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A B S T R A C T

Cues from the physical environment are constantly sensed and inter-
preted – unconsciously finding their way into our cognitive schemas
and influencing our perceptions and experiences. Manipulating them
has been shown to be powerful, affecting cognitive performance, mood
and even physiology. Inspired by this, we propose a workspace capa-
ble of dynamically transforming its ambiance.
This work presents the Digital Cubicle – a cubicle workspace which
uses lighting, video projection and sound to manipulate its physical
characteristics. A set of software tools is developed to create digital
compositions in such a workspace, basing the compositions on objec-
tive physical measures from existing popular workspaces. Through
a set of user studies, we evaluate how these elicit occupant percep-
tual, cognitive and physiological responses. Detailed in this work, are
physiological responses indicating stress development and restora-
tion, with interesting implications for health and wellbeing applica-
tions.
We develop a sensor data collection infrastructure to complement
the workspace’s controllable ambiance, with rich, real-time informa-
tion about the occupant context and state. Leveraging Reinforcement
Learning techniques, we present a framework to devise adaptive con-
trol agents. These utilise sensor data to recommend and transform
the workspace ambiance in a closed-loop fashion. A prototype intel-
ligent agent is implemented, optimising for occupants’ heart rate re-
covery, yet counterbalancing for occupants preferences and requests.
Through evaluative simulations, anchored with real occupant data,
we demonstrate and discuss the effectiveness of our proposed ap-
proach.
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1
I N T R O D U C T I O N

Our senses constantly perceive and interpret information about our
physical environment. Many times unconsciously, textures, colours,
shapes, sounds and lighting conditions find their way into our cogni-
tive schemas and serve as cues to retrieve skills, knowledge, feelings
and behaviours. This phenomenon has sparked researchers’ inter-
est particularly for its implications on cognitive performance, health
and wellbeing. Indeed, manipulating the physical environment was
demonstrated to be powerful in supporting memory, fostering cre-
ativity, enhancing sensitivity to details, and balancing cognitive load
[13]. It was additionally shown to manage important aspects of psy-
chological affect. Art and architecture are prominent such examples
for moulding mood, attitude, narratives, experiences via physical ma-
nipulation [53] [5] [46].

In a complex interplay, the human physiology also responds to its
physical environment. Light and temperature modulate pineal mela-
tonin production, which maintains the body’s circadian rhythm and
in turn affects its resilience to various disease [25]. Noise commonly
triggers excitation, which for prolonged subjection is highly associ-
ated with chronic-stress [37]. Nature experiences, on the other hand,
exhibit healing qualities, where even minimal exposure to plants was
demonstrated to facilitate stress regulation and physical recovery [27].

Concurrently, the progress towards truly ubiquitous computing has
made information readily accessible everywhere. Employees of the
21st century are increasingly interacting, engaging and completing
their assignments in dynamic locations [6]. Likewise, student instruc-
tion is provided not only in classrooms but also through mobile con-
texts, and even virtual worlds [70]. Advances in sensing technologies
and affect recognition have been recently introduced, improving re-
lated computer interactions even further. Tools to capture, process
and retrieve information are literally at the tips of one’s fingers. Too
very often, however, we find ourselves in pursuit not of such tools,
but of the appropriate atmosphere in which to use them.

If the physical environment is indeed so salient, why is it then that
our workspaces cannot dynamically change their physical characteris-
tics to support our activities? In an age that strides towards personal-
isation, why can’t individuals capture and access working ambiance,
the same way they do with information? Shouldn’t the way we expe-
rience the environment be an integral part of our work?

We envision an intelligent workspace that is capable of dynami-
cally transforming its ambiance to manipulate one’s experiences and
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18 introduction

perception. A workspace that, when asked, can replicate the tension
of a control room or the restorative qualities of a loved childhood
place. A workspace that can instantly trade the engaging diligence of
a library with the liberating sensation from a wilderness stroll. We
ask that it would be attentive, leveraging sensing and pattern recog-
nition technologies; continuously monitoring occupants’ physiology
and behaviour to infer context and affect. Through data we foresee
such workspace gaining intelligence, optimising our environment to
either enhance performance or support our health and wellbeing. A
workspace that suggests the atmosphere of a local coffee shop when
it is time to spark creativity, and the atmosphere of a study when it
is time to maintain focus. A workspace that integrates nature escapes
into our workday, balancing our schedule and physiological needs to
create a sustainable, healthier routine.

1.1 overview

Our work is structured as follows: We begin by summarising related
academic work, on which we either base our assumptions or from
which we draw inspiration in our designs (Chapter 2). Next, we de-
velop the Digital Cubicle – a prototype workspace that using digital
media, manipulates many of its physical characteristics. A set of tools
are developed to control the cubicle’s smart illumination, video pro-
jection and sound. We experiment utilising those to artificially mimic
some perceptual qualities of exiting, real, working environments, bas-
ing our composition on objective measurements of physical quanti-
ties. We additionally equip the Digital Cubicle with a modular real-
time data collection infrastructure. Integrating a set of commercial
sensors, we demonstrate the rich information set that can be obtained,
and the infrastructure’s flexibility (Chapter 3).

Through three user studies, we set out to assess our prototype’s
effects on perception, cognitive performance and physiology. In this
essay, we concentrate our review a user study, in which we examine
occupants’ physiological responses to various compositions rendered
in the Digital Cubicle. Measuring heart rate, respiration rate and heart
rate variability, we develop a signal processing approach and corre-
sponding metrics to assess stress development and restoration. These
responses, though individual, are found significantly different, dur-
ing both mentally demanding and break conditions. These findings
are presented and discussed in detail (Chapter 4).

Finally, we propose and evaluate a Reinforcement Learning ap-
proach to build intelligent control agents on top of the Digital Cu-
bicle. We implement a prototype agent which leverages collected sen-
sor data, autonomously rendering compositions in the Digital Cu-
bicle in such way. The agent optimises for occupant physiological
stress recovery, yet counterbalances for their preferences and requests.
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We present evaluative simulations, anchored with real occupant data,
suggesting significant possible improvements in occupants’ heart rate
recovery. We conclude by discussing the promise and peril of our pro-
posed approach, and outline steps for future investigation. (Chapter
5)

1.2 contributions

This work takes the first steps towards the vision outlined above. We
summarise our contributions as follows:

• To the best of our knowledge, we are the first to present a
workspace prototype capable of digitally mediating its ambiance.
We build our workspace as an extensible, multimodal platform,
supporting future research and exploration. A set of tools are
developed to compose lighting, video projection and sound,
experimenting with utilising objective physical measurements
from existing workspaces as the basis to compose artificial am-
biance. Likewise, a flexible sensor data collection infrastructure
is developed. We demonstrate its strength – fusing data streams
in real-time – using a set of different sensors from multiple ven-
dors.

• We test the hypothesis that such a workspace does have signif-
icant effects on occupant physiology through a user study. We
provide a framework to process occupant physiological signals
and quantify stress development and restoration in multiple
contexts. We show that physiological effects are highly personal
and partially correlate with occupants’ self-reported subjective
perception. Likewise, we present the workspace’s effects on oc-
cupants’ ability to direct attention, through both subjective and
objective measures.

• Finally, we present a framework to design a closed-loop, intelli-
gent control agents for our platform – bridging sensor data and
physical manipulation. We formulate the problem as a Markov
Decision Process and borrow tools from Reinforcement Learn-
ing literature to build an adaptive control scheme. We imple-
ment a working agent, learning from occupant interactions and
real-time heart rate recovery measures, to find an optimal bal-
ance between preference and physiological benefits. Through
simulations, we demonstrate the potential effectiveness of our
approach in a new practical domain.
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1.3 supporting work

For brevity, our user studies examining the perceptual and cognitive
effects of the Digital Cubicle are not fully described in the scope of
this essay; they will be appropriately detailed in future publications.
We briefly describe them here to provide the reader with relevant
context.

The first user study collected and analysed participants’ subjective
perception of different compositions rendered in the Digital Cubi-
cle. We compared those to differences we found in subjective percep-
tion collected from the real working environments on which we base
the artificial compositions. Covering broad perceptual categories, in-
cluding affordance, affect, spatial impressions, immersion, and pres-
ence, we established two main statistically significant perceptual dif-
ferences among the artificial compositions. We generalise those to be
the composition’s suitability to direct focus (affording conditions for
detailed work, not demanding or distracting, cohesive, etc.) and its
restorative qualities (as defined by Attention and Stress Restoration
Theories - See Section 2.2).

In the second user study, we followed the Encoding Specificity
Principle (See Section 2.1), and compared cognitive performance in a
memorisation task between an intervention and control groups. Both
groups were asked to memorise a set of unknown Hindi words in a
real working environment and recall them the next day. Whereas the
control group recalled the words in a regular cubicle office, the inter-
vention group recalled them in the Digital Cubicle. During recall, the
Digital Cubical was mimicking physical features from the original
environment in which the words were learned. On average, we ob-
served free recall improvements in the intervention group. However,
due to major individual differences and the relatively small sample
size of our study, we were unable to determine statistical significance.



2
R E L AT E D W O R K

2.1 affective and cognitive effects of the physical en-
vironment

Evidence, accumulated for over half a century, indicates the signifi-
cance of the physical environment in influencing one’s cognitive per-
formance and affective state. Research spans areas such as environ-
mental psychology, urban planning, educational instruction design,
cognitive functioning and mental health. A recent revision of the fa-
mous theoretical framework of cognitive load has even reconceptu-
alised the physical environment as one of its main three causal factors
[13]. It argues that the physical characteristics of the space inherently
interact with a learner’s task and state, to determine the occupancy
of the working memory. In turn, it affects not only current processing
and performance, but also construction and retrieval of long-term
cognitive schemas, governing the development of personality traits,
dispositions, knowledge and skills.

The Encoding Specificity Principle, articulated by memory researchers
Thomson and Tulving [83], is a famous example of such an interac-
tion. The principle suggests that memory recall is most effective when
the physical conditions at the time of encoding match the physical
conditions at the time of retrieval. Indeed, superior memory perfor-
mance has been consistently observed when the physical learning
and test environments are similar [78]. Analogous results have been
observed for motor skills development [51]. A well-known empirical
example is the home-field advantage, in which athletes usually have
better chances wining a game when it is played on the team’s own
practice field [74]. Paas et al. extended this idea, and additionally
exemplified that if the learning context cannot mimic the test one,
learning best take place in a variety of contexts. This way transfer to
new unfamiliar contexts is facilitated [63].

Researchers have also studied the effects of specific physical char-
acteristics on learning. Air quality and thermal conditions were ob-
served to affect individual’s learning performance; presumably through
oxygen-related physiological mechanisms [50]. McCoy and Evans iden-
tified several environmental characteristics that facilitate creative per-
formance – complexity of visual details, the use of natural materials,
and a limited use of cool colours [55]. Levels of noise, height of the
ceiling and lighting colours were shown to act differently on different
types of cognitive capabilities [58]. Zhu and colleagues, for example,
demonstrated that the colour blue enhances cognitive performance
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on creative tasks whereas red improves detail-oriented tasks perfor-
mance [56]. Mehta et al. found that moderate levels of noise (e.g. the
ambient sound of a coffee shop) facilitates abstract processing [57].

Particularly interesting is the interplay between the physical envi-
ronment and the learner’s affect. Nizam and Marnie [43] found partic-
ular colour lighting conditions in office buildings to affect occupants’
aspects such as calmness and comfort. Lighting intensity was interest-
ingly correlated with the intensity of induced emotions [95]. Hall dis-
cuses some affective influences of the space design [22], showing how
open-space designs produce social cues, which can be interpreted
as an infringement on personal space or feelings of crowdedness.
Emotions, mood and motivation additionally mediate the relation-
ship between the physical environment and cognitive performances
[42]. Thus, a consistent relationship was identified between the pre-
ferred learning environment of a learner and his or her achievements
in it [31] [93]. In a similar vein, aesthetically appealing multimedia
learning-materials were shown to promote positive emotions and re-
duce the perceived difficulty of the learning task [88]. Evans and
Stecker observed that noise can lead to diminished motivation, feel-
ings of helplessness, and consequently result in lower learning out-
comes [23].

2.2 the impact of nature experience on stress and at-
tention restoration

A large body of literature is dedicated to the role of nature in provid-
ing feelings of wellbeing and supporting physical health and mental
functioning [10]. Attention restoration theory (ART) [45] and Stress re-
duction theory (SRT) [87] are the two major explanatory theories for
the restorative qualities of nature. Both draw heavily on human evo-
lution. SRT posits a healing power to natural places – watersides and
visible horizons – in which our species had greater rates of survival
[84] [85]. These moderate stress and negative valence through auto-
nomic psychophysiological pathways, most noticeably in individuals
who have been stressed beforehand [86] [30]. Affective responses to
such natural settings are theorised to be preconscious, affecting even
individuals who think they have habituated themselves to nature de-
prived settings [85]. Ulrich et al. compared nature and urban settings,
monitoring subjects heart rate, skin conduction muscle tension and
systolic blood pressure. All measures have shown significantly higher
recovery speed viewing natural rather than urban scenes [87].

Kaplan and Kaplan [44] formulated ART, centring on nature’s power
to replenish mechanisms of attention. It claims that urban life taxes at-
tentional capacities more consistently than natural environments, as
the latter were more common in our species’ collective past. Tenessen
and Cimprich showed increased capacity to direct attention in stu-
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dents who had access to natural views through their dormitories win-
dows [80]. Berman et al. compared break walks in urban settings to an
arboretum [7]. They established participants increased positive affect
and attentional performance in the latter. A famous study by Taylor
et al. investigated children’s views from home in a housing complex
in Chicago [79]. On average, children with better access to natural
views, exhibited higher levels of concentration, impulse inhabitation
and delay of gratification; All shown to act as mediators for lower
levels of aggression and higher scholastic and career success.

The Kaplans postulated that there are five essential components
to an environment’s restorative effects. Accordingly, the Perceived
Restorativeness Scale (PRS) [29] – a frequently reported psychome-
tric scale assessing these components – was developed. Being away
is the feeling of an escape from the habitual activities and concerns
for daily life. Fascination is the environment’s capacity to effortlessly
capture one’s attention. The Coherence and Scope perceived in an en-
vironment, also affect its restorative qualities and include the possibil-
ity of feeling immersed in it. Finally, Compatibility describes the match
between an individual’s intentions, inclinations or purposes and the
environment.

We note some previous work indicating that the aforementioned
physiological effects diminish when the environment is digitally me-
diated. Kahn et al. compared heart rate recovery from low-level stress,
exposing participants to one of three conditions – a glass window,
an artificial plasma "window" (both affording similar natural views)
and a blank wall [41]. As expected, the glass window was signifi-
cantly more restorative than the blank wall and participants’ heart
rate tended to decrease more rapidly the more time spent looking at
it. This was not the case with the plasma window, which was found
no more restorative than the blank wall. Kort et al. suggested that the
effects of surrogate nature, mediated through technology, depend on
immersion [18]. They showed an interaction between screen size, self
reported presence and stress recovery measured through heart rate
and skin conductance.

2.3 ambient display of information

Ambiance or atmospherics design has been extensively researched
in both architecture and psychology. The idea of digitally manipulat-
ing it, however, was introduced by HCI (Human Computer Interface)
literature. Skog et al. discuss design principles for ambient informa-
tion visualisation in public spaces – attempting to strike a balance
between aesthetic appeal, usefulness and relevance [77]. Ishii et al.
envisioned that the physical architectural space would be a new form
of interface between humans and digital information [35]. In their
work "ambientRoom", they exemplified how information can be dis-
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played and processed in the background of attention [36]. Rhodes and
Maes also emphasised the need for an accessible yet non-intrusive dis-
play of information [69]. They introduced information agents, which
proactively retrieve and display information based on a person’s lo-
cal context, as it is inferred by a set of sensors. A similar approach,
was presented in "Ambient Agoras", where user interfaces and am-
bient displays were embedded in the architectural envelope to foster
information flow through an organisation (e.g. company news and
announcements) [67].

2.4 intelligent adaptive control agents

The area of ubiquitous computing envisions people surrounded by
intelligent intuitive interfaces embedded in various objects. This has
given rise to the idea of Ambient Intelligent (or Smart Environments),
as articulated by the IST Advisory group – "environments that are
capable of recognising and responding to the presence of different in-
dividuals in a seamless, unobtrusive and often invisible way" [20]. In
this technological paradigm, environments are equipped with com-
plementary technologies for intelligent control, namely sensing, rea-
soning and acting [16] [3]. Sensing technologies continuously gain
knowledge about the preferences, intentions, needs and habits of
their occupants. Reasoning technologies leverage the sensed data, de-
ciding how to act upon the environment to achieve an intended goal.
Finally, acting technologies carry out these decisions (e.g. activating
actuators or suggesting interfaces), only to provide feedback again to
the sensing technologies.

As occupant interactions, preferences, intentions and needs may
change over time, adapting is key for such control processes. Planning
and Machine Learning techniques have been utilised to recognise and
learn patterns in occupant behaviour. Mozer et al. introduced an intel-
ligent lighting system, based on Reinforcement Learning techniques,
to minimise energy consumption [59]. The system would learn from
penalties, whenever inhabitants revoked its decisions, to derive a con-
trol policy balancing energy and comfort. Project iDorm [33] demon-
strated learning from multiple sensing and acting technologies, using
an unsupervised fuzzy technique. It monitors seven sensor inputs in
a room (chair and bed pressure, light levels and temperature) to adap-
tively control ten actuators including lamps, window blinds, a heater
and the media playlist. Aztiria et al. survey and suggest a framework
to compare Machine Learning techniques in the context of Ambient
Intelligence [3].

Throughout our work, we additionally notice an interesting anal-
ogy between our adaptive control scheme and affective music playlist
generation. Music is intrinsically intertwined in our every day life,
setting an atmospheric tone which affects our experiences. It was
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demonstrated to evoke emotions and mood and to stimulate a va-
riety of physiological responses [39]. The large amount of digital
music, hence, opens up opportunities for music players with affec-
tive intelligence. Picard was the first to describe it in her seminal
work on affective computing [65]. Challengingly, music listening ex-
periences are highly personal, contextual and sequential, providing
fertile ground for academic exploration. Bonnin and Jonnach survey
algorithms and learning techniques applied for automated generation
of music playlists [9]. Of particular interest is the work of Oliver et
al. who incorporated contextual sensor information to enhance exer-
cise performance through playlist generation [61]. Likewise, Van der
Zwaag et al. demonstrated an affective music player, capable of di-
recting listeners’ Electrodermal Activity and Skin Temperature [38]
[99].





3
S Y S T E M D E S C R I P T I O N

To explore our vision, we set out to embody it in a working proto-
type. We approach this embodiment in a three-phase process. First,
we construct a workspace capable of manipulating many of its phys-
ical characteristics. Then, we build a sensor infrastructure, collecting
rich real-time data about the occupant. Finally, we explore designing
an intelligent control agent, bridging collected sensor data with the
workspace’s capabilities to manipulate its appearance.

When we embarked on our journey, designing an intelligent agent
was an abstract problem, open to much speculation. We therefore
decided to regard the first two phases as building a platform – flex-
ible enough to add or remove as necessary either sensing or appear-
ance manipulation components. Such a platform will allow iterative
experimentation, anchoring the agent’s design with invaluable real
occupant data. The design and implementation of this platform is
described throughout this chapter. We call our platform the Digital
Cubicle (DC). Chapter 5 will describe the implementation of the intel-
ligent control agent.

This chapter is structured as follows: Section 3.1 outlines the de-
sign considerations, which guide our prototype implementation. In
Section 3.2 we describe how we recorded real working environments
to serve both as content to display in the Digital Cubicle and as ref-
erence for evaluation. Sections 3.3 and 3.4 detail the technical imple-
mentation of our platform.

3.1 design considerations

In this section we describe the design considerations, which guided
the Digital Cubicle implementation. These were formed mainly by
our aforementioned vision, but also by occupant feedback we ob-
tained through multiple short design iterations. They are of course
only one possible interpretation of our vision. We describe them here,
however, to shed light on tradeoffs and choices we had made in the
process of building our prototype.

3.1.1 Digital control

We require that all elements, capable of manipulating the workspace’s
physical characteristics, be fully controlled digitally. Our prototype,
therefore, primarily uses digital media (images, videos and sound),
which can be fully controlled with software, to manipulate appear-
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ance. Other elements, which include mechanical, haptic or even olfac-
tory manipulation [62] [81] [2], are slowly becoming available. These
are an extensive area of research in the field of HCI (Human Com-
puter Interfaces). We hope to include such elements in future itera-
tions of our prototype.

The requirement, that manipulation is controlled digitally, is key
to enable the development of future smart applications on top of our
design. It is crucial to establish a closed-feedback loop, i.e. allowing
an intelligent agent to carry out its recommendations and gauge them
to adapt future recommendations accordingly.

3.1.2 Real-time response

We envision the smart applications built on top of our platform to be
data and computation driven. To predict the optimal configuration
of the Digital Cubicle, they must rely on current and accurate data
from the cubicle’s occupant. This data should reflect aspects of the
occupant state, context and even intentions – all of which change in
real time. This requirement is relevant for appearance manipulation
but also, and primarily, for data collection. The Digital Cubicle needs
to handle multiple streams of information, from various sensors, and
process them in real time. It must also integrate them into a single
computation context, allowing data fusion from multiple streams to
make recommendations and predictions.

3.1.3 Extensibility

As mentioned, we view the Digital Cubicle as a platform for research
and exploration. Our prototype takes the first steps towards an im-
plementation of digitally mediated ambiance in the workspace. As
such it should provide opportunity to manipulate as many physical
characteristics as possible in the room. We attempt to create a com-
prehensive set of these, including different stimulus modalities and
employing multiple techniques for ambient display. We put particular
emphasis on the platform’s extensibility. Our design lays the ground-
work for combining with software multiple elements that can result
in physical changes in the room. In fact, we many times favoured
covering a breadth of possible elements, rather than refining partic-
ular ones. As a result many of the elements we pick can be further
perfected and improved. We note possible immediate improvements,
where relevant, throughout the following sections.

We take the same approach when designing our infrastructure for
real-time sensor data collection. We focus on building an engine that
many different sensors can be plugged into. We demonstrate its ro-
bustness by integrating a sample set of sensors from different vendors
and for different modalities.
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3.1.4 Applicability

We build the Digital Cubicle with how economically viable, scalable
and easily deployed it would be, in mind. As a result we limit our de-
sign to include relatively accessible mid-range commercial elements.
This characterises the video projection and display materials, audio
speakers and physical construction. The lighting fixtures in our pro-
totype are less accessible at this point, but we expect then to be more
affordable in the near future. We focus on designing a single em-
ployee cubicle, which is widespread in contemporary office spaces
and can be integrated into existing built environments. We draw in-
spiration from the original Herman Miller cubicle design [89], which
is configured from modular elements depending on the occupant’s
needs.

3.1.5 Composition

Assume one could completely manipulate the physical interior of
a workspace, how would they stage it? Psychological research into
physical manipulation of workspaces has primarily been concerned
with isolating a single environmental feature and measuring its ef-
fects. Experience and perception, however, are higher psychological
constructs, shaped via multiple features, such as colours, textures,
movement, artefacts, etc. Architects in the built environment and
Stage designers in theatres have long adopted a more holistic ap-
proach to transform and define spaces. They name the art of putting
together a self-contained harmonious environment, conveying desig-
nated ambiance, composition.

Our Digital Cubicle is a blank canvas for composition. It challeng-
ingly provides countless opportunities for creative combination of
sounds, images colours, etc. It even allows those to evolve in time and
space. To scope our work, we turn to existing working environments,
already designed to foster different experiences. Instead of compos-
ing environments on our own, we experiment with recording these
environments and artificially recreating them in the Digital Cubicle.
This novel experimentation is also valuable as an evaluative tool. It
allows us to compare the perception and experiences of the Digital
Cubicle with real working environments experiences. In the follow-
ing section (3.2), we describe how we visited and recorded some real
working environments. We used these as an evaluative tool in the first
user study mentioned in the introduction (See 1.1).

From hereafter, we distinguish between two types of users of the
Digital Cubicle: composers and occupants. The former use the cu-
bicle’s controllable elements as a canvas, creating compositions to
induce experiences and perception. The latter use the cubicle as a
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workspace, choosing between presets and adjusting a minimal set of
parameters for convenience.

3.2 capturing ambiance of real working environments

As mentioned in the previous section, we turned to real working en-
vironments to facilitate the composition of different working experi-
ences in the Digital Cubicle. We visited and recorded about 10 work-
ing spaces around the MIT campus. The selected spaces range from
popular spaces for focusing to inspiring and thought evoking open
art displays. We intentionally included a mixture of nature and out-
door settings as well as urban and indoor ones. The recordings were
used as content from which we rendered an artificial composition in
the Digital cubicle, mimicking some of the physical characteristics of
the real environment. The process of mapping the recordings to the
Digital Cubicle was done manually, leveraging a set of control tools
we specifically developed for this purpose. We intentionally kept it,
however, simple in nature to allow automation of the process in the
future.

We erred on the side of caution to explicitly obtain consent from
space owners for each video recording. A sign was placed near the
recording setup notifying passer-bys that video is recorded, and al-
lowing them to request that the videos are erased. Figure 1 displays
an image of our recording setup in action, recording the inspiring
indoor gardens at the Isabella Stewart Gardner museum. Note the
simplicity and compactness of our setup.

3.2.1 Describing lighting conditions

To express lighting conditions in real working environments we em-
ployed a simple model with three descriptors: light sources configura-
tion, colour temperature and overall luminosity. This model is far, of
course, from fully describing an environment’s lighting composition.
It neglects for example movement, contrast, reflections and shadow-
ing, all of which arguably are equally important to induce experiences
and affect perception. We choose, however, this simplified subset in
light of the limitations of the artificial lighting we can create in the
room.

To measure light sources configuration, we photograph the shad-
owing pattern created by a simple vertical rod. The number of shad-
ows, their length, and how diffused they are, indicate the number of
light sources in the environment, their directionality and brightness.
We use a colour reference card (ColorChecker) to measure colour tem-
perature, and a LuxMeter to measure the luminosity on the working
surface in the environment. Figure 2 displays these measurement de-
vices.
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Figure 1: The recording setup, including a camera and a tetrahedral micro-
phone, in the Isabella Stewart Gardner museum

3.2.2 Video recording

We used a Cannon 55D camera to record videos from real working
environments. We set the camera in a stationary angle looking hori-
zontally at the environment from a viewer’s height. The videos are
recorded in a 1920 X 1080 resolution and a 60 frame per seconds rate.
According to the sensor specifications, the camera’s focal length and
zoom are set so that recorded objects on the focal plane will main-
tain their realistic size, when viewed on the projection display from
the working desk. The resulting focal length is relatively short (about
1m), naturally blurring distant objects and supporting an illusion that
the objects are in the visual periphery. Each recorded video is about
30 minutes long. For future recordings (pending on budget), we rec-
ommend to consider 360

o video recording technologies. These will
allow composers higher flexibility, setting viewer perspective retro-
spectively through video processing.
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Figure 2: Top view of the measurement tools used to describe the lighting
conditions. From the left: Colour reference card, rod for shadowing
pattern and a LuxMeter.

3.2.3 Audio recording

We used a tetrahedral microphone to record audio from the real work-
ing environments. The microphone is placed next to the video record-
ing camera in identical orientation. The microphone was developed
by Mayton, and previously used as part of the Tidmarsh Living Ob-
servatory Restoration Project [54]. It uses four cardioid capsules in
a tetrahedron configuration, calibrated all to have equal gain. Using
the microphone we record four audio signals from the microphone
capsules in a format called A-format. With a mathematical matrix op-
eration we convert the recordings to B-format, which also contain four
audio channels. Three channels correspond to the signal that would
have been picked up by figure eight capsules oriented along the X,
Y and Z axes respectively. The fourth channel contains the signal
that would have been picked up by an omnidirectional microphone,
recording a perfect three-dimensional sphere. We use Tetraproc [1] for
the aforementioned format conversion. Once the signal is in B-format,
It can be further processed, to artificially mimic the spatial qualities
of the original sound.

3.3 physical characteristics manipulation

In the first phase of our implementation, we set out to design and
build a workspace that can manipulate as many of its physical charac-
teristics as possible. We do so by integrating three elements: lighting,
video projection and sound. Images of the final result are presented
in Figure 3. In the following subsections, we describe each element in
detail – the physical setup we developed and a set of software tools
tailored to allow composers to control each of the elements. We then
bundle all these tools to a single service we call Scene Control Ser-
vice. The service provides occupants (or smart agents on their behalf)
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Figure 3: Manipulating physical characteristics in the Digital Cubicle.
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Figure 4: Physical layout of the Digital Cubicle.

primitives to choose from a set of presets and adjust some of their
parameters. The control tools and the Scene Control Service all run on
a single iMac computer connected to a local area network and located
at the back of the video projection display.

3.3.1 Lighting

The first controllable visual manipulation we develop is lighting. We
base its physical design on the work of Zhao et al. [98], who built an
office room with highly controllable lighting fixtures. The office room
is a windowless rectangular room (4.2m X 2.8m with ceiling height
of 2.6m), with 20 individually controlled luminaire groups installed
in the ceiling. Six wall-washing fixtures (Colour Kinetics Skyribbon Wall
Washing Powercore) are installed along the long edges of the room and
light the walls to the occupant’s left and right. Two ceiling-recessed
fixtures (Colour Kinetics Skyribbon Linear Direct Powercore) are installed
in the centre, directly on top of the occupant’s workstation. The phys-
ical layout of the room is sketched in Figure 4.

A central server, running Color Kinetics Data Enabler Pro, controls all
fixtures. It processes and executes control commands in an OSC for-
mat, received via its local network. Each luminaire group exports 5

channels – Red, Green, Blue, Warm White (2700K) and Cold White
(4000K). The wall-washer groups can be set with an 8-bit resolu-
tion to any value between 0 and 1451, 2315 or 2867 lumens for the
RGB, Warm White and Cold White channels, respectively. The celling-
recessed groups can be similarly set with an 8-bit resolution between
0 and 1344, 2176 or 2888 lumens for the RGB, Warm White and Cold
White channels, respectively.

Though extremely flexible, the aforementioned lighting configura-
tion raises a challenging control problem. There are 100 parameters
that can be varied (20 groups with 5 channels each), with 255 setting
options for each parameter. Every parameter configuration results in
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distinguishable lighting changes in the room, and from a human-
centric perspective, sets a completely different tone for the room’s
atmosphere. Zhao et al. [98] discuss this problem in further detail,
and propose a control scheme, which maps intended working con-
text into parameter configurations. Their scheme is based on human
perceptual rating of a set of compositions, whose parameters are then
cleverly extrapolated to create contextual control axes.

Imitating the lighting conditions of existing workspaces requires
a different mapping approach. Such mapping will have to translate
lighting conditions we observe in the space into a parameter con-
figuration for the room. We refer back to the descriptors we used
to measure the lighting conditions in the real working environments,
and design our mapping accordingly. Figure 5 illustrates the top-level
software design of the implementation of our scheme. It translates a
user interface, which uses light sources, colour temperature and lu-
minosity terminology, into RGB parameter configurations for each of
the fixtures in the room.

Figure 5: Top-level software design of the lighting control

1. Fixtures
Fixtures are convenience software objects that represent each
of the physical fixtures in the room. They introduce additional
colour representations, other than RGB, that one can use to set
the fixture lighting with. Hue Saturation Value (HSV) is a cylin-
drical coordinate representation, which spans the same colour
space as RGB. It is a necessary representation for some colour
blending models, and particularly convenient in our context to
aggregate lightness values from multiple light sources. Corre-
lated Colour Temperature (CCT) is another colour representa-
tion, which only represents a subset of the colour space – black
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body radiation. It is useful to describe natural light, indicating
the whiteness of the light source. It ranges from low tempera-
tures for warm white light to high temperatures for cold white
light. Python’s colorsys library is used to implement RGB to HSV
conversions and vice versa. We implement simple lookup table
conversion functionality for CCT, based on factory calibration
data for our fixtures.

2. Virtual Light Sources
A "virtual light source" is the basic primitive of our lighting
mapping-scheme. It can be thought of as an illuminating point
in a two dimensional representation of the room (Width X Length).
It has a composer-set lightness, which decays with distance like
a Gaussian function. The Gaussian’s standard deviation is an
additional composer-set parameter. Our user interface for light-
ing control allows adding as many virtual light sources as neces-
sary to the two dimensional representation, and dragging them
freely around. Figure 6 illustrates the controller’s user interface
and its virtual light sources. We built the user interface as a web
page, accessible via the room’s local area network.

The virtual light sources are mapped to HSV parameters for
each of the room’s fixtures. To map a single virtual light source,
we calculate its Euclidian distance to each of the fixtures in the
two dimensional representation of the room. According to the
distances, we compute the source’s lightness contributions to
each of the fixtures (Value in an HSV representation), decay-
ing the source’s lightness like a Gaussian. By aggregating con-
tributions from all virtual light sources, we determine the to-
tal lightness value for a particular fixture. Colour temperature
is set globally to all virtual light sources. Our implementation
however can easily be extended to support colour blending of
virtual light sources with different colour temperatures.

This controlling scheme allows us to imitate some of the lighting
characteristics of the real working environments we observed.
To set the artificial lighting, we arrange a source configuration
that conforms as best as we can to the shadowing pattern recorded
in the real working environment. Moving the sources around,
we can set the shadowing directionality and each shadow’s length.
The room’s colour temperature is set according to the colour we
have recorded. We additionally measure the luminosity levels
on the table and adjust the light sources’ lightness, to achieve
luminosity levels similar to the ones measured in the real envi-
ronment.

3. Lighting Fader The Lighting Fader is responsible for smoothly
transitioning between lighting compositions. Once a lighting
composition is artificially created, its parameter configuration
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Figure 6: User interface of the lighting mapping controller. The yellow cir-
cles are virtual light sources within the room’s two dimensional
representation. Lightness, colour temperature and decay parame-
ters for each are set on the right.

can be saved for later use. Commonly it is matched with au-
dio and video recordings from the same real environment. Ei-
ther the occupant or a smart agent can request loading existing
lighting compositions and rendering them in the room. When
a composition is loaded, the Lighting Fader generates a set of
intermediate configurations to smoothly transition between the
current lighting state and the loaded composition. It logarithmi-
cally extrapolates between the current and destination lightness
and colour temperature of each fixture in the room. The extrap-
olation curve is then finely sampled to result in intermediate
configuration steps, that match the logarithmic visual percep-
tion of the human eye (Weber–Fechner law [32]).

3.3.2 Video projection

The second visual manipulation we developed uses video projection.
Unlike lighting, video projection allows content display and move-
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Figure 7: The display with and without active projection

ment – two powerful tools widely used to generate experiences and
alter perception in artistic contexts. We design a video display using
183cm by 76cm light defusing acrylic material. Without projection,
the display is white and opaque, mimicking the aesthetics of a mod-
ern cubicle wall-divider. The display is placed in front of a working
desk and is levelled to the height of a sitting person. We carpentered a
wooden base to hold the display frameless, and give it the appearance
of an integral part of the working desk. Figure 7 shows on the bottom
the display when no content is projected onto it. The top images show
the display with active projection.

This design is the result of numerous iterations, with potential oc-
cupants and composers, in which we tested a wide range of possible
displays. The current design attempts to reconcile the main feedback
points our users surfaced. For example, the display was intentionally
cropped not to follow familiar display ratios. We identified that famil-
iar ratios (e.g. 16:9 or 4:3), automatically reduced occupant immersion
and thus result in lower effectiveness changing occupant perception.
For similar reasons, we designed the display to be frameless and float
in mid air.

We also intentionally placed the display in the front, covering most
of the occupant’s peripheral vision. Horizontal and vertical viewing
angles are 100

o and 53
o, respectively. Side displays were found less

effective. Our experimentation also included back displays with a mir-
ror placed in the front, in which the occupants could see themselves
with the display as a backdrop. We notice a delicate tradeoff between
immersion and ambiance in the display design. On the one hand, the
display should be immersive enough to affect occupant’s experiences
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and perception. On the other, and unlike virtual reality systems, occu-
pants are expected to engage in productive work in its presence. The
display, hence, must maintain a balance, remaining ambient but still
in the outskirts of the occupant’s attention.

We project onto the display from behind, using a high luminous
projector (NP-PA571W 5700 Lumen) with short throw lens (NENP30ZL).
Rear projection technology was selected to allow enhanced image
contrast and brightness in the presence of ambient light. This is of
particular importance in our case, as ambient light is one of the phys-
ical features we manipulate. Throughout our iterations, in fact, we
note that the combination of rear projection and ambient light can be
leveraged to effectively create an artificial impression of depth. Plac-
ing light sources with matching colours behind the display creates
an illusion of extending it and changes one’s perception of how deep
the displayed image is. Rear projection also assures there are no occlu-
sions between the projector and the display. This prevents shadowing
from tainting the desired experience.

We would like to finally mention two possible areas of improve-
ment for our current design. These we believe can upgrade the setup’s
immersive experience and applicability. First, the projector’s noise
should be attenuated. The projector’s cooling noise has frequently
been complained to be a source of disturbance, interfering with oc-
cupants’ experiences. Second, the distance between the projector and
the display should be shortened to make the setup more applicable.
This can be achieved by a combination of using an ultra short throw
projector and modifying the display material. Using an ultra short
throw projector decreases the projection distance to about 40cm. The
acute throw angle, however, changes the angular visible rage, such
that the optimal viewing angle is above the display rather than in
front of it, substantially reducing the image quality. This can be cor-
rected by manufacturing a directed acrylic material that can refract
the light beam, compensating for the loss in brightness. The price
point for this alternative however will unfortunately be significantly
higher.

To control video projection we program a video composition con-
troller using the data flow framework Max MSP 7. An image of the
controller interface is presented in Figure 8. The controller is responsi-
ble for two main tasks. First, it handles various image transformations
needed to accurately aim and calibrate the projected images onto a
display. Second, it allows applying video processing filters to the pro-
jected videos and change their parameters in real time. The former is
important to enable flexible experimentation with display configura-
tions in our Digital Cubicles; Similar to the ones described above. The
latter is important to provide both occupants and composers with the
capability to fine tune the visual stimuli.
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Figure 8: Max Msp Controller developed for video composition

The controller creates an OpenGL context for display, in which it
renders loaded video frames. We use OpenGL so that we can take
advantage of hardware-accelerated processing and display features,
keeping the controller as computationally efficient as possible. In fact,
in previous iterations we built an OpenCV video controller, based on
CPU processing. This attempt was unsuccessful, and could not com-
putationally support the video processing performance capabilities
we require. The controller, is capable of loading any type of video
files onto the OpenGL context using objects from the jit.gl library.

After selecting the files to load, the controller allows a set of image
transformations to aim and calibrate the projected video onto a dis-
play. These include, cropping the video and the display window to a
configurable size (e.g. 183cm X 76cm in our final setting), changing
image position and perspective and scaling its resolution. We again
use jit.gl objects to implement these transformations and program a
simple sliders interface to control them.

Finally our controller allows application of image processing fil-
ters to tweak the images in real time. We implement this by chaining
jit.gl.slab objects, which provide a streamlined interface to preform
general-propose GPU-based grid evaluations. Those manage compil-
ing binding and submitting GPU-shaders to the controller’s OpenGL
context. The GPU-shaders are computer programs that run on graph-
ics hardware with high degree of flexibility. They efficiently render
visual effects on top of the original video frames. Our controller al-
lows programming any type of image processing using GPU-shaders
and exporting its parameters to the user interface.

The use of GPU-shaders allows composers and occupants to con-
trol the visual stimuli in real time. This is of particular importance in
cases where, for instance, the visual stimulus is too demanding and
the occupant wishes to blur, attenuate or distort it in different ways.
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Other GPU-shaders can be programmed to moderate movement, alter
contrast, modify warmth, and even artificially create various image
qualities (like the popular Instagram filter). Though programming
them takes some effort, they provide substantial flexibility in video
projection composition. In our specific implementation we demon-
strate the development of two such GPU-shaders – controlling in real
time blur and opacity.

3.3.3 Sound

To play audio in the Digital Cubicle we use a quadrophonic speaker
configuration. The speakers are positioned in a square, equally dis-
tant from the occupant who sits in the centre, and are levelled to ear
height. In this configuration, we cannot reproduce the height informa-
tion from the original recorded environments. Other configurations,
however, (e.g. a cube configuration of eight speakers) can easily be
introduced to preserve the sound’s height quality. In the scope of this
work, unlike the video display, we did not experiment with additional
speaker configurations.

The speakers are controlled with a MOTU 4Pre audio interface con-
nected to the main system computer. In our current prototype they
are placed on simple speaker stands in the workspace. For improved
aesthetics, they can be easily integrated into the cubicle furniture, as
exemplified by the Steelcase’s SonetQt and QtPro sound products
[34].

To control the played audio, we program an audio configuration
controller using Max MSP 7. An image of the controller interface is
presented in Figure 9. This controller’s main purpose is to support
different speaker configurations in the Digital Cubicle, while preserv-
ing the spatial sound qualities of the recorded from the real working
environment.

We use ambisonics [72] to implement this control capability. As
mentioned, we record the original sound using a tetrahedral micro-
phone and process the recorded signal to a representation called B-
format. Unlike multichannel surround sound formats, this is a speaker-
free representation of a sound field. We can decode it using a first-
order ambisonics decoder to a composer-defined speaker array. The
speaker configuration is provided using a simple graphical interface,
determining the orientation, distance and height of each speaker from
the listener. The result, played by the speakers, is a first order approxi-
mation of the sound field at the listener position. In practice, a sound,
for example, of a page flipping in the library, will appear to originate
from the same direction and proximity in the Digital Cubicle.
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Figure 9: Max Msp Controller developed for audio speaker configuration

3.3.4 Occupant interface

To provide occupants with an easy control over the Digital Cubi-
cle, we bundled the aforementioned capabilities into a single ser-
vice called Scene Control Service. The service saves lighting, video and
sound compositions into what we hereafter call "scenes". We imple-
ment a simple web-based interface allowing occupants to select be-
tween previously set scenes, changing the atmosphere in the Digi-
tal Cubicle. Furthermore, we add three simple sliders enabling occu-
pants to modify the scene volume, to reduce the projection brightness
(opacity) and to blur the projected video to their liking.

The Scene Control Service additionally implements smooth transi-
tioning between the various scenes. Lighting is transitioned by the
Lighting Fader, previously described. Sound is cross-faded between
the corresponding scenes’ audio. Video projection is transitioned by
logarithmically reducing the current scene brightness to zero, switch-
ing scenes and then logarithmically increasing brightness for the new
one. The resulting outcome is a smooth and pleasant scene transition,
which takes 8 seconds.

3.4 real-time sensor data collection

The second main part of our platform is a sensor data collection in-
frastructure. Figure 10 illustrates its top-level design. The infrastruc-
ture is a flexible code library which lays out the ground work to in-
tegrate a wide range of sensors into a single service we call Sensor
Collection Service. When the service is executing, it initiates connec-
tions with a configurable list of sensors and begins harvesting data
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Figure 10: Top-level design of the Sensor Collection Service

samples from all of them. External applications can register to the ser-
vice, obtaining a processed version of the data samples from specific
or all data streams. The sensor collection service executes as a single
process on the Digital Cubicle central iMac computer, located at the
back of the projection screen.

We built the infrastrucure as an asynchronous code library imple-
mented in Python. The library interfaces with a variety of sensors
and can concurrently handle multiple real-time sensor data streams.
We implement it based on the Twisted library [24], following a Reac-
tor design pattern [73] (marked in red in the diagram). This design
pattern implements an event driven scheme, in which multiple data
streams are multiplexed into a single computation context. Whenever
sufficient data is available on any of the streams, an appropriate event
handler is called to process it. Processing can be done in layers to im-
prove concurrency, breaking it to smaller sequential event handlers,
which trigger each other also through events. A load balancing mech-
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anism prevents starvation, assuring that all streams receive adequate
processing time.

We select this design pattern to allow processing of different real-
time sensor data streams in the same context. This property is partic-
ularly important to allow fusing information from different streams
to make predictions or inference. For example, suppose we need to
infer one’s concentration levels using their pupil orientation, and can
improve our prediction based on their arousal levels from skin con-
ductance. Our programming scheme allows us to access both infor-
mation streams from the same context, and as soon as they become
available, avoiding cumbersome intermediate mediation through files
or inter-process communication. It also allows us to make real time
computation involving the different streams to design and assess rel-
atively complex classification features.

With an underlying event-driven design, we implemented software
support for three types of sensors: Empatica E4 wristband [26], Zephyr
Bioharness 3 [96] and a simple Logitech web camera. Figure 11 dis-
plays a photograph of an occupant, instrumented with these sensors
in the Digital Cubicle. The camera, in this case, is used to extract
facial feature information from the occupant, utilising the Intraface
[94] code library. For each of the sensors we implemented a stack
of handlers, which process their data online and parse their unique
protocol (marked in green in the diagram). Once the data are pro-
cessed it is queued, in a convenient tuple format, at the application
layer. High-level applications can register to our service, specifying
the information streams they are interested in. From then on, parsed
stream data that was queued in the application layer is passed on to
them whenever it is available. The high-level applications can use the
data freely, e.g. to make predictions about the occupant’s concentra-
tion. The smart agent we build in Chapter 5 is an example of such
high-level application.

Zephyr’s Bioharness 3
Zephyr Bioharness 3 is a physiological monitoring module. It is at-
tached to a strap that is wrapped around the occupant’s chest. We pri-
marily use it to collect occupants’ Electrocardiography (ECG) and res-
piration signals. It is equipped with on-board algorithms processing
the raw signals and extracting measures, such as heart rate, respira-
tion rate and heart rate variability (HRV). A 3-axis IMU in the module
additionally collect acceleration signals and estimates the wearer’s
posture and activity.

The module has a Bluetooth interface through which it can con-
nect to a Zephyr proprietary software server (OmniSense 4), logging
data and visualising it. Since the server does not support the real-
time capabilities we require, we contacted the company who kindly
released the device raw Bluetooth protocol specifications. Based on
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Figure 11: Occupant wearing the set of supported sensors in the Digital Cu-
bicle

these we build our event-driven handler stack, communicating with
the module from our central server and parsing incoming informa-
tion in real-time.

The first protocol layer aggregates bytes received over Bluetooth
into frames, in a protocol similar to HDLC. It verifies their integrity
and implements a simple continuous handshake protocol to main-
taining the link active. The second layer is responsible for parsing
the various messages encoded into the frames. Internally, the device
allows registering to each of its sensors separately. That is, we can re-
quest to listen separately to the ECG signal, the respiration signal, the
acceleration signal, etc. An additional Summary stream is also avail-
able, it contains processed data signals, computed on-board, such as
heart and respiration rates. The final layer transforms incoming data
to a convenient object-based format, e.g. handling sample compres-
sion in some of the streams and synchronising timestamps.

Empatica E4 Wristband
The Empatica E4 wristband is also a physiological monitoring mod-
ule. It senses physiological signals from the wearer’s wrist. It is equipped
with two electrodes measuring Electro Dermal Activity (EDA), i.e.
variations in the electrical characteristics of the skin. These are related
to activation of the sympathetic nervous system and are an indication
of changes in physiological or psychological arousal [26]. The module
also contains a 3-axis accelerometer, an infrared Thermopile measur-
ing skin temperature, and a Photoplethysmography sensor, measur-
ing blood volume pulse (BVP) and extracting heart rate and heart rate
variability.

The module connects wirelessly via Bluetooth to an Empatica BLE
server, which parses the transmitted data. Our Sensor Collection in-
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Figure 12: Facial feature points, head and pupil orientation extracted by the
Intraface code library.

frastructure connects to the server and pulls in real-time incoming
data in a text format. A set of handlers parses the text messages in a
similar manner to the one described above. As a result high-level ap-
plications can access in a convenient tuple format streams of samples
from all of the sensors mentioned above.

Intraface
We positioned a Logitech web camera on the Digital Cubicle desk, to
capture videos of the occupants as they work. Videos are recorded
in real-time in a 12fps frame rate. The frames are then processed us-
ing the Intraface code library for facial image analysis. The library
extracts four types of features from the images (illustrated in Figure
12):

1. Coordinates of 49 facial feature points, describing the eyebrows,
eyes, nose and lips.

2. A vector estimating the 3D head orientation of the occupant.

3. Vectors estimating the 3D viewing orientation for each of the
occupant’s pupils.

4. Intensity predictions of 6 emotions the occupant expresses (neu-
tral, angry, disgust, happy, sad and surprised).

Since the Inraface library is written in C++, we implemented the
facial feature extraction process in a separate process. The process ex-
ecutes on our main server, and communicates its results to the Sensor
Collection Service via an internal connection. Collected data are passed
on to the high-level application, just like any other sensor data.
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P H Y S I O L O G I C A L E F F E C T S

In this chapter we set out to examine occupants’ physiological re-
sponses to a set of different scenes artificially rendered in the Digital
Cubicle. We focus our examination on physiological responses associ-
ated with the autonomic nervous system, which indicate arousal and
relaxation. These, if found, can be leveraged by future applications to
target chronic stress and related physical and mental illnesses.

We rely on the Digital Cubicle’s real-time sensor data collection
infrastructure to conduct a user study, and collect a rich dataset of
physiological responses. The first section of this chapter delineates
the study’s protocol, how we selected its scenes, and the dataset we
collected. In the second section, we develop a method to process the
physiological signals, and define a set of metrics to quantify stress de-
velopment and restoration. Based on those, we present the study’s
results and discuss our observations in Section 4.3 . We conclude
by summarising our learnings and highlighting relevant observations
that will guide the development of an intelligent control agent in the
next chapter.

4.1 experimental design

4.1.1 Study Protocol

Figure 13: Schematic illustration of the study’s protocol. Each participant
was invited to a single sitting consisting of six identical sessions.
Sessions were structured as illustrated above.

A set of 9 participants (4 female) were recruited for a study, follow-
ing IRB protocol #1601357773. All 9 participants were healthy adults
between the ages of 19 and 38 with no history of cardiovascular dis-
ease or medication for hypertension. The participants were all right
handed and fluent in English.

47
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The study participants were invited to an approximately one hour
sitting in the Digital Cubicle. The sitting was divided into six identi-
cally structured sequential sessions. In each session, the participants
were exposed to a different scene rendered in the cubicle. The order
of the rendered scenes was randomised. In one of the six scenes no
content was rendered, i.e. the office divider was blank, no sound was
played, and lighting was set to common office settings. We name this
scene "Neutral" and regard it our control condition. The remaining
five rendered scenes were selected as described in Subsection 4.1.2.

Within each session participants were asked to perform a sequence
of cognitive tasks sitting in front of a laptop computer. Throughout
the session their physiological signals were recorded using a set of
wireless sensors, communicating in real time with the Digital Cubi-
cle’s backend. We designed the sessions as illustrated in Figure 13.
To disconnect the session from any previous ones, participants were
first exposed to 30 seconds of the "Neutral" scene. Immediately after,
the room transitioned into the scene whose effects are tested. Partic-
ipants were given a waiting period of a full minute in the rendered
scene before they were presented with any tasks. This waiting period
was designed to allow acclimation and avoid possible novelty effects,
originating from the initial exposure, which may bias the physiologi-
cal signals during the tasks.

The two main segments of the session were a stress-eliciting task,
followed by a restorative break. We used a graduate-level ETS GRE
[21] reading comprehension assignment as the stress-eliciting task.
We programmed the assignment into a website, and it was presented
to the user on a laptop computer. Each assignment contained 2 to 4

paragraphs of an academic text and three questions relating to it. Par-
ticipants were given three minutes to select a correct answer to each
question, after which their answers were automatically submitted and
the test was cleared from the screen. A three minutes restorative break
followed the test. During the break, participants were requested to re-
main seated, but were free to relax and explore the surroundings as
they please.

To increase participants’ stress during the test, we reduced the av-
erage time allotted per question to a minute, rather than 1.5 minutes
allotted in the original design of the test. Additionally, participants
were informed that their test scores will be compared to the test scores
of others and that their performance is of critical importance to the
success of the study. Finally, a timer and a progress bar at the top of
the website indicated the amount of time remaining for the test.

Once the break was over, the website assigned the participant with
an additional task – the Necker Cube Pattern Control Test [14] [15].
This test is designed to measure one’s capacity to direct mental effort,
and is widely administered in attention research. Participants were
presented with the cube in Figure 14, which can be perceived in two
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different orientations (with the top square closest to you or furthest
from you). When viewed for prolonged period of time the cube spon-
taneously reverses its perceived orientation. The participants were
presented with the cube for 30 seconds during which they were asked
to sustain, for as long as they can, a particular orientation for the cube.
Whenever the orientation reversed, they would click on the cube and
the website recorded their interaction. The time period one can sus-
tain the cube in a particular orientation was previously correlated
with one’s ability to direct attention [80]. This suggests that the more
reversals a participant reported during the Necker test, the less he or
she was able to direct their attention in the rendered scene.

Figure 14: Necker Cube Pattern Control Test. Participants were presented
with the leftmost image. The following images illustrate the two
possible perceived orientations.

To conclude the session, participants were asked to answer a short
survey about the rendered scene. No time limit was enforced on an-
swering the survey. We focused our survey on the restorative qualities
of the scene, hoping to later correlate those with the recorded physio-
logical signals. Two questions asked the participants to imagine them-
selves in a particular situation and assess how suitable the rendered
scene is for it. The participants rated the scene suitability on a Likert
scale from -2 ("Not suitable") to 2 ("Very suitable"). The first question
described a situation when one is recovering from prolonged mental
effort. The second question described a situation when one is full of
energy and has to direct effort towards a new task.

The remaining questions in the survey were based on the revision
and verification of the PRS Questionnaire done by [64]. Five addi-
tional questions were designed to measure the five different facets
of a restorative environment: Compatibility, Coherence, Being-away,
Fascination and Scope. Coherence was measured inversely, asking
the participants how chaotic and confusing the scene is. The Com-
patibility was phrased to focus on the occupant’s personal preference
and liking. A copy of the survey with the specific phrasing is affixed
in Appendix a.

To reduce the novelty effect of the experimental sessions and the
wearable sensors, each sitting began with a tutorial guided by the
study personnel. Through an example session, the tutorial walked
the participant through the different parts of the session and made
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sure they are all well understood. Furthermore, the tutorial included
a short calibration phase, in which each participant’s viewing orienta-
tion was matched with the borders of the laptop screen. This allows
us to later on process the facial orientation data and label viewing
directions whose trajectories are inside and outside the screen. Once
the tutorial was over, the participants were left alone in the workspace,
and our website guided them through the sessions and their different
parts. The website also controlled the transitions between the scenes
in the room (through the Digital Cubicle backend), timing the various
parts, and collecting the participants’ interactions.

4.1.2 Scenes Selection

We hypothesie that scenes perceived differently in their restorative
qualities would result in distinguishable related physiological responses.
We expect to find these differences during intermissions or following
periods of directed mental and cognitive efforts in the Digital Cubi-
cle. Such a relationship was demonstrated before in the context of
attention restoration theory. [11], for example, showed a correlation
between PRS scores of images and viewers’ restoration, measured
through BVP, EMG and EEG, during the first 10 viewing seconds.
Similarly, [27] demonstrated significant changes in BVP, when taking
break periods in natural landscapes rather than urban ones.

Note, however, that environmental stress restoration is context de-
pendant. It is not likely to function in all working situations, partic-
ularly, when occupants attempt to direct their attention and focus.
Empirical studies have shown that ambient stimuli from the physi-
cal environment can impose working-memory load, taking away re-
sources from the occupant’s intended cognitive process [19] [71]. In
this sense, some for the rendered scenes may in fact act as stressors.
This is regardless of perceived restorative qualities. Their visual and
auditory features may distract the occupant and adversely result in
heightened stress.

We picked five different scenes for our user study, attempting to
represent diversity of perceived restorative and focusing qualities. Im-
ages of the five scenes are presented in Figure 15. The scenes’ audio
and lighting were matched to the projected videos. Sounds of a street
tumult, for instance, were played in the Shibuja scene and sounds
of wind and waves were played in the Kites scene. Each scene was
coded with two binary labels corresponding to what we hypothesised
would be its restoring and distracting effects. The Library scene, for
example, was coded with negative restoration and positive focus. In
a similar manner, the Kites scene was coded with positive restora-
tion and negative focus. We verify this coding scheme through self-
reported measurements and present the related results in the next
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Figure 15: Images of the six scenes used in the physiological user study.
From left to right and top to bottom: Neutral, Forest, Rotch Li-
brary, Kites, Shibuja and Sunset.

sections. The situation in which no scene is rendered in the room is
named "Neutral" and we consider it our control condition.

In this study, the scenes’ audio was played through a set of BOSE
noise cancelling headphones. This is the result of feedback from our
previous user study, in which the projector’s sound was reported sub-
stantially inconvenient and distracting. We adjusted the ambisonic
processing of the Digital Cubicle accordingly. The scenes’ sound lev-
els were also tuned, such that all scenes would have similar volume.

4.1.3 Collected Data

We used a single Empatica E4 wristband [26], worn on the non-dominant
hand wrist, to record participants’ EDA signals. To reduce noise in the
recorded signal, the participants were asked to minimise the move-
ment of their left arm throughout the sessions. Zephyr’s Bioharness
3 [96] was used to record participants’ ECG and Respiration signals.
A Logitech Webcam was used to record videos of the participants’
face. The video frames were streamed through the Digital Cubicle
backend software and were processed to extract facial feature points
and facial orientation using the Intraface [94] code library.
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Figure 16: Sample heart rate, respiration rate and HRV signals, collected
from Subject 6 when he was exposed to the Shibuja scene.

Figure 17 exemplifies heart rate, respiration rate and HRV signals,
that were collected through Zephyr’s Bioharness 3. The presented sig-
nals were collected from a single session. The vertical lines mark the
different segments within the session. Similar signals were collected
for each session from each of our participants – a total of 54 sessions
per physiological signal. Due to low reliability, indicated by the de-
vice, we removed from our dataset the HRV signals recorded during
the Sunset sessions of Subjects 1, 3 and 5.

The aforementioned signals are the result of the device’s built-in
algorithm which processes the raw ECG signal. The sampling rate of
the processed signals is 1Hz. Accordingly, each signal contains about
500 samples, depending on the survey segment duration. We smooth
the heart rate and respiration rate signals using a 20 samples mov-
ing average filter. The device’s HRV extraction method is proprietary.
It uses a relatively large window, which introduces a similar time
shift. The raw ECG signal is additionally recorded to allow applying
different processing algorithms in the future (e.g. frequency domain
methods for HRV analysis). For similar reasons, we also record the
participants’ RR signal, which measures the time interval between
consecutive heart beats. The sampling rates for the aforementioned
signals are 250Hz and 18Hz, respectively. Raw respiration signal is
recorded in a 18Hz sampling rate. Finally, participants’ posture is
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Figure 17: Sample EDA signal, collected from Subject 7 when he was ex-
posed to the Neutral scene.

recorded by the device’s built-in 3-axis accelerometer, in a 50Hz sam-
pling rate.

Figure 17 exemplifies an EDA signal collected through the Empat-
ica E4 wristband. We collect one such signal from each participant
in each of the sessions, resulting in 54 EDA signals.The sampling
rate for each EDA signal is 4Hz. Perhaps due to low skin perspira-
tion, we identify erroneous EDA signals collected from participants
1 and 4, and mark those missing in our dataset. The collected videos
were recorded and processed in a 10fps rate. Intraface features in-
cluding viewing directions, head orientation and facial expression
feature points, as detailed in Section 3.4, were extracted for each of
the frames.

Collected data is available for release by request, according to the
restrictions delineated in IRB protocol #1601357773. In the scope of
this work, we will only analyse the heart rate, respiration rate and
HRV signals processed through the Zephyr’s Bioharness 3 built-in
algorithm. The remaining signals are left for future analysis.

4.2 data processing and characterisation

We must first define an appropriate metric from the physiological
signals, to assess one’s arousal levels and restoration when experienc-
ing the different artificially rendered scenes. A wide range of such
metrics has been previously proposed in the literature. The simplest
ones report aggregated statistics (such as median, mean and standard
deviation) of the physiological signals and compare those between
the different experimental conditions. Such an approach would be
very limited in the context of our study. Physiology is responsive to
many psychological and physical influences besides the physical set-
tings. Cognitive workload, for instance, is a varying factor throughout
our study, which is very likely to affect physiology, even more than
the physical settings [92]. Furthermore, physiology and physiological
regulation are highly personal and state dependent. Autonomic heart
rate regulation, for example, can vary greatly among individuals with
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different training routines [82] [17]. Even within individuals, simply
a cup of coffee can influence the recorded physiological signature [4].

Other approaches attempt to characterise trends in the signal, cir-
cumventing absolute values. In the aforementioned work by [41] heart
rate recovery was measured by fitting a regression line to the first 60

seconds of each experimental activity. When applied to our recorded
signal, this approach failed to truthfully capture the patterns in our
data. Significant differences in the response time among individuals
made it challenging to round up arousal and restoration with a fixed
time window. While some participants tended to build up stress in
anticipation for the test to begin (e.g. Subject 8’s respiration rate sig-
nal), others tended to build it shortly before the test expired (e.g. Sub-
ject 1’s respiration rate signal). Likewise, some participants showed
multiple trends within a single segment inside a session. Subject 7’s
heart rate, for instance, tended to mostly recover during the break,
but then build up again at some point before the Necker Test. The
designed restoration metric must stay robust to such inconsistencies
in the data. We wish for it to probabilistically capture those, dealing
with real world noise and divergence in response.

Furthermore, the sequential design of the sessions made it difficult
to disentangle the dependency between the Test and Break periods.
We notice that distracting scenes, which caused high arousal levels
during the Test, were likely to decrease the same levels sharply dur-
ing the break. It would clearly be inaccurate to conclude these scenes
were more restorative during the break, neglecting the physiological
levels before the Break onset.

This observation coincides well with Wilder’s Law of Initial Values
(LIV) [91]. This law states that the effect of a stimulus on physiological
change depends to a large degree on the pre-stimulus physiological
level. Heart rate, for example, tends to innately be regulated regard-
less of any stimulus: decrease when high and increase when low. In
turn, a stimulus that normally increases heart rate might, when heart
rate is already high, only keep it at the same high level. Our analy-
sis should therefore control for this effect in an attempt to isolate the
restorative influence of the rendered scenes. When doing so, it would
also take into account personal differences in natural physiological
regulation.

Based on these considerations we propose a three-step data anal-
ysis approach to extract measures of the restorative qualities of the
rendered scenes. Our analysis is inspired by the work of [38], who
built an affective music playlist recommendation system to direct skin
temperature and conductance levels. Drawing analogies from their
system’s training phase, we present a restoration metric that follows
three design principles:

1. Individual: We attempt to model individual differences in physi-
ology, recovery tendency, and stimulus response times and can-
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cel them from the recorded signals. This, we believe, reflects bet-
ter the effects of the rendered scenes, per participant, through
individual experience and preference.

2. Probabilistic: We avoid aggregated statistics and utilise proba-
bilistic modelling to represent the scenes’ effects. These deal
better with divergence in the physiological signals and describe
better multiple trends that may arise during the relatively long
sessions.

3. Law of initial values: We acknowledge pre stimulus levels and use
baselining to incorporate the Law of Initial Values. The physi-
ological signals are corrected accordingly and only then com-
pared.

4.2.1 Signal Preprocessing

We begin by standardising the physiological signals, transforming
each data point to its Z-score value [60]. For each participant and
each signal we calculate the signal’s mean µ and standard deviation
σ over all the sessions and all their segments. We then transform each
data point xt, using:

zit =
xit − µ

i

σi
(1)

This transformation is applied to each of the physiological signals –
heart rate, respiration rate and heart rate variability – separately. i
indexes the study participants. It allows equaling out absolute signal
values and representing the signals in units of individual standard
deviations.

The signals are then filtered using a rolling mean window, which
allows smoothing out high frequency changes. We chose a 20 samples
(corresponding to 20 seconds) window for our filter and slide it one
sample at a time. The top three graphs in Figure 18 illustrate filtering
and standardisation of the heart rate measured from Subject 4 when
she was exposed to the Shibuja scene. Note that changes in heart
rate are quite visible between the different segments in the resulting
signal. This participant’s heart rate begins rising gradually as soon
as the test begins and recovers slowly during the break. A second
shorter increase can also be identified at the end of the break going
into the Necker test.

Next, we compute delta scores ∆z, indicating changes in the physio-
logical signal. Each data point is subtracted from its K-th predecessor
using:

∆zt = zt − zt−K (2)
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Figure 18: Signal preprocessing example illustrating Subject 4’s heart rate ex-
posed to Shibuja. From the top: Original signal, Moving average
filtering, Standardisation and Delta scores.

We chose K = 20 by visually inspecting the recorded signals, noting
that typical changes in the signals’ trend are apparent in 20-second
intervals. This choice also takes into account the basic time scale of
our experimental protocol, changing between segments with time in-
tervals as short as 30 seconds. A 20-second time difference guarantees
that physiological changes will only be computed between consecu-
tive segments.

Since the delta scores are computed post filtering, each delta score
in the resulting signal effectively represents the difference between
averages of a 20-second time window and its preceding 20-second
window. The bottom graph in Figure 18 continues the previous ex-
ample and illustrates the resulting delta signal from Subject’s 4 heart
rate signal. It is important to note that the delta scores at the first 20

seconds of the break now contain information about the signal levels
from the last 20 seconds of the test. Thus, we may now identify indi-
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Figure 19: Application of the Law of Initial Values to Subject 1’s heart rate
changes. The delta scores (∆zt) are plotted against their preced-
ing levels (zt−K). The scores are corrected to become ∆z ′t, which
is indicated by the dashed line

cations of a highly arousing scene during the test, by looking at the
first 20 seconds of the break’s delta signal.

4.2.2 Law of Initial Values (LIV)

Figure 19 illustrates how the delta scores ∆zt computed in the pre-
vious section relate to their preceding physiological levels zt−K. The
figure exemplifies the heart rate delta scores collected from all ses-
sions and segments of Subject 1. A point on the graph (zt−K,∆zt)
indicates that when Subject 1’s heart rate was z, at some point during
the break, 20 seconds afterwards her heart rate increased by ∆z. The
point’s colour indicates the scene Subject 1 was exposed to when it
was measured. Wilder’s LIV is clearly apparent through this presen-
tation. When the signal level is high the delta score tends to decrease,
whereas, when the signal level is low the delta score tends to increase.

We model this effect as a simple regression line, describing a linear
relationship between physiological change and its preceding physio-
logical level:

y(z) = w1z+w0 (3)

Once the regression parameters are computed, we use them to cor-
rect each of the delta scores accordingly, following:

∆ ′zt = ∆zt − y(zt−K) (4)

The corrected delta scores represent one’s physiological changes
throughout the sessions relative to his or her innate tendency to reg-
ulate towards a neutral state. Arguably, we can now regard them to
be independent of any preceding physiological state and reflect only
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the effects of the rendered scene and the experimental task. Corrected
for individual tendency and scaled by individual standard deviation
and mean, these are now also more suitable for comparison between
participants.

We fit a regression model for each of the participants and each of
the physiological signals separately. Each model describes a partic-
ipant’s tendency to regulate a specific physiological signal. We esti-
mate the model’s parameters on the participant’s particular signal
recorded in all sessions, throughout all of their segments.

We indeed find that the regulation slopes w1 differ per participant
and physiological signal. Heart rate regulation slope, for example,
varies from -0.15 for Subject 7, to -0.87 for Subject 1. Respiration rate
and HRV regulation slopes vary from -0.17 to -0.43 (Subject 9 and 8)
and -0.1 to -0.03 (Subjects 7 and 4). In line with LIV, all fitted models
result in negative slopes indicating regulation, rather than amplifica-
tion. All regression models were found statistically significant with p
values smaller than e−56, e−55 and e−6 for the heart rate, respiration
rate and HRV, respectively.

It is interesting to note that the models’ R2 values are relatively low
and differ on average between the physiological signals (0.30 for heart
rate, 0.12 for respiration rate, and 0.03 for HRV). This is an encourag-
ing finding, in this context, as it indicates that LIV does not explain all
the variance in our data. We assume that the experimental conditions
and the rendered scenes will explain the remaining variance. To sup-
port this assumption, when we fit the models to data only collected
during breaks, the average R2 values of our participants increase to
0.4, 0.2 and 0.06 for heart rate, respiration rate and HRV respectively.

4.2.3 Building Probabilistic Models

Next, we wish to build a probabilistic model for the physiological
changes for each participant. For each participant, we treat the cor-
rected delta scores as random variables, and estimate them condi-
tioned on the experimental task and the rendered scene. That is,
we partition each participant’s corrected delta scores by the scene
in which they were collected. Then we partition them again by the
test and break segments and for the scope of this work discard data
from the remaining segments. We use each of the sets as observa-
tions from which we can estimate a probability density function (pdf):
P(∆ ′z | Scene,Segment). Where Scene ∈ {Neutral, Forest...} and
Segment ∈ {Test,Break}.

If we know what task the participant is conducting and the scene
he or she is exposed to, this pdf can be interpreted as an estimation
of what would be the probability to observe physiological change ∆ ′z
in the next 20 seconds. The more similar physiological changes were
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previously observed in our data, the higher this estimated probability
will be.

We use Kernel Density Estimation (KDE) [60] with a Gaussian Ker-
nel to construct the pdfs from the observations. This well established
non-parametric method makes no prior assumptions on the probabil-
ity distribution of the random variable and takes into account equally
all available observations. It constructs Gaussians with bandwidth β
around every data point and averages them to generate a smooth pdf,
following:

P(∆ ′z) =
1

N

N∑
n=1

K(∆ ′z | ∆ ′zn,β) (5)

Where:

K(∆ ′z | ∆ ′zn,β) =
1√
2πβ

e
−∆ ′z−∆ ′zn

2β2 (6)

To choose the Gaussian bandwidth, we utilise Silverman’s rule-of-
thumb [76] and correct it to introduce some robustness to outliers as
proposed by [28]. The bandwidth parameter is calculated separately
per estimation, following:

β = 1.06 ·min (σ,
R

1.34
) (7)

Where R is the interquartile range and σ is the standard deviation of
the corrected delta scores.

Figure 20 exemplifies four pdfs of heart rate change estimated by
the aforementioned procedure. The illustrated pdfs are for Subject 1

estimated from observations when she was exposed to the Neutral
and Forest scenes during either the test or the break. Note we obtain
different pdfs for the different conditions.

This probabilistic representation of the induced physiological change
has some key advantages in the context of our work. The smoothing
characteristics of the Gaussian Kernel improve our robustness to out-
liers. Unlike aggregated statistics, it captures more naturally the un-
certainty in our data. If one of the scenes were to have 70% chance
of decreasing a physiological signal but 30% chance of increasing
it, such information would be preserved. Furthermore, a pdf repre-
sentation allows easy visualisation, inspection and juxtaposition of
the collected data. Visual inspection may serve as a powerful tool,
identifying if two conditions have distinguishable distributions, and
may even surface underlying dependencies unaccounted for. In fact,
through a similar process, we have discovered the need to condition
our estimation by the different segments. The different segments man-
ifested at first as two distinguishable peaks in pdfs over full sessions,
hinting they should be treated separately. In future research, we hope
our proposed approach will facilitate gaining similar insights, where
other factors are involved.
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Figure 20: Heart rate change pdfs estimated for Subject 1 in the Neutral
and Forest scenes. pdfs on the left and right based on test and
break segment data respectively. The markers below indicate ∆z ′

samples from which the pdfs were estimated.

Our probabilistic representation was also developed in light of smart
applications we foresee implemented in our mediated workspace. It
is better suited to make unsupervised predictions for physiological
changes occupants may experience, based on previous observations.
For example, a smart agent can base its decisions on the constructed
pdf to make a maximum likelihood estimation of the physiological
change a scene will induce. It may even tune its prediction to a spe-
cific magnitude of change it is looking for (e.g. increasing heart rate
by over one standard deviation); The risk of an adverse reaction can
be assessed in a similar way and be taken into account in the agent’s
optimisation function.

In the following sections, we additionally show how we leverage
this probabilistic representation to conduct evaluative simulations.
Once the pdf is constructed it can be sampled, simulating one’s phys-
iological reactions. We note that constructing the pdfs is computation-
ally efficient and that they can be easily updated as more observations
become available to improve the quality of the simulation.

4.2.4 Stress Development and Restoration Metrics

Using the pdfs detailed above, we specify four metrics to evaluate
stress development and restoration in the context of our work. We de-
velop our metrics for a narrow notion of stress, based only on objec-
tive physiological signals and their well-established correlations with
stress as an affective state [75]. In that sense, we define stress devel-
opment as increasing heart and respiration rates and decreasing HRV.
Contrarily, we consider stress restoration as reduction in heart and
respiration rates and increase in HRV. The first two metrics we spec-
ify capture the intensity of physiological change and the second two
capture its likelihood. These metrics will be be applied on what we
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established as physiological changes throughout this section. That is,
changes observed in 20 seconds intervals, on top of (or under) one’s
innate tendency to regulate his or her physiological signal.

1. Mean - The average intensity of physiological change observed
in the analysed population.

2. Maximum Likelihood Estimation (MLE) - The most likely in-
tensity of physiological change observed in the analysed pop-
ulation. Based on the pdf we have estimated in the previous
section, this value would be the ∆ ′z that has the maximal prob-
ability density. If a pdf is normally distributed the Mean and
MLE are equal. As we will later see, this is not the case in many
of our observations.

3. Probability of intended physiological change - We define the
intended physiological change as the change intended by the
experimental protocols. That is, stress development for the test
segment and stress restoration for the breaks. The probability
that an expected physiological change will fall within a certain
range, P(∆ ′z ∈ [a,b]), is the area under the graph of the con-
structed pdf function. Therefore, the probability of intended
heart and respiration rate changes during the test is the area
under the relevant pdf graph for ∆ ′z ∈ [0,∞]. During the break
segments, the probability of intended heart and respiration rate
changes is the area under the corresponding graph for ∆ ′z ∈
[0,−∞]. The equivalent metrics for HRV are derived identically
by flipping ∆ ′z’s sign.

4. Probability of intense, intended physiological change - We
denote an intense physiological change as a change of over
0.5 standard deviations in the physiological signal. We calcu-
late the probability for such a change similarly to the previ-
ous metric. During the test segments, an intense physiologi-
cal change (in the intended direction) is the area under the
pdf where ∆ ′z ∈ [0.5,∞] for heart and respiration rates and
∆ ′z ∈ [−0.5,−∞] for HRV. Likewise, during the break it is the
area under the pdf where ∆ ′z ∈ [−0.5,−∞] for heart and respi-
ration rates and ∆ ′z ∈ [0.5,∞] for HRV.

4.3 results and discussion

4.3.1 Were stress development and restoration elicited?

First we should assess how well the experimental protocol elicited
the intended stress development and restoration. For intuitive analy-
sis, we ask the reader to refer to the physiological samples presented
in Figure 17. These heart rate, respiration rate and HRV signals were
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collected from Subject 6 when she was exposed to the scene Shibuja.
Note that all three signals clearly respond to the experimental seg-
ments. We observe heart and respiration rates building up during
the test segment and slowly abating during the break; HRV sharply
decreases during the test and recovers during the break. We see ad-
ditional moderate stress development in all signals shortly before the
break ends. We postulate this is a result of the occupants’ anticipation
to the Necker test, which immediately follows the break period.

Though per participant the physiological signals followed distinct
patterns, we report general trends common to all of them. That is, in-
creasing heart and respiration rates and decreasing HRV during the
test; Inverse trends were observed during the breaks. Interestingly, in-
dividual stress development and restoration patterns repeated across
sessions. In our previous example following Subject 6, we see resem-
blance in the signals’ patterns, when Subject 6 is exposed to other
scenes, such as Forest, Kites and Neutral. This indicates the domi-
nance of the experimental protocol over the scenes in affecting stress
development and restoration. It alludes that scene effects should be
assessed by inspecting differences in individual responses.

For a more formal analysis, we aggregate session data from all
our participants, in all scenes, and partition it by the test and break
segments. Figure 21 juxtaposes the histograms of the two partitions
for heart rate, respiration rate and HRV Z-score readings. The bot-
tom row similarly presents the histograms for corrected physiolog-
ical changes ∆z ′ - following the signal processing approach we de-
veloped in the previous section. For convenience, the histograms are
normalised, and the partition means are marked by vertical lines.

From the bottom row, we note the same trends in physiological
change in the aggregated data. That is, on average we see increasing
heart and respiration rates during the test, and decreasing heart and
respiration rates during the break. The opposite trends appear for
HRV. Interestingly, the Z-score readings for HRV (reading level rather
than change) are on average lower during the break than during the
test. This may indicate that the break was insufficient to induce full
recovery. It may however also be explained by the inherent signal
delay, caused by the Bioharness’ built-in HRV extraction algorithm.
We use one-way ANOVA to establish the differences in significance
between each pair of test and break partitions. The F-test results are
attached under each graph, with n=10,075 for all pairs. As intended,
we found the test and break conditions to be significantly different
(p<0.05) in all cases.

We additionally investigate if there are possible correlations be-
tween the scene ordering and the computed stress development and
restoration metrics. This allows us to assess the sequential nature
of the experimental protocol, lining the sessions one after the other.
Such correlations, possibly stemming from exhaustion or habituation,
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Figure 21: Histograms comparing stress development and restoration be-
tween the test and break conditions. The top row illustrates Z-
score levels for each of the physiological signals. The bottom row
illustrates corrected delta scores (∆z ′), representing physiological
changes.

should be informed alongside our stress development and restora-
tion results. Differences, which align with such correlations, can be
explained by either the scenes or the ordering interchangeably – weak-
ening possible conclusions. We compute 24 pairwise correlations be-
tween the scene sequence number and our four stress metrics, for
each of the physiological signals, during both test and break seg-
ments. We use the Spearman rank-order method [8] to calculate the
correlation coefficients and test for statistical significance. This non-
parametric method is better suited for datasets, which are not nor-
mally distributed. It describes monotonicity relationships between
random variables with coefficient values between -1 and 1, like Pear-
son’s correlation.

We found three statistically significant (p<0.05) correlations in our
data set. During test segments we report inverse correlation of -0.31

(p=0.001) between the session number and the probability of observ-
ing an increase in respiration rate. Likewise, we report an inverse
correlation of -0.2 (p=0.03) between the session number and the prob-
ability of observing an intense increase in heart rate (above 0.5 stan-
dard deviations). A third inverse correlation of -0.24 (p=0.03) is found
during break segments between the session number and the probabil-
ity of HRV recovery. Intuitively, these correlations indicate that as the
sessions progressed the effects of the experimental conditions attenu-
ated. That is, as participants took more sessions, stress developed less
in the test segments and we observed less restoration during breaks.
We take these correlations into account in the next section, when pre-
senting individual physiological responses to the scenes.
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4.3.2 Individual Physiological Responses

Next, we evaluate individual responses for each participant in the
presence of the rendered scenes. We follow the data processing ap-
proach described in the previous section and present stress develop-
ment and restoration through four metrics: MLE and mean of physio-
logical changes, probability of restoration or arousal and probability
of intense restoration or arousal. For each participant we obtain the
metrics separately for the test and break segments.

Figures 22 to 24 illustrate the MLEs and means of physiological
changes per participant. The results are presented for each of the
physiological signals separately. Each coloured bar shows the MLE of
physiological change under the corresponding scene. On each bar we
overlaid the mean physiological change with a small black line. The
disagreements between the MLE and mean demonstrate the variance
we observe in physiological changes and their non-Gaussian distribu-
tion.

For example, please refer to Figure 22, which illustrates heart rate
changes results. From the top graph, Subject 4 is most likely to ex-
hibit an increase of 0.66 standard deviations in her heart rate when
exposed to the scene Shibuja, in a 20 seconds period during a test.
From the bottom graph, she is then most likely to exhibit a 0.48 stan-
dard deviations reduction in her heart rate if exposed to the same
scene during the break. We point out that these values represent the
MLE of the LIV corrected physiological change rather than absolute
changes. Therefore, increase of 0.66 signifies an even greater increase
beyond Subject 4’s natural tendency to regulate the test. This should
be kept in mind for values, whose sign contradicts what one would
expect for a particular segment. Accordingly, when Subject 4 is ex-
posed to Sunset during the break, she is most likely to change her
heart rate by positive 0.1, only relative to her natural regulation. Her
absolute heart rate might still decrease during the break, but to a
lesser extent than what she naturally exhibits.

Figures 25 to 27 illustrate the probability for stress development
and restoration during the test and break respectively, per partici-
pant. The results are presented for each of the physiological signals
separately. As mentioned, this metric does no take into account the
magnitude of change, but only its direction. Within each figure, the
top set of coloured bars shows the probability of stress development
during the test, i.e. a positive change ∆ ′z for heart and respiration
rates and a negative change ∆ ′z for HRV. Similarly, the bottom set of
coloured bars shows the probability of stress restoration during the
break.

The different scenes are indicated by the different bar colours. We
use the colour intensity to overlay the probability of an intense re-
sponse P(|∆ ′z| > 0.5), out of the overall probability for a response in
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the desired direction. For example, in a Neutral scene and during the
break, Subject 8 exhibited a heart rate decrease in 63% of the mea-
sured 20 seconds intervals. An intense decrease of over 0.5 standard
deviations was observed in 33% of the intervals – about half of the
times a decrease was observed.

The graphs clearly indicate that the physiological response to the
rendered scenes is extremely personal. Personal differences are no-
ticeable in both the intensity of the physiological change and its prob-
ability to be in the desired direction. Subjects 4 and 5, for example,
displayed similar heart rate recovery probabilities when exposed to
either the Forest scene during the break (0.66 and 0.64). However, the
intensity in which they responded to the scene was very different. The
MLE change in Subject 4’s heart rate in the Forest scene was almost
6 times larger than the one Subject 5 exhibited (0.3 vs. -0.05 standard
deviations).

Even within participants, physiological responses to the same scene
vary between the test and break segments. Subject 4, whose heart rate
highly increased in the presence of the Kites scene in the test (+0.98

MLE and 89% increase probability), displayed only moderate heart
rate recovery in the break (-0.1 MLE and 69% decrease probability).
Across many participants and scenes, we see that high stress devel-
opment intensity or likelihood during the test does not necessarily
result in the inverse response during the break.

Individuals have also reacted differently in their physiological sig-
nals. That is, changes in heart rate, respiration rate and HRV did not
necessarily match, even under the same rendered scene and task. Sub-
ject 1’s heart rate for example had high likelihood to increase with the
Kites scene during the test and a moderate one with the Forest scene
(0.84 vs. 0.59). Her respiration rate on the other hand displayed the
inverse, i.e. high likelihood to increase with the Forest scene and mod-
erate one with Kites (0.90 vs. 0.57). This is also the case for a similar
comparison of the intensity of change for other participants.

Nonetheless, we report statistically significant differences in the
recorded physiological responses. Since some of our data is not nor-
mally distributed, we utilised the non-parametric Kruskal-Wallis test
[48] to evaluate if the physiological changes under the various condi-
tions are statistically significant. For each participant we conducted
pairwise comparisons between the physiological changes recorded
in the Neutral scene and the ones recorded in each of the other
scenes. Comparisons were conducted separately for the test and break
data. Differences were considered statistically significant if p<0.05.
We mark the populations that were statistically significant with an
asterisk on top of their corresponding bar in all figures (22 to 27). We
note that differences that align with correlations previously found
between the session sequence number and the restoration metrics
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should be regarded with caution. These possibly stem from both the
scene and the order in which it was presented.

Note that the vast majority of the scenes exhibited statistically sig-
nificant differences. This is an important finding in the context of our
work. It suggests that the Digital Cubicle can elicit different physi-
ological responses through digital transformation. This is of partic-
ular interest for stress restoration. Subjects 1, 2, 3 or 6, for instance,
can supposedly use the Digital Cubicle to increase their likelihood
of heart rate recovery by almost 30%, rendering the Forest scene in-
stead of the Neutral one during breaks. Likewise, Subjects 5, 7 and 8

can render the Rotch scene to reduce the probability of their HRV de-
creasing in about 25% during tests. If such effects turn out to be long
lasting and resistant to habituation, they can potentially be leveraged
through smart applications to target chronic stress and its related ill-
nesses.

4.3.3 Physiological Responses Generalised per Scene

Next we describe the general physiological response produced by
each scene. Such a description is of course very limited from the data
we have obtained. Particularly in light of the relatively small number
of participants in our study (N=9), and the personal nature we see in
the recorded results. We continue to do so, however, in an attempt to
learn about the choice of scenes we have made in the experimental
design.

For each scene we aggregate the observed physiological changes
from all our participants. Through standardisation and the Law of
initial values, these are corrected for absolute values and personal
regulation tendencies, and thus are relatively proportionate. We ag-
gregate participants’ data for each of the physiological signals sepa-
rately and, as before, partition it by the test and break segments. We
then use KDE to construct the probability density function of physio-
logical change in a 20-second interval, under each scene. Figures 28 to
30 preset the resulting probability density functions. For each physi-
ological signal, the top and bottom rows illustrate the test and break
segments respectively. The coloured area under the graphs represent
the likelihood the scene had to result in a change in the projected di-
rection, i.e. stress development during the test and restoration during
the break. We present each scene next to the "Neutral" scene to allow
straightforward comparison.

Our probabilistic presentation allows us to gain insight into the
agreement in our data about the physiological change under every
scene. The more narrow and spiked the pdf is, the more systematic
and likely the physiological change was. Look for example at the
pdfs for HRV recovery during the break for the Kites and Shibuja
scenes. Next to the Neutral scene, they both present higher chances
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of HRV recovery, signified by the larger coloured areas under the
graph. However, their relatively flat and wide shapes indicate high
variance in participants’ physiological reactions to them.

Contrarily, the Forest and Sunset scenes exhibit relatively high agree-
ment in responses across most of the physiological signals and seg-
ments. This makes them good candidates for future research, when
there is a need to select scenes with higher "physiological consensus".
We additionally report generally higher agreements in responses dur-
ing the test segment. This may indicate that participants tend to ex-
perience the scenes more similarly as stressors than as a source of
restoration.

Narrowing our discussion to restoration, we note that in compari-
son to the Neutral scene, the Forest, Sunset and Kites scenes resulted
in higher chances of heart rate recovery during the break. Higher
chances of respiration rate recovery were observed during the breaks
only in the Rotch scene. Finally, improved HRV recovery was noticed
in the Kites and Shibuja scenes. These findings that the physiological
signals respond differently, coincide with our previous observations
in the per-participant analysis.

4.3.4 Focusing capabilities

To get a fuller image of the scenes’ effects, we complement our stress
development and restoration analysis with an assessment of partici-
pants’ performance in the presence of the rendered scenes. This is an
important dimension of the Digital Cubicle evaluation, since the opti-
mal scene choice does not solely depend on stress development and
restoration. Accordingly, when using music as stimuli, [47] have sys-
tematically shown, that excessively relaxing stimuli can harm one’s
task performance; overly arousing stimuli was shown to cause dis-
traction. We expect similar situations with the Digital Cubicle. In fact,
in preparation for the experiment we explored attempts to direct at-
tention with a larger set of possible scenes, and have informally expe-
rienced severe performance reduction in the presence of overly busy
ones.

In the scope of this work we assess participants’ performance only
through the Necker test. We avoid using the reading comprehension
test, due to high variance in participants’ individual scores between
the different sessions. The limited sample size of our study, does not
allow us to cancel differences in the reading comprehension tasks’
difficulty.

To use the Necker test as a measure of one’s ability to direct at-
tention, we first standardise the results per individual. For each par-
ticipant we calculate the mean and standard deviation of the cube
orientation reversals during the test from all the different sessions.
We then transform each sample to its Z-score value, representing its
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distance from the mean in units of standard deviation. This standard-
isation preserves the meaning of the Necker score, i.e. the higher the
score is, the lower one’s capacity was to direct his or her attention.
Figure 31 illustrates the Necker Z-score results for each participant in
the presence each of the scenes. The rightmost column in the graph
presents averaged results from all of the participants.

Note that for 5 out of the 9 participants the Shibuja scene was
among the most distracting scenes. This coincides well with what we
anticipated, selecting it during the experiment design, and attention
literature regarding the effects of high movement and tumult. For a
different set of 5 participants, the Rotch scene was among the least
distracting scenes. The latter is a surprisingly encouraging finding
when juxtaposed to the Necker Z-scores in the Neutral scene. It sug-
gests that one’s capacity to direct attention can in fact be increased
in the presence of stimuli rendered through the Digital Cubicle. This
bolsters our design choices in the cubicle’s implementation and sup-
ports the balance we hoped to achieve between the occupant ability
to focus and scene immersion.

Finally, we investigate possible correlations between the Necker
scores and the calculated stress development and restoration metrics.
We use the Spearman rank-order test and consider p<0.05 for signifi-
cant correlation. We report a correlation of 0.33 (p=0.01) between the
Necker Z-score and the probability of intense HRV recovery during
the break segment; an inverse correlation of -0.28 (p=0.03) is found
between the same measurements during the test segment. This intu-
itively suggests high arousal levels measured by HRV in the presence
of distracting scenes. Encouragingly, our results show that this cor-
relation is not necessarily a limiting factor for our cubicle. The rela-
tively low correlation coefficient points out there is enough room to
find scenes with a balance between restoration and distraction.

4.3.5 Subjective Perception of the Scene

In this last section we analyse how the rendered scenes were per-
ceived based on the subjective reports our participants submitted at
the end of each session. First we wish to corroborate that the scenes
we chose were indeed perceived the way we intended. That is, the
scenes were perceived differently in both their restoration and focus-
ing qualities and according to how we labeled them. We then con-
tinue by examining possible correlations between the scenes’ percep-
tion and our previous results for both attention direction performance
and stress development and restoration.

Figure 32 illustrates on a two-dimensional plane how the scenes
were perceived in their restorative and distracting qualities. The pre-
sented results are the averaged scores of the first and second survey
questions which ask about the scene’s general suitability for taking
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Figure 32: Self-reported restoration and focusing ratings for the rendered
scenes

breaks and directing attention respectively. The error bars represent
the standard deviation in these reported measures. The sample size
for these results is relatively small and consists of 9 data points (one
for each participant) per scene.

Despite high variance we note that some scenes were indeed per-
ceived distinguishably different in their focusing and restoration qual-
ities. In agreement with attention restoration literature, nature scenes
(Forest, Kites and Sunset) were perceived better for taking breaks
and restoration than their urban counterparts (Neutral, Shibuja and
Rotch). It should be noted though that scene rating for Shibuja and
Rotch shows high variance in this respect. Nonetheless, the same pair
of scenes was considered discernibly different in its suitability for
directing attention. Overall the scenes’ ratings satisfy our experimen-
tal design intentions. We find the set of selected scenes to represent
diversity in the aforementioned dimensions.

We find statistically significant pairwise correlations between the
scenes’ perception and the Necker scores. To obtain the correlations
we used the Spearman’s rank-test on pairs of participants’ Z-scored
Necker results and their reported perception. The data pairs were
taken from all the participants and all their sessions (n=54). The strongest
correlation (-0.35, p=0.0001) was found between the scene’s perceived
focus and the Necker score obtained in its presence. This correlation
indicates that participants were able to correctly gauge their capacity
to direct attention in the presence of a scene. Weaker, yet significant,
correlations (∼0.2, p<0.05) were found between the Necker scores and
the scene restorative facets: Being Away, Fascination, Scope and Co-
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herence. The higher the perceived restorative facet was the less par-
ticipants were able to direct their attention.

We similarly calculate pairwise correlations between the scenes’
perception and the stress development and restoration metrics we
obtained. Participants’ reports on Perceived Restoration, Compatibil-
ity and Fascination were found correlated with probability for intense
HRV stress development during test segments. Calculated correlation
coefficients were 0.35 (p=0.02), 0.3 (p=0.03) and 0.29 (p=0.03) respec-
tively. These indicate that increased probability of stress development
was observed during the test in scenes which were perceived more
restorative, more fascinating or better matched occupant liking.

During the break segments, more significant pairwise correlations
are found between facets of perceived stress restoration and both
heart rate and HRV recovery. Table 1 summarises these results. For
example, we found that the more the scene provided an escape ex-
perience (Being away), the higher the probability was for heart rate
recovery during break. Likewise, the more occupants liked the scene
(Compatibility), the more intense were their heart rate reductions. In
a similar manner, scenes that were perceived to provide opportunity
for exploration and discovery (Scope), resulted in more intense HRV
recovery. It is interesting to note that correlations were found for both
recovery probability and intensity (MLE). Due to high disagreement
among the participants on the restorative qualities of the Rotch and
Shibuja scenes, we conduct an additional calculation for a data sub-
set excluding them. This calculation reveals additional correlation be-
tween perceived restoration and respiration rate recovery during the
break. Interestingly the correlation that is found is inverse, i.e. respi-
ration rate tended to develop more (and more intensely) during the
breaks when the scene was perceived to be more restorative.

Perception Phys. response Correlation

Signal Metric Coef. p-value

Perc. Restoration HRV MLE 0.29 0.03

Heart rate MLE -0.32 0.02

Compatibility HRV MLE 0.31 0.02

Heart rate MLE -0.45 0.0009

Heart rate Restoration Prob. 0.33 0.01

Being away Heart rate Restoration Prob. 0.33 0.02

Fascination HRV MLE 0.28 0.04

Scope HRV MLE 0.31 0.02

Table 1: Significant correlations (p<0.05) found between perceived stress
restoration and physiological recovery during breaks.
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4.4 summary

To conclude this chapter we summarise our main findings. These will
guide the development of an intelligent control agent in the next chap-
ter.

• We established significant differences in stress development and
restoration between the test and break contexts. These mani-
fested through the metrics we have developed and apply to all
physiological signals – heart rate, respiration rate and HRV.

• In all metrics, the physiological responses to the rendered scenes
are highly personal. Even within participant, in the presence of
the same scene, we note that the different physiological signals
do not necessarily correlate. That is, different participants may
exhibit stress development and restoration in one physiological
signal and not in another (e.g. heart rate, rather than respiration
rate).

• Nonetheless, we observed statistically significant differences be-
tween the scenes in the recorded responses. This suggests that
the Digital Cubicle can elicit changes in occupant physiological
response through its digital manipulation of the physical char-
acteristics.

• Aggregating our results per scene, we note that some scenes
acted better than others as a source of stress restoration. For
example, occupants in the Sunset, Forest and Kites scenes ex-
hibited higher likelihood of heart rate recovery than when they
were in the Neutral scene. A larger sample size however is re-
quired to generalise such results.

• We additionally report differences in occupants’ ability to direct
attention under the different scenes. These were found corre-
lated with occupants self reported perceptions. Similar correla-
tions were found between the scenes’ perceived restorative qual-
ities and their physiological stress development and restoration
measures. These indicate occupant ability to gauge scene effects.





5
I N T E L L I G E N T C O N T R O L A G E N T

We have so far attained only a partial demonstration of the full vision
we outlined in the introduction: We presented a workspace proto-
type that can digitally manipulate many of its physical characteris-
tics. Then, through a set of user studies we exemplified how it can
affect aspects of occupants’ perception and experience. Focusing on
stress development and restoration, we identified how such aspects
can be sensed through the occupants’ physiological signals. Our vi-
sion, however, is not complete unless we close the loop – leverage the
captured data to autonomously and intelligently control the physical
characteristics of the workspace.

In this chapter, we propose and evaluate a machine learning ap-
proach for building an intelligent control agent for our workspace.
We begin by refining and scoping down our problem. Next, we point
out the four main design principles leading us to approach our prob-
lem through a Reinforcement Learning framework. In this framework,
we develop a full algorithmic solution in Sections 5.3 through 5.6 and
describe a working implementation we built in Section 5.7. To con-
clude, we evaluate our intelligent agent through a set of simulations,
anchored by real human subject data.

5.1 problem statement

Finding the optimal approach to control the characteristics of the
workspace is a complex and multi-layered problem. It grows particu-
larly difficult due to the many dependencies involved and the high di-
mensionality that characterises each of the variables. The workspace
itself provides ample opportunities: from changing merely the colour
temperature, to expressing a whole different narrative through visual
and auditory content. The sensor framework, likewise, produces a
rich real-time dataset, which is open for broad interpretations. It can
be used either directly or in combination, to infer many high-level
constructs about the occupant. The occupants are, of course, imprac-
tical to fully model. They vary, in time and between each other, in
their preferences, intensions, objectives, affective states, capabilities,
etc.

We therefore begin by narrowing down our problem according to
the following guidelines:

1. Control objectives
We set the control objective of the intelligent agent to optimally
foster stress restoration and lower stress development. We are
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encouraged to do so by our findings in the physiological study
presented in Chapter 4. On the one hand, these suggest our
workspace can produce significant differences in stress develop-
ment and restoration. On the other hand, the effects that were
found were highly individual, stochastic rather than determinis-
tic, and non-straightforward to apply. These characteristics rule
out naive control algorithms and make it an interesting optimi-
sation problem for a smart agent.

2. Stress estimation
For simplicity, we define stress development and restoration, as
described in Section 4.2. We look at direct physiological changes
measured by our sensors, and regard the sign of physiolog-
ical change to indicate development or restoration. The met-
rics we developed in the same section are used to quantify the
workspace effects. In Section 5.5 below, we discuss how this sim-
plistic model can be extended to include more accurate models
for stress estimation. For further reading on stress estimation
techniques, we refer the reader to [75].

3. Content rendering
We scope our problem further, by significantly limiting the con-
tent that can be rendered by the agent. We program a fixed set
of 6 predefined scenes from which the agent can choose, and
restrict the agent from natively controlling the workspace com-
ponents. How to utilise (and even map) the full potential offered
by our digitally controlled physical characteristics is a complex
problem that is addressed outside the scope of this work. We
refer the reader to [97] for further reading on this subject.

5.2 design principles

When designing the intelligent agent we wish to take into account
learnings from our previous experiments. We shape those into four
design principals, which will hereafter guide the majority of our im-
plementation choices.

1. Personalisation
The agent must acknowledge personal differences. Throughout
our studies we witnessed such differences both in individual
perception, performance and physiological response. Under the
limitations of our sample size, we could not identify similari-
ties or response patterns that allow clustering or profiling. We,
hence, must assume that the agent’s recommendations should
be tailored to individual occupants.

This is a particularly relevant design principle for any learning
process the agent may apply. It emphasises the agent’s need
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to focus on learning from observations rather than searching
for similarities. An immediate tradeoff of such choice is boot-
strapping – prolonging the initial time before the agent learns
to make effective recommendations on its own. We believe, how-
ever, this is an appropriate tradeoff for our system. As a workspace
the Digital Cubicle is intended to be routinely used, for long pe-
riods of time and by a limited set of individuals.

2. Time and context
Note that the Digital Cubicle was experienced many times dif-
ferently due to changes in context. The most obvious is the dif-
ferences we saw between responses, when taking a test or a
break in the physiological study. Perceptually, participants have
also described their experiences differently according to what
phase of their work they wish to achieve (creative thinking vs.
focused execution), and what stage they were at during the day.
These effects take place regardless of affective state or mood
and depend mainly on occupants’ intensions and objectives.

We also identified a dependency between the occupants’ ex-
perience and the order of scenes to which they were exposed.
In the first perceptual study we saw through free subjective
reports how an environment experience was many times de-
scribed in relation to its predecessor. In the physiological study,
we saw correlations between the scenes’ order and physiologi-
cal response.

We combine these findings and propose that our smart agent
should output a sequence of recommendations rather than dis-
crete ones. Using machine-learning terminology, this translates
into an accumulative loss function the algorithm should opti-
mise for in making its predictions. Note that this choice relaxes
the agent’s need for context awareness but does not necessarily
satisfy it. Instead, it allows the agent to assume there is latent
context. As such, the context effects will be averaged on the
entire sequence and, more importantly, if the context follows a
temporal pattern, the agent will have the opportunity to learn
it.

Any information that can be gathered about the occupant’s con-
text would still benefit the agent’s ability to make effective rec-
ommendations. Context recognition in workspaces, particularly
for wellbeing and productivity, is a live and ongoing field of
research. We therefore intentionally deemphasise it in our pro-
posed solution and focus our efforts on the many remaining
aspects of our problem. In Section 5.4 we mention how our so-
lution can be adapted to incorporate relevant breakthroughs in
context recognition.
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3. Occupant preference and interaction
Autonomous as the agent may be, it must still conform to occu-
pant requests and respect their preferences. In fact, our studies
suggest that the occupant preferences are informative cues from
which the agent can learn. Corroborating this idea, we found
significant correlations between occupant perceived restoration
and corresponding physiological responses. Occupants were like-
wise successful in ranking the scenes in which they would be
able to direct attention.

4. Probabilistic modelling of physiological response
We note that occupants’ physiological responses behave stochas-
tically. This was recorded early in the physiological study and
directed our approach to describe physiological changes proba-
bilistically. Accordingly, our agent is required to handle stochas-
tic physiological measures. This requirement is particularly im-
portant as physiological measures are the ones on which the
agent’s control objectives are based.

Machine learning algorithms are natural candidates for han-
dling such a requirement. Their underlying statistical models
make them robust to handle data probabilistically, and optimise
for expected outcomes.

5.3 applying a reinforcement learning framework

Based on the design principles above we chose a Reinforcement Learn-
ing framework [40] to approach the agent’s design.

Reinforcement learning is a sub field in machine learning, which
aims to train an agent what actions it should take to maximise its
long-term rewards. The learning process happens through sequential
steps and usually within episodes, in which the agent interacts with
its environment. In each step the agent takes an action that transitions
the environment from one state to another and receives a reward. The
agent’s goal is to learn a policy, which defines what actions to take
in every state in order to maximise the accumulative rewards by the
end of an episode.

A key component, which makes Reinforcement Learning methods
powerful, is their ability to deal with exceptionally large environ-
ments. They tend to require no a priori knowledge about the en-
vironment, and collect information about the environment through
interaction. Unlike supervised machine learning techniques, they do
not require pairs of labeled data to begin learning, which are par-
ticularly challenging to collect in the context of our work. In that
sense, Reinforcement Learning methods are well tuned to online per-
formance. They learn from data when it becomes available, managing
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a trade-off in their decisions between exploiting accrued knowledge
and exploring uncharted branches of the environment.

Counter-intuitively, the environment in our case is the workspace
occupant. Since we stated our problem as finding an optimal se-
quence of scenes, we can express it using sequential decision-making
terminology. We use Markov Decision Processes (MDP) [68] for such
formulation. This will later allow us to borrow tools from Reinforce-
ment Learning literature to learn an optimal sequence on the fly, treat-
ing the occupants as model-free and training the agent through the
occupant interactions.

MDP is a discrete-time stochastic control process that extends the
traditional Markov chains by adding primitives for actions and re-
wards. It is formally defined by a set of 5 tuple (S,A,P,R, T):

1. S is the finite set of states, which includes a seed state s0.

2. A is the finite set of possible actions.

3. P is a state-transition probability function P(s,a, s ′)→ p ∈ [0, 1].
It denotes the probability of transitioning from state s to s ′

when taking action a.

4. R is a reward function R(s,a)→ r. It denotes that taking action
a, from state s ,yields a reward r.

5. T ⊂ S is the set of terminal states, which end an episode.

Once defined, solving the MDP would be finding a policy π. This
policy is essentially a function π(s) → a, deciding what action the
agent should take at any given state. The optimal policy is commonly
denoted as π∗. It is the policy that, if followed, yields the highest
expected sum of rewards during the length of an episode.

5.4 modelling actions and states

The actions are the decisions the agent should make and has control
over. These are fairly straightforward in our case. They represent tran-
sitioning the scenes rendered in the workspace from one to another.
We accordingly denote the set of actions A to be the set of all possible
scenes.

A = {a | a ∈ {Neutral, Forest, Rotch, ...}} (8)

We treat our problem as a discrete decision making process. That is,
we define a fixed time interval ∆ in which decisions are made. Once a
decision is made the resulting scene is rendered in the workspace for
the remaining duration of the time interval. When the interval ends,
a new decision is made and the room may transition its appearance.
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Transitioning to the Neutral scene is regarded as another possible
action, like any of the other scenes.

Modelling the states is a more challenging task. Ideally these should
encompass any information relevant to determine the occupant’s reac-
tion to the scenes. Such information is many times classified into the
occupant’s context and state [66]. Both of which are, of course, infea-
sible to fully model. The occupant’s context covers many aspects, in-
cluding the tasks at hand, the tools used to complete them, particular
cognitive requirements and acquired proficiency. The occupant’s state
similarly bundles diverse factors such as affective state and mood,
current physiological conditions and even personality. Each of these
factors by itself contains an almost boundless set of possible options.

We therefore offer to flip the problem and model the occupants’
states by the sequence of scenes they experience. A similar approach
was proposed by [52], designing an emotion-based music playlist rec-
ommendation system. The rational behind it is that since the agent
is limited by its set of actions, the best it can do is assume the oc-
cupant fully reacts to them. It should recognise that its effect on the
occupant experience depends on the full sequence of its actions (or
up to k steps back in history). A state s ∈ S is thus an ordered tuple
of rendered scenes ranging from 0 for the first scene to k for the last
scene in the episode. Formally we define:

S = {(a1,a2, ...,ai) | 1 6 i 6 k;aj ∈ A, ∀j 6 i} (9)

Though simplified, such a representation still has enough expres-
sive power to capture some latent variables determining the occupant
reactions. These will manifest as stochasticity in the reward function,
i.e. taking the same action a in the same state s may not always re-
sult in the same reward. In other words, our agent recognises that
rendering the same scene in the same place in the sequence depends
on other factors it has no control over. The Reinforcement Learning
technique our agent will apply is robust enough to handle such cases;
it optimises for the expected accumulative reward, instead of optimis-
ing for the reward in a particular episode.

Moreover, latent variables that have structured temporal depen-
dency can, by proxy, be fully expressed through the scene sequence.
Consider a hypothetical case of a call centre employee whose work
is divided into three well-defined phases; Within a 90 minutes work
episode, the employee first answers calls for 50 minutes, then files pa-
per work for 20 minutes and then takes a 20-minute break. If these de-
termine the employee’s reactions, the employed Reinforcement Learn-
ing technique will have the agent learn an optimal scene sequence
that expresses this temporal structure. That is, even without know-
ing it a priori. To collect maximal reward, in the first 50 minutes the
agent will learn to render scenes matching the employee’s preference
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Figure 33: States and actions model for the intelligent agent

for answering calls. For the next 20 minutes it will play scenes match-
ing paperwork, and finally it will render scenes for taking a break.
In this regard, the state formulation we propose is well suited for
learning an occupant’s unknown temporal working routine. These
exist in many real-world scenarios and make a compelling argument
supporting our approach.

Figure 33 summarises the states and actions model for our agent.
We begin in state s0 = (a0), representing the seed scene a0, that
was chosen by the workspace occupant. Based on what the agent
has learned in previous episodes, it selects the next scene a1 and
changes the current state to s1 = (a0,a1). After time interval ∆ in
rendered scene a1, the agent collects its rewards, learns from them
and continues to take action a2. Note that these definitions of S and
A induce a deterministic transition function P, which defines a single
possible state s ′ after taking action a in state s.

Occupant interactions add some subtleties worth considering. We
allow the occupant to override the agent’s decision at any time us-
ing two primitives: either selecting a specific scene to transition to, or
skipping the current scene and signalling the agent to choose a differ-
ent one. We export these primitives to a simple web-based controller
placed on the workspace desk.

Using the state-action terminology we established, when a scene
is skipped the agent is simply forced to take its next action earlier;
When a specific scene is chosen, the agent considers the occupant’s de-
cision as its own and proceeds regularly. Both cases are leveraged as
opportunities for the agent to learn and are taken into account in our
rewards model. The only question remaining is whether the agent’s
state should be advanced by both the overridden scene and the oc-
cupant selection or only by the occupant selection. For our agent, we
implement a threshold configuration parameter ∆threshold to deter-
mine this. The overridden scene introduces a state transition if it was
played for more than ∆threshold, and it is excluded from the state
transitions otherwise.

The particular choice of rendering time ∆, maximal sequence length
k, and the number of possible scenes |A|, directly affects the size of
the state space S, and in turn may significantly impact the number
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of episodes needed for learning convergence. The tradeoff between
their value and convergence time can be optimised for specific scenar-
ios through simulation. Such a simulation is demonstrated in Section
5.8.

For our agent we limit the sequence length to 6 scenes rendered
for 10 minutes each, resulting in an hour working episode. We allow
6 scenes to be rendered in our workspace, which sets the size of the
state space to 66 = 46656 states. Though large, we find this space
size can be feasibly solved by many Reinforcement Learning algo-
rithms. In future development, the state space size can be reduced
by applying an N-Gram model: limiting the state to remember only
the N previous scenes rather than the full sequence. This technique
is commonly used in natural language processing and has also been
demonstrated in music playlist generation by [12]. Another technique
is to apply dimensionality reduction (which is relevant to the rewards
model) to the set of scenes. For example, reducing the set of scenes to
a two dimensional set such as "quiet" and "loud". These labels can be
used in the sequence and as actions instead of the full set of scenes.
The agent should also have a matching selection function. When the
agent decides the next scene is "loud", the function will select, for
instance randomly, an actual scene with a "loud" label.

The proposed state-action formulation should be revised in cases
where aspects of the occupant’s state and context are: (1) well mod-
elled, (2) can be sensed, and (3) have higher influence on expected
rewards. Imagine a hypothetical case where an occupant’s fatigue
influences the rewards significantly more than the sequence of ren-
dered scenes. Assuming we can produce a set of sensors to effectively
capture fatigue, the states model should be modified accordingly. A
simple two states model representing "occupant alert" and "occupant
tired" may yield higher cumulative rewards, as it will better charac-
terise the rewards function. Alternative state models may still main-
tain a sequence structure to express temporal dependency. The labels
within the sequence, however, should be modified to come from a set
that better represents context than the set of scenes.

5.5 designing the rewards function

The reward function defines what the learning algorithm optimises
for, and thus in many ways determines the agent goals. Except for
minor limitations, the function can be freely designed to capture al-
most any measurable objective. The real-time sensor data collection
infrastructure integrated into the Digital Cubicle, provides rich mea-
surements supporting the design of a wide range of reward func-
tions. For example, one can design a reward function, which grants
rewards according to the occupant’s posture as measured by the Bio-
harness accelerometer; The longer the occupant holds an upright pos-
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Figure 34: Implicit reward function based on occupant interactions

ture the higher the reward and vice versa. Alternatively we can design
a reward function based on viewing orientation: optimising for the
amount of time an occupant spends resting her eyes viewing outside
the computer screen, or vice versa.

For this work, we experiment with the design of two reward func-
tions. The first function takes into account the occupants’ interactions
and optimises for their preferences. The second function relies on
changes in physiological signals and attempts to optimise for lower
stress development and higher stress restoration. For our particular
implementation, we scope down the second reward function to only
consider heart rate development and recovery. In later sections we
exemplify how the two functions can be used either separately or
intertwined.

5.5.1 Occupant Interactions

We take an implicit approach to reward for occupant interactions. We
assume that if the agent’s chosen scene matches the occupants’ pref-
erence, they will allow it to be rendered without any interruptions.
Hence, the agent is rewarded by the time its chosen scene is rendered
in the workspace. We set the maximal reward to 1.0 and grant it if the
scene was played all the way till the end of period ∆. The minimal
reward is set to -1.0 and is granted when the scene is immediately
overridden. To obtain a reward for any playing time in between, we
linearly extrapolate between the minimal and maximal values.

The aforementioned reward policy is illustrated in Figure 34. Note
that the reward is granted for state transitions, i.e. taking particular
action a in state s. When a scene is skipped there are therefore two
reward-granting transitions that the agent can learn from. The first
(usually negative) reward will be associated to transitioning from
scene A to skipped scene B. The second reward can either be asso-
ciated with transitioning from scene B to C or from scene A to C. We
choose the second reward to be associated with transition B to C only
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if scene B was played for long enough to be included in the state se-
quence. Otherwise, we consider the second reward to be associated
with transition A to C.

The case when occupants pick a scene themselves is similar to skip-
ping a scene with regards to the overridden scene. The chosen scene,
however, is regarded differently. We treat the occupants’ choice as an
implicit reflection of their preference, and hence add an additional
positive term (+1) to the chosen scene reward.

5.5.2 Physiology-based Rewards

We design our physiological reward function based on the physiolog-
ical change metrics we developed in Chapter 4. A different design
can similarly be applied to accommodate other methods of stress esti-
mation. We calculate the physiological rewards based on the change
in the physiological signal between two, consecutive, 20 seconds time
intervals. Specifically, our implementation caches and constantly up-
dates a window worth of 40 seconds of samples. It calculates the
mean of the first and second, 20 seconds windows, and subtracts
them. This calculation is done asynchronously every 10 seconds, in-
troducing some overlap between the samples. The resulting physio-
logical change ∆Z are then fed to the reward function.

For consistency with our previous analysis, we add a preprocessing
capability to our sensor collection infrastructure responsible for real-
time standardisation. It takes the raw heart rate samples and converts
them to their Z-score representation. The signal mean and standard
deviation used for the computation are constantly updated. With this
approach, the resulting signal is very attenuated at first. Empirically,
however, we see that after the first 7 minutes in the workspace, in
which an occupant worked through one of our test-break sessions,
the signal settles to regular values.

Our reward function accumulates the values of physiological change
throughout the entire time the scene is rendered. It then rewards the
scene based on the likelihood of change in the desired direction. For-
mally it computes:

R(s,a) = 2(
N	

N	 +N⊕
− 1) (10)

Where N	 and N⊕ are the number of negative and positive physi-
ological changes ∆Z respectively, that were observed while the scene
a was rendered in state s. Like the preference reward function, this
calculation results in a reward between -1 and 1.
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5.6 solving with q-learning

Q-learning is a model-free Reinforcement Learning technique to find
an optimal policy π∗ for any given finite MDP. It estimates the optimal
policy through sequential steps (resembling dynamic programming),
in which the environment is sampled and the estimate is updated
(resembling Monte-Carlo Methods). Q-learning is model-free in the
sense that it requires no knowledge on the environment’s dynamics.
Stochastic state transitions and rewards are handled without further
adaptations. It has been proven that for any finite MDP, Q-learning
will eventually converge to the optimal policy, collecting the highest
expected accumulative reward [90]. Its main drawback is that, though
computationally efficient and elegant, it tends to require a lot of ex-
perimental data to learn.

5.6.1 The Learning Step

Q-learning works by learning an action-value function Q that stores
the expected utility for taking any given action at any given state.
With each iteration, the algorithm updates the function using the fol-
lowing rule:

Q(st,at)← (1−αt)Q(st,at) +αt(rt+1+γ ·max
a
Q(st+1,a)) (11)

Where s, a and t are the state, action and reward at time t, respec-
tively. αt and γ are algorithm parameters (0 6 α,γ 6 1), that tune the
learning process.
α is called the learning rate. It is used to balance between the im-

portance of newly acquired information and older one; When α is 1

the agent will only consider new information, and when it is 0 the
agent will no longer learn. It is common practice to begin with a non-
zero learning rate and decrease along the way. We use the following
term to adjust the learning rate:

αt(st,at) =
1

1− VisitCount(st,at)
(12)

Where VisitCount(s,a) represents the number of visits of Q(s,a).
The γ parameter factors into the update the expected reward from

possible future transitions. The higher the parameter is, the more the
algorithm will consider rewards that can possibly be granted in the
future; Low parameter values will make the agent greedier, relying
more on current rewards. In our implementation, we set γ to 0.01,
primarily in light of the immediate nature of physiological change
and our long time interval ∆. We would like to avoid, for instance, the
hypothetical case where the agent decides to overly arouse occupants,
just to it can slowly have them recover in consecutive future intervals.
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5.6.2 Choosing an Action

When the agent is asked to choose the next action, it can take one
of two strategies: exploiting the knowledge it has already obtained,
or exploring for new, possibly more useful, information. To exploit
accrued knowledge, the agent should choose, in a given state s, an
action a, that maximises Q(s,a). This policy takes into account all
previous observations, and is the optimal policy once the algorithm
had converged.

The choice of an optimal exploration strategy is less definite and is
the focus of much ongoing research. For our agent we choose the ε–
greedy strategy. That is, when asked to choose an action, exploiting
knowledge with probability 1− ε, and choosing randomly from all
possible actions, otherwise. We use an exponentially decaying value
for ε, such that:

εt = ε0e
−λt (13)

Where εt is the value of ε at time t, ε0 is its initial value, and λ is
the decay constant. We set ε0 and λ to 1 and 0.001 for our agent. This
setting results in high probability for exploration during the first 100

steps.

5.7 implementation

We implemented the intelligent control agent as an add-on service
on top of the Digital Cubicle platform. Figure 35 illustrates the top-
level software design of the agent and how it interfaces with the Dig-
ital Cubicle services. The agent was implemented in Python and ex-
ecutes in a single process. It is designed to work asynchronously us-
ing Twisted [24], applying a Reactor design pattern. For the lack of
openly available software package, we implemented the Q-learning
algorithm ourselves.

There are three types of asynchronous events that the agent han-
dles:

1. Timing Events - An EpisodeTimer module uses the Twisted func-
tionality to time the smart agent. It notifies the agent when a
learning episode begins and then, until the end of the episode,
every ∆ = 5 minutes when a new decision needs to be made
about which scene to render.

2. User interactions - User interactions are sent to the agent through
a web socket from a controller on the workspace desktop. These
events ask the agent either to skip a scene or to change the ren-
dered scene to a specific one. They are handled both by the
PreferenceRewards module and the agent’s main algorithm. The
former translates the user interactions into rewards as described
in Section 5.5.
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Figure 35: Top-level design of the Intelligent control agent implementation

3. Physiological samples - Heart rate samples are streamed to the
agent from the cubicle’s Sensor Collection Service through a local
connection. The samples are Z-scored, cached and interpreted
into rewards by the PhysiologicalRewards module as described in
Section 5.5.

The events are handled through the agent’s main algorithm. The
core of algorithm is described below through a short Python code
snippet. The Qlearn module implements the Q-learning algorithm, in-
cluding the ε-greedy exploration policy and the adjustable α param-
eter. A StatesActionsManager handles state transitions and maintains
the agent’s current state and last action. Once the agent decides on
the next action to take, it applies it by sending a control command to
the SceneController service in the Digital Cubicle backend.
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def SmartAgent_advance(next_scene):

# Collect physiological and preference rewards

rewards = PreferenceRewards.collect() + \

PhysiologyRewards.collect()

from_state = StatesActionsManager.current_state()

last_action = StatesActionsManager.last_action()

to_state = StatesActionsManager.construct_next_state(

from_state,last_action)

# Learn based on the collected rewards

Qlearn.update_q(from_state, last_action, rewards, to_state)

# Advance the state only if the scene was played long enough

if EpisodeTimer.scene_exceeded_delta_threshold():

StatesActionsManager.advance_state(to_state)

# Select the next scene, unless it was selected by the user

if next_scene is None:

next_scene = Qlearn.choose_action()

# Command the workspace to transition

StatesActionsManager.update_action(next_scene)

SceneController.transition_workspace(next_scene)

5.8 evaluation method

In this section we evaluate our smart agent design through simula-
tions. We revisit the design principles outlined in Section 5.2 and wish
to confirm these are all met by the Reinforcement Learning approach
we proposed.

To anchor our simulations with real data, we apply the agent’s
algorithm to a simulated scenario, which is similar to the experimen-
tal protocol described in Section 4.1. That is, we configure our sim-
ulation to follow a sequential set of working contexts that imitates
the sequence of a test and break periods in a session. We leverage
the physiological data collected in Chapter 4 to create realistic simu-
lations of possible physiological responses by workspace occupants.
Likewise, based on participants’ qualitative feedback, we derive a set
of possible heuristics, simulating occupants’ preferences and interac-
tions.

5.8.1 Implementation

We design and implement a set of software components, allowing
simulative execution of our smart agent. Figure 36 summarises these
and illustrates how they interface with the agent modules. The com-
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Figure 36: Top-level design of the simulation implementation

ponents were designed so that the vast majority of the agent’s orig-
inal code is executed through our simulations. Their main objective
is to simulate possible environments (in the Reinforcement Learning
sense) that the agent may interact with and learn from. In our par-
ticular case, this translates into simulating the workspace occupant
physiological responses and interactions.

1. Episode Simulator
This component drives the sequential episodes, from which the
agent learns, and simulates changes in context throughout the
episodes. Its implementation defines temporal patterns, if such
exist, of context change that the agent needs to attempt to learn.
We focus our simulation on simulating working episodes, which
are similar to the sessions we have designed for the physiolog-
ical user study. Though these may not necessarily represent a
typical working session, they importantly allow us to bolster
our simulation with real data collected from human partici-
pants.

The Episode simulator simulates the time progression of the simu-
lation. It artificially times the agent, notifying it when it needs to
make new decisions, and feeding the Preference Reward module
with elapsed time within each scene. To fit the relatively short
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episode time of a session we adjust the agent’s ∆ parameter to
60 seconds and ∆threshold to 5 seconds.

With every time step the Episode simulator also determines the
occupant’s context according to how far it is into the simulated
session. To simplify the session we modify its sequence to only
include two possible contexts: test and break. We collapse each
of the segments in the original experimental design to either
one of them. We consider the waiting periods and the survey
segment as breaks and the Necker Cube test as test. To shorten
the sequence, we additionally reduce the minimal time for con-
text change to a minute (rather than every 30 minutes in the
original experiment). The aforementioned modifications result
in a simulated session, which is broken down into a sequence
of context changes as illustrated in Figure 37.

Figure 37: Sequence of contexts for a simulated session

We emphasise that the agent is unaware of the context as it is
simulated by the Episode simulator. From the agent’s perspective
the context can only manifest by proxy through the physiologi-
cal samples and occupant interactions. Through our evaluation,
we wish to see that the agent is capable of treating context as
a latent variable and learn a policy, which takes it into account.
We note that our Episode simulator changes the sequence of con-
text deterministically. An interesting improvement to our simu-
lation would be introducing some noise to changes in context
and the time intervals in which they change. Our agent should
theoretically be robust enough to handle both.

The episode simulator can execute many episodes sequentially
order of magnitudes faster than the time they would actually
take in reality. Once an episode is over it obtains the agent’s
cumulative rewards for the episode and continues to simulate
a new session from which the agent can again learn. By follow-
ing the episodes’ rewards we can identify how long it takes the
agent to converge to an optimal policy and what is the policy’s
expected reward. It also provides a powerful tool to adjust the
agent’s learning parameters, optimising them for quicker con-
vergence.

2. Physiology simulator
This component simulates a physiological signal. With every
time step of the simulation, it generates simulated physiologi-
cal samples, which follow a model of some possible occupant.
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This model is built out of a linear function, describing the oc-
cupant’s innate physiological regulation, and a pdf describing
probability of physiological changes on top of it. These are iden-
tical to the probabilistic models described in Section 4.2, which
we have widely used to analyse physiological responses. In fact
we use the models we constructed in our physiological study to
simulate 9 different workspace occupants.

With every time step the simulator determines the elapsed time
since it has last updated the physiological signal. For every
20 seconds interval within this time, it samples the pdf which
models physiological change. It additionally calculates expected
change from the occupant’s innate reaction, by plugging in the
signal’s current reading to the linear function. Both changes are
then added to the current reading to determine the next physio-
logical sample. These physiological changes are fed to the smart
agent’s PhysiologicalRewards module, where the agent translates
them into rewards.

The simulator’s pdf describing possible physiological change,
can be altered continuously during the simulation. This allows
us to update the expected changes in physiology, according to
scenes and contexts the occupant is exposed to. For example,
when the agent decides to change the rendered scene in the
workspace, say from Kites to Forest, the simulation will fetch
the occupant’s corresponding pdf function and will update the
Physiology Simulator accordingly. From that moment on, gener-
ated samples will use the new pdf, and thus will take into ac-
count the new rendered scene. Likewise, the pdf is updated
when the occupant’s context changes, say from a test to a break.

At the beginning of each episode, the physiological signal is set
to a random value between -0.5 and 1.5. This adds realistic un-
certainty about the occupant’s physiological reading when he
or she initiates the working episode. Together with the proba-
bilistic sampling of the pdf, It assures that the simulated physi-
ological signal will differ during the learning episodes. It allows
us to evaluate the agent’s ability to handle stochastic behaviour
in the physiological signals.

The Physiology Simulator is designed to support simulating any
type of physiological signal. The samples it generates are in
units of standard deviations and thus simulate physiological
trends rater than actual physiological values. In the scope of this
work, however, due to limitations in the Physiological Rewards
implementation, we only load occupants’ pdfs generated from
heart rate changes.

3. Participant Simulator
This component is designed to fully simulate a workspace occu-
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pant. It consists of three main functionalities: physiology simu-
lation, user interaction heuristics and context dependent logic.
As mentioned, occupant simulation is based on real data, col-
lected through our user study in Chapter 4. Therefore, when a
simulation begins, the participant simulator is initialised with
a Subject ID. According to the Subject ID, the Participant simu-
lator loads raw and processed data, which was previously ob-
tained from the subject, that will be relevant for the simulation.
This includes the subject’s probabilistic models of physiologi-
cal changes, Necker Cube test scores, perceptual ratings for the
scenes, etc. The data is used to guide physiology simulation and
the user interaction heuristics.

Physiology simulation is based on the Physiology Simulator de-
tailed above. The Participant Simulator is responsible to initialize
it at the beginning of each episode and update its pdf according
to changes in scene and context. The Episode Simulator updates
the Participant Simulator whenever a change in context occurs.
Likewise, the Participant Simulator is notified on any changes in
scene by the Scene Controller Service. With the scene context pair,
the Participant Simulator selects the pdf that best simulates the
study participant and updates the Physiology Simulator accord-
ingly.

The user interaction heuristics extend the Participant Simulator
describing occupant behaviours we wish to simulate. For exam-
ple, we can implement a heuristic, in which every 40 seconds the
participant randomly changes the scene in the workspace. The
heuristic may be as complex as we wish and rely on participant
data and current context – e.g. skipping a scene if its Compati-
bility rating is lower than zero with probability of 90% during
test context and a probability of 40% during breaks. We develop
three such heuristics for our agent’s evaluation and present
them in the next section. User interactions, decided upon by
the heuristics, propagate to the Preference Rewards module and
the main algorithm, where they affect learning and are applied.

5.9 results and discussion

We design three heuristics, representing different scenarios our smart
agent should handle. For each heuristic we evaluate two aspects of
the agent’s performance:

1. Convergence: Whether or not the agent converged to an opti-
mal policy, and how many episodes did it take for it to do so?

2. Correctness: What is the optimal scene sequence the agent has
learned and is it indeed the optimal one according to the under-
lying simulation models?
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Figure 38: Rewards progression throughout simulations of Heuristic-1

For this section, since the physiological study data for the Sunset
scene is incomplete, we remove it from the agent’s possible actions.
This should not affect our evaluation in any way.

5.9.1 Heuristic 1: Learning from occupant preferences

We begin by implementing a simplistic heuristic for occupant pref-
erence. In this heuristic the occupants have a single preferred scene,
which they adhere to. Whenever the agent selects a scene, which does
not match their preference, the occupants will, in 90% of the cases,
change the scene to their preferred one after 10 seconds. For this ex-
ample, we use Subject 1’s data to model physiological response and
choose Forest as the preferred scene due to its high Compatibility
rating.

Figure 38 illustrates the simulation results. The graphs indicate the
preference, physiology and total accumulated rewards that the agent
collected for each episode of the simulation. For clarity, the results
have been smoothed using a 5 sample moving average filter. We exe-
cuted the simulation multiple times with different exponential decay
parameters for the ε-greedy exploration strategy. The results from the
different executions are indicated by colours.

As expected the preference rewards converge to a horizon value
of 8.33. We report that the policy the algorithm converged to is one
where the agent consistently selects the Forest scene. These encourag-
ing results exemplify the algorithm’s capability to correctly learn the
occupant’s preferences. Our preference rewards model correctly iden-
tified the occupant’s latent preference and steered the agent towards
the theoretically optimal policy in this case.

We note that the accumulated physiological rewards (illustrated in
the middle graph) are not as dominant in the total rewards as the
preference rewards. This observation is the result of the physiology
rewards model we have defined. The probabilistic nature of the phys-
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iological signals (and accordingly their simulation) makes it unlikely
for them to win full point rewards. Changing the models’ full re-
ward values can easily modify the balance between the preference
and physiology rewards. We choose however to keep the balance as
it is, favouring occupant preferences over physiology.

In this scenario, we obtain relatively short convergence times. De-
pending on the value of the decay parameter, the agent needed as few
as 10 episodes to learn the correct optimal policy. The results demon-
strate, however, the effects and importance of the decay parameters
on convergence times. The stronger the decay is, the less time it will
take the algorithm to converge. A too-short decay, on the other hand,
will damage exploration and the agent will fail to converge to an opti-
mal policy. Whenever we present simulation results from here on, we
will present the results obtained from the simulation with the shortest
decay parameter that still converged to the optimal policy. Each sim-
ulation we run, we run multiple times with λ values of 1, 0.1, 0.001,
0.0001 and 0.00001.

5.9.2 Heuristic 2: Learning an optimal heart rate recovery sequence

Next, we develop a heuristic to evaluate the agent’s optimisation for
physiological rewards. In this heuristic, the occupants have no inter-
actions with the agent, letting physiology be the sole factor driving
the rewards model. With this heuristic, we run simulations for each
of the study participants separately. Since the underlying physiologi-
cal models, which govern the simulations, differ between participants,
we expect the agent to converge to different optimal policies – tailored
for the participant.

Table 2 summarises the optimal policy the agent converged to, for
each of the participants. For brevity, we do not present the full se-
quence, but rather extract per context the scene the agent converged
to choosing. The correctness of the optimal policy can be verified us-
ing Figure 25. A correct policy will choose the lowest probability bar
for stress development during test and the highest probability col-
umn for restoration during break. Encouragingly, all the policies the
agent converged to are the correct one.

These results demonstrate the agent’s excellent capability to per-
sonalise its actions. We note the high variability in the optimal poli-
cies among participants. For each participant, the agent succeeded in
learning the individual underlying physiological model, and adjust-
ing its actions accordingly. This is in spite of the stochastic nature of
the physiological signal, which poses a significant challenge.

The agent’s ability to learn temporal patterns within the episodes
is also well demonstrated. In all cases, the agent has successfully iden-
tified the latent sequence of context changes and modified its actions
along the sequence accordingly. As a result, we observe the agent
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Subject Test scene Break scene λ

1 Neutral Forest 0.0001

2 Forest Forest 0.0001

3 Rotch Forest 0.001

4 Rotch Kites 0.00001

5 Neutral Shibuja 0.0001

6 Rotch Forest 0.0001

7 Rotch Kites 0.00001

8 Kites Neutral 0.0001

9 Forest Kites 0.0001

Table 2: Simulation results for Heuristic 2. For each participant the table
summarises the optimal policy the agent converged to, i.e. the opti-
mal scene for each working context. λ is the ε-greedy decay param-
eter of our exploration strategy.

choosing different scenes for different contexts, even though it has no
direct knowledge about the occupant’s current context. Instead, the
agent was able to identify, by proxy, the temporal pattern in which the
physiological models change, and learn an optimal policy accounting
for it.

Figure 39 illustrates the progression of episodic physiological re-
wards during the simulation for each of the participants. For clarity,
the results are smoothed using a 150 samples moving average filter.
Interestingly, we obtain different convergence times for different par-
ticipants. For example it takes 400 episodes for the agent to converge
for Subject 3 and about 4000 episodes to converge for Subject 8. Con-
vergence for Subjects 4 and 7 is achieved outside the range of the pre-
sented graph after about 30,000 episodes. These differences appear to
be related to the differences in participant reactions among the scenes.
Referring to Figure 25, the choice of optimal scenes of Subject 3 is very
clear; For Subject 7 the scene reactions are more similar, making the
optimal scenes more difficult to identify.

We note that the horizon physiological reward differs between the
study participants. For Subject 3, for instance, the expected optimal
reward is about 4, whereas it is only 1.5 for Subject 9. According to
our rewards model, this translates for Subject 3, into a 75% probabil-
ity on average, that heart rate will decrease in any 20-second interval
of an episode; A similar probability of about 60% for heart rate re-
duction is obtained for Subject 9. These hint towards the potential
beneficial effects, that the Digital Cubicle, combined with the smart
agent, may achieve.
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Figure 39: Rewards progression throughout simulations of Heuristic-2 for
each of the study participants

5.9.3 Heuristic 3: Combining focus and stress restoration

The final heuristic evaluates the agent’s ability to combine physio-
logical optimisation with input from occupant interactions. In this
heuristic, occupants will request the agent to skip a scene after 10

seconds in a test context whenever the scene is distracting and inter-
feres with their ability to direct attention. Occupants will accept any
scene during break contexts. We take into account the Necker scores
to determine if the simulated occupant will find a scene distracting
or not. Scenes with negative Necker Z-score are considered to allow
focusing, and distracting otherwise. Like before, we ran simulations
for each of the study participants separately.

Table 3 summarises the simulations results. These indicate that the
agent has successfully converged to the correct optimal policy, for
each of the participants. The policies’ correctness can be verified using
Figure 25 and Figure 31 from the previous chapter. The optimal policy
chooses for the test context the scene with the lowest probability of
stress development, whose Necker Z-score is positive. For the break
context, the optimal policy maximises for the physiology rewards.

These results successfully demonstrate our approach’s ability to
combine multiple control objectives into our smart agent. We exem-
plify how these can be formulated and balanced through the rewards
model we implemented. In our case, we favour the occupants’ prefer-
ences over desired changes in occupants’ physiology. Our approach,
however, is flexible enough to balance the two differently and even
incorporate additional objectives with minor changes.

Figure 40 illustrates progression of the episodic preference, physio-
logical and total rewards during the simulation for each of the partic-
ipants. We note that convergence times of this heuristic are generally
longer than convergence times of the previous one. In fact, for Sub-
ject 4 the simulation did not converge for the decay constants we
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Subject Test scene Break scene λ

1 Rotch Forest 0.0001

2 Rotch Forest 0.0001

3 Rotch Forest 0.0001

4 N/A N/A 0.00001

5 Neutral Shibuja 0.001

6 Rotch Forest 0.00001

7 Neutral Kites 0.00001

8 Kites Neutral 0.001

9 Shibuja Kites 0.0001

Table 3: Simulation results for Heuristic 3. For each participant the table
summarises the optimal policy the agent converged to, i.e. the opti-
mal scene for each working context. λ is the ε-greedy decay param-
eter of our exploration strategy.

normally used. It took a simulation with λ of 10−6 for the agent to
converge to an optimal policy for her.

As with the previous heuristic, we observe different convergence
times for different participants. Convergence for participants 4, 7 and
6 is not presented in the plot’s range and was achieved after about
10000 steps. Interestingly, we see that the physiology and preference
rewards for the same participants may take different times to con-
verge. For Subject 5, for example, the preference reward converges
after about 300 steps where as the physiology reward converges only
after about 1000.

5.10 the challenge of convergence time

Our simulation results demonstrate our agent’s excellent abilities,
meeting all the design principles outlined in Section 5.2. They also
highlight, however, convergence time as its greatest weakness. In our
particular scenario, a convergence time of 4000 episodes is equiva-
lent to about 75 working days of using our system, assuming that
the working episode is continuously repeated during a full 8 hours
working days.

Convergence time in the order of 104act episodes makes it some-
what unlikely that the agent will converge to an optimal policy through
common usage. During such long periods of times changes in the oc-
cupants’ routines and even baseline physiology may occur, jeopardis-
ing the agent’s ability to converge. We note that even if the agent did
not yet converge, it still gradually improves its performance – bene-
fiting the occupant as a result. The workspace, however, will not be
utilised to its full potential.
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Figure 40: Rewards progression throughout simulations of Heuristic-3 for
each of the study participants

5.10.1 Reducing state-action space and parameter tuning

The most straightforward scheme to shorten convergence time is re-
ducing the state-action space and fine parameter tuning. We can trade
the size of the state space, thus shortening convergence, for the tem-
poral resolution we wish our agent to learn. Naturally, learning a
sequence of three two-minute contexts would be faster than learning
a more fine-grained sequence of six one-minute contexts. The algo-
rithm parameters have also been demonstrated to greatly affect con-
vergence. For particular cases, we can exhaustively search the parame-
ter space and tune the algorithm parameters for optimal convergence.
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5.10.2 Boost learning with simulation

We propose an additional scheme, in which we see great promise, to
shorten the agent convergence and improve its performance in this
regard. This scheme is not implemented in the scope of this work. It
is laid out here as a starting point for future explorations.

Assume that the agent had, for some occupant, experimental data
like the ones collected during the user study. It could then follow
the same steps, detailed throughout this chapter, to automatically ex-
ecute a simulation of its performance, anchoring the simulation with
the data it has. In this case, when the occupant is about to begin a new
episode in the workspace, the agent can come synthetically more pre-
pared. It can set its initial state to be the state after, for instance, 500

simulated episodes. If the occupant models constructed from the data
are somewhat correct, the agent is likely to significantly improve its
convergence time.

Once the occupant is done with the workspace, new data is now
available to the agent. The agent learns from it of course through the
traditional learning techniques we have previously described. How-
ever, the same data can also be utilised to update the occupant models.
For example, the pdfs for physiological changes, can be recalculated
to include the newly available data. In preparation for the next occu-
pant usage, the agent can in turn run an additional simulation using
the updated pdfs.

Formally, this approach can be regarded as model-based Reinforce-
ment Learning [49]. In model-based Reinforcement Learning the al-
gorithm attempts to additionally learn the state transition and re-
ward function, so as to simulate arbitrary amounts of experimen-
tal data. Using this data it can then approximate a solution for the
MDP in a process that can be thought of as planning through for-
ward look-ahead search. Though computationally expensive, such an
approach is expected to significantly shorten convergence time. It de-
pends strongly on the model used to learn the reward function. We
believe, that the probabilistic modelling we have developed is well
suited for this task. It captures well the occupant’s reactions and can
be easily updated with newly available data.
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C O N C L U S I O N S A N D N E X T S T E P S

Throughout this work, we have explored our vision of intelligent am-
biance in the workspace. Our exploration was split into three stages:

1. Digital Cubicle
First, we demonstrated how ambiance could be mediated with
digital media. Building the Digital Cubicle, we leveraged light-
ing, video projection and sound to dynamically manipulate the
physical characteristics of a space. A set of tools was presented,
experimenting with objective measurements as a mean to com-
pose scenes in the Digital Cubicle. These were shown to elicit
different perceptions and experiences. A flexible sensor data col-
lection infrastructure was introduced, enabling real-time data
collection, to infer occupant state and context.

We wish to build on our current design to expand our explo-
ration in the future. Through recent collaboration, we are in-
vestigating opportunities to commercially produce a second-
iteration prototype that embeds the digital components in the
furniture, resulting in one integral setup. Besides aesthetics, this
will allow producing more than a single prototype and for those
to be transported easily. Such an improvement is important
for deployment in office spaces, investigating possible effects
in real-life scenarios. We hope this will also make our proto-
type more accessible to other researchers, developing additional
physical manipulations and data collection schemes on top of it.
Likewise, we hope the library of available scenes and artistic
composition effects will grow.

2. Physiological Effects
Second, we investigated how the digital compositions affect oc-
cupant physiological responses. We presented a signal process-
ing technique to quantify stress development and restoration re-
sponses, on top of innate regulation tendencies, and in various
working contexts. Our user study indicated highly personal, yet
significantly different physiological responses per participant.
Similar trends, using an objective measure, were reported in
occupants’ capability to direct attention in the presence of the
different digital compositions. Interestingly, we also found cor-
relations between objective occupant responses (both focusing
and stress restoration) and their self-reported perception of the
space.
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These observations corroborate our hypothesis on possible phys-
iological effects of the Digital Cubicle and call for further inves-
tigation. As an immediate step, we wish to analyse the remain-
ing physiological signals we have collected, including occupant
electrodermal activity, facial expressions and head and viewing
orientations. These may not only identify other manifestations
of stress development and restorations, but also shed light on
other relevant aspects such as concentration levels and fatigue.
Moreover, by repeating our experiment with the same partic-
ipants, we intend to investigate the consistency of our obser-
vations over time. This is important to ascertain our learnings
and establish the gravity of possible longitudinal effects like ha-
bituation. In a different line of inquiry, empirical data should
also be collected in working contexts, other than just tests and
breaks (e.g. during creative thinking, or tinkering). This will
allow gaining insight into the contextual dependency of one’s
physiological responses and may lead to better characterisation
of the Digital Cubicle effects.

3. Intelligent Control
Fianlly, we proposed a framework to develop intelligent, adap-
tive control agents – leveraging Reinforcement Learning tech-
niques to bridge real-time sensor data with ambiance media-
tion. Formulating the problem and implementing a prototype
agent, we have demonstrated how agents can be designed to
foster occupant wellbeing. We also demonstrated how agents
could combine multiple objectives – heart rate recovery and
preferences – in their learning and optimisation. We evaluated
our agent through simulations, anchored by real human subject
data. These showed our agent successfully converging to correct
optimal policies, identifying latent temporal dependencies in oc-
cupant context and personalising scene selection to match indi-
vidual physiological response. For some subjects, we estimated
improvements from chance of up to 25 % in the probability of
heart rate recovery.

Motivated by these simulations we look forward to extending
our evaluation, including real human subjects. As convergence
time was identified to be a substantial limiting factor, we in-
tend to utilise our physiological simulations as a model-based
bootstrapping scheme (See 5.10). We will soon be conducting
a short user study, exposing the participants from the physio-
logical study to the optimal policies the agent has learned for
them. This will provide quick assessment of this scheme’s effi-
cacy. Furthermore, we plan to research other models for state,
actions and rewards within our framework. For instance, we
are encouraged to examine a non-sequential states model, using
sensor data rather the agent’s actions to infer occupant context.
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Likewise, we wish to experiment with a rewards model that in
which occupants can set physiological goals, rather than naively
directing physiology in a predefined direction.
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A P P E N D I X : P H Y S I O L O G I C A L S T U D Y M AT E R I A L S

a.1 cognitive task

The study participants were asked to answer a reading comprehen-
sion task during the test segment of the experimental protocol. The
following is a sample of such task.

a.1.1 Text (presented in the left of the screen)

Adaptation, the decrease in responsiveness that follows continuous stimula-
tion, is common to all sensory systems, including olfaction. With continued
exposure to chronically present ambient odours, individuals’ perception of
odour intensity is greatly reduced. Moreover, these perceptual changes can
be profound and durable. It is commonly reported that following extended
absences from the odorous environment, re-exposure may still fail to elicit
perception at the original intensity.

Most research on olfactory adaptation examines relatively transient
changes in stimulus detection or perceived intensity– rarely exceeding sev-
eral hours and often less–but because olfactory adaptation can be produced
with relatively short exposures, these durations are sufficient for investigat-
ing many parameters of the phenomenon. However, exposures to odours in
natural environments often occur over far longer periods, and the resulting
adaptations may differ qualitatively from short-term olfactory adaptation.
For example, studies show that even brief periods of odourant stimulation
produce transient reductions in receptors in the olfactory epithelium, a pro-
cess termed receptor fatigue. Prolonged odour stimulation, however, could
produce more long-lasting reductions in response, possibly involving struc-
tures higher in the central nervous system pathway.

a.1.2 Questions (presented in the right of the screen)

Select and indicate the best answer from among the five answer
choices.
According to the passage, the phenomenon of olfactory adaptation may cause
individuals who are re-exposed to an odorous environment after an extended
absence to:

1. experience a heightened perception of the odour

2. perceive the odour as being less intense than it was upon first exposure

3. return to their original level of perception of the odour
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4. exhibit a decreased tolerance for the odorous environment

5. experience the phenomenon of adaptation in other sensory

Select and indicate the best answer from among the five answer
choices.
The phrase research on olfactory adaptation appears in the middle of the pas-
sage, where it is shown boldfaced. The passage asserts which of the following
about the exposures involved in that research?

1. The exposures are of long enough duration for researchers to investi-
gate many aspects of olfactory adaptation.

2. The exposures have rarely consisted of re-exposures following extended
absences from the odorous environment.

3. The exposures are intended to reproduce the relatively transient olfac-
tory changes typical of exposures to odours in natural environments.

4. Those exposures of relatively short duration are often insufficient to
produce the phenomenon of receptor fatigue in study subjects.

5. Those exposures lasting several hours produce reductions in receptors
in the olfactory epithelium that are similar to the reductions caused by
prolonged odour stimulation.

Select and indicate the best answer from among the five answer
choices.
The phrase receptor fatigue appears near the end of the passage, where
it is shown underlined and boldfaced. The author of the passage discusses
textbfreceptor fatigue primarily in order to:

1. explain the physiological process through which long-lasting reduc-
tions in response are thought to be produced.

2. provide an example of a process that subjects would probably not expe-
rience during a prolonged period of odourant stimulation.

3. help illustrate how the information gathered from most olfactory re-
search may not be sufficient to describe the effects of extended expo-
sures to odours.

4. show how studies of short-term olfactory adaptation have only ac-
counted for the reductions in response that follow relatively brief ab-
sences from an odorous environment.

5. qualify a statement about the severity and duration of the perceptual
changes caused by exposure to chronically present ambient odours.

[CORRECT ANSWERS: 2, 1, 3]
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a.2 survey

At the end of each experimental session the study participants were
presented with the following survey. The survey was presented through
the experiment’s website and was filled electronically.

Please answer the following questions:

1. Recall one of those times when you worked hard on a project that re-
quired intense and prolonged intellectual effort. Remember how it felt.
You probably reached a point where you could tell that your ability
to work effectively had started to decline and that you needed a break.
You needed to do something during the break that would restore your
ability to work effectively on the project. Put yourself in that mind set
now and please rate, how good this setting would be to take a break
and restore your ability to work effectively on your project.

(Not very good) -2 | -1 | 0 | +1 | +2 (Very good)

2. You have just finished breakfast and have only one thing on your
agenda for the day. You have a project that you need to think about.
Thinking deeply and thoroughly about this project is your goal. Please
rate this setting on how good a place it is to accomplish your goal.

(Not very good) -2 | -1 | 0 | +1 | +2 (Very good)

3. How much do you like the setting? This is your own personal degree
of liking for the setting, and you do not have to worry about whether
you are right or wrong or whether you agree with anybody else.

(Not very much) -2 | -1 | 0 | +1 | +2 (Very much)

4. Sometimes even when you are near your office it can still feel like you
are far away from everyday thoughts and concerns. How much does
this setting provide an escape experience or a feeling of being away?

(Not very much) -2 | -1 | 0 | +1 | +2 (Very much)

5. Some settings have many interesting things that can draw your atten-
tion. How much does this setting easily and effortlessly engage your
interest? How much does it fascinate you?

(Not very much) -2 | -1 | 0 | +1 | +2 (Very much)

6. Sometimes a setting can feel like a whole world of its own. How much
does this setting feel like there is much to explore and discover in many
directions?

(Not very much) -2 | -1 | 0 | +1 | +2 (Very much)
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7. Some settings are confusing, have no organisation and have too much
going on. Please rate how chaotic and distracting this setting feels?

(Not very much) -2 | -1 | 0 | +1 | +2 (Very much)
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