness and, using your
choice of color, keep both the table and walls at the same
brightness.

completing every task, the lighting and controls were reinitialized to an a common state
(3000 K with a work surface illumiance of 200 lx).

6.2.4.2 Exit Questionnaire

After participants completed the 10 lighting tasks, we asked them to complete the ques-
tionnaire in Table 6.2. This questionnaire consisted of five Likert questions measured on
a seven-point scale (1=strongly disagree, 7=strong agree) and was designed to measure
the users’ attitudes towards the lighting control GUI they tested.
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Table 6.2: Exit Questionnaire.

No. Question

1 This method is a natural way to control indoor lighting.

2 This method reflects my intent well.

3 A lot of training is necessary to use this method.

4 This method makes me feel tired.

5 I want to control the indoor lighting using this method.

6.3 Results
The analysis of the proceeds with a presentation of the descriptive statistics, an analysis
of variance to determine which variables affected the average task-time during the study,
and finally, a non-parametric analysis of the exit questionnaire.

6.3.1 Descriptive Statistics of Task-time
Altogether, 20 participants were tested 10 times each for a total of 200 data points.
Irrespective of the independent variables, the median task-time was 25 s. Fifty percent
of the participants finished their tasks between 15 s and 41 s with seventy-five percent
of the participants finishing their lighting tasks within 41 s. A summary of the data
is presented in Table 6.3, and the difference between the median and mean of the task
times suggest the task-time data are right skewed (as expected).

User-task times are known to be right skewed, with the control group variance often
times much greater than the treatment group’s variance. Therefore, proceeding with the
mixed-design analysis of variance (ANOVA) requires a variance stabilizing transforma-
tion (e.g., to ensure homogeneity of variance). Candidate transformations of the task
time include the natural log and the square root transformation. In this analysis we pro-
ceed by first log-transforming the task time. The final results are then back-transformed
to an arithmetic scale.

6.3.2 Analysis of Performance Time
Data were analyzed using a mixed-design ANOVA with a within-subjects factor of
type (instructional, contextual) and task (prompts 1-5) and a between-subjects factor
of controller-type (sliders, axes). See Table 6.4 for reference. The data were analyzed
using the EZanova package using the R language. Recall that the estimated partial effect
size η2

p describes the size of the effect measured in the experiment (e.g., small = .01,
medium = .06, and large = .14). Large effect sizes are likely to be noticed by eye by a
novice.

The analysis indicated that the average log-task time of participants depended on
the controller-type (F1,18 = 14.76, p < .001, η2

p = .45). This effect was observed re-
gardless of the type of prompt (F1,18 = 2.15, p = .159, η2

p = .11) and also irrespec-
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Table 6.3: Experiment summary statistics. Column ctrl is the tested controller-type; "A" and
"S" correspond to the axes and sliders. The column labeled type refers to the task, "I" and "C"
correspond to instructional or contextual, resp.

Ctrl Type Task Nr Mdn M SD Skew

1 A I 1 10 15.9 22.5 18.4 1.6
2 A I 2 10 12.5 20.1 18.6 1.3
3 A I 3 10 10.9 14.8 11.5 1.8
4 A I 4 10 19.2 20.6 10.5 1.3
5 A I 5 10 15.5 18.4 11.7 0.7
6 A C 1 10 18.2 25.9 18.4 0.7
7 A C 2 10 22.1 23.6 18.6 1.2
8 A C 3 10 12.5 17.6 14.0 0.9
9 A C 4 10 16.3 16.5 7.5 0.2

10 A C 5 10 13.3 17.7 11.9 1.0

11 S I 1 10 33.5 35.2 16.9 0.3
12 S I 2 10 20.9 28.5 20.9 0.8
13 S I 3 10 29.0 30.6 14.4 0.4
14 S I 4 10 35.8 36.4 13.0 0.4
15 S I 5 10 42.4 45.8 23.0 0.4
16 S C 1 10 47.5 45.8 22.0 0.3
17 S C 2 10 39.4 43.3 19.1 0.5
18 S C 3 10 41.4 49.7 22.4 0.5
19 S C 4 10 33.2 32.2 15.7 -0.0
20 S C 5 10 40.4 44.1 27.7 1.6

Table 6.4: Results of the mixed ANOVA; the effect and interaction of independent variables in
the experiment

Effect F P-value η2
p

Controller F1,18 = 14.8 < .001 0.45
Prompt F1,18 = 3.8 = 0.07 0.17
Task No. F4,72 = 1.3 = .30 0.06

Controller × Prompt F1,18 = 2.2 = 0.16 0.11
Controller × Task No. F4,72 = 2.0 = 0.10 0.10
Prompt × Task No. F4,72 = 3.5 < 0.05 0.16
Controller × Promp × Task No. F4,72 = 0.56 = 0.70 0.03

tive of task (F4,72 = 2.01, p = .102, η2
p = .10). The analysis also indicated that mean

log-task time differed by task ID and whether the type was instructional or contextual
(F4,72 = 3.47, p = .012, η2

p = .16). No corrections to the data were required; Mauchly’s
test of sphericity on the within-subject variables was p > .05.

Since no other experiment variables interacted significantly with the effect of con-
troller type, we could safely average the effect of the controls over all the interactions
with prompt and task, to finally derive the estimated effect of the controller type on the
mean task time (Figure 6.5). Recall that the model was fit using log(task-time), there-
fore, we expect, after exponentiating these results, that the confidence intervals on an
arithmetic scale are no longer symmetric; indeed this is the case.

A post-hoc test of the differences between the average log-task time revealed a
statistical difference (M = 0.65, SD = 0.19, z = 3.38, p < .001). Recall the simple
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Estimated Effect of Controller−Type on Task−Time
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Figure 6.5: The estimated effect of the controller-type on task-time in this study. Asymmetric
confidence intervals are expected since the model estimated mean log(task-time) and the results
are presented on an arithmetic scale.

property that exponentiating the difference between two log variables has the property
exp(log(x)− log(y)) =x/y. In other words, this post-hoc comparison, once exponen-
tiated, yields the odds ratio between the sliders and axes groups. Interpreting these
results, the estimated odds-ratio is 1.9 (1.3, 2.8). Thus, participants in the sliders group
completed tasks nearly 100% slower than participants who were given the axes.

For example, if a task was known to require 20 s to complete using the axes, we ex-
pect, on average, this same task to require nearly 40 s using the sliders. In this example,
uncertainty in this estimate suggests the difference in task times in may be as small as
26 s and as large as 56 s.

Summarzing, we obtained a positive finding suggesting that the axes allow the user
to perform lighting tasks in half the time – regardless of the lighting task – than the
sliders. As expected, we also observed an interaction between within-subject variables
task and type, as instruction and context tasks had varying degrees of difficulty for the
participants.

6.3.3 Analysis of Exit Survey
6.3.3.1 Non-Parametric Analysis

Overall, we find that participants in the study reported positive feelings toward their
respective controllers. Recall the exit questionnaire was designed using a seven-point
scale (7: strongly agree), and that questions two and three are negative questions (e.g., a
positive affirmation is a low score). Statistical differences between the two groups were
analyzed with a non-parametric Mann-Whitney U test. The median scores and statistical
results are presented in Table 6.5.
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Table 6.5: Questionnaire analysis using Mann-Whitney test. Columns designated “S” and “A”
refer to the sliders and axes group, resp.

Q 1 Q 2 Q 3 Q 4 Q 5

S A S A S A S A S A
7 6 7 6 1 2 4 2 7 6
5 6 5 6 2 1 5 2 6 6
2 5 4 6 3 5 5 2 3 7
3 5 4 6 4 2 2 1 3 7
5 5 5 6 2 2 2 2 7 7
6 3 5 5 2 1 5 2 5 6
4 6 4 7 5 1 6 1 1 6
6 3 4 2 2 4 3 3 7 5
2 5 6 5 1 3 2 2 6 4
5 3 6 4 1 2 2 4 6 3

Median 5 5 5.5 5 2 2 3.5 2 6 6

U 53.5 55.5 49 22 56
Nr 20 20 20 20 20

Z-score 0.274 0.441 -0.079 -2.268 0.471
significance – – – p < .05 –
effect-size – – – 0.51 –

Both groups agreed (Mdn = 6) with the statement “I want to control the indoor
lighting using this method” despite only reporting they somewhat agreed (Mdn = 5)
with the statements “This method is a natural way to control indoor lighting” and “this
method reflects my intent well.” In these three questions, the median score was positive.

Self-reported tiredness (Q 4: “This method makes me feel tired.”) was greater for
subjects who were tested using the sliders (Mdn = 3.5) than for subjects who used
the axes (Mdn = 2) during the experiment. We evaluated the difference between the
two groups on our 7-point Likert scale using a Mann-Whitney U test. We found a
significant effect of controller-type (the mean ranks of sliders and axes were 13.3 and
7.7, respectively; U = 22, Z =−2.27, p< .05 ,r = .51). No other significant differences
were found between controller groups on the other 4 questions (see Table 6.5).

Altogether, the results of the questionnaire suggest that the sampled population (MIT
students and staff) viewed both the sliders and axes lighting controllers as something
they would like to use to control lighting and that both systems reflected their intent
well and were natural ways of adjusting lighting. However, the axes users were more
likely to report a lower tiredness score than the sliders. Most importantly, the non-
monotonic appearance axis of the axes group did not negatively affect the scores of the
questionnaire, an important fact.
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6.4 Discussion

6.4.1 Task Time
As expected, we are pleased to report that the axes-based method of control allowed
participants to control the lighting in the room nearly twice as fast as those who used the
sliders. In some regard, this is to be expected. From an information-theoretic standpoint,
the user-interface comprised of the two axes is a lower-entropy interface compared to
that of a system consisting of nine degrees of freedom.

However, there is a much deeper connection between the results presented in this
Chapter and the fields of psychology and human-computer interaction research. First,
recall that the two axes describe the perceived Euclidean distance between the original
eight lighting scenes. More importantly, a Euclidean geometry most often suggests that
the stimuli are perceived integrally. For example, it is well known that brightness, satu-
ration, and hue are perceived together (integrally) (Garner, 1974). In the axes-controller,
the contrast dimension is folded into the appearance and color temperature axes, yet the
general interpretation that test subjects reported was “brightness and color.”

Importantly, the results of task time support the conclusions Jacob et al. (1994) who
studied manipulation of computer-based objects using gestural control. In this work, the
group found that performance time is significantly decreased when the user-interface
matched the perceptual structure of the stimuli (e.g., the stimuli are perceived integrally
or separably and subsequently controlled using the appropriate interface).

In light of research above, we now interpret the the task time results. First consider
the arrangement of the slider interface. The arrangement of sliders to control the bright-
ness, contrast, and color of the room treats the perception of the room as it consisted
of 3 distinct separable stimuli (e.g., that manipulation and perception of these attributes
resembles a city-block type distance). The important contribution of Jacob et al. (1994)
was that they found, in their experiments, that when a user-interface incorrectly speci-
fies control of the underlying structure of the stimuli incorrectly, one finds a significant
degradation of performance. This theory helps explain why the performance of the
sliders-group was much slower than the axes group.

We now turn out attention to the axes-control. Anecdotally, one subject responded
that the axes “felt as if I were designing and painting with the light” and that they were
“amazed by how the shadows varied on objects in the room using the control system.”
Several subjects commented on how easy it was to use the sliders, especially once they
completed instructional-type tasks during the experiment. We interpret these comments
as suggestive evidence that the lighting control axes matched the perceptual structure of
the stimuli. Indeed, our quantitative analysis of task-time supports these conclusions.

6.4.2 Exit Questionnaire
The entire cohort appeared to respond favorably to both implementations of the lighting
control, regardless of whether the user-interface consisted of integral or separable con-
trol. We attribute this fact to the novelty of the personalized lighting control, the fact
that it was wireless, and also portable. Drawing conclusions about the MIT population,
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it suggests the group would enjoy some form of digital and wireless lighting control.
Without additional testing, it is unclear whether statistical differences between groups
in questionnaire would arise. For example, it is possible that user who are inexperienced
with graphical user interfaces may find both user-interfaces difficult to use.

Importantly, we measured a statistical difference between the groups when asked
about tiredness. Participants who used the axes self-reported a statistically different
and lower score of feeling tired. This conclusion certainly seems possible, as subjects
completed tasks twice as fast as their slider-based cohort.

6.5 Limitations and Future Work
Regarding our comments on the entropy of the control solutions, one would like to know
how task time in this study is affected by the degree of freedom of the sliders. This would
allow us to compare our two axes results against a range of slider task times. Perhaps we
would find that eventually decreasing the degree of freedom in the sliders-configuration
led to a similar result as the axes. Ideally, we would hope to find this task time decreases
logarithmically rather than linearly, which would be suggestive about the “compression”
of the possible decision space. Specifically, to address the question if decreasing sliders
offers logarithmic or linear utility for potential users. With this information in tow,
once could compare the compression rates of the two the approaches to understand the
efficiency of the two approaches.

In light of this fact, one can argue that the results presented here represent some
form of “lighting control compression,” in that, by restricting the configuration of the
lighting scenes to range of interpolated presets, one achieves a higher channel capacity,
e.g., controlling the lighting using the axes requires a substantially lower bandwidth than
using the sliders. The decompression routine is then, of course, the organization of the
scenes within the axes.

We would like to eventually comment on the efficiency of compressing the state
space of lighting control. For now, it must suffice to know that such a method of “com-
pression” is possible and leads to increased performance without a discernible difference
in human attitude towards the restricted state-space. This is an encouraging step.

Importantly, we must acknowledge that the state-space of the axes control was de-
rived apriori. A logical extension of this work is to consider how participants could first,
choose their lighting presets, provide similarity scores of the their chosen scenes, and
then quantitatively and qualitatively evaluate the derived axes. This idea is also the basis
for future work.

6.6 Summary
This chapter details the performance of two lighting control configurations. It presents
quantitative evidence that apriori specification of interpolated lighting presents, pre-
sented to the user as two-dimensional interface offers substantial improvements in ef-
ficiency compared to a traditional, direct control method, using linear sliders. We also
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find evidence that users who were given the lighting control axes in the study were less
tired than those who completed the same tasks user the sliders. We relate these find-
ings to the corresponding literature on human performance with user-interfaces in the
requisite HCI and psychology domains.
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7

Conclusions

In this chapter the hypothesis from Section 1.6 are discussed on the basis of the
findings in this work. The outlook identifies future work.
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7.1 Feasibility
The perception of luminous conditions, whether observed in a virtual or physical space,
tend to be the same. Regardless of the underlying stimuli, or the method in which the
data are analyzed, the experiments described in Chapter 4 and Chapter 5 suggests that
luminous conditions can be represented by a simple structure. Furthermore, the evidence
suggests that when the perceived differences are small (i.e., changes in contrast), these
weaker dimensions can be folded into a simple two-dimensional representation of the
luminous conditions.

When the hue of the lighting remains fixed (Chapter 4), perception of the luminous
conditions is described by two independent axes, “intensity” and “appearance.” The
appearance axis is simply a derived scale that measures the perceived distance between
proportional differences of flux between the luminaires. The intensity axes is a scale
that describes the perceived brightness of the stimuli.

When the hue can vary (Chapter 5), changes in color lead to large perceptual dif-
ferences in the underlying lighting conditions (e.g., the blackbody locus spanning CIE
1931). In these situations, observers still detect changes in intensity and contrast. Changes
in the proportions of luminaires (contrast) – in the presence of changing hue and bright-
ness – are perceived as smaller distances. In two dimensions, the weaker effect of
contrast, can be analytically “folded into” a representation comprised of hue and ap-
pearance. In turn, the appearance axis is non-monotonic and simultaneously describes
changes in brightness and contrast. Yet for the participants who evaluated the con-
trol system, the overwhelming majority of subjects described the axes as “color” and
“brightness.” In such a representation, changes in contrast represent “fine-grained” con-
trol; color and brightness represent easily found global optima, and contrast is achieved
by small perturbations about this chosen operating point.

There also exists a physical basis for these perceptions. The major difference be-
tween the subjective and objective models is simply the scale. For example, changes in
hue may be influenced by only a few dominant wavelengths, yet the perceived difference
in humans is large. This fact was demonstrated in Chapter 5.

Using these facts, I conclude that it is feasible

• to remove unnecessary complexity from a lighting-control interface by creating a
perception-based representation of the luminous conditions;

• to represent a set of lighting presents in two-axes and allow a user to interpolate
between those presents;

• to automate objective measurements of luminous spectra and brightness and esti-
mate the location of these luminous conditions in a subjective space.

7.2 Justifiable Effort
First, this work presents evidence that the study of subjective impressions of lighting
can be applied to the design of the user-interface for lighting control. Second, this work
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demonstrates how these impressions may be emulated by building a simple model of
appearance using a sensor-network.

The design of the user-interface requires an apriori configuration of lighting scenes
and a subsequent evaluation, carried out using either (a) spectrometer and luminance
measurements, or (b), comparative ratings of scenes. This thesis demonstrates how an
objective model of luminous conditions relates to the subjective impressions of lighting.
These findings suggest a general approach – a sensor-based model for example, those
suggested in Chapter 5, can approximate our impressions of the luminous conditions.
Although the tested scenes were not extremely complicated, the relationship between
the objective and subjective approaches is encouraging.

When one linearly regresses these two data sets, a correspondence between the major
dimensions are found. In other words, using the data collected and presented in this
thesis, I offer evidence that a linear rescaling may be a suitable way to approximate the
lighting user-interface using sensor-based measurements.

These findings show that

• The subjective impressions of lighting can be inferred through the use of a simple
computerized model consisting of photometric and radiometric measurements.

• The objective model described in this thesis corresponds well with the subjective
data and vice versa.

7.3 Relevance
The affordance of the user-interface is formally tested in Chapter 6. The results of
the user-study demonstrate the significant and substantial effect of the proposed axes-
based user-interface on performance time to adjust luminous conditions. Importantly,
this methodology can be implemented at this present time, by simply redesigning the
user-interface to reflect the dominant ways we experience lighting.

In a user-study, it was empirically determined the proposed lighting control interface
(the axes) offered substantial performance increases over traditional slider-based forms
of control. Across all lighting tasks, the axes enabled users to set and control the lights
in half the time of the sliders with less fatigue.

Tangential, but related, are the results of a simple pilot study of preference in Ap-
pendix A. Participants evaluated both user-interfaces and indicated their preferred method
of control. In the evaluation, 93% of all users preferred the axes. Although this result
is significantly different than equal preference of the two user-interfaces, it is important
to also realize that novelty and simplicity of the interface may also bias this prefer-
ence. However, given the substantial increase in performance, one would also expect
that preference is also influenced by the overall utility provided by the axes.

All these results show that

• According to the test conditions and evaluated GUIs, the axes are the preferred
method of lighting control. The methodology and approach in this thesis led to
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the design of a lighting control interface that offers substantial performance gains
without fatiguing the users.

7.4 Outlook
A number of advances have been realized during the course of this work, yet further
steps are necessary to foster the broader interpretation and application of this user-
interface in lighting.

Evaluating a set of heuristics In the most basic form, the axes are a parametric form
of control – is the full calibration by either the human or sensor network required? For
example, in a system with a fixed hue, and both wallwashing and overhead luminaires,
how do users’ attitudes vary compared to the axes presented in this thesis? Commercial-
izing this work may be as simple as parametric control of the luminous conditions.

Learning from the user In this approach, the system learns and infers the user-
interface over time by studying the configuration of lighting presets by the user. Rather
than force the user into a parametric form of control, the system, either using apriori
specified model, could build the UI by finding the best representation of the presets
(e.g., states of the sliders) that the user has specified. Additionally, since the sliders and
axes are complimentary, it is foreseeable that broad changes to the lighting could be
made by adjusting the axes and local, more fine-grained changes could be made using
the sliders. In such an approach, the system would keep track of the state between the
two user-interfaces.

A full-scale implementation In these experiments, the lighting presents were chosen
apriori, in structured fashion, to measure and validate a lighting user-interface derived
from subjective impressions, this led to heuristics discussed above. A logical starting
place would be to evaluate a system in which the user creates a variety of presets, then
using either sensor-based measurements, or similarity measurements, the system would
derive a personal set of axes for the user. Given that users enjoyed controlling lighting
with the interface, and the performance gains of such a system, it is logical conclusion
to evaluate if users are willing to spend the time to create this form of control. The
goal would be a full evaluation of the system “in-the-wild” test the suitability of this
approach en masse.

Energy On average, do the axes and the interpolated presets consume more or less
power than traditional sliders. Concerns from building councils recommend that per-
sonalized control in office environments leads to higher power consumption, but this
stance, at least according to Veitch and Newsham suggests users typically prefer lower
brightness levels than what is typically recommended. In this case, one could study the
effects power consumption, while using the axes in two forms. In the present imple-
mentation, the axes abstract all visual cues about the intensity of the room, whereas,
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with sliders, there is visceral and visual implication of a limit, what are the effects of
overlaying a contour map of energy density with the present axes UI? Does this lead to
lower power levels? Do user’s still prefer the interface?

The evolution of lighting: luminous displays If certain parameters of the room are
changed, for example, the reflectivity or color of the paint, how does this impact our
impressions? The theory of integral stimuli should still hold, which loosely implies our
methodology could be used to evaluate and build UIs in these unusual rooms. The com-
plexity of this thought experiment can certainly explode – ultimately one would like
to generalize and continue the researching the objective models derived using sensor-
measurements as a suitable basis for anticipating our reactions to new forms of light-
ing, and small perturbations of the room’s appearance. This endeavor likely suited to
computer-based analysis and CGI to understand our impressions of unusual and new
forms of lighting. For example, what might these subjective data look like when the
experiment in Chapter 5 is replicated, but conducted using an entirely different lighting
medium (e.g., large displays).

Deriving a general subjective mapping The present results suggest that a sensor-
network is capable, after a simple rescaling of the objective-room model, of anticipating
the (x,y) location of luminous conditions in a perceptual space. How might one continue
to evaluate this theory? First, using the same room described in Chapter 5, the tested
luminous conditions could be expanded to include a wider range of color-temperature
and contrast variables. Asymmetric lighting configurations would also be evaluated.
Using the same experimental procedure outlined in Chapter 5, participants would only
be tested in a subset of the configurations. After some months of collecting responses,
the coefficients of Eq. 5.1 would be estimated. One would subsequently derive a general
two-axes model for control describing a wider range of luminous conditions.

A broader research plan would extend this procedure to different rooms and differ-
ent luminaire configurations amending the procedure and analysis to account for these
changes. Such a research endeavor could span multiple Universities with a common
goal of deriving a common set of axes for user-based control of lighting.

Experts versus non-experts Using the same methodology described in this thesis, a
research program could be designed in which lighting designers (experts) created the
luminous presets and provided subjective scores of the scenes. In this approach, I would
attempt to extract the dimensions and structure of their impressions of lighting. How
might these configurations vary versus those made by non-experts? Thus, I could for-
malize an approach in I quantified the critical components of lighting design – drawing
conclusions about the similarities and differences of the two groups. Using the method-
ology discussed in this thesis, is it possible for non-experts to build interfaces and map-
pings that are preferred more than those by experts?

Applying this approach and mapping in other domains Conceptually, audio equal-
ization is an analogous problem, the main difference is the stimuli are auditory and not
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visual. The approach and methodology described in this work can also be used to build
new audio user interfaces. Parameter mapping has been studied (Hunt et al., 2003),
but the novelty of my approach is that the techniques can generalize any n-parameter
mapping. For example, parametric configuration of analog synthesizers could be easily
distilled into the first two dominant axes. Again, system exists in dual-form, such that
we estimate f̂ between Γ, the underlying physical parameters and Ω, the orthogonal
basis that represents the geometry of these parameters. One would test how stable this
configuration against perception of pitch and ADSR.
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A

Pilot Study of Lighting Controller Preferences

Abstract

A preference study was conducted using fourteen participants to evaluate their
preferences of two lighting control options. In a controlled study users indicated
they preferred the axes-based user-interface 93 % of the time, CI95% = (.66, .99),
significantly more than would be expected by chance, exact binomial p(two-tailed)
= .001. In addition, users selected one of five hypothetical setup-times to configure
the lighting user-interface. The test did not reveal a difference in preferred setup-
time, χ2(5,N = 14) = 4.82, p = .44.

A.1 Purpose

A short pilot study was designed to follow up the questionnaire results presented in
Section 6.3.3 in which participants rated five questions designed to measure their attitude
about a specific user-interface. In this prior experiment, participants were randomly
assigned to a single lighting user-interface.

This study primarily designed to measure which interface the participants preferred
after evaluating both interfaces. Recall in Section 6.3.3, the attitudes are positive to-
wards both user-interfaces but no between-group difference in attitude was detected.
Therefore, in this short pilot study, it was hypothesized that, after evaluating both user-
interfaces, participants would reveal a significant difference in preference of lighting
controls.

Given that users were less tired and lighting tasks were performed twice as fast as
those using the sliders, it was assumed that resulting preference of a single interface
would be strong. A power analysis was conducted (α = .05,β = .80) assuming a null
hypothesis that both user-interfaces were preferred equally (H0 = .50) and the alter-
native proportion (to be empirically measured) is H1 = .85. Under these assumptions,
fourteen participants are required. The approach to determine the number of participants
is after Fleiss et al. 1981, pp. 13-15.
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Table A.1: Task instruction.

Type Task No. Description

Context

1 Make this room optimal for reading a magazine or newspaper.

2 Make this room optimal for socializing with friends.

Instruction

1 Create a dimly lit, but comfortable, scene where the walls are
brighter than the table using reddish (warm) lighting.

2 Create a brightly lit, but comfortable, scene where the table is
brighter than the walls using blueish (cool) lighting.

A.2 Method

Fourteen subjects from MIT (ages: 23-34) were recruited to evaluate two lighting user-
interfaces (for a full description of the method see Sec. 6.2).

The testing procedure was modified and participants evaluated both types of user-
interfaces. Participants performed a total of four lighting tasks using each of the two
interfaces (the sliders, and the axes, see Fig. 6.2 and Fig. 6.4).

The lighting tasks (a subset of the original tasks) are presented in Table A.1. The
type of question (context, or instruction) and the task no. were presented randomly to the
participants. Altogether, the fourteen participants performed eight lighting tasks; four
using the sliders and four using the axes. Counterbalancing was applied to the order in
which the interface was presented; half the subjects were presented with the axes first
and half were presented with the sliders first.

When subjects completed all eight tasks, they were presented with a sheet of paper
which instructed them to mark their preferred lighting control interface. They were also
asked to report how much additional time they were willing to spend to train a computer
to build the axes interface.

A.3 Results

A.3.1 Preference of Lighting Controls

A binomial test of proportions was performed to determine if, after using both types of
lighting user-interfaces, users preferred both controllers equally (Table A.2). Users indi-
cated they preferred the axes-based user-interface 93 % of the time, CI95% = (.66, .99),
significantly more than would be expected by chance, exact binomial p(two-tailed) =
.001.
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Table A.2: Preferred lighting control user-interface.

Order ID Choice
axes→sliders 1 A

3 A
5 A
7 S
9 A
11 A
13 A

sliders→axes 2 A
4 A
6 A
8 A
10 A
12 A
14 A

Total (A=13,S=1)
Note:A: Axes, S: Sliders

Table A.3: Setup-time responses.

Nr Proportion (%)

< 5 minutes 4 29
5–10 minutes 1 07
11–15 minutes 5 36
16–20 minutes 2 14
> 20 minutes 2 14

Total 14 1

A.3.2 Setup Time

A chi-square test of independence was performed to determine if the five axes-calibration
times were equally preferred (Table A.3). The test did not reveal a difference in preferred
setup-time, χ2(5,N = 14) = 4.82, p = .44.

A.4 Discussion
As expected, a strong preference for controlling the lighting using the axes was found.
For the respondent who selected the sliders, they commented that they preferred precise
control. These reactions to new and unique interfaces are not uncommon. Recently,Noh
et al. found that a “painting interface” for lighting control was preferred by the users in
the study, yet some users preferred the simple and direct control of the sliders.

Overall, any lighting related user-interface must afford the users simultaneous “broad”
and “short” strokes – such that a majority of the time adjusting the room is with the sim-
ple approach, and special design or aesthetic design can be accomplished with more
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control. The axes offer a compromise, since the approach blends the perceived aspects
of the lighting conditions in one simple interface.
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B

Description of Lighting Scales

B.1 Survey Items in Human Subjects Test I
Chapter 4 describes the measurement of subjective impressions of CGI-based lighting
scenes using human subjects. The original scales used to conduct this research are drawn
from Flynn et al. (1973); Hawkes et al. (1979). The scales and collection of the ratings
were presented and recorded digitally using a computer (Table B.1).

For more information regarding the use of semantic differential scales in lighting
research see Rea (1982). The use of the semantic differential was first proposed by
Osgood (1957).
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B. DESCRIPTION OF LIGHTING SCALES

Table B.1: The 29 bipolar adjective scales used in lighting ratings.

-3 -2 -1 0 +1 +2 +3

ugly # # # # # # # beautiful

unpleasant # # # # # # # pleasant

dim # # # # # # # bright

monotonous # # # # # # # interesting

discord # # # # # # # harmony

informal # # # # # # # formal

frustrating # # # # # # # satisfying

small # # # # # # # large

cluttered # # # # # # # uncluttered

tense # # # # # # # relaxed

angular # # # # # # # rounded

faces obscure # # # # # # # faces clear

dull # # # # # # # radiant

playful # # # # # # # serious

complex # # # # # # # simple

unfocused # # # # # # # focused

dislike # # # # # # # like

dynamic # # # # # # # static

vague # # # # # # # distinct

somber # # # # # # # cheerful

vertical # # # # # # # horizontal

hazy # # # # # # # clear

hostile # # # # # # # friendly

noisy # # # # # # # quiet

short # # # # # # # long

cramped # # # # # # # spacious

unusual # # # # # # # usual

unsociable # # # # # # # sociable

private # # # # # # # public
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C

MDS Modeling Error

C.1 Background

In Chapter 5, subjective impressions in lighting were studied using multidimensional
scaling (MDS). The procedure involved participants indicating the perceived dissimilar-
ity between pairs of lighting scenes. This approach is very different than the method
and procedure of Chapter 4. Namely, participants rated attributes of lighting in a multi-
dimensional array.

The important distinction is that multidimensional scaling maps proximities pi j into
corresponding distances di j(X) of the latent basis X. Using the terminology and model
of Borg (2005), we have a representation function

f : pi j→ di j(X), (C.1)

where a particular choice of f specifies the MDS model. Borg, 2005, pp. 39-40 explains,
“an MDS model is proposition that given proximities, after some transformation f , are
equal to distances among points of a configuration X:

f (pi j)→ di j(X). (C.2)

Thus, the multidimensional scaling technique, using some f , attempts to fit the un-
derlying proximity data with some user-specified number of dimensions m, such that the
fitted distances di j match the observed proximities pi j as close as possible.

Moreover, this approach can be extended to three-way models, for example, if the
rating procedure is replicated over K subjects, this leads to a proximity matrix pi jk =
(i, j = 1, . . .n;k = 1, . . .K). The data in Chapter 5 are treated as three-way data, in which
any participant K has their own configuration in n dimensions as well as a group config-
uration, in which each individual configuration can be accounted for by stretching the
configuration along the specified dimensions (see Borg 2005, Ch. 21). One such algo-
rithm to fit these three-way data is INDSCAL developed by Carroll and Chang (1970).

In Chapter 5, the three-way data collected was analyzed using the INDSCAL algo-
rithm using the implementation by de Leeuw and Mair (2009) in the R statistical lan-
guage (2014).
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C. MDS MODELING ERROR

60 80 100 120

15
25

35

Shepard Diagram

Aggregated Observed DissimilaritiesA
gg

re
ga

te
d 

C
on

fig
ur

at
io

n 
D

is
ta

nc
es

(a) 3 Dimension

60 80 100 120

10
20

30
40

Shepard Diagram

Aggregated Observed DissimilaritiesA
gg

re
ga

te
d 

C
on

fig
ur

at
io

n 
D

is
ta

nc
es

(b) 2 Dimension

Figure C.1: INDSCAL fitting procedure using interval data assumptions in three and two dimen-
sions.

C.2 Discussion of Model Fitting Procedure
Following the notation and discussion of Borg (2005), the following metrics for evalu-
ating the fitting are presented. The squared error of representation is defined as

e2
i j = ( f (pi j)−di j(X))2. (C.3)

Summing e2
i j over all the pairs (i, j) yields the error for the entire MDS representa-

tion. This metric, known as raw stress is an error metric that is sensitive to the scale
of the underlying data Borg (2005). The recommended metric discussed in by Borg is
known as “Stress-1” proposed first by Kruskal (1964). The error, Stress-1 in the analysis
is formally defined as

σ1 =

√
∑( f (pi j)−di j(X))2

∑d2
i j(X)

. (C.4)

Minimizing σ1 requires finding an optimal configuration X given some dimension-
ality m.

C.3 Fitted Results
The fitted results of the eight scenes are presented in two ways. Aggregate stress di-
agrams (due to the use of INDSCAL procedure are presented. The fitting procedure
assumed the responses of dissimilarity were collected on a interval scale. In Figure C.1,
the fitting error is presented. A stress of zero implies that the points in the figures (the
grey circles) fall along the bisector – as expected, as the dimensionality is decreased
the stress increases. The respective aggregate σ1s in three and two dimensions are 1.44
and 1.25. Recall these are aggregate measures of stress and are not comparable with the
standard ranges of stress found using metric MDS.

Interpretation of the fitting procedure is a subjective process, therefore a formal per-
formance evaluation of the user-interface was carried out (Chapter 6).
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D

Fitted Splines for 2-Axis Controller

The two-axis lighting user-interface discussed in Chapter 5 and tested in Chapter 6 re-
quired estimating a mapping between two perceived attributes of lighting (e.g., color
and appearance) the control parameters of the luminaires (e.g., the red, green, and blue
setpoints). For completeness, the red, green, and blue interpolants for both downlighting
and wall-washing luminaires are illustrated below.

The method is after Sandwell (1987) and is implemented in MATLAB.

D.1 Control Surfaces
Refer to Figure D.1.

D.2 Control Surface Contour Plots
Refer to Figure D.2.
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D. FITTED SPLINES FOR 2-AXIS CONTROLLER
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(b) Wallwashing: red channel
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(c) Downlighting: green channel
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(d) Wallwashing: green channel
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(e) Downlighting: blue channel

−0.5

0

0.5

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

Color TemperatureAppearance

R
el

at
iv

e 
C

on
tro

l P
oi

nt

(f) Wallwashing: blue channel

Figure D.1: Interpolated surfaces.
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D.2. Control Surface Contour Plots
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(e) Downlighting: blue channel
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(f) Wallwashing: blue channel

Figure D.2: Contour plots of the interpolated control surfaces.
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E

Raw Datasets for Analysis

The raw data (in .csv form) can be found here
http://web.media.mit.edu/~maldrich/thesis/data/

Please refer to the notes.txt for descriptions of the datasets. The datasets correspond to
the three human subject experiments discussed in this thesis. The data are available for
any subsequent use and analysis with proper attribution.

Please use the following BIBTEX citation:

@PHDTHESIS{mhaldrichPhD,

author = {Matthew H. Aldrich},

title = {Experiential Lighting: Development and Validation of Perception-based

Lighting Controls},

school = {Massachusetts Institute of Technology},

year = {2014},

month = {September}

}
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IRB Approval Forms

113



F. IRB APPROVAL FORMS

114



115



F. IRB APPROVAL FORMS

116



Bibliography

Abdi, H., Williams, L. J., and Valentin, D. (2013). Multiple factor analysis: principal
component analysis for multitable and multiblock data sets. Wiley Interdisciplinary
Reviews: Computational Statistics, 5(2):149–179.

Abowd, G., Mynatt, E., and Rodden, T. (2002). The human experience [of ubiquitous
computing]. Pervasive Computing, IEEE, 1(1):48–57.

Acar, E. and Yener, B. (2009). Unsupervised multiway data analysis: A literature survey.
Knowledge and Data Engineering, IEEE Transactions on, 21(1):6–20.

Achiche, S. and Ahmed, S. (2008). Mapping shape geometry and emotions using fuzzy
logic. In Proceedings of IDETC/CIE.

Aldrich, M. (2010). Dynamic solid state lighting. Master’s thesis, Massachusetts Insti-
tute of Technology.

Aldrich, M., Badshah, A., Mayton, B., Zhao, N., and Paradiso, J. A. (2013). Random
walk and lighting control. In IEEE Sensors, 2013 International Conference on.

Aldrich, M., Zhao, N., and Paradiso, J. (2010). Energy efficient control of polychromatic
solid state lighting using a sensor network. volume 7784, page 778408. SPIE.

Attneave, F. (1950). Dimensions of similarity. The American journal of psychology,
63(4):516–556.

Bergh, A., Craford, G., Duggal, A., and Haitz, R. (2001). The promise and challenge of
solid-state lighting. Physics Today, 54:42.

Bhardwaj, S., Ozcelebi, T., and Lukkien, J. (2010). Smart lighting using led lumi-
naries. In Pervasive Computing and Communications Workshops (PERCOM Work-
shops), 2010 8th IEEE International Conference on, pages 654–659. IEEE.

Borg, I. (2005). Modern multidimensional scaling: Theory and applications. Springer.

Boyce, P. (2003). Human factors in lighting. CRC.

Boyce, P. (2013). Editorial: A virtual opportunity. Lighting Research and Technology,
45(4):399.

117



BIBLIOGRAPHY

Buxton, W. (1986). There’s more to interaction than meets the eye: Some issues in
manual imore. User centered system design: New perspectives on human-computer
interaction, pages 319–337.

Caicedo, D., Pandharipande, A., and Leus, G. (2011). Occupancy-based illumination
control of led lighting systems. Lighting Research and Technology, 43(2):217–234.

Card, S. K., Mackinlay, J. D., and Robertson, G. G. (1991). A morphological analysis of
the design space of input devices. ACM Transactions on Information Systems (TOIS),
9(2):99–122.

Carroll, J. D. and Chang, J.-J. (1970). Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of “eckart-young” decomposition. Psy-
chometrika, 35(3):283–319.

Chaudhuri, S., Kalogerakis, E., Giguere, S., and Funkhouser, T. (2013). Attribit: content
creation with semantic attributes. In Proceedings of the 26th annual ACM symposium
on User interface software and technology, pages 193–202. ACM.

Crisp, V. (1977). Preliminary study of automatic daylight control of artificial lighting.
Lighting Research and Technology, 9(1):31.

Dangol, R., Islam, M., Hyvärinen, M., Bhusal, P., Puolakka, M., and Halonen, L. (2013).
User acceptance studies for led office lighting: Preference, naturalness and colourful-
ness. Lighting Research and Technology, page 1477153513514424.

de Leeuw, J. and Mair, P. (2009). Multidimensional scaling using majorization: SMA-
COF in R. Journal of Statistical Software, 31(3):1–30.

Dugar, A. and Donn, M. (2011). Tangible intervention: Improving the effectiveness of
lighting control systems. Lighting Research and Technology, 43(3):381–393.

Dugar, A. M., Donn, M. R., and Marshall, S. (2012). Designing tangible lighting control
interfaces. LEUKOS, 8(3):215–228.

Edison, T. (1880). Electric lamp. US Patent 223,898.

Engelke, U., Stokkermans, M. G., and Murdoch, M. J. (2013). Visualizing lighting
with images: converging between the predictive value of renderings and photographs.
In IS&T/SPIE Electronic Imaging, pages 86510L–86510L. International Society for
Optics and Photonics.

Fleiss, J. L., Levin, B., and Paik, M. C. (1981). The measurement of interrater agree-
ment. Statistical methods for rates and proportions, 2:212–236.

Flynn, J. E. (1977). A study of subjective responses to low energy and nonuniform
lighting systems. Lighting Design and Application, 7(2):6–15.

118



Bibliography

Flynn, J. E., Spencer, T. J., Martyniuk, O., and Hendrick, C. (1973). Interim study of
procedures for investigating the effect of light on impression and behavior. Journal
of the Illuminating Engineering Society, 3(2):87–94.

Garner, W. R. (1974). The processing of information and structure. Lawrence Erlbaum.

Gibson, J. (1977). The concept of affordances. Perceiving, acting, and knowing, pages
67–82.

Gibson, J. J. (1971). A preliminary description and classification of affordances. Un-
published manuscript, reproduced in E. Reed & R. Jones (Eds.),(1982), Reasons for
realism. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Gibson, J. J. (1986). The ecological approach to visual perception. Routledge.

Gordon, I. E. (2004). Theories of visual perception. Psychology Press.

Graham, D. J., Hughes, J. M., Leder, H., and Rockmore, D. N. (2012). Statistics, vision,
and the analysis of artistic style. Wiley Interdisciplinary Reviews: Computational
Statistics, 4(2):115–123.

Hair, J., Black, B., Babin, B., Anderson, R. E., and Tatham, R. L. (2009). Multivariate
Data Analysis. Prentice Hall.

Haitz, R. and Tsao, J. (2011). Solid-state lighting: ’the case’ 10 years after and future
prospects. physica status solidi (a), 208(1):17–29.

Hawkes, R., Loe, D., and Rowlands, E. (1979). A note towards the understanding of
lighting quality. Journal of the Illuminating Engineering Society, 8(1):111–120.

Hendrick, C., Martyniuk, O., Spencer, T. J., and Flynn, J. E. (1977). Procedures for
investigating the effect of light on impression simulation of a real space by slides.
Environment and Behavior, 9(4):491–510.

Holmes, J. (1884). Electric circuit closer. US Patent 305,310.

Houser, K. W. and Tiller, D. K. (2003). Measuring the subjective response to interior
lighting: paired comparisons and semantic differential scaling. Lighting Research
and Technology, 35(3):183–195.

Hsiao, S.-W. and Chen, C.-H. (1997). A semantic and shape grammar based approach
for product design. Design studies, 18(3):275–296.

Hunt, A., Wanderley, M. M., and Paradis, M. (2003). The importance of parameter
mapping in electronic instrument design. Journal of New Music Research, 32(4):429–
440.

Hunt, D. and Crisp, V. (1978). Lighting controls: their current use and possible im-
provement. International Journal of Energy Research, 2(4):343–374.

119



BIBLIOGRAPHY

Ishii, H. and Ullmer, B. (1997). Tangible bits: towards seamless interfaces between
people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human
factors in computing systems, pages 234–241. ACM.

Jacob, R., Girouard, A., Hirshfield, L., Horn, M., Shaer, O., Solovey, E., and Zigel-
baum, J. (2008). Reality-based interaction: a framework for post-wimp interfaces.
In Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in
computing systems, pages 201–210. ACM.

Jacob, R. J., Sibert, L. E., McFarlane, D. C., and Mullen Jr, M. P. (1994). Integrality and
separability of input devices. ACM Transactions on Computer-Human Interaction
(TOCHI), 1(1):3–26.

Kaplan, S. (1987). Aesthetics, affect, and cognition environmental preference from an
evolutionary perspective. Environment and behavior, 19(1):3–32.

Kaplan, S. and Kaplan, R. (1982). Cognition and environment: functioning in an uncer-
tain world. New York: Praeger.

Kasap, Z., Ben Moussa, M., Chaudhuri, P., and Magnenat-Thalmann, N. (2009). Mak-
ing them remember—emotional virtual characters with memory. Computer Graphics
and Applications, IEEE, 29(2):20–29.

Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psy-
chometrika, 29(2):115–129.

Lee, B., Aldrich, M., and Paradiso, J. A. (2011). Methods for measuring work surface
illuminance in adaptive solid state lighting networks. volume 8123, page 81230V.
SPIE.

Loe, D., Mansfield, K., and Rowlands, E. (2000). A step in quantifying the appearance
of a lit scene. Lighting Research and Technology, 32(4):213–222.

Machado, C. and Mendes, J. A. (2009). Automatic light control in domotics using
artificial neural networks. World Academy of Science, Engineering and Technology,
44.

Mackinlay, J., Card, S. K., and Robertson, G. G. (1990). A semantic analysis of the
design space of input devices. Human-Computer Interaction, 5(2):145–190.

Marr, D. (1982). Vision: A computational investigation into the human representation
and processing of visual information, henry holt and co. Inc., New York, NY.

Mayton, B., Zhao, N., Aldrich, M., Gillian, N., and Paradiso, J. A. (2013). Wristque:
A personal sensor wristband. In Wearable and Implantable Body Sensor Networks
(BSN), 2013 Tenth International Conference on.

120



Bibliography

Miki, M., Amamiya, A., and Hiroyasu, T. (2007). Distributed optimal control of lighting
based on stochastic hill climbing method with variable neighborhood. In Systems,
Man and Cybernetics, 2007. ISIC. IEEE International Conference on, pages 1676–
1680. IEEE.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological review, 63(2):81.

Mozer, M. C. (1998). The neural network house: An environment hat adapts to its
inhabitants. In Proc. AAAI Spring Symp. Intelligent Environments, pages 110–114.

Murdoch, M. J. and Stokkermans, M. G. (2014). Effects of image size and interactivity
in lighting visualization. In IS&T/SPIE Electronic Imaging, pages 90140J–90140J.
International Society for Optics and Photonics.

Newsham, G., Mahdavi, A., Beausoleil-Morrison, I., et al. (1995). Lightswitch: a
stochastic model for predicting office lighting energy consumption. In Proceedings of
Right Light Three, the 3rd European Conference on Energy Efficient Lighting, pages
60–66.

Newsham, G. R., Cetegen, D., Veitch, J. A., and Whitehead, L. (2010). Comparing
lighting quality evaluations of real scenes with those from high dynamic range and
conventional images. ACM Transactions on Applied Perception (TAP), 7(2):13.

Newsham, G. R., Marchand, R. G., and Veitch, J. A. (2004). Preferred surface lu-
minances in offices, by evolution. Journal of the Illuminating Engineering Society,
33(1):14–29.

Noh, S.-t., Hashimoto, S., Yamanaka, D., Kamiyama, Y., Inami, M., and Igarashi, T.
(2014). Design and enhancement of painting interface for room lights. The Visual
Computer, 30(5):467–478.

Norman, D. A. (1988). The psychology of everyday things. Basic books.

Norman, D. A. (1992). Turn signals are the facial expressions of automobiles. Basic
Books.

Norman, D. A. (1993). Things that make us smart: Defending human attributes in the
age of the machine. Basic Books.

Osgood, C. E. (1957). The measurement of meaning, volume 47. University of Illinois
Press.

Pan, M.-S., Yeh, L.-W., Chen, Y.-A., Lin, Y.-H., and Tseng, Y.-C. (2008). Design
and implementation of a wsn-based intelligent light control system. In Distributed
Computing Systems Workshops, 2008. ICDCS’08. 28th International Conference on,
pages 321–326. IEEE.

121



BIBLIOGRAPHY

Park, H., Burke, J., and Srivastava, M. B. (2007). Design and implementation of a
wireless sensor network for intelligent light control. In Proceedings of the 6th inter-
national conference on Information processing in sensor networks, pages 370–379.
ACM.

Rea, M. (1982). Calibration of subjective scaling responses. Lighting Research and
Technology, 14(3):121–129.

Reinhart, C. (2004). Lightswitch-2002: a model for manual and automated control of
electric lighting and blinds. Solar Energy, 77(1):15–28.

Revelle, W. (2014). psych: Procedures for Psychological, Psychometric, and Personal-
ity Research. Northwestern University, Evanston, Illinois. R package version 1.4.5.

Sandwell, D. T. (1987). Biharmonic spline interpolation of geos-3 and seasat altimeter
data. Geophysical research letters, 14(2):139–142.

Schubert, E. and Kim, J. (2005). Solid-state light sources getting smart. Science,
308(5726):1274–1278.

Shannon, C. E. (1948). Bell system tech. j. 27 (1948) 379; ce shannon. Bell System
Tech. J, 27:623.

Shepard, R. N. (1964). Attention and the metric structure of the stimulus space. Journal
of mathematical psychology, 1(1):54–87.

Singhvi, V., Krause, A., Guestrin, C., Garrett, Jr., J. H., and Matthews, H. S. (2005).
Intelligent light control using sensor networks. In Proc. Sensys’05, pages 218–229,
New York, NY, USA. ACM.

Team, R. C. et al. (2014). R: A language and environment for statistical computing.

Tiller, D. and Rea, M. (1990). Prospects for semantic differential scaling in lighting
research.

Tiller, D. K. (1990). Toward a deeper understanding of psychological aspects of lighting.
Journal of the illuminating Engineering Society, 19(2):59–65.

Tsao, J., Saunders, H., Creighton, J., Coltrin, M., and Simmons, J. (2010). Solid-state
lighting: an energy-economics perspective. Journal of Physics D: Applied Physics,
43:354001.

Ullmer, B. and Ishii, H. (2000). Emerging frameworks for tangible user interfaces. IBM
systems journal, 39(3.4):915–931.

Veitch, J. and Newsham, G. (2000). Preferred luminous conditions in open-plan of-
fices: Research and practice recommendations. Lighting Research and Technology,
32(4):199–212.

122



Bibliography

Veitch, J., Newsham, G., et al. (1996). Determinants of lighting quality ii: Research and
recommendations. In American Psychological Association 104th Annual Convention,
pages 1–55.

Villa, C. and Labayrade, R. (2013). Multi-objective optimisation of lighting installa-
tions taking into account user preferences – a pilot study. Lighting Research and
Technology, 45(2):176–196.

Vogels, I. (2008). Atmosphere metrics. In Probing Experience, pages 25–41. Springer.

Wang, H., Luo, M. R., Liu, P., Yang, Y., Zheng, Z., and Liu, X. (2013). A study of
atmosphere perception of dynamic coloured light. Lighting Research and Technology.

Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3):94–
104.

Wen, Y. and Agogino, A. (2011). Control of wireless-networked lighting in open-plan
offices. Lighting Research and Technology, 43(2):235.

Wen, Y., Granderson, J., and Agogino, A. (2006). Towards embedded wireless-
networked intelligent daylighting systems for commercial buildings. In Sensor Net-
works, Ubiquitous, and Trustworthy Computing, 2006. IEEE International Confer-
ence on, volume 1, pages 6–pp. IEEE.

Wyszecki, G., Stiles, V., and Kelly, K. L. (1968). Color science: Concepts and methods,
quantitative data and formulas. Physics Today, 21(6):83–84.

Zhao, N. (2010). Smart Solid-State Lighting Control. Master’s thesis, RWTH Aachen.

123


	Abstract
	List of Figures
	List of Tables
	Introduction
	What is Experiential Lighting?
	Motivation and Opportunity
	Motivating Example
	Subsets and Sensors: Duality in Lighting User-Interfaces
	Thesis Outline
	Hypotheses

	Related Work 
	Overview
	Higher-Order Perception of Lighting
	Pervasive Computing and Lighting Control
	Beyond Lighting: Incorporating Preference and Opinion in Design and Control

	A New Framework For Lighting Control
	Perception, Interaction, and Control: A Framework
	Invariants and Affordances as Mechanisms to Define Interaction
	Processing the Perceptual Structure of Multidimensional Stimuli
	Reality-based Interfaces
	Measurement and Mathematical Modeling

	Human Subjects Test I: A Control Prototype in a Virtual Model
	Introduction
	Experiment Setup
	Results
	Discussion
	Summary

	Human Subjects Test II: Physical Space
	Introduction
	Experimental Setup
	Results
	Discussion
	Summary

	Human Subjects Test III: Performance Testing
	Introduction
	Experimental Setup
	Results
	Discussion
	Limitations and Future Work
	Summary

	Conclusions
	Feasibility
	Justifiable Effort
	Relevance
	Outlook

	Pilot Study of Lighting Controller Preferences
	Purpose
	Method
	Results
	Discussion

	Description of Lighting Scales
	Survey Items in Human Subjects Test I

	MDS Modeling Error
	Background
	Discussion of Model Fitting Procedure 
	Fitted Results

	Fitted Splines for 2-Axis Controller
	Control Surfaces
	Control Surface Contour Plots

	Raw Datasets for Analysis
	IRB Approval Forms
	Bibliography

