
Responsive Space Environments: New Paradigms in
Blending Virtual and Physical Exploration through

Human-Robot Operations

by

Don D. Haddad
S.M., Massachusetts Institute of Technology (2018)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

©2023 Don D. Haddad All rights reserved
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis
under an open-access license.

Authored by .
Don D. Haddad

Program in Media Arts and Sciences
August 18, 2023

Certified & Accepted by .
Joseph A. Paradiso

Alexander W. Dreyfoos (1954) Professor,
Academic Head, Program in Media Arts and Sciences

2

Responsive Space Environments: New Paradigms in Blending
Virtual and Physical Exploration through

Human-Robot Operations
by

Don D. Haddad

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on August 18, 2023, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Media Arts and Sciences

Abstract

As humanity wanders further into space, the integration of robotics and virtual en-
vironments in space systems becomes increasingly pivotal, augmenting our capacity
to explore, interact, and study remote environments. This research delves into the
use cases, benefits, and challenges associated with Human-robot operations in virtual
space analog environments, proposing innovative visualizations that work in tandem
with automation to address challenges in mission planning and control, leveraging
techniques akin to video game interfaces. In the pursuit of modeling and captur-
ing the essence of distant environments, this research embarks on an investigation
of cutting-edge 3D reconstruction techniques, expertly combined with high-definition
rendering pipelines, to synthesize virtual environments sourced from real-world in-
formation and examine their role in planning and executing planetary exploration
missions. This synthesis process becomes especially critical in remote settings, like
on the Moon, Mars, and asteroids, where data transmission costs are high and effi-
ciency is paramount in space exploration.

Accordingly, this dissertation also overviews the design and analyzes the performance
of AKALL (Azure Kinect à la Luna), a software application for 3D imaging developed
during this research that underwent rigorous testing on the SSERVI Lunar regolith
testbed at NASA Ames Research Center. This software is designed to operate within
an isolated Docker container and was integrated to operate a repurposed commercial
imaging payload within Lunar Outpost’s Mobile Autonomous Prospecting Platform
(MAPP) lunar rover, an integral component of the upcoming Intuitive Machines
mission, (IM-2), slated to land on the Moon’s south pole early in 2024.

Thesis Supervisor: Joseph A. Paradiso
Title: Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences
Program in Media Arts and Sciences

3

4

This doctoral thesis has been examined by the following committee:

Prof. Joseph A. Paradiso .
Thesis Supervisor

Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences
(MIT)

Prof. Dava J. Newman. .
Project Supervisor, Thesis Committee

Apollo Program Professor of Astronautics
(MIT)

Dr. Scott W. Greenwald .
Reader, Thesis Committee

CEO of Three Space Lab, Inc.
(Founder of MIT Reality Hack)

6

Acknowledgments

This thesis springs from a shared vision that connects the experience I’ve gained work-
ing with virtual environments to space operations. It represents a cross-disciplinary
collaboration between Prof. Dava Newman and Prof. Joe Paradiso, originally ignited
by Ariel Ekblaw and the Space Exploration Initiative (SEI) at the MIT Media
Lab.

None of the endeavors detailed within would have been possible without the vital
contributions of Cody Paige, or the assistance provided by Ferrous Ward, Jessica
Todd, and Alexandra Forsey-Smerek. That also extends to members of my thesis
committee: Scott Greenwald, NASA Ames Research center scientists: Jennifer Held-
mann, Amanda Cook, the talented team at Lunar Outpost and Boston Dynamics:
Ben Brokaw, Matt Mitchel, David Robert.

To the MIT RESOURCE team and the RESPONSIVE ENVIRONMENTS
group of the MIT Media Lab, starting with the support provided by Mark Feld-
meier, Gershon Dublon, and Brian Mayton. Including friends and colleagues that
I’ve met along the way: Artem Dementyev, Irmandy Wicaksono, Jie Qi, Pragun
Goyal, Spencer Russell, Nan Zhao, VRAM, Cedric Honnet, Fangzheng Liu, Evan
Lynch, Patrick Chwalek, Sam Chin, Ishwarya Ananthabhotla, David Ramsey, Juliana
Cherston, Valentina Sumini, Clement Duhart, Devora Najjar, Nan Wei Gong, and
Philip Cherner.

I realize that my own journey through this research has been a living embodiment of
these very principles. That includes the process of crafting, refining, and testing ideas
at a distance; in many ways, my attempt to reach out across the miles that separated
me from my family and loved ones. To my family, Lida Simonides Haddad, Nina
Maria Gentile , Bruna, Ryan and Bechara Haddad, Lisa and Mark Gentile. To
Lena, Rosy, Athena Simonides and their families. To Georges, Catherine, and Alexi,
Anne-marie, Nawall, Jean, Tony Haddad and their families. To Nicolas, Odette, and
Rania Tueni and their families.

To my dear friends from MIT: Zoz, Jack Forman, Jifei Ou, Dan Oran, Ido Calman,
Alfonso Parra Rubio, Gabriela Bila, Joao Wilbert, Joost Bonsen, Arthur Petron, Za-
ckery, Basheer Tome, Ken Nakagaki, Dan Pillis, Mike Hao Jiang, Jimmy Day, Carl
Yang, Brian Tice, Tomas Vega, Cathy Fang, Pat Pataranutaporn, Abhinandan Jain,
Adam Horowitz, Sang-won Leigh.

To Professors and mentors at MIT that inspired me throughout this journey: Tod
Machover, Joi Ito, Neil Gershefield, Glorianna Davenport, Hiroshi Ishii, Pattie Maes,
Neri Oxman, Hugh Herr, Marc Reibert, Robert Morris, and Edith Ackermann. To
the MIT Dean of Architecture Hashem Sarkis, To Gaby Farhat and his family, To
Habib Haddad, and Calvin Chin. To Cynthia Solomon, Gloria Rudisch Minsky and
her family. To Prof. Ken Perlin. To my Professors and Teachers: Danielle Azar,

7

Munjid Musallam, Joseph Khalife, Chadi Nour, Zahi Nakad, Bassam Moujabber,
Thomas Voden, and Richard Guglielmino.

To my dear friends and collaborators: Stefan Unterhauser, Nicolas Saliba, Mike Aoun,
Joe Francis, Marc Farra, Mario Achkar, Maria Saade, Peter Rechdan, Elie Mahfouz,
Alan Abi Sleiman, Richy Mattar, Dante Latessa, Austin Iglesias Saragih, Elio Mas-
sih, Joseph Massih, Elias Moubarak, Georges Kanaan, Gerard Feghali, Kifah Daher,
Junior Sfeir, Renata Sabela, Christopher Safatli, and Frederick Daniel B Garzon.

Throughout the years, to those who helped me navigate the academic and administra-
tive landscapes: Amna Carreiro, Sarra Shubart, Maria Auday, Keira Horowitz, and
Linda Peterson. To the Senior House Community, (R108, R320), to Joseph Graham,
Andrew, Mike, and Rocko, and to the artificial intelligent agents that helped along
the way including GPT-4, Alexa, Bard, and Lex Fridman.

To Prof. Dava J. Newman It has been a true honor to be part of your team, thank
you for including me, and thank you for your trust.

To Prof. Joseph A. Paradiso Thank you for having faith in me, especially in those
moments when I did not have it in myself.

Thank you all.

8

To Elia & Mary & Marcelle Simonides & Antoinette Kamato

Byblos, & Beirut
Cambridge, Massachusetts

9

10

Contents

1 Introduction 21
1.1 Prelude . 21
1.2 Background and History . 22

1.2.1 Mobile Robotic Telepresence 24
1.2.2 History of NASA’s Unmanned Rovers on Mars 25
1.2.3 Extended Reality: Pioneering Work & Taxonomies 27

1.3 Related Work . 30
1.3.1 Digital Twin . 30
1.3.2 Data Visualization and Manifestation 32
1.3.3 Virtual Operations in Space Exploration 34
1.3.4 Virtual Human-Robot Interaction 36
1.3.5 Human-Robot Systems in Space Exploration 41

2 Thesis Overview 49
2.1 Prologue . 49
2.2 Research Roadmap . 50
2.3 Selected Research Publications . 54

3 Doppelbots 57
3.1 Introduction . 57

3.1.1 A Brief Overview of this Chapter 57
3.1.2 Rover Mini By Rover Robotics 58

3.2 Implementation and Design . 60
3.2.1 User Interface (UI) and User Experience (UX) 61
3.2.2 Technical Implementation . 63
3.2.3 Synthesizing the Virtual Lunar Environment 65
3.2.4 Synchronizing the Simulation 66

3.3 On Going and Future Work . 68
3.3.1 Visualizing Time Delays in Space Operations 68
3.3.2 Doppelbots and Large Language Models (LLMs) 69
3.3.3 Integration of LLMs in Space Operations 72

3.4 Conclusion . 73

11

4 Doppelspot 75
4.1 Introduction . 75

4.1.1 A Brief Overview of this Chapter 75
4.1.2 Presentation of Spot by Boston Dynamics 76

4.2 Overview of Spot’s Payloads . 78
4.2.1 LiDAR Enabled Payload . 78
4.2.2 Modular Custom Payload . 79

4.3 Analog Mission In Marblehead, MA 82
4.3.1 Description of the Designated Environment 82
4.3.2 Analysis of Test Results and Implications 83

4.4 Mobile Immersive LiDAR Telepresence 84
4.4.1 Augmented Virtuality in Space Analog Environments 84
4.4.2 Technical Implementation . 85

4.5 Doppelspot in Virtual Analog Environments 86
4.6 Conclusion . 90

5 Synthesizing Analog Environments 93
5.1 Introduction . 93

5.1.1 A Brief Overview of this Chapter 93
5.1.2 Analog Sites Selection in Svalbard, Norway 96

5.2 Operational Geology In a Virtual Environment 96
5.3 Data Collection in Svalbard . 98

5.3.1 Hardware Apparatus for Data Collection 98
5.3.2 Software Apparatus for Data Collection 104

5.4 Methodology . 105
5.5 Data Processing and 3D Reconstruction 107
5.6 Synthesizing Analog Environments 108

5.6.1 Unity’s High Definition Render Pipelines 109
5.6.2 Examination of the Level of Photorealism 112
5.6.3 Immersive Sensor Data Player 114
5.6.4 Virtual Analog Toolkit . 115

5.7 User Study . 121
5.7.1 Description of the Study . 121
5.7.2 Analysis and User Feedback 124

5.8 Conclusion . 125
5.8.1 Summary . 125
5.8.2 Discussion . 126
5.8.3 Future Work . 126

6 Azure Kinect à la Luna 129
6.1 Introduction . 129

6.1.1 A Brief Overview of this Chapter 129
6.1.2 Technical Overview of the Azure Kinect Device 133
6.1.3 Ruggedization of the Microsoft Azure Kinect 134
6.1.4 Motivation . 134

12

6.2 Concepts of Operation . 135
6.2.1 Capture Modes . 136
6.2.2 Mission Planning . 137

6.3 The AKALL Payload Software Module 137
6.3.1 Technical Implementation . 138
6.3.2 Docker Containers as Payload 139
6.3.3 System Architecture . 140
6.3.4 Modes of Operation . 141
6.3.5 Data Processing and 3D Reconstruction 144

6.4 Hardware and Software Testing Review 146
6.4.1 Testing Procedures . 146
6.4.2 ConOps Analysis and Results 150
6.4.3 Software Testing: Analysis and Results 151

6.5 Conclusion and Future Work . 161
6.5.1 ".ND3": File Format for RGBD Imaging 161
6.5.2 Summary . 161
6.5.3 IM-2 Mission Updates . 162
6.5.4 Future Work . 165
6.5.5 Acknowledgment . 165

7 Conclusion 167
7.1 Summary . 167
7.2 Discussion . 170

A Appendix A: Hardware 173

B Appendix B: Supporting Material 175
B.1 Chapter 4: Cameras Assessment . 176
B.2 Chapter 4: Inverse Kinematics Procedural Animation Pseudocode . . 176
B.3 Chapter 5: Sensor Node Specifications 178
B.4 Chapter 5: 3D Reconstruction with Open3D 178
B.5 Chapter 6: Testing Procedures and Results 179

C Appendix C: Code 181
C.1 Unity Projects Code Base . 181
C.2 Chapter 3: Rover Mini Configuration 182
C.3 Chapter 5: Sensor Node . 184
C.4 Chapter 6: AKALL Code Base . 186

D Appendix D: Mysc 207
D.1 Chapter 6: Filename Terminology . 207
D.2 Chapter 6: Short AKALL Messages (All) 208
D.3 Chapter 6: Long AKALL Messages (Random) 209

13

14

List of Figures

1-1 The Timeless Appeal of 2001: A Space Odyssey 21
1-2 Holographic Visualization of Real Lunar Terrain in Unity 22
1-3 Exploring the Moon with NASA Moon Trek 23
1-4 Metamobility - Concept by Hyundai and Boston Dynamics 24
1-5 Generations of Mars Rovers . 26
1-6 The Axes of Mediated Reality . 28
1-7 The Rise of Digital Twins in Aerospace Engineering 30
1-8 Doppelmarsh: Exploring Environments through Space and Time . . . 31
1-9 Doppelmarsh’s Virtual Explorer . 32
1-10 Mission ISS: International Space Station in VR 33
1-11 NASA’s Virtual Interface Environment Workstation 34
1-12 Project OnSight by NASA / HoloLens 35
1-13 Juno: New Origins: A 3D Aerospace Sandbox Simulation 37
1-14 Enhancing Manufacturing with HoloLens 2 for Artemis 38
1-15 Augmented Reality Assembly of Orion Crew Seats 38
1-16 Spacecraft AR: Exploring NASA’s Rovers in Augmented Reality . . . 39
1-17 FlightGoggles Photogrammetry Based Simulator 40
1-18 Serpent Robot by NASA JPL to Explore Enceladus 41
1-19 Networked Belief-aware Perceptual Autonomy (NeBula) 47

2-1 Venn Diagram Illustrating the Chapters Overview 50
2-2 Thesis Roadmap in a Chronological Tree Graph Format 53

3-1 Rover Mini’s Conceptual Designs for Custom Payloads 58
3-2 Selected 3D Printed Custom Payload for the Rover Mini 60
3-3 Doppelbot in Action within the Virtual Lunar Environments 61
3-4 Real-Time Strategy Inspired User Interface 62
3-5 Dopplebot’s Multiple Camera Perspectives 63
3-6 Waypoints Based Navigation System 64
3-7 Lunar Environment Assets from The Unity Store 65
3-8 Tunneling Robotic Information through Virtual Environments 67
3-9 Conceptual Time Induced Latency Representation 69
3-10 Conceptual Time Induced Latency Color Codes 70

4-1 Spot: Advanced Robotic Quadruped 76
4-2 Spot API - System Architecture Diagram 77

15

4-3 Enhanced Teleoperation with the Spot Android App 77
4-4 Spot Enhanced Autonomy Payload (EAP) 79
4-5 Spot Recorded Tour on MIT Campus 80
4-6 Spot with Custom MIT RESOURCE Payload System 81
4-7 Immersive LiDAR and Video Mobile Teleoperation 84
4-8 Procedural Animation with Inverse Kinematics 87
4-9 Spot in Virtual Analog Environments 89
4-10 Spot’s Panoramic View: A 360° Perspective 90

5-1 Simulating Mars: Testing Rover Capabilities in Martian-like Terrain . 94
5-2 Satellite Image of Chosen Analog Sites in Svalbard, Norway 95
5-3 Advanced Techniques to Synthesizing Virtual Environments 97
5-4 Unmanned Vehicle Collaboration for Data Collection 98
5-5 Data Collection in Svalbard, Norway 99
5-6 Environmental Sensor Node based of Arduino MKR 1010 100
5-7 Sensor Data: Node 1 on Site 1 and Node 1 Site 2 101
5-8 Sensor Data: Node 2 and 3 on Site 1 102
5-9 Sensor Data: Node 2 and 3 on Site 4 103
5-10 3D Reconstruction and Optimisation Inspected on MeshLab 104
5-11 Aerial Imaging and Detailed Site Study of Site 2 105
5-12 Photogrammetry with Metashape by Agisoft 107
5-13 Blending Photogrammetry, HDRP, and High-Resolution Assets 110
5-14 Immersive Sensor Data Player . 114
5-15 Mars to Earth Filter Tool . 116
5-16 Immersive Measurements Tool . 117
5-17 Earth to Mars Filter Tool . 118
5-18 Immersive Spotlight Tool . 119
5-19 Desktop Navigation Menu . 120
5-20 VR-based Application and User Study Manual 122
5-21 World Clouds Generated from User Study 123
5-22 ’Possible Actions’ Study Results on a Plot 124
5-23 ’Self-Location’ Study Results on a Plot 124

6-1 NASA Lunar Trek at the South Pole 130
6-2 Lunar Outpost’s Rover with the AKALL Payload 132
6-3 Microsoft Azure Kinect Internal Hardware 133
6-4 Lunar Outpost Rover: Various Perspectives 134
6-5 System Architecture Diagrams of the AKALL payload 140
6-6 AKALL Short Capture Sequence . 142
6-7 AKALL Long Capture Sequence . 143
6-8 AKALL Testing in a Interactive REPL Console 143
6-9 Azure Kinect Viewer Software (K4aviewer) 144
6-10 NASA Ames Research Center SSERVI Testbeds 145
6-11 Testing the Azure Kinect at NASA Ames Research Center 149
6-12 3D Reconstruction of SSERVI Testbed 150

16

6-13 Close-up View of the Textured Mesh 151
6-14 3D Reconstruction with Various Lighting Conditions 153
6-15 3D Printed Astronaut Boot Soles at SSERVI Lunar Testbed 153
6-16 File Size Comparison of K4AV, AKALL, and OPEN3D (Bed Rock) . 154
6-17 File Size Comparison of K4AV, AKALL, and OPEN3D (Bed Rock) . 155
6-18 File Size Comparison of K4AV, AKALL, and OPEN3D (Crater) . . . 156
6-19 File Size Comparison of K4AV, AKALL, and OPEN3D (Crater) . . . 157
6-20 File Size Comparison of K4AV, AKALL, and OPEN3D (Debris Flow) 158
6-21 File Size Comparison of K4AV, AKALL, and OPEN3D (Little Rock) 159
6-22 File Size Comparison of AKALL (.nd3) and OPEN3D (.ply) 160
6-23 MIT’s Lunar Payloads - Forbes . 163

A-1 Environmental Sensing Arduino Shield Schematic 174

B-1 Environmental Sensor Node based of Arduino MKR 1010 178

17

18

List of Tables

B.1 Spot Custom Cameras: File Types and Compression 176
B.2 Spot custom Cameras: FoV and Range 176
B.3 Spot Custom Cameras: Type and Resolution 176
B.4 Sensor Node Technical Specs . 178
B.5 Solar Simulation Experimental Setup Details 179
B.6 AKALL: Power Draw Requirements 179
B.7 AKALL: Power and Data Rates . 179
B.8 AKALL: Depth Modes and Specifications 179
B.9 Ruggedization of the Microsoft Azure Kinect 180

19

20

Chapter 1

Introduction

1.1 Prelude

Figure 1-1: A Pan Am shuttle prepares to dock at Space Station V in this timeless scene
from 2001: A Space Odyssey [1]. Image courtesy: MGM/Stanley Kubrick Productions.

In the grand cosmos of space exploration, a wondrous interplay unfolds between hu-
mankind and machines. A symbiotic partnership, ever-evolving and burgeoning in
significance, casts its radiant glow upon the horizon of future missions. Behold the
awe-inspiring successes of NASA’s storied history, a testament to the harmonious
dance of human and machine. From distant celestial realms, like the enigmatic Mars,
robotic systems emerge as beacons of ingenuity, guiding our ventures into the un-
known. In the pages of this thesis, a voyage of concepts related to space operations
commences, uncovering the profound connection of Human-robot interactions amidst
the cosmic tapestry of space exploration.

21

Figure 1-2: An Interactive Lunar Terrain Visualization I developed in 2019 in collaboration
with Cody Paige [2]: This application modifies a holographic shader in the Unity game engine
to render lunar terrains from real lunar data gathered from NASA Moon Trek [3], with
elevation depicted by rings.

This thesis and research hope to shed some light into the striking significance of
Human-robot interactions and operations in the context of space exploration through
novel applications. A central theme in this dissertation entails leveraging Human-
robot collaboration to capturing data from an environment, synthesizing the collected
information, and crafting immersive virtual landscapes for scientific research. Upon
acquiring such a virtual environment, a realm of exciting possibilities emerges, al-
lowing additional robots and humans to inhabit and learn within this simulation,
propelled by fragments of reality. This profound synergy of Human-robot and virtual
world synthesis, intricately woven within a continuous feedback loop, could poten-
tially evolve into a living model that blends real and virtual scenes, memories, and
ultimately discoveries.

The subsequent sections of this chapter delve into the related work pertinent to this
thesis, accompanied by a selection of historical backdrop in space exploration and
robotic advancements.

1.2 Background and History

Space exploration, a pursuit that has stirred human imagination and ambition for
centuries, stands at a critical juncture. The exponential growth in costs, coupled
with technological limitations, has prompted the need for innovative approaches to
both manned and unmanned missions. In a thought-provoking analysis by Marvin
Minsky in 1990 [4], he pointed to the challenges faced by the United States in the
design and implementation of space stations, emphasizing the need for a third al-
ternative that goes beyond traditional paradigms. His words still resonate today, as
the global community grapples with designing practical, cost-effective, and sustain-
able space missions. A central consideration in this context is the principle of in
situ resource utilization (ISRU) [5], which represents a transformative approach to
space exploration. ISRU is identified as a key milestone, as it would enable human

22

Figure 1-3: Exploring the Moon with NASA Moon Trek [3]: Image A displays the Apollo 15
Metric Cam DEM, featuring color-enhanced hills shading. Image B reveals a high-resolution
rendering of a scanned lunar area, providing detailed lunar exploration capabilities through
the user-friendly NASA web portal. Image courtesy: NASA Trek.

lunar exploration and potentially support a lunar economy, facilitating deep-space
exploration. To ensure sustained ISRU missions, Human-computer interaction (HCI)
needs to play a central role in mission planning. By treating machines as collabora-
tion entities, cross-discipline communication can be improved, real-time and delayed
decision-making processes can be enhanced, task loads can be reduced, and flexibility
in spatiotemporal planning can be achieved [6, 7].

The Artemis III Science Definition Team (SDT) report highlights the significant bene-
fits of real-time, and delayed, transmission of data from science instruments, allowing
science support teams to provide feedback to the crew and enabling tactical decision-
making based on processed data [8]. Virtual Reality (VR) has been suggested as a
potential tool to address these requirements. The MIT RESOURCE team. (Section
2.1), focuses on addressing ISRU needs through a structured program that connects
science and exploration [9].

The MIT RESOURCE specifically concentrates on optimizing Human-robot interac-
tion for resource prospecting missions and lunar ISRU. The team has made initial
progress in developing the virtual Mission Simulation System (vMSS) to support
these efforts [10]. Creating a three-dimensional map of the lunar surface holds the
potential to serve as a basis for analysis tool development and establish an in-situ
scale reference system. Existing tools developed by NASA such as Moon Trek [3],
(Figure 1-3), and LROC QuickMap allow users to draw traverse paths [11], calculate
distances, elevations, sun angles, and overlay orbital data. However, these tools lack
the necessary level of detail required for in-situ geological analysis, which demands
higher-resolution depth data than what is available through orbital data alone.

23

Figure 1-4: “By connecting robots to the metaverse, we will be able to move freely between
both real world and virtual realities [14]. Image courtesy: Hyundai.

1.2.1 Mobile Robotic Telepresence

In his pioneering paper on Telepresence [12], Marvin Minsky talks about the feasibility
of a remote controlled economy by the twenty first century [13]. A few decades later
now, we are closer than ever. Most recently, Hyundai Motor has branched its inter-
est on advancing robotics and telepresence by acquiring Boston Dynamics, therefore,
through a synergistic combination between VR technologies and robotics, reveals a
new concept called “Metamobility” [14]. Ultimately, this framework intends to allow
people to break through the physical boundaries of movement across space and time,
where robots, acting as middleware agents, (Figure 1-4), help bridge the gap between
real and virtual experiences. When not under the effects of this “digital possession”,
the robots can behave in their normal idle state, or by a pre-configured state, where
they essentially become Non-player characters (NPC).

The field of mobile robotic telepresence is rapidly expanding, with both commercial
systems and research efforts emerging. The related work section throughout this
chapter investigates the use of telepresence and robotics in certain applications, par-
ticularly focusing on mobile robotic telepresence (MRP) systems [15]. Telepresence,
as a concept, revolves around the sense of being present in another environment, and
robotic telepresence takes this a step further by enabling remote connection to a dis-
tant location while also allowing physical movement and actuation in that location.
MRP systems specifically concentrate on enabling social interaction through video
conferencing capabilities, coupled with the ability to move and steer the robot to dif-
ferent locations. These systems typically consist of an LCD screen, a web camera, a
microphone, and speakers, facilitating communication between two parties. The user
operating the MRP system remotely can navigate the robot’s environment, effectively

24

becoming embodied in the system and interacting with individuals on-site. The field
of mobile robotic telepresence is rapidly expanding, with both commercial systems
and research efforts emerging [16].

1.2.2 History of NASA’s Unmanned Rovers on Mars

NASA has successfully deployed a series of rovers, (Figure 1-5), to explore and tra-
verse the enigmatic terrain of the red planet. Rovers play a crucial role in capturing
images, conducting experiments, and investigating the mysteries that long shrouded
Mars [17]. Unlike landers that remain stationary at their landing sites, rovers possess
the ability to move and actively explore diverse areas. Since the inaugural mission
in 1996, NASA has impressively landed a total of six rovers, the latest one being the
Perseverance rover that landed on February 18, 2021 on Mars [18], with two of them
still operational today. Each of these missions serves various objectives, but they
share a common goal of unraveling the potential for ancient environments conducive
to life [19], including the search for traces of liquid water in Mars’ past.

As time progresses, these rovers continue to advance, equipped with an array of
cutting-edge instruments that enable comprehensive exploration of the Martian land-
scape. The progression of NASA’s Mars rovers, spanned over the last few decades,
marks an intriguing journey filled with remarkable discoveries and invaluable insights.
The first foray into Martian exploration with rovers began with the Pathfinder mis-
sion, which successfully delivered the Sojourner rover to the red planet’s surface in
July 1997 [20]. Sojourner, equipped with an x-ray spectrometer and multiple cam-
eras, landed at Ares Vallis using airbags to cushion its descent [21]. The rover’s initial
images unveiled rounded pebbles and cobbles, providing groundbreaking evidence of
the presence of stable liquid water in Mars’ history. Sojourner’s mission surpassed its
intended duration of one week, persisting for several months until September 1997,
although it remains the shortest-lived rover mission to date [22].

The subsequent milestone in Martian exploration came with the Mars Exploration
Rovers (MERs) Spirit and Opportunity, launched in 2004. These two rovers em-
barked on a joint mission, each touching down on opposite sides of Mars at Gusev
Crater and Meridiani Planum, respectively [23]. Similar to the Pathfinder mission,
Spirit and Opportunity relied on airbags to cushion their landings. Equipped with
cameras, various spectrometers, rock abrasion tools, and magnet arrays, these rovers
aimed to investigate the presence of water and better understand Mars’ climate. The
discoveries made by Spirit and Opportunity provided compelling evidence suggesting
the possibility of past Martian life [24]. The detection of clay minerals, indicative of
neutral pH waters, and hematite, a mineral associated with water, offered tantalizing
clues. Additionally, the presence of jarosite, a mineral formed in acidic water, hinted
at the potential for more extreme forms of life. Spirit operated for over six years,
while Opportunity surpassed expectations, continuing its mission until 2018 when a
dust storm led to a loss of communication with Earth [25].

25

Figure 1-5: History of Mars Roversa: A Comparison in Size and Evolution. This captivat-
ing image showcases three generations of Mars rovers at NASA’s Jet Propulsion Laboratory,
Pasadena, CA. The flight spare of the pioneering Mars rover, Sojourner, landed on Mars
in 1997. On the left is a Mars Exploration Rover Project test rover, a sibling to Spirit and
Opportunity, which reached Mars in 2004. Lastly, on the right stands a Mars Science Labo-
ratory test rover, equivalent in size to the remarkable Curiosity rover.
Image courtesy: NASA/JPL-Caltech.

abmsis.org/history-of-nasa-mars-rovers

The Curiosity rover, which landed in 2012, at the time was the most advanced rover to
ever explore Mars. It was equipped with a suite of instruments that allow it to conduct
a wide range of scientific investigations, including the search for organic molecules,
which are essential for life [26]. Curiosity has so far made some remarkable discoveries,
including evidence that Mars once had a much more hospitable environment than it
does today. Curiosity’s landing in Gale Crater differed from previous rovers, as it uti-
lized a parachute to slow its descent and facilitate Sky Crane landing [27]. Equipped
with an impressive suite of instruments, including cameras, spectrometers, radiation
detectors, and environmental and atmospheric sensors, Curiosity embarked on a mis-
sion to uncover the geological and chemical history of the region. One of its notable
discoveries involved the Sample Analysis at Mars (SAM) instrument, which detected
organic carbon in rocks from Mount Sharp [28], a prominent mountain within Gale
Crater. Moreover, radiation detectors on board highlighted the potential health risks
posed by galactic cosmic rays and solar energy particles to future astronauts. Curios-
ity remains operational, currently traversing from a clay-rich region to a sulfate-rich
region on Mount Sharp [25].

The latest addition to NASA’s Martian fleet is the Perseverance rover, launched
in 2020 and successfully touching down on Mars in February 2021. Perseverance’s
mission is accompanied by a groundbreaking exploration device, a helicopter named
Ingenuity. Additionally, Perseverance initiates the process of collecting and storing

26

https://bmsis.org/history-of-nasa-mars-rovers/

samples of Martian rocks for potential return to Earth—an unprecedented endeavor
that could yield invaluable scientific insights. The rover carries a suite of cutting-
edge instruments, such as the Mars Environmental Dynamics Analyzer (MEDA) [29]
for measuring weather patterns, a ground-penetrating radar called the Radar Im-
ager for the Mars Subsurface Experiment (RIMSE) [30], and the Scanning Habitable
Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC)
instrument for identifying organics and biosignatures [31]. Notably, Perseverance is
equipped with the Mars Oxygen ISRU Experiment, known as MOXIE [32], a unique
instrument designed to produce oxygen from the carbon dioxide present in Mars’
atmosphere. With an original mission length of one Mars year, equivalent to ap-
proximately two Earth years, Perseverance holds great promise for groundbreaking
discoveries yet to come [33].

The Mars rovers have made an outstanding contribution to our understanding of the
red planet. They have provided us with a wealth of data and images that have helped
us to better understand Mars’ past, present, and future. The discoveries made by
these rovers have inspired and motivated scientists and the public alike, and they have
helped to pave the way for future human exploration of Mars. Despite the remarkable
strides made in Martian exploration, there is still much to learn about the history of
Mars and its potential for supporting life. Rovers continue to be vital technologies,
allowing us to gather crucial information about extraterrestrial objects that remain
beyond our physical reach [25].

1.2.3 Extended Reality: Pioneering Work & Taxonomies

In 1968, Turing Award recipient Ivan Sutherland, known for inventing the Sketch-
pad [34] (a computer program built in 1963 at MIT Lincoln Lab that pioneered the
field of Human-computer interaction and ran on the Lincoln TX-2 [35]), and his stu-
dent Bob Sproull, created the ultimate display at Harvard University. This creation
was the first Head Mounted Display that could be wired to a computer, not just a
camera, marking a significant advancement in the field [36]. Following, In 1969 My-
ron Krueger, computer graphics artist and pioneer, developed a series of experiences
which he termed Artificial Reality in which he developed computer-generated envi-
ronments that responded to their participants [37]. The projects named Glowflow,
Metaplay, and Psychic Space were progressions in this research, which ultimately led
to the development of the Videoplace [38] technology. This technology enabled peo-
ple to communicate with each other in a responsive computer-generated environment
despite being miles apart. Even after all of this research and development, there still
wasn’t an all-encompassing term to describe the field. This all changed in 1987 when
Jaron Lanier, founder of the visual programming lab (VPL), coined the term Virtual
Reality (VR) [39]. Through his company VPL research, and along with other key
players such as Tom Zimmerman, Jaron has developed a range of Virtual Reality add-
ons including the Dataglove, and the EyePhone [40] Head Mounted Display, (Figure
1-11). VPL research was the first company to sell VR goggles and gloves, albeit with
a nifty price tag. In parallel, NASA, with the help of Crystal River Engineering,

27

Figure 1-6: The Axes of Mediated Reality [47].

created Project View: a VR simulation used to train astronauts [41]. View looks
recognizable as a modern example of VR and features gloves for fine simulation of
touch interaction. Interestingly, the technology in these gloves lead directly to the
creation of the Nintendo Power Glove, originally developed for gaming. In modern
academia, Computer Mediated Reality (CMR) highlights the role of the computer
in generating, synthesizing or editing the user’s reality. Steve Mann was the first to
propose the term, as well as a series of taxonomies that he placed on a continuum
[42]. Augmented Reality, Mixed Reality and Virtual Reality – presented by the dif-
ferent modern Head Mounted Displays (HMDs) and goggles – provide experiences
within the reality-virtuality-continuum, ranging from Augmented Reality (AR) to
Augmented Virtuality (AV) [43, 44]. In 1994, Paul Milgram and Fumio Kishino pro-
posed the taxonomy Mixed Reality [45], distinguishing it from both Virtual Reality
and Augmented Reality, merging the axes of Reality and Virtuality all together, al-
lowing virtual objects to co-exist within the physical environment [46].

Steven Feiner defines Augmented Reality as displays that add virtual information
to a user’s sensory perception [48]. In contrast with this nomenclature, Ken Perlin
considers anything that mediates perception as just part of our reality. For instance,
Ken Perlin and his students have been working with VR headsets to prototype the
next generation AR interactions [49]. As these fields are constantly blending into one
another, it would be really difficult to distinguish between their “types”. In other
terms, whether augmented, virtual, extended, diminished or mixed; what we experi-
ence remains part of our own reality. Moreover, Diminished Reality introduces the
concept of removing elements from any of these given realities presented in the con-

28

tinuum [50]. Figure 1-6 expands on that topic with the addition of the modulation
axis, essentially adding a new dimension to the virtual continuum [45].

Modulation is the process of varying one or more properties of an environment, or a
scene, presented to the perceiver, such as subtracting, adding, or altering elements of
their reality [51, 47].

• R: In the mediated reality framework, unaltered reality is referred to as the ‘real
environment’. It is the baseline from which the horizontal virtuality axis, and
vertical modulation axis extend.

• AR: First along the virtuality axis is Augmented Reality (AR). AR can be
understood as primarily the real environment with some virtual information or
computer generated imagery overlaid over the user’s view. This can be done
either through a screen interface or see-through Head Mounted Display.

• AV: Next on the virtuality axis is Augmented Virtuality (AV). As opposed to
AR where computer generated graphics are superimposed onto a mostly real
environment, AV enhances a mainly virtual environment with some aspects or
elements of the real world.

• VR: Virtual reality (VR), last on the virtuality axis, is a completely artificial,
computer-generated environment. This emulation typically requires the use of
a Head Mounted Display, such as an Oculus Rift or HTC Vive, to fully immerse
the user.

• MfR: First along the modulation axis is modified reality (MfR), where the user’s
perception is altered through the filtering and modification of real elements.

• DR: Next along the modulation axis is diminished reality (DR), where technol-
ogy is used to hide or remove real elements from the users’ perception. Similar
to removing an object from a photo in Photoshop but with a real time-Head
Mounted Display.

• SDR: At the extreme of the modulation axis is severely diminished reality
(SDR), where the entirety of the real environment is removed. This type of
reality, though confusing, essentially results in a form of sensory deprivation.

29

1.3 Related Work

1.3.1 Digital Twin

The concept of a Digital Twin (DT) was first conceived in the 1960s at NASA as a
“living model” of the Apollo mission. As a countermeasure taken to prevent future
disasters such as the Apollo 13’s oxygen tank explosion [52] and subsequent dam-
age to the main engine, NASA employed multiple simulators to evaluate the failure
and extended a physical model of the vehicle to include digital components [53]. By
definition a digital twin is a virtual replica of a physical object or system that is
updated in real time with data from the real-world object. It is used to monitor and
improve the performance of the physical object or system. This is the well-grounded
definition of the digital twin amongst engineering systems, nevertheless, this con-
cept has wider ramifications that extends to multiple fields such as healthcare [54],
aerospace [55], architecture [56], monitoring and art [57]. Moreover, a digital twin is
a virtual representation of a physical object or system, (Figure 1-7). It encompasses
several disciplines, such as mathematical modeling and statistics, real-time sensing
and actuation, and 3D modeling and data visualization. In other words, digital twins
abstract the properties of real-world objects or systems and map them to a virtual
space, enabling monitoring [58], predicting [59], and decision-making [60], thus offer-
ing valuable capabilities in various domains. Digital twins can be utilized to enhance
the performance of physical objects or systems by providing valuable insights into
their behavior [61]. Through creating a virtual representation of their real-world
counterparts, they enable continuous monitoring and analysis, leading to informed
optimizations and refinements.

Figure 1-7: Digital Twin tech-
nologies gained popularity in 2017
within aerospace engineering [62].
Companies and educators create a
digital model, in this case a model of
an aircraft engine, to monitor and
troubleshoot problems with the real
engine.

Image courtesy: GE.

Additionally, digital twins can be programmed to have predictive capabilities, en-
abling the anticipation of future behavior in physical objects or systems. Through
data analysis and modeling, potential issues or inefficiencies can be identified, en-
abling proactive measures to be taken [63]. Lastly, digital twins can be leveraged
to facilitate decision-making processes concerning physical objects or systems. By
simulating different scenarios and evaluating their outcomes, stakeholders can make
informed choices based on accurate and up-to-date information provided by the digi-
tal twin [64]. Overall, digital twins serve as powerful tools for improving performance,

30

predicting behavior, and supporting decision-making in a wide range of applications.
In 2012, NASA revisited the concept of digital twins, defining it as a multiphysics,
multiscale, probabilistic, ultra-fidelity simulation that reflects the state of a corre-
sponding twin in a timely manner based on historical data, real-time sensor data,
and physical models [65]. The digital twin is a virtual representation of a physical
object or system. It can be used to monitor and control the physical object, as well
as to simulate different scenarios.

In the Fourth Industrial Revolution, also known as Industry 4.0, digital twins will
play an increasingly important role in the development and deployment of new tech-
nologies. They will contribute in improving the efficiency and productivity of man-
ufacturing processes, and to create new products and services [66]. Digital twins
of high-fidelity simulations of actual Unmanned Vehicles (UVs) such as rovers and
robots are rapidly becoming indispensable tools for Lunar and Martian surface ex-
ploration [67]. They offer a secure, efficient, and economically viable platform for
testing various mission scenarios, assessing equipment performance, and strategizing
responses to potential challenges. This is achieved without incurring the risks inher-
ent in physical space travel, significantly increasing the breadth of scenarios that can
be examined. Beyond their value for mission planning, digital twin environments also
play a seminal role in astronaut training [68].

These complex simulations provide a powerful platform for visualizing the complexi-
ties of extraterrestrial environments and familiarizing trainees with the systems they
will be operating. By reproducing the challenges that await in these uncharted land-
scapes, digital twins contribute significantly to the development of practical skills and
preparedness for real-life space missions [61].

Figure 1-8: Doppelmarsh, a virtual counterpart of a real marsh in Plymouth, Mas-
sachusetts. Representing sensor network data by constructing rich virtual environments to
explore vibrant landscapes with elements driven from real-time and historical data [69].

31

Figure 1-9: Doppelmarsh’s cockpit VR browser serves as a remote monitoring vehicle for
sensor network data. By toggling on the "virtual lens", known as SensorVision, it subtracts
the texture from the environment, allowing a focused view on the data visualization [69].

1.3.2 Data Visualization and Manifestation

The convergence of ubiquitous sensing and the Internet of Things, through abstrac-
tion has seamlessly infused these technologies into the fabric of everyday life [70].
This transformative trend is not limited to terrestrial applications alone; a promising
direction of research indicates that ubiquitous sensing is also converging into space
operations and shaping the future of space habitats and everyday life in orbit [71].
Through pairing these digital twin models with their physical counterparts mediated
by sensors and actuators, in real-time, a whole paradigm of Cross-Reality (XR) in-
teractions was born [72], polarizing fields such as architecture [73], monitoring [74],
healthcare [75], and presence [76] to name a few.

The representation of sensor networks data has evolved beyond traditional infor-
mation visualizations and monitoring platforms through the integration of modern
video-game engines, cutting-edge computer graphics techniques, combined with low
power sensing systems, to drive virtual environments with information harvested from
the real-world [77]. Since 2009, the Responsive Environments group of the MIT Me-
dia Lab has been widely exploring, and pioneering, the interconnection of human
perception with blending both real and virtual environments [78]. Coupling the hu-
man senses with sensors, all around us, enables a state of superposition amongst one
another in both local and remote environments that we can physically or virtually
inhabit [79]. These newly acquired “cybersensations“ augmented by the physical af-
fordances of these systems, extending human perception beyond its spatiotemporal
limitations, and therefore introduce new sensory modalities [80].

Internet of Things (IOT) devices are the fundamental building blocks that serve to
empower the underlying infrastructure where sub-systems come into play, overseeing
remote sensing and actuation on a large scale in both indoor and outdoor environ-

32

ments, (as presented in a sensory landscape [81]). For instance, the project HearThere
by the group embodies this concept of distributed perception. This technology is de-
signed to enhance users’ auditory abilities within a given environment [82]. It achieves
this by leveraging a network of microphones and utilizing a pair of bone conduction
headphones that includes an inertial measurement unit (IMU) to also measure head
orientation. Through this innovative setup, HearThere can unravel several modal-
ities, effectively expanding the users’ hearing perception and immersing them in a
rich landscape of sound. This is achieved through a careful mixing of real-time or
cached microphone audio signals, providing options for focused remote hearing, noise
cancellation, and even granting access to "chronosonic" bubbles, which enable the
user to experience sonic journeys through both space and time [83].

In the realm of virtual environments, there are three main categories: fictional, data-
driven, and a hybrid of both. Doppellab [84], the Media Lab’s Digital Twin, and
Doppelmarsh, (Figures 1-8 and 1-9), located at Tidmarsh Wildlife Sanctuary, ex-
emplify this concept. Both projects seamlessly blend elements of the physical en-
vironment, utilizing the powerful Unity game engine to render realistic representa-
tions. Moreover, they offer users access to a diverse range of sensor data through
immersive sonifications and visualizations, comprising a combination of real-time and
cached information. This synthesis of real-world data and virtual elements allows
for a multi-modal and immersive exploration through an enriching experience within
dynamic digital landscapes [85]. Virtual environments serve as a prosthetic for the
user’s imagination, offering an array of visualizations that leverage humans’ natural
ability to interpret sensory cues in the physical world. A striking example of this can
be observed in Doppelmarsh, where the virtual marsh accurately mirrors the real-time
weather conditions on the physical site. Just as prosthesis enhance and extend phys-
ical capabilities, virtual environments enrich and amplify the imaginative capacities
of users, providing them with a captivating realm to explore and interact with [69].

Figure 1-10: Mission ISS [86] - An immersive VR exploration of the International Space
Station (ISS) running on modern VR headsets.

33

1.3.3 Virtual Operations in Space Exploration

Figure 1-11: Pioneering the realm
of Virtual Reality, NASA Ames, in
collaboration with VPL Research, Inc.,
unveiled the Virtual Interface Environ-
ment Workstation (VIEW) in 1990. The
stereoscopic head-mounted display system
allowed users to immerse themselves in
computer-generated or real environments
captured from remote video cameras. The
DataGlove, adorned with fiber optic cables
and sensors [40], faithfully translated
finger movements into the virtual world,
enabling users to interact with computer-
generated objects.

Image courtesy: NASA / VPL.

Virtual environments and digital presence bring about a radical transformation in the
space exploration landscape. They allow for the convergence of physical and digital
worlds [87], akin to digital twins, enabling detailed and dynamic replication of actual
environments and scenarios. These digital replicas, driven by real-world information,
have long provided an immersive, adaptive, and realistic platform for testing, training,
and planning, augmenting old practices in space exploration simulators. The video
game industry has long been influenced by space themes and science fiction. In par-
ticular, the Real-Time Strategy (RTS) and space simulator genres that emphasize on
a set of unique user interactions and interfaces that inspire Human-robot Interaction
(HRI). Chapter 3 in this thesis, Doppelbots, introduces several of these mechanics and
modalities as a concept to be integrated into rover control systems to allow for more
engaging navigation in simulations. This development, alongside the use of leading
game development platforms such as the Unity and Unreal game engines, opens up
new avenues for enhancing the realism while preserving the immersive aspect of vir-
tual space exploration.

Virtual environments are starting to play a crucial role in the realm of space ex-
ploration, offering immense potential for remote space exploration and other space-
related activities. These simulated digital realms possess distinctive characteristics
that enable immersive experiences and interactions. Currently, there exist a variety of
virtual worlds, encompassing both commercial and open source platforms. Some no-
table examples include No Man’s Sky, Surviving Mars, Endless Space, among others,
comprising numerous islands managed by individuals, organizations, and government
entities, and offering downloadable client software for public access.

34

Figure 1-12: OnSight Project: NASA and Microsoft join forces to explore "holographic
computing" in space exploration. In this image, scientists utilize the HoloLens device to
virtually work on Mars, thanks to the collaborative software development of OnSight.
Image courtesy: NASA JPL.

The utilization of virtual worlds in space exploration extends beyond gaming and
socialization. NASA, aerospace industry, and other space organizations have recog-
nized their value and have embarked on programs to develop and employ immersive
synthetic environments [88]. These virtual spaces find application in various domains,
including mission support, astronaut training [89], distributed collaboration [90], and
public engagement [91]. Augmented Reality already plays a critical role in extreme
piloting, as seen, for example, in the heads-up displays in the pilot’s helmet for the
F-35 Lightning II joint strike fighter [92, 93].

In the context of space exploration, virtual worlds hold immense potential for vi-
sualizing and simulating future space missions. They provide high-fidelity visual
simulations, enabling the public to experience a sense of presence and immersion in
these futuristic endeavors. By harnessing the transformative power of virtual worlds,
numerous facets of future space missions can be impacted. Additionally, they fos-
ter the concept of collaborative participatory virtual space exploration, facilitating
international cooperation and knowledge sharing among space-faring nations. The
continuous advancement and adoption of virtual world technologies and facilities are
essential for transforming the two-dimensional flat internet into a 360° multi-sensory
immersive virtual world experience. This vision aligns with the goal of creating a re-
mote space exploration ecosystem (RSEE), incorporating massively multi-participant
synthetic environments and advanced facilities. By offering engaging and inspiring
experiences, the RSEE aims to motivate and involve the international community in
space activities [94].

35

In contrast, space analog environments always served a critical role in the progression
of space exploration [95]. For instance, environments such as the Mars Desert Re-
search Station (MDRS) [96], or NASA’s Extreme Environment Mission Operations
(NEEMO) [97], happen to resemble extraterrestrial conditions on Earth, allowing
scientists to test and prepare for potential challenges that might be encountered dur-
ing actual space missions. They offer a preliminary glimpse into the difficulties of
remote environments in space exploration, thus contributing to the development of
effective strategies for future missions. However, creating such physical analog en-
vironments can be challenging and resource-intensive. This is where the concept of
the Virtual Space Analog Environments (VSAE) comes into play. Chapter 5 in this
thesis describes in details the processes of constructing virtual renditions of physical
space analog environments, generated and driven by real-world data, thus providing
an immersive and realistic testing ground for geologists [98].

In 2015, NASA’s JPL, in collaboration with Microsoft, developed project OnSight
[100], (Figure A-1), a Mixed Reality application running on the HoloLens that en-
ables engineers and scientists to fully immerse themselves in a re-creation of the area
surrounding the Curiosity rover [101]. Previously, scientists mostly used 2D and
panorama photos captured by the rover for their work, making it very challenging to
establish a three-dimensional relationship with the environment in a manner similar
to how one would explore a terrestrial environment [102]. Using head-worn interac-
tive displays for assisted/augmented maintenance applications has a long history in
aerospace, going back at least to pioneering work by researchers at CMU on aircraft
inspection and repair in the late 1990s [103]. In recent years, Lockheed Martin, a
major American aerospace corporation, lead contractor for NASA’s Orion spacecraft,
used Mixed Reality (MR) to increase efficiency in building the spacecraft for Artemis
II, (Figure 1-14), the first crewed mission aboard Orion. Equipped with a HoloLense2
Head Mounted Display (HMD), the employees started constructing the crew seats for
the spacecraft without checking any physical manual or instructions pages, through
an MR application that showed them everything they needed to view, including an-
imations demonstrating, (Figure 1-15), how parts fit together, engineering drawings,
and torque numbers for tightening bolts [104].

1.3.4 Virtual Human-Robot Interaction

Virtual Human-robot Interaction (HRI) represents an emerging field that seamlessly
blends the latest advancements in Mixed Reality headsets with robotic systems [105].
By fusing virtual environments and physical robots, this multidisciplinary area aims
to augment how humans and robots interact and collaborate [106]. The integration
of Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) tech-
nologies with robotic systems [107] opens up a vast array of possibilities for space
exploration, assistive robotics and remote surgeries [108], Human-robot collaboration
[109], and more.

36

Figure 1-13: Juno: New Origins [99] is a 3D aerospace sandbox where players can use
customizable parts to construct and test rockets, planes, cars, or anything they can imagine
in an environment with realistic physics across land, sea, air, and space.
Image courtesy: Juno: New Origins on Steam.

37

Figure 1-14: HoloLens 2 devices assisted
technicians during the manufacturing pro-
cess for the Artemis II heat shield. One
of the most critical elements of Orion,
it protects the capsule and crew during
reentry through Earth’s atmosphere.

Image courtesy of NASA.

Figure 1-15: Lockheed Martin techni-
cians at the NASA Michoud Assembly
Facility use HoloLens to assemble Orion’s
crew seats for the Artemis II mission.
This image shows the holographic instruc-
tions overlaid on the crew seats.

Image courtesy of Lockheed Martin.

The following sections will explore the multidimensional aspects of this exciting and
transformative field, highlighting modern and historical research conducted on blend-
ing virtual environments with Mechatronics.

Researchers in this domain are exploring novel applications where robots can inter-
act with humans in Mixed Reality environments. These environments can be either
fictional [110] or based on real-world data [111], providing immersive and dynamic
experiences for both humans and robots. From remotely controlling robots through
VR systems [112] to designing Augmented Reality interfaces intertwines human and
robotic activities [113], the affordances provided by blending such systems could im-
pact a long envisioned teleoperated economy, transforming individuals that excelled in
interacting within virtual environments and video games into a driving force of action.

An essential aspect of Virtual HRI is the ability to bridge the gap between simulated
and real-world interactions. To achieve this, researchers are creating sophisticated VR
scenarios where humans can teach robots about objects, tasks, and language while
collecting simulated perceptual data. This "Sim2Real" [114] approach allows for the
transfer of knowledge gained in virtual settings to real robotic systems, enabling effi-
cient learning and adaptability in diverse environments. Additionally, Virtual Reality
laboratories with fully simulated robotic arms, like ArmSym [115], have emerged as
testbeds, or sandboxes, for conducting comprehensive experiments on human control
of robotic arms in realistic environments. Such environments cater to a range of ap-
plications, from upper limb prosthetics to wheelchair-mounted robotic manipulators,
significantly advancing assistive robotics research.

38

For instance, the Kinetic AR framework addresses some of the challenges faced by
current robotic systems, aiming to provide an intuitive and deployable solution for
path planning, flexible programming, and enhanced visualization of robotic motion.
Through interviews with robotics experts, the framework’s goals were established,
including consistent path planning across robots with different degrees of freedom,
improved flexibility in programming to reduce costs and training times, and real-time
visualization tools for motion analysis. The framework enables users to perform path
planning by anchoring points in the environment using a mobile device, allowing for
adjustments in landing position, rotation, speed, and height. It also facilitates motion
programming by linking checkpoints to trigger actions in other hardware or software
systems. Real-time steering enables robots to follow the motion of a human, and spa-
tial synchronization with the visual tracking system allows for comprehensive motion
visualization. The Kinetic AR framework offers a simplified approach to complex
spatial hardware programming, addressing the needs of various applications and ex-
perts in the field [116].

Figure 1-16: The free Spacecraft
AR app uses Google ARCore tech-
nology to depict virtual 3-D models
of NASA robotic spacecraft, such as
the Curiosity Mars rover seen here.

Image courtesy: JPL / Caltech.

Moreover, Virtual Reality displays have proven to be powerful tools for mediating
Human-robot interactions. They offer users unique perceptual benefits [117], es-
pecially in situations where perceiving the robot is challenging. By exploring how
Virtual Reality can enhance collaborative tasks and improve performance in simu-
lated robotics applications. Furthermore, researchers are delving into the realm of
shared virtual experiences, unearthing valuable insights into their potential to en-
hance Human-robot interactions across multiple agents, particularly in the context of
swarm robotics [118]. Both Chapter 3, and 4 delves into the diverse facets of Virtual
HRI, addressing novel contributions through a language of interactions and visuali-
sation techniques that has been long present in virtual experiences and video games,
yet adapted to physical and virtual space analog environments.

In a related context, noteworthy projects like FlightGoggles [119], (Figure 1-17), in-
volve the adaptation of virtual robotic systems to learn and operate within simulated
environments. Rather than directly linking these simulations to the real world in
real-time, the primary aim of this research is to harness the potential of the virtual
world to design and optimize advanced robotics systems for practical deployment. It
centers on providing a versatile development environment, facilitating the design, im-

39

plementation, testing, and validation of autonomous super-vehicles [119]. The robust
tool encompasses exteroceptive sensor simulation deeply integrated into the Unity
engine, complemented by vehicle dynamics and inertial sensor simulation capabilities.

Expanding on these concepts, Chapter 5 of this thesis delves further into similar
methodologies, utilizing photogrammetry, sensors, and robots to synthesize space ana-
log environments. To enable this interconnection between robots and virtual environ-
ments, the Unity game engine, a leading platform in the game development industry
[120], has emerged with recent modules to standardize the integration with robotics
platforms. This was made possible through the addition of the Unity Robotics Visual-
izations Package, a toolkit for visualizing and debugging the internal state of robotics
simulations, allows Unity to be used as an all-in-one in combination with the Robot
Operating System (ROS) [121] as simulation and visualization tool. With these ro-
bust features and capabilities, Unity provides an ideal environment for developing
realistic, and immersive simulations. Potentially, leveraging Unity’s capabilities for
scenarios presented in remote exploration, such as space exploration, to allow for the
creation of simulations with detailed and interactive 3D environments, responsive me-
chanics, and advanced physics, all crucial for replicating the conditions and challenges
of space operations.

Figure 1-17: FlightGoggles [119] is a cutting-edge simulator developed at MIT with environ-
ments generated from high-quality photogrammetry of indoor environments. In this scenario,
the environment was adapted to serve as a testing simulation for nine teams participating in
the AlphaPilot program [122], a popular autonomous drone racing challenge.

Utilizing user interfaces from video games, particularly those from Real-Time Strategy
(RTS) genre, provide intuitive mechanisms to navigate virtual environments from
a bird’s eye view. The nature of these games requires players to control multiple
units, strategize, and adapt in real-time collaborative problem solving. Large scale

40

user studies could reveal if the skills acquired by the video gamer are transferable
to operating rovers in space scenarios, raising several questions about video game
interfaces and rover operations in providing operators with a broader and more precise
control range while facilitating better decision-making during exploration missions.

Figure 1-18: A 220-pound, 13-foot-long snake-like robot designed to search for life on Sat-
urn’s icy moon Enceladus designed by NASA JPL. Named Exobiology Extant Life Surveyor,
or EELS, the robot is engineered to be both self-propelled and autonomous. As it undergoes
testing and development, EELS aims to navigate diverse planetary and lunar terrains, in-
cluding undulating sand, icy surfaces, steep cliffs, craters, lava tubes, and narrow spaces,
such as crevices or fissures, within glaciers. Image courtesy: NASA JPL.

1.3.5 Human-Robot Systems in Space Exploration

The realm of space exploration has seen a growing interplay between humans and
robots, an interaction that is expected to intensify with future missions. NASA’s
history of successful missions is testament to the effectiveness of this synergy, with
robotic systems in facilitating the exploration of Mars [123]. The first remote robot
deployed by NASA in space was the Robotic Arm on the Space Shuttle.

The Space Shuttle program, which began in the early 1980s, included a Remote Ma-
nipulator System (RMS) commonly known as the "Canadarm." The Canadarm was
a robotic arm developed by the Canadian Space Agency, and it was used to perform
various tasks during space shuttle missions, such as capturing and deploying satel-
lites, assisting with spacewalks, and moving cargo in and out of the shuttle’s payload
bay. The Canadarm was a groundbreaking development in space robotics and played
a significant role in space exploration during the Space Shuttle era [124]. Upcoming

41

missions, including the Artemis missions, plan to extend human presence beyond low
Earth orbit, and the achievement of these objectives relies heavily on the effective
integration of humans and robotic technology [125].

As the reliance on robotic systems for space exploration grows, so does the diversity
of Human-robot interactions. Previously, interaction was largely limited to remote
communication between humans on Earth and robots in Space. These telerobotic
operations ranged from direct manual control to intermittent, supervisory control.
However, recent research has started to explore a wider range of Human-robot ar-
rangements. These include co-located teams, remote teams, one-to-one setups, and
groups. The exploration of Human-robot teaming theory and system design, efficient
interaction methods, and Human-robot communication is underway and evolving
[126]. The criticality of these aspects is emphasized in the unique context of space,
where several factors, including the space environment itself, play a significant role
in determining the effectiveness of Human-robot interaction.

Despite the promise of Human-robot synergy in space exploration, this interaction is
fraught with challenges, primarily due to the unique circumstances of deep space mis-
sions. High communication latencies and limited bandwidth between non-collocated
humans and robots, operations in reduced or zero gravity environments, and oper-
ations on other planetary bodies with the associated issues due to radiation, tem-
perature, illumination, and dust present significant difficulties [127]. Additionally,
the growing complexity of space missions has necessitated the development of new
paradigms for Human-robot interaction.

As the number of astronauts on missions is limited and their schedules are constrained,
ground-control personnel will likely need to remotely supervise and assist hundreds of
robots [128]. NASA’s concept of Human-robot interaction encompasses not only co-
located teams, but also Human-robot teams distributed across both time and space.
These Human-robot teams are expected to perform a wide range of tasks, from ISRU
based activities to assembly of large structures or systems, reconnaissance, and sam-
ple deposition/collection [129]. Such teams will prove crucial in missions that aim
to establish a sustainable human presence on celestial bodies like the Moon and Mars.

The future of space exploration is likely to see an increased reliance on teams com-
posed of humans and robots with complementary capabilities. However, this will also
necessitate unique methods for humans and robotic systems to interact. Robots may
be tasked with duties that are dull, dirty, or dangerous, thereby allowing human crew
members to perform more complex tasks or those requiring real-time modifications
due to contingencies.

The coordination of these distributed teams of humans and robots is complex, and
the development of tools and techniques to facilitate effective interaction is critical.
This includes enabling clear communication about capabilities, intent, state, and ac-
complishments, which will increase the likelihood of mission success and improve the

42

capability of Human-robot team members to coordinate and solve problems. Given
the diversity of Human-robot teaming scenarios in space, it is essential that a variety
of HRI tools and techniques be developed to cater to the varying types, frequency,
and criticality of interactions [130].

NASA’s Vision for Space Exploration emphasizes the collaboration between humans
and robots as partners, leveraging the unique capabilities of each entity. Close collab-
oration between humans and robots will be essential for mission tasks both in-space
and on planetary surfaces. However, due to cost constraints and the need to min-
imize risks, astronaut teams will be small, highlighting the significance of effective
Human-robot interaction (HRI) for future missions. The objective of the "Peer-to-
Peer Human-robot Interaction" (P2P-HRI) project is to advance the state-of-the-art
in HRI to facilitate sustained and affordable space exploration [131]. The project
focuses on developing HRI techniques that enable humans and robots to work as
partners in various team configurations, including side-by-side, line-of-sight remote,
and far remote interactions.

The approach includes a novel interaction framework called the "Human-robot Inter-
action Operating System" (HRI OS), computational cognitive architectures to model
human behavior and enhance Human-robot understanding, and a series of evalu-
ations using research robots, analog environments, and exploration-relevant tasks.
The project primarily focuses on supporting essential operational tasks, such as con-
struction, assembly, inspection, and resource collection and transport. The goal is to
enable efficient teamwork between humans and robots by specifying high-level opera-
tions and utilizing interaction to address issues during task execution. The approach
aims to create a bidirectional communication model, where robots can ask questions
and seek assistance from humans when necessary, fostering coordination and quick
issue resolution. Challenges in the project include enabling autonomous robot task
performance while allowing robots to seek human expertise when needed and ensuring
robots understand task-oriented commands as a human teammates [132].

In alignment with the goals of enhanced HRI and the growing importance of inte-
grating data analysis capabilities into robotic interfaces, there is a clear need for
increased collaboration between robotics and data visualization experts. This collab-
oration would leverage the unique strengths of both fields, combining HRI’s focus on
effective human control and supervision of robots while the visualizations emphasize
designing interfaces for data exploration.

By bridging the gap between HRI and data visualization, it becomes possible to de-
velop interfaces that not only facilitate Human-robot interaction but also consider
how users engage with the data provided by robots. This collaborative effort holds
significant potential to address challenges related to dynamic, uncertain, and spa-
tiotemporal data, which are particularly relevant in the context of robotics and space
exploration. It is through successful collaboration and co-innovation that the field
of HRI can benefit from the expertise of data visualization experts and vice versa,

43

leading to advancements in both fields and enabling more efficient and meaningful
Human-robot collaboration in various team configurations, including in-space mis-
sions and planetary surface exploration [133].

Early notable advancements have been made in the field of robotic systems, par-
ticularly with the Mars Exploration Rovers (MER) missions involving "Spirit" and
"Opportunity." These rovers have successfully demonstrated the effectiveness of con-
cepts like visual odometry and autonomous path selection using passive stereo vision
as their primary sensor suite for terrain assessment. Their utilization of stereo im-
agery for this has significantly contributed to our understanding of Mars’ surface.
This alternative sensing modality holds promise for enhancing path planning and
navigation strategies in planetary exploration [134]. The autonomous navigation of
rovers on the surface of Mars, the Moon, or other celestial bodies, holds great po-
tential for significantly enhancing daily traverses, particularly in unexplored regions
away from the lander.

The CNES (Centre National d’Études Spatiales) has developed a robust autonomous
navigation process that utilizes stereo cameras for perception, enabling the creation of
an environment model and the generation of trajectories. This approach incorporates
multiple perception merging techniques while propagating locomotion and localiza-
tion errors. The abstract discusses the algorithms developed for Mars exploration
programs, the vision hardware employed, validation tools utilized, experimental plat-
forms employed, and the evaluation of results. Additionally, the abstract addresses
the portability of the system and the assessment of computing resources for potential
implementation on a Mars rover. The findings highlight the energy and computing
efficiency of the implemented autonomy, indicating minimal resource consumption
while maximizing rover capabilities. As a result, the autonomous navigation system
enables significantly longer daily traverses compared to strategies solely based on
ground-planned approaches [135].

During the Apollo program, astronauts faced specific challenges to navigation in the
lunar environment during their Extravehicular Activities (EVA). These difficulties
were exemplified in the second EVA of the Apollo 14 mission, where Commander
Alan Shepard and Lunar Module Pilot Ed Mitchell had to rely on a paper map de-
veloped from lunar surface photographs to navigate to Cone Crater, approximately
1.5 km away. However, they encountered difficulty in identifying specific craters visu-
ally, leading to poor situational awareness and confusion about their exact position.
Distortions from the helmet visor and the lack of atmosphere on the lunar surface
further complicated their ability to judge distances and travel times. In the end, the
astronauts turned back, unknowingly just 40 meters from the crater’s rim.

The Apollo 14 mission’s challenges highlighted the importance of addressing navi-
gation difficulties, which will become even more significant during future missions
to the Martian surface, with increased frequency, length, and duration of traverses.
Overcoming these obstacles is crucial for the success of surface explorations [136].

44

Eventually, the moon may be equipped with radio location systems, [137], but until
they are widely available and ubiquitous, visual navigation remains crucial for near-
term missions. To tackle these challenges and improve planetary surface explorations,
the Surface Exploration Traverse Analysis and Navigation Tool (SEXTANT), serves
as a decision support aid for planning and optimizing paths for both suited astronauts
on foot and transportation rovers. It presents crucial information to assist users in
making decisions rather than making the decisions itself. SEXTANT features an in-
terface with a 3D terrain elevation map where users can specify Activity Points, which
represent points of interest. Terrain obstacles, defined by a user-inputted maximum
slope, are taken into account when determining the most-efficient path between Ac-
tivity Points based on traverse distance, time, or explorer energy consumption [136].

Most recently, robotic systems in the field of planetary exploration face a myriad
of challenges, including constraints related to weight, size, and the harsh conditions
of extraterrestrial environments. These limitations significantly impact the selection
of suitable sensors and actuators for space missions. Moreover, the vast distances
between planets introduce substantial communication delays, highlighting the need
for high levels of autonomy to ensure efficient robot operation. Addressing these
challenges, the Lightweight Rover Unit (LRU), designed by the European Space
Agency (ESA) emerges as a compact and agile rover prototype specifically tailored
for planetary exploration. The LRU integrates an individually steered wheel loco-
motion system, enabling exceptional maneuverability in rough terrains. Its sensor
suite predominantly features stereo cameras, rendering it well-suited for space mis-
sions. Complementing these hardware capabilities, a comprehensive range of software
components has been developed by the research team to enhance the LRU’s perfor-
mance. These components encompass self-localization in GPS-denied environments,
autonomous exploration, mapping, computer vision, planning, and control modules.
Notably, autonomous localization, object pickup, and assembly tasks employing a
manipulator are among the LRU’s capabilities.

Additionally, the LRU incorporates high-level mission control components to facilitate
autonomous behavior and remote monitoring of system status over delayed commu-
nication links. The LRU’s impressive autonomous capabilities were demonstrated
during the SpaceBotCamp challenge—an esteemed national robotics contest focused
on autonomous planetary exploration. During the challenge, the LRU autonomously
navigated through an unfamiliar Moon-like rough terrain, successfully located and
collected two objects, and executed their assembly after transportation to a third ob-
ject. Remarkably, the LRU accomplished these tasks flawlessly on its first attempt,
exhibiting remarkable efficiency while operating in a fully autonomous mode [138].

Moreover, recent research has demonstrated innovative approaches to automate rover
operations using machine learning techniques. One such study focused on enhancing
the surface navigation software, Enhanced AutoNav (ENav), employed by NASA’s
Perseverance rover Reference to the study. The researchers addressed the compu-
tational challenges associated with the Approximate Clearance Evaluation (ACE)

45

algorithm, a crucial component for ensuring rover safety. To optimize path selection,
two heuristics were introduced. The first heuristic integrated Sobel operators and
convolution to incorporate the cost of traversing high-gradient terrain. The second
heuristic utilized a machine learning (ML) model trained with physics simulations
to predict areas deemed untraversable by ACE. Through extensive simulations and
Monte Carlo trials, the researchers demonstrated that the integration of these heuris-
tics significantly reduced ACE evaluations and computation time per planning cycle,
while improving path efficiency and maintaining or even enhancing the success rates
of rover traverses. This research showcases the potential of machine learning in en-
hancing the automation and efficiency of rover missions, particularly in addressing
critical safety considerations in real-time rover navigation [139].

The use of telepresence has also been explored in various analog environments to
enhance the control of remote vehicles and facilitate scientific exploration. One no-
table experiment focused on the utilization of a Telepresence-controlled Remotely
Operated underwater Vehicle (TROV) in the marine environment beneath the sea ice
near McMurdo Station, Antarctica [140]. The mission aimed to operate the TROV
through telepresence and VR technology, both locally and remotely. Local control
involved using a control box with joysticks and switches, while the operator viewed
stereo video camera images on a display monitor. Remote control, facilitated by a
satellite communications link, utilized a similar display monitor or a head-mounted
display. Remote operators could also access a computer-generated representation of
the underwater terrain based on the vehicle’s sensors. Through the satellite link,
stereo video from the TROV was transmitted to NASA Ames, and bi-directional In-
ternet communication enabled remote control of the vehicle.

The experiments conducted in Antarctica demonstrated the feasibility of surface
rovers with real-time telepresence control, potentially expanding the range of hu-
man exploration from a base on the Moon or Mars [141]. In another study focused
on telepresence in the exploration of Mars, the NASA-funded Biologic Analog Sci-
ence Associated with Lava Terrains (BASALT) program [142], aimed at advancing
Mars mission operations and capabilities, conducted its third field test in November
2017. The test involved ten simulated extravehicular activities (EVAs) in the Ki-
lauea Caldera and Kilauea Iki regions of Hawaii. Real-time geo-biochemical science
objectives were accomplished by a team of two extravehicular crewmembers, while
two intra-vehicular crew members provided support. Remote scientists and operators
in the Mission Support Center contributed scientific expertise through Mars relevant
communication latencies. The field test incorporated new capabilities such as high-
resolution panoramic imagery, mobile automated light detection and ranging data,
immersive mixed-reality terrain models, and augmented-reality field systems [143].

These studies highlight the significance of telepresence and teleoperations in space
exploration, showcasing their potential to enable remote control and scientific in-
vestigation in challenging and distant environments. The utilization of telepresence
technology, coupled with VR/AR interfaces and the control of remotely operated

46

vehicles, presents promising opportunities for human exploration and enhances our
comprehension of extraterrestrial environments [144]. However, it is important to
acknowledge that communication latency in space exploration poses real challenges
for such systems to achieve real-time responsiveness. In many scenarios, delays of
milliseconds can render certain video games unplayable. Nevertheless, real-time VR
navigation and robotics in space exploration can still be instrumental in aiding astro-
nauts within orbit to control these entities.

With advancements in sensing, actuation, and machine learning, autonomy has been a
traditional approach for robotics systems in space. This approach allows robots to op-
erate with relative independence, reducing the need for constant communication with
Earth. However, for more intricate tasks and in environments where human expertise
is crucial, telepresence and teleoperation technologies remain vital tools. They offer
a means for humans on Earth to actively participate in space exploration, remotely
guiding robots and making critical decisions in real-time, despite the communication
challenges posed by vast distances. As space exploration continues to evolve, the
combination of autonomy and telepresence will likely play a complementary role in
maximizing the potential of robotic systems beyond our planet’s boundaries.

Figure 1-19: Project NeBula
(Networked Belief-aware Percep-
tual Autonomy. NeBula enables
autonomous robots to navigate un-
certain terrain, overcome challenges,
and gather vital data. This innova-
tive technology has been successfully
demonstrated in terrestrial analog
missions, including cave exploration
on Earth, paving the way for future
Mars exploration [145, 146].

Image courtesy: NASA JPL.

Most recently, the Spot Nebula project, (Figure 1-19), developed by NASA’s Jet
Propulsion Laboratory (JPL) and Caltech in collaboration with Boston Dynamics,
represents a significant advancement in autonomous cave exploration and mapping
in analog space environments. The four-legged [147] explorer prototype combines
the intelligence and autonomy provided by JPL. The development was motivated by
the Subterranean Challenge, a contest sponsored by the Defense Advanced Research
Projects Agency (DARPA). One of the primary objectives of the Spot Nebula project
is to demonstrate the autonomy required for navigating extreme environments with-
out human guidance or access to GPS. legged robots have the potential to better
explore complex terrain that is inaccessible to standard wheeled rovers.

47

The autonomous cave exploration and mapping capabilities of this electronic canine
have direct implications for future space missions. Identifying suitable shelters for
astronauts on the Moon or Mars could be achieved by mapping caves. Additionally,
caves offer a better chance of preserving microbial life, if it exists, as they provide
protection from cosmic radiation and extreme temperature fluctuations. Planetary
moons like Europa, Enceladus, and Titan, which may have icy seas, could also harbor
microbial life beneath their surfaces [146]. NASA recognizes the potential significance
of exploring caves in the search for extraterrestrial life [148]. The Spot Nebula project
aligns with NASA’s broader initiative known as BRAILLE, which focuses on exploring
Mars-like caves that exist on Earth to refine key technologies for future missions [149].
These caves closely resemble the challenging cave environments on other planets, in-
cluding Mars. By undertaking the first-ever fully autonomous robotic exploration of
such caves, the project has achieved a significant milestone.

These caves, extending several hundred meters, pose communication limitations with
the surface, simulating conditions that scientists may encounter on Mars. During the
exploration of the caves, the robots operate without any prior information about the
environment. Meanwhile, a team of researchers stationed outside the cave conducts
actions that mirror what scientists on Earth would execute during a real Martian
mission. The integration of Boston Dynamics’ Spot robot with NeBula has proven
highly effective, demonstrating Spot’s capabilities in traversing rough and extreme
terrains [150].

48

Chapter 2

Thesis Overview

2.1 Prologue
As emphasized in the previous chapter, space exploration enters a new era with
increased collaboration between humans and robots in physical, virtual, and ana-
log space environments. Robotic systems have played a pivotal role in successful
NASA missions, notably in Mars exploration. The future Artemis program aims to
extend human presence beyond low Earth orbit, making Human-robot integration
even more vital. This thesis explores the ever evolving paradigm of space explo-
ration, blending multiple fields like computer graphics, virtual environment synthe-
sis, simulation development, three-dimensional reconstruction, photogrammetry and
photorealism, Human-computer interaction, Human-robot interaction, Human-robot
operations, systems engineering, telepresence, communication and networking, space
systems, and Artificial Intelligence (AI). Three distinct robotics systems with varying
complexities were investigated: commercial, industrial, and space robotics. Through-
out this research these were explained through the integration, design and develop-
ment of custom payloads and modules.

These efforts were conducted in collaboration with fellow students and researchers,
including Cody Paige, Ferrous Ward, Jessica Todd, and Alexandra Forsey-Smerek
from the MIT Resource Exploration and Science of our Cosmic Environment (MIT
RESOURCE). This team is funded by NASA’s Solar System Exploration Research
Virtual Institute (SSERVI), under the supervision of Prof. Dava J. Newman, the
Apollo Program Professor of Astronautics, and director of the MIT Media Lab.

I am deeply honored to have been part of both the MIT RESOURCE team and the
Responsive Environments group, with my advisor, Prof. Joseph A. Paradiso, the
Alexander W. Dreyfoos (1954) Professor in Media Arts and Sciences, and Academic
Head of the program in Media Arts and Sciences at the MIT Media Lab.

49

Figure 2-1: Intellectualized framework represented in a Venn Diagram to illustrate this
dissertation’s chapters. Chapter 3 - Design & Conceptual introduces the foundational
concept of the Doppelbot. Building upon this concept, Chapter 4 - Design & Technical
presents the introduction of Doppelspot in the Mobile Immersive LiDAR (MILiDAR), (Sec-
tion 4.4), of Chapter 4. This section explores the integration of robotic telepresence with
360 video & LiDAR technology. In Chapter 5 - Design, Technical & Conceptual, the
focus shifts to the synthesis of virtual analog environments using real-world data through
Human-robot collaboration. Chapter 6 - Technical delves into the software implementation
of a commercial camera into a lunar rover module, facilitating lightweight 3D reconstruction
for in-situ planetary exploration. Additionally, (Section 6.4.3), of Chapter 6 elaborates on
the ".ND3" file format, providing essential insights into this specific data format.

2.2 Research Roadmap

The research conducted in this thesis is derived from a legacy of prior work developed
by the Responsive Environments group, and brought to space operations with the
MIT RESOURCE team, (Figure 2-2), The contributions in this thesis are organized
into four chapters, (Figure 2-1), each addressing a distinct aspect of Human-robot
synergy in analog space environments.

Chapter 3 explores innovative concepts and applications of "Doppelbots," revealing
some emergent abilities and interactions resulting from the fusion of virtual and physi-
cal space analog environments. By introducing versatile mechanics for navigating and
exploring distant environments, this research addresses a wide range of aspects, in-
cluding training remote operators and testing new technologies in simulations that
are synchronized with real-world events, with a futuristic vision to studying the syn-

50

ergistic effects of different environments on both humans and machines. The novel
visualizations and interfaces employed in this research draw inspiration from the per-
petual interplay between video game mechanics and Human-robot interactions.

Chapter 4, titled "Doppelspot," represents an advancement in the concept of Dop-
pelbots, utilizing a sophisticated robotic system designed and developed by Boston
Dynamics. Equipped with cutting-edge payloads, including a LiDAR (Light Detec-
tion and Ranging) unit, an advanced camera capable of capturing 360° video, and
stereo audio, this chapter introduces an extraordinary telepresence encounter. Spot,
the quadruped robot, serves as the embodiment of this transformative experience,
enabling the tele-explorer to navigate rugged and challenging outdoor terrains. The
integration of these sensory inputs is seamlessly streamed into a Virtual Reality (VR)
headset, resulting in an immersive encounter with a space analog environment.

Chapter 5 builds upon the foundational knowledge presented earlier and delves into
the realms of 3D reconstruction and the synthesis of virtual space analog environments
sourced from real-world data. This chapter takes the reader on a compelling journey
that led a team of graduate students from MIT to face a series of challenges and test
their abilities in capturing and collecting meaningful data from a hostile and remote
environment. The expedition began with the team embarking on their first analog
mission to Svalbard, Norway, organized by the Space Exploration Initiative (SEI) of
the Media Lab. The operation was divided into two groups: one group dedicated
countless hours to leveraging robotics systems, sensor nodes, and various cameras,
while the second group honed their skills in scientific data analysis, deploying and op-
erating an array of scientific instruments, both terrestrial and aerial, throughout the
course of the mission. Advanced 3D reconstruction techniques, including photogram-
metry, were employed to capture and process high-resolution textures and meshes,
resulting in immersive virtual environments closely resembling the selected sites in
Svalbard. To validate the effectiveness of these environments for virtual geological
studies and research, virtual explorers underwent an in-depth user study in several
synthesized space analog environments. In summary, this chapter represents a sig-
nificant step forward in understanding the potential of 3D reconstruction and virtual
analog environments as a whole, demonstrating their value in documenting scientific
research and expeditions.

In Chapter 6, we delve into the cutting-edge development of "AKALL" (Azure Kinect
à la Luna), the software that drives a module that showcases the adaptation of a
commercial RGBD camera, the Microsoft Azure Kinect, for use as a custom payload
mounted on a lunar rover. NASA employed rigorous hardening techniques to en-
sure the camera’s resilience in the harsh vacuum of space through sever modifications
to withstand the unique challenges posed by lunar environments, including extreme
temperature fluctuations, radiation exposure, and mechanical stresses. Furthermore,
to optimize its functionality and meet the strict weight limitations of space missions,
this modified Azure Kinect underwent a careful engineering process that entailed
selective feature removal. Non-essential components were deliberately excluded to

51

reduce the camera’s overall weight while retaining its essential capabilities for lunar
exploration. Additionally, the camera was thoroughly shielded to protect it from the
damaging effects of cosmic radiation and micrometeoroid impacts, safeguarding its
sensitive electronics and ensuring its reliability during the span of the mission. This
entire process involved a deep investigation that spanned across various entities, and
is briefly referenced and documented in this dissertation. While NASA primarily con-
centrated on the hardware aspect of the project, the MIT RESOURCE team played
a significant role in software development, testing, and refining the Concepts of Op-
erations (ConOps) throughout the research’s evolution.

The Azure Kinect DK depth camera implements the Amplitude Modulated Continu-
ous Wave (AMCW) Time-of-Flight (ToF) principle. The Azure Kinect camera emits
modulated illumination within the near-IR (NIR) spectrum, illuminating the scene.
It subsequently captures an indirect measurement of the round-trip time taken by
the light to travel from the camera to the scene and back [151]. These recorded mea-
surements are then processed to create a depth map (depth.b16g), which contains
Z-coordinate values for each pixel in the image, measured in millimeters. Addition-
ally, alongside the depth map, a so called "clean IR reading" (ir.b16g) is recorded.
The pixel values in this reading correspond to the quantity of light reflected back
from the scene, providing valuable information about the scene’s characteristics. The
second sensor included in the Azure Kinect DK allows for capturing colored images
with native support for JPEG compression.

The default software packages provided with the Azure Kinect DK, specifically the
k4a-tools, capture and store data in the (.mkv) format. This format is known for
its capabilities in storing video, audio, and subtitle data in a single file. In contrast,
the optimization pursued in this research necessitated the development of a distinct
approach. This approach was due to the single-capture nature of the ConOps and
expensive data rates in space exploration that required further compression of the
generated data. One of significant contributions highlighted in this research was done
on optimizing this process, through AKALL, as well as through the implementation of
a novel file format called (.nd3). "ND" stands for "Natural Depth": as it entails that
the (".nd3") file extension is tailored for processing, capturing and storing "3D im-
ages", using 3 main components, a color image for example (color.jpeg) depth image
(depth.b16g) and calibration data (calibration.json). Optionally, the (ir.b16g)
image could be utilized to further focus on preserving "natural depth" perception,
through advanced light mapping techniques to achieve more immersive and realistic
3D textures. As part of the research, integration sessions were conducted with en-
gineers from Lunar Outpost, who worked to incorporate AKALL into their Mobile
Autonomous Prospecting Platform (MAPP) lunar rover. To evaluate AKALL’s effec-
tiveness and capabilities, comprehensive testing was performed at the NASA Ames
Research Center within the SSERVI simulated Lunar Testbeds. For reader orienta-
tion, a list of relevant topics explored in each Chapter is included as a short preface.

52

Figure 2-2: A chronological progression of projects derived from predecessor initiatives
involved in my research including Doppelmarsh, (Section 1.3.2), and Quadrasense [152].
Each project builds upon the previous one, advancing technology and concepts applied for
scientific exploration and Human-robot operations.

53

2.3 Selected Research Publications

This dissertation builds upon a rich body of work that has laid the foundation for the
research presented here. The following list of co-authored publications includes both
essential references that have informed the study and original contributions that have
documented the research process. Together, these works represent the intellectual
context within which this dissertation was conceived and executed.

• D. D. Haddad, C. A. Paige, B. Brokaw, F. S. Ward, J. A. Paradiso, J. Heldmann,
and D. J. Newman, "Azure Kinect à la Luna (AKALL): Leveraging Low-
Cost RGB and Depth-Camera in Lunar Exploration," in Proceedings of
IEEE Aeroastro, 2024.

• C. A. Paige, D. D. Haddad, F. S. Ward, A. Cook, V. Jhac, A. Deutsch, A.
Shimadac, A. Colaprete, J. Heldmann, and D. Newman, "Development and
Testing of the Concept of Operations for a Low-Cost RGB and Depth-
Camera for a Lunar South Pole Mission," Nature Microgravity, Waiting
review, 2024.

• D. D. Haddad, S. Unterhauser, C. A. Paige, B. Brokaw, F. S. Ward, J. A.
Paradiso, J. Heldmann, and D. J. Newman, "Leveraging Docker Containers
for Azure Kinect Integration in Space Robotics: An Overview of the
Azure Kinect à la Luna (AKALL) Framework," in Conference on Human-
Computer Interaction for Space Exploration (SpaceCHI 3.0), June 22-23, 2023.

• C. A. Paige, D. D. Haddad, F. S. Ward, T. J. Piercy, J. E. Todd, J. A. Par-
adiso, and D. J. Newman, "Operational Geology In a Virtual Environ-
ment (OGIVE) Novel Approaches to Virtualizing Geological Expedi-
tions for Planetary Exploration," in Proceedings of Conference on Human-
Computer Interaction for Space Exploration (SpaceCHI 3.0), 2023.

• F. S. Ward, C. A. Paige, D. D. Haddad, J. E. Todd, J. Heldmann, D. Lim,
A. Ekblaw, and D. J. Newman, "Multi-Sensor 3D Data Visualization in
Virtual Reality for Planetary Science and Mission Operations," in
The International Conference on Environmental Systems ICES, Under revision,
2023.

• C. A. Paige, D. D. Haddad, F. S. Ward, J. Todd, A. Ekblaw, and D. Newman,
"Data collection in Svalbard, Norway to test the use of virtual real-
ity for Lunar and planetary surface," in The International Conference on
Environmental Systems ICES, 2023.

• A. Ekblaw, J. Cherston, F. Z. Liu, I. Wicaksono, D. D. Haddad, V. Sumini, and
J. A. Paradiso, "From UbiComp to Universe - Moving Pervasive Com-
puting Research Into Space Applications," IEEE Pervasive Computing,
2023.

54

• C. A. Paige, F. S. Ward, D. D. Haddad, J. MacNeil, P. McGaffigan, A. Ekblaw,
and D. Newman, "MIT Zero-G Outreach Initiative: using experiment
design and virtual reality to inspire the next generation of space sci-
entists and engineers," Acta Astronautica, 2023.

• A. Forsey-Smerek, C. A. Paige, F. S. Ward, D. D. Haddad, L. M. Sanneman, J.
Todd, J. Heldmann, D. Lim, and D. Newman, "Assessment of Depth Data
Acquisition Methods for Virtual Reality Mission Operations Support
Tools," in 2022 IEEE Aerospace Conference (AERO), pp. 1-14, IEEE, 2022.

• C. A. Paige, A. Forsey-Smerek, D. D. Haddad, F. S. Ward, T. Piercy, J. Held-
mann, D. Lim, A. Colaprete, A. Cook, and D. Newman, "A virtual reality
platform for lunar rover missions to reduce decision-making time and
improve situational awareness," ASCEND, p. 4203, 2021.

• C. A. Paige, F. S. Ward, D. D. Haddad, A. Forsey-Smerek, L. M. Sanneman, J.
Todd, A. Colaprete, D. S. S. Lim, J. Heldmann, and D. Newman, "Towards the
Development of 3D Lunar Surface Depth-Data Collection for Geology
in Virtual Reality," AGU Fall Meeting, 2021.

• C. A. Paige, D. Newman, D. D. Haddad, F. Ward, and T. Piercy, "Lunar
Instrument Data Integration into the Virtual Reality Mission Simu-
lation System for Decision Making and Situational Awareness," 50th
International Conference on Environmental Systems (ICES-2021-227), 12-15
July 2021.

• D. D. Haddad, "Resynthesizing Reality: Driving Vivid Virtual Envi-
ronments from Sensor Networks," S.M. Thesis, Massachusetts Institute of
Technology, 2018.

• B. Mayton, G. Dublon, S. Russell, E. F. Lynch, D. D. Haddad, V. Ramasub-
ramanian, C. Duhart, G. Davenport, and J. A. Paradiso, "The Networked
Sensory Landscape: Capturing and Experiencing Ecological Change
Across Scales," Presence, 26(2), 182–209, MIT Press, 2017.

55

56

Chapter 3

Doppelbots

Tunneling Through Realities - Applications in Human-Robot Operations Adapt-
ing Mixed Environments into Space Analogs.

3.1 Introduction

3.1.1 A Brief Overview of this Chapter

The concept of the "Doppelbot" intersects with the digital twin paradigm, (as intro-
duced in Section 1.3.1), by sharing physical properties such as the geometry, material,
and behavior of a given object, in this case, robotic systems. However, the Doppelbot
has distinct core constraints that set it apart from typical digital twin applications.
It is permanently attached to a virtual space called the "Doppelspace," where the
Doppelbot and its environment are considered as a whole [153]. These environments
can be generated from real-world data, as demonstrated in both Doppelmarsh [85]
and Doppellab [84] by the Responsive Environments group, or they can be fictional
environments.

The bidirectional communication between these virtual and physical worlds was ini-
tially established through Cross-Reality (XR), (as described in Section 1.3.2), which
involved tunneling real-world information from sensor networks into rich virtual en-
vironments and introducing various interaction modalities to allow users to influence
physical environments through actuators. Similarly, users can control a Doppelbot
from within the virtual environment or switch it to autonomous behavior, essentially
turning it into a Non-Player Character (NPC). By setting predefined autonomy, the
Doppelbot performs a given activity until interrupted or taken over by the user.

Doppelbots offer a versatile tool with a wide range of potential applications. One
prominent application involves training remote operators, akin to flight simulators,
but with the added advantage of enabling real-world actions in both simulated and
physical environments. This unique capability allows astronauts to prepare for space
exploration missions through immersive experiences that bridge the gap between vir-
tual and real-world scenarios. By interacting directly with physical environments,

57

such as space analog environments, astronauts can familiarize themselves with the
challenges they may encounter during teleoperation missions. Moreover, Doppelbots
serve as a valuable platform for testing and validating new technologies in a con-
trolled and simulated environment, ensuring their reliability and functionality before
actual deployment. Additionally, concepts like Doppelbots and digital twins facili-
tate the study of the synergistic effects of different environments on both humans and
machines.

Figure 3-1: Concept Designs for Rover Mini Custom Payload: These images showcase three
design concepts developed in collaboration with Rover Robotics. Image A draws inspiration
from NASA’s VIPER rover, designed for lunar exploration. Image B presents a conceptual
design featuring one Intel RealSense camera. Ultimately, the selected design, as depicted in
image C, combines key elements for optimal functionality. Image courtesy: Rover Robotics.

3.1.2 Rover Mini By Rover Robotics

The concept introduced in this chapter comprises two different implementations. The
first one, introduced in this chapter, is a 4-wheel rover, (Figure 3-1), named the Rover
Mini designed by Rover Robotics1 and adapted in collaboration with the MIT RE-
SOURCE team. Similar efforts by the team were conducted with Boston Dynamics2

on their quadruped robots series known as Spot, (as detailed in Chapter 4).

The Rover Mini is a compact and versatile rover specifically designed to operate on
even surfaces, making it suitable for a wide range of applications. Its small size
and maneuverability allow it to navigate various flat terrains effectively. To aug-
ment the Rover Mini’s capabilities, Rover Robotics incorporated a custom modular
payload system. This design permits the integration of different components and
sensors based on specific requirements. In the case of this Doppelbot, a unique pay-
load configuration has been developed, with several modifications (Appendix C.2),
on the core functionalities of the Rover Mini, adapting 3x Intel RealSense modules
for precise navigation and spatial localization, or a Microsoft Azure Kinect camera
for environment scanning and 3D reconstruction.

1roverrobotics.com
2bostondynamics.com

58

https://roverrobotics.com/
https://bostondynamics.com/

A list of stock and custom features has been implemented on the Rover Mini, adapting
it for the Doppelbot projects, including:

• Rover Mini Robot Operating System (ROS) [121] and Simultaneous Localiza-
tion and Mapping (SLAM) [154] method through the SLAMCORE3 third party
framework: This integration enables a communication and coordination be-
tween the rover’s hardware, such as the Intel RealSense cameras, and software
components. It allows for efficient data processing, mapping, and localization
capabilities.

• Slam Core Navigation: The Rover Mini leverages Slam Core navigation, en-
abling the rover to autonomously navigate and map its surroundings. This
feature is essential for accurate localization and path planning, enhancing the
rover’s overall autonomy and efficiency.

• ROS Integration on Nvidia Xavier Board: The Rover Mini leverages the pow-
erful Nvidia Xavier board, a powerful single-board computer (SBC) specifically
designed for artificial intelligence (AI) and robotics application. Combined with
ROS to provide robust computing capabilities for advanced navigation and con-
trol algorithms in a UNIX environment.

• ROS Navigation via WiFi: The Rover Mini supports ROS navigation through
WiFi connectivity. This feature allows for wireless communication and control,
providing flexibility and ease of use during rover operations.

• Ubuntu 18.04 Integration with ROS Melodic: The Rover Mini is integrated with
Ubuntu 18.04 and ROS Melodic, proving to be a stable and reliable platform
rovers operations and control.

• Custom Payload System: The Rover Mini is designed for easy assembly, and
modularity, allowing users to quickly set up and configure the rover for operation
featured in swapping 3D printed payloads modules.

• Intel RealSense Cameras: The Rover Mini incorporates several Intel RealSense
cameras, which are tested to operate on the Nvidia Xavier running Ubuntu
18.04. The Intel RealSense4 D435i stereo and RGB integrated depth cam-
era enables depth sensing and perception capabilities, contributing to accurate
mapping and obstacle avoidance, among other things.

• Server Integration with Unity 3D via Node.js: The Rover Mini’s server is inte-
grated with Unity 3D, a popular game engine, through Node.js, a server side
scripting language. This integration facilitates the visualization and simulation
of the rover’s movements and interactions within a virtual environment.

• PS 4 Bluetooth controller: Allowing the control of the Rover Mini, also serving
as a debugging tool.

59

Figure 3-2: Selected Rover Mini 3D Printed Payload: This image highlights the 3D printed
payload for the Rover Mini, equipped with three Intel RealSense D435 cameras. This advanced
configuration empowers the Rover Mini with enhanced perception and computing capabilities
for autonomous navigation and exploration. Image courtesy: Rover Robotics.

The combination of these features makes the modified version of the Rover Mini a
compact and powerful robotic system, capable of autonomous navigation, mapping,
and interaction within both physical and virtual environments, (Figure 3-2). Its
integration with ROS, SLAMCORE, and various software and hardware components
enables advanced functionalities and a smooth user experience.

3.2 Implementation and Design

The virtual robot model provided by Rover Robotics was adapted to integrate into a
virtual lunar environment constructed using the Unity game engine. The recreation of
the Rover Mini also includes the custom payload and Intel RealSense D435 cameras.
By implementing independent motor control for each wheel in the virtual environ-
ment, the Doppelbot successfully mimics the behavior of the real rover, allowing it
to execute movements such as forward/backward motions and rotation.

The subsequent section explores the incorporation of video game metaphors and user
interface elements in the design of the Doppelbot interface. Notably, elements inspired
by video games, such as a minimap and the use of a computer mouse to highlight
navigation points, have been also implemented into the interface. These game-inspired
elements enrich the user’s interaction and enhance their navigation experience within
the simulated environment of Doppelbot, (Figure 3.2.3).

3slamcore.com
4intelrealsense.com/depth-camera-d435i

60

https://www.slamcore.com/
https://www.intelrealsense.com/depth-camera-d435i/

3.2.1 User Interface (UI) and User Experience (UX)

The Doppelbot navigation interface (Figure 3-4) draws particular inspiration from
the real-time strategy (RTS) game genre, featuring classic titles such as the "Com-
mand and Conquer" series, originally produced by Westwood Studios and currently
developed by Electronic Arts. In this timeless genre, users experience the virtual
environment in a "bird’s-eye" perspective, enabling control over various scene objects
like vehicles and humanoids, among others, in either single target or group forma-
tion. These controls are often hotkeyed on a computer keyboard for a higher level of
abstraction and control, ultimately leading players to consider the "bigger picture"
and act on it, while tackling challenges against other players or the environment.
An essential and widely adopted user interaction in RTS games involves the use of
a computer mouse to select and set waypoints, allowing for daisy-chained commands
and creating an automation path for the vehicle to follow. The virtual navigation of
Doppelbot builds upon these foundational concepts while introducing a set of unique
"features," setting apart the overall look-and-feel of the interface and interaction from
traditional RTS games.

Figure 3-3: Exploring Perspectives: Image A showcases the Doppelbot from a unique per-
spective, offering users the option to switch between various cameras within the environment,
including a First-person view as if from the robot’s cameras, to ultimately enhance their situ-
ational awareness and aids them in planning navigation driven missions within the simulated
environment. Image B captivates the Doppelbot in action as it traverses a mission-planned
route. Users can witness the rover’s movement and interact with the environment. Addi-
tionally, users have the flexibility to disable the visualization of the cameras’ field of view,
allowing for a clear view of the rover’s surroundings.

For instance, to ensure intuitive rover control, a color-coded time-based visualization
approach was implemented, (Figure 3-6). When the user designs a path, it appears
as green lines on the screen. As the rover starts moving, these lines dynamically
transition to blue, visually representing the actual path being traversed. Once the
movement is completed, the lines turn red, indicating past actions. This color scheme
allows users to easily distinguish between the rover’s past, present, and future paths
within the virtual environment. Other elements reminiscent of the RTS genre in the
user interface include the minimap, (as show in the top right panel of Figure 3-3-B),
which provides users with a comprehensive overview of the virtual environment, the

61

rover, as well as objectives. The minimap displays the rover’s position and overlays
its path on a 2D representation of the terrain, enhancing situational awareness and
aiding in effective navigation. At any time, the user can interrupt the autonomous
path and manually control the rover using the arrow keys of a computer keyboard. In
addition to path planning and navigation, users have the flexibility to interrupt the
automated path navigation at any time and switch to manual control. By utilizing
the arrow keys on the keyboard, users can take direct control of the rover’s movement.

Figure 3-4: Real-Time Strategy Inspired User Interface: A Comprehensive Overview. This
image provides an in-depth look at the user interface and interaction of the rover system.
At the top right of the screen, a minimap is displayed, centered at the rover’s position. The
traverse path is highlighted, with the final point marked in red and past points visible in blue.
The user has the ability to change the orbit point, allowing for terrain exploration. The FoV
of the real-sense cameras is visualized by blue and green tetrahedra. Users can set waypoints
in the terrain or manually control the rover using a keyboard or joysticks, providing flexibility
and control during the mission.

Moreover, users can further explore the virtual environment through a range of inter-
active functionalities. They can orbit around and anchor in the virtual scene, scroll
to zoom in and out for a closer look at specific areas of interest, and utilize hotkeys
to swiftly change the camera perspective within the scene. The visual representation
of the Intel RealSense D435i camera played a crucial role in providing users with in-
sights into its field of view (FoV). To achieve this, the front-facing camera’s FoV was
visualized using a transparent blue tetrahedron positioned in front of the Rover Mini.
This tetrahedron acted as a visual indicator of the area captured by the front camera,
aiding users in understanding the camera’s perspective. Similarly, the two rear cam-
eras were represented using green tetrahedra of the same size, clearly displaying their
respective FoVs. By visualizing the FoV of each camera with a distinct tetrahedron,
users were empowered with a comprehensive understanding of the camera setup and
its coverage, facilitating effective decision-making during navigation and exploration.
These additional capabilities not only provide users with enhanced control over their

62

interaction with the virtual environment but also contribute to an immersive and
engaging experience. It is worth noting that giving the users the freedom to toggle
between manual and automated control modes through waypoints is a unique feature
distinguishing the overall interaction from classic RTS games.

Figure 3-5: Immersive Digital Twin of the Custom Rover Mini. This image showcases
the front and side views of the digital twin, representing the Rover Mini developed by Rover
Robotics. In image C, we get a top view of the rover, highlighting the placement of three
real-sense D435 cameras, with one in the front and two in the rear.

3.2.2 Technical Implementation

The implementation process commenced by importing the Rover Mini as a Rigid-
body into Unity, with the wheels and payload detached. In Unity, a Rigidbody is a
component that allows an object to be affected by physics, therefore the name "rigid
body" commonly used in mechanics, enabling realistic interactions with the virtual
environment. By configuring the Rigidbody component, the Rover Mini’s physical
properties, such as mass, friction, and collision, were established, making it behave
like a physical object. To enhance the visual fidelity, a 3D model of the custom pay-
load, (Figure 3-2), was integrated into the Rover Mini, along with suitable materials,
such as 3D models of the Intel RealSense D435i, to achieve realistic rendering and
appearance. For enabling movement of the Rover Mini in the 3D space, a custom
script was developed using C Sharp, a programming language supported by Unity.
This script included configurable parameters for maximum velocity, acceleration, as
well as gravity, providing the flexibility to fine-tune the Rover’s movement charac-
teristics. The script also handled the rotation of the wheels based on user input,
ensuring that the wheels’ movements synchronized with the overall motion of the
Rover. To facilitate manual control, the implementation allowed users to operate the
Rover using either keyboard inputs or a PlayStation (PS) controller, offering multi-
ple control options to suit user preferences. For automatic navigation, the algorithm

63

known as the A* (A star) algorithm [155] was employed. The A* algorithm is a
popular pathfinding algorithm used to find the shortest path between two points in a
grid-based environment, such as the Unity terrain. By using a mouse raycast system,
users could set waypoints for the Rover by simply clicking on their desired location
in the virtual environment, (as highlighted in Figure 3-6-B). The A* algorithm would
then compute the optimal path between these waypoints, allowing the Rover to au-
tonomously follow the planned trajectory. To provide users with visual feedback on
the Rover’s planned path, a line mesh renderer was implemented.

Figure 3-6: Image A represents the rover ass seen while following its designated path
within the simulated environment. Image B showcases the historical paths taken by the
rover, represented by the blue lines, as well as the future waypoints depicted in green. Image
C highlights past, present, and future waypoints. In this image, the waypoints are color-
coded to represent different stages. The blue waypoints signify the rover’s past path, the
red waypoint represents the current position, and the green waypoints indicate the planned
future path. This visual representation aids users in understanding the rover’s journey and
facilitates effective mission planning.

This visual, (Figure 3-6), representation of the waypoints utilized three distinct line
colors, each indicating the past, present, and future waypoints. This feature ensured
users could easily discern the Rover’s intended navigation path. The camera system

64

was pivotal in enhancing the user experience. Multiple camera views were incorpo-
rated, including the first-person perspective (FPS), real-time strategy (RTS), and
role-playing game (RPG) views. These views allowed users to switch, (Figure 3-5),
between different visual perspectives, offering a versatile and immersive experience.
Additionally, the camera system supported orbit control, enabling users to rotate the
camera around a pivot point, (Figure 3-4), using mouse inputs, providing greater
control over their view of the virtual environment and the Rover’s surroundings.
Furthermore, to provide flexibility, the pivot point could be dynamically changed,
empowering users to adjust the camera’s focus based on their needs. Additionally, a
simple follow camera was implemented to provide a smooth tracking experience for
the Rover. It is important to highlight that the aforementioned implementation was
developed using the Unity game engine, (specifically version 2020.1.8f1). The custom
scripts were written in C Sharp, leveraging the extensive functionality provided by
the Unity C Sharp API. By utilizing the Unity API, a wide range of methods, classes,
and properties that facilitated the creation of the desired Doppelbot interaction and
control system.

Figure 3-7: The lunar environment in the virtual simulation was carefully created using
a combination of high-resolution assets. These assets were carefully selected to provide an
immersive and realistic space for testing mission planning and exploration scenarios.

3.2.3 Synthesizing the Virtual Lunar Environment

The Unity game engine serves as the primary tool for creating and developing these
virtual environments. The Unity Game engine is widely recognized for its versatility
and powerful capabilities in creating interactive virtual environments. In this section,
we will discuss the fundamental aspects of the Unity Game engine and explore how

65

it was employed to construct the lunar virtual environment. Creating a faithful rep-
resentation of the lunar environment poses numerous challenges due to the Moon’s
unique characteristics. The lack of atmosphere, the prevalence of lunar regolith, and
lunar boulders, are all aspects that must be considered in a proper simulation. The
lunar environment, (Figure 3-7), was developed primarily using a variety of assets
from the Unity store, thus enabling the creation of a rich and visually convincing
lunar landscape. The lunar terrain was designed to reflect the Moon’s unique topo-
graphical features, such as its craters, mountains, and plains, and textured with a
lunar-like surface to enhance its realism.

The lunar environment consists of unique terrain features that need to be accurately
represented in the virtual environment. To achieve this, a combination of 3D assets
was procured from the Unity asset store. These assets include a Skybox featuring
the Earth, lunar regolith simulation textures, a base terrain model depicting craters
and other lunar features, as well as high-resolution 3D models of boulders and lu-
nar debris. The careful selection and integration of these assets contribute to the
overall realism and authenticity of the lunar environment. Creating an immersive
lunar virtual environment involves considering the physical properties of the Moon.
The materials and textures utilized in the environment were meticulously designed
to mimic the unique characteristics of lunar regolith, such as its color, texture, and
reflectivity. By accurately representing these physical properties, users can experi-
ence a more realistic and engaging interaction with the virtual lunar environment.
Furthermore, post-processing effects were applied to enhance the visual quality and
realism of the lunar virtual environment. Unity’s Universal Render Pipeline (URP)
includes a range of post-processing effects that were employed to achieve desired vi-
sual enhancements [156]. These effects contribute to the overall immersive experience
by simulating lighting conditions, atmospheric effects, and other visual elements that
are characteristic of lunar exploration. By employing these techniques and utiliz-
ing Unity’s post-processing effects, the lunar virtual environment was meticulously
crafted to provide users with a highly realistic and engaging experience of exploring
the Moon’s surface.

3.2.4 Synchronizing the Simulation

Interfacing the Rover Mini with the virtual lunar environment entails a sophisticated
integration of hardware and software, including Ubuntu / ROS (Robot Operating
System) [121], localization and navigation algorithms, networking and connectivity.
These components work in tandem to synchronize the digital twin of the rover with
the virtual environment, enabling accurate spatial representation and seamless inter-
action within the simulated lunar terrain.

At the core of this integration is the utilization of ROS, a flexible framework widely
used in robotics applications. ROS provides a standardized platform for communica-
tion and coordination between the various hardware and software components of the
Rover Mini. By leveraging ROS, the rover’s sensors, actuators, and computational

66

Figure 3-8: This image illustrates the preliminary efforts to establish synchronization be-
tween the real rover and its digital twin, the Doppelbot, as well as testing indoor navigation
and control of the rover at the Media Lab E14 building in collaboration with Alexandra
Forsey-Smerek and Cody Paige.

modules can seamlessly interact, facilitating efficient data processing and control.
This integration is vital for achieving autonomous navigation, mapping, and per-
ception capabilities within the virtual environment. To further enhance the spatial
synchronization between the physical rover and its digital twin, SLAMCORE comes
into play [157]. SLAMCORE encapsulates the concept of SLAM, which stands for
Simultaneous Localization and Mapping, offering a powerful suite of algorithms and
tools for positioning, mapping, and perception.

Through its third-party API, SLAMCORE provides real-time SLAM operations that
enable the conversion of depth information into actionable spatial understanding. By
incorporating this module into the Rover Mini’s architecture, the rover gains the
ability to accurately determine its position in the physical space and update that
information within the virtual environment. This synchronization allows for accurate
navigation and interaction between the physical and virtual realms. The integration
of SLAMCORE with ROS is made possible through the Nvidia Xavier board which
also serves as the computational powerhouse of the Rover Mini, harnessing its robust
processing capabilities to handle complex SLAM algorithms and perform real-time
sensor data fusion. With the Nvidia Xavier board running ROS and communicating
with SLAMCORE, the Rover Mini can achieves a reliable and efficient autonomous
navigation, mapping, and perception.

In terms of connectivity, the Rover Mini is equipped with WiFi capabilities, enabling
wireless communication and data transmission. This WiFi connectivity plays a vital
role in the integration of the rover with the virtual lunar environment. Through the
WiFi connection, the Rover Mini sends data, including its real-time position informa-

67

tion, to the virtual environment running in Unity. In the context of Doppelbot’s data
exchange, UDP (User Datagram Protocol) sockets are employed as a communication
protocol. UDP is a widely used protocol in robotics and real-time applications due
to its lightweight nature and low overhead [158]. It operates in a connectionless man-
ner, meaning that data packets are sent without establishing a dedicated connection
between the sender and receiver.

3.3 On Going and Future Work

3.3.1 Visualizing Time Delays in Space Operations

The challenges posed by time delays in space operations have been the focus of re-
search for over three decades, particularly in the context of human teleoperation in
space [159]. Experiments have investigated the impact of delays on human perfor-
mance and explored potential solutions to mitigate their effects. Predictive displays
have been demonstrated as a means to assist humans in overcoming the delay, while
supervisory control offers a range of options, from local impedance control during
contact with the environment to higher-level local automation. This delay can range
from seconds to minutes, depending on the distance between the Earth and the target
location. Time delays pose challenges in real-time decision-making and control, as op-
erators must account for the time lag and anticipate the consequences of their actions.

To mitigate the effects of time delays and enhance the efficiency of space operations,
automation plays a crucial role. However, in situations where human intervention
is necessary, providing operators with a clear understanding of the temporal context
becomes essential. Ideas involving possible trajectory forecasts have been considered
before in aerospace (e.g., Paradiso [160] employed a search framework to unify mo-
mentum management and CMG (Control Moment Gyroscopes) steering to forecast
and select possible gimbal trajectories in the face of unmodelled torques), but offer
a ripe area for exploration with the sophisticated graphical environments available
today. Therefore, a visualization concept is proposed, (Figure 3-10), that offers a
4-dimensional (4D) representation, encompassing the estimated, desired, and current
positions of the digital twin, along with the dimension of time.

This innovative visualization approach integrates an opaque and colored represen-
tation of the digital twin within a single integrated environment, enabling users to
gain a comprehensive understanding of its spatial information and temporal evolu-
tion. By incorporating time as the fourth axis, along with future UI elements such
as a timeline, this visualization concept provides a dynamic view of the digital twin’s
movement and positioning within the virtual environment. Users can observe the
estimated position, representing the projected path of the digital twin based on its
intended trajectory. The desired position indicates the target location or desired path
that the rover should follow. Lastly, the current position represents the real-time
location of the digital twin, providing up-to-date information about its actual move-

68

Figure 3-9: This image proposes a concept of visualisation to pinpoint the past, present,
and future possibilities of a rover’s position within the virtual environment.

ment. If the robot’s autonomous operations (e.g., adjusting to immediate situations
or other factors) or effects from terrain uncertainty, among other reasons, could cause
the rover to deviate from its path, then the simulator might also forecast other poten-
tial trajectories based on its current knowledge and the rover’s programmed behavior.

Moreover, the 4D visualization facilitates a holistic perception of the digital twin’s
spatial dynamics over time. Users can track its trajectory, observe any deviations
from the desired path, and monitor the progression of its movement within the virtual
environment. For example, if a command was sent from Earth to the rover, operators
can observe the virtual states of the digital twin and assess its corresponding response
based on the time stamp attached to it. The integration of the simulated and actual
rover in a single environment provides a comprehensive understanding of the rover’s
status, actions, and including simulations of time lag associated with communication.
This visualization concept aims to help operators maintain situational awareness, in a
sense providing them with an abstraction tool to perform important calls that present
crucial to the operation by adapt their decision-making process to accommodate time
delays with anticipated moves, and ensure effective and timely control over space
operations and monitoring.

3.3.2 Doppelbots and Large Language Models (LLMs)

The intersection of artificial intelligence (AI) and video games has been a focal point
of interest and innovation for decades. Various AI techniques have been employed
to enhance the gaming experience, ranging from non-player character (NPC) control
to procedural content generation (PCG) [161]. Traditionally, NPCs have been con-

69

Figure 3-10: This image presents a visualization tool designed to aid in reflecting the last
known update during remote space exploration. Image A shows the desired predicted positions
of the rover in solid and other possibilities as "ghosts". Image B features a Doppelbot with
a green transparent texture, indicating a possible simulated position. Image C also indicates
the last known position of the Doppelbot. Together, these images propose a visualisation to
pinpoint the past, present, and future possibilities of a rover’s position within the virtual
environment.

70

trolled through pre-programmed scripts, which, while effective, are inherently limited
in their capacity to handle diverse and unpredictable in-game scenarios.

The rise of machine learning [162] and deep learning [163] models has opened up
new possibilities in the field. Machine learning’s implementation in video games
is mostly known through research projects [164], as gaming companies often with-
hold specific information about their intellectual property. Nevertheless, the impact
of these applications has been substantial. Notable examples include deep learning
agents competing with professional human players in complex strategy games and the
integration of machine learning in popular titles like Atari / ALE, Doom, Minecraft,
StarCraft / Starcraft II, and various car racing games [165, 166, 167, 168, 169]. Addi-
tionally, traditional games like chess and Go have seen their gameplay evolve through
the influence of machine learning [170]. Despite these advancements, the application
of large language models (LLMs) [171], such as OpenAI’s GPT-45, in video games
and simulations is still a relatively unexplored area.

LLMs have demonstrated remarkable capabilities in natural language understand-
ing and generation, with their applications extending to tasks involving reasoning,
planning, and learning from interaction [172]. Integrating these models into video
games and simulations holds immense promise for creating dynamic, responsive, and
autonomous NPCs. The Integration of LLMs within virtual environments and digi-
tal twin technology can provide a more dynamic, realistic, and immersive experience
compared to traditional scripted NPCs. For instance, by leveraging the data-driven
and learning capabilities of LLMs, Doppelbots can adapt to changing environments
and suggest alternatives to complex decisions, or even learn from past experiences.
OpenAI’s GPT-4, offers a powerful LLM tool with a robust third party API capable
of integrating with Unity.

GPT-4 has demonstrated promising capabilities, although still at its infancy, in tasks
involving reasoning, planning, and learning from interaction. By utilizing a text-
based activity logging translation tool, users can contextualize information from the
virtual environment and Doppelbots. This translation tool transforms cues and data
collected from the virtual sensors, which are strategically placed and programmed by
the user. The tool enables users to generate text-based prompts, facilitating inter-
action and communication with the ChatGPT API. This process allows for seamless
integration of the virtual environment, Doppelbots’ objectives, and user inputs. By
processing the response sent back from the users’ requests into this contextualized
session, sensors and user interactions can generate appropriate responses, actions, and
strategies for the NPC.

The concept of Doppelbots aligns with the advancements in 3D robotics simulations.
The exponential increase in processing power and the availability of open software

5openai.com

71

https://openai.com/

and hardware standards have enabled more complex, versatile, and scalable simu-
lation strategies that has been long explored [173]. This evolution has also allowed
real-time simulations with hardware in-the-loop or simulations controlling mobile em-
bedded systems. Robot simulation platforms like Open HRP [174], Gazebo[175], and
Webots [176] revealed early development into versatile robotic simulations. Despite
their individual strengths, these platforms often struggle with the scalability and
portability of models and controllers, often requiring careful matching or recompila-
tion on different hardware or platforms.

The integration of LLM into robotics sytems through contextualized virtual envi-
ronments aims to address the ultimate challenges to create a general-purpose rover
simulator platform that is flexible, scalable, dynamic, and generated from real-world
data, to abstract the complexity of underlying systems. The recent integration of
GPT-4 Plugins further enhances the simulator’s capabilities, enabling direct compu-
tation through paradigms such as the Wolfram Alpha engine [177], adding exciting
ventures to integrating AI systems within both physical and virtual environments.

3.3.3 Integration of LLMs in Space Operations

The Unity game engine serves as a robust platform for developing rich, interactive
simulations [58]. With its comprehensive suite of design and scripting tools, Unity
offers a versatile environment for integrating advanced technologies like LLMs. The
focus of this section is the integration of OpenAI’s GPT-4 into the Unity game engine,
thereby programming the Doppelbots to operate in a simulated lunar environment.
Unity has been chosen for its broad adoption within the gaming community, multi-
platform support, robustness, and compatibility with external APIs. With its inte-
grated scripting engine, Unity is well-suited to communicate with GPT-4 and parse
its responses to drive the behaviors of the Doppelbot.

The integration of GPT-4 into Unity is initiated with a request to the Chat GPT-4
API. This initial request establishes a cascading chain of context using a detailed
prompt. This prompt contains comprehensive information about the Doppelbot, in-
cluding its position in the simulated lunar environment, the locations of shadowed
regions, points of interest such as lunar regolith containing water, the current energy
status of the rover, and its speed. The prompt also has access to a range of rover
functions, such as move(destination, speed, action) and rotate(angle, speed, action).
Once the initial context has been established, GPT-4 is tasked with generating re-
sponses that guide the rover’s actions in the simulation. These responses are returned
in a JSON format, a choice driven by JSON’s wide acceptance, readability, and ease
of parsing. On receiving the responses from GPT-4, a script running within the
Unity game engine parses the JSON text. This parsing process translates the LLM’s
responses into actions within the Unity environment, triggering the corresponding
functions to control the Doppelbot’s movements and actions. This could include di-
recting the rover to a particular location, adjusting its speed to conserve energy, or
initiating measurements of the lunar surface.

72

This integration of GPT-4 and Unity forms the backbone of the Doppelbot project.
It demonstrates the potential of LLMs in enhancing the capabilities of NPCs, not just
in traditional gaming contexts, but also in the realm of scientific simulations. The
framework offers a novel approach to data-driven NPC control, creating dynamic and
adaptive responses based on real-time conditions in the simulated lunar environment.
One of the key features of the Doppelbot is its ability to interact with users through
natural language. Leveraging GPT-4’s natural language processing capabilities, users
can instruct the Doppelbot with commands like,"Survey this zone. Return data ev-
ery 30 seconds", toggle "power conservation mode on", or "choose the best sunlit
route to maintain solar charge"...etc. Such interactions further reinforce the Dop-
pelbot’s role as an intelligent, adaptive NPC capable of interpreting and responding
to complex commands. The result is a sophisticated lunar environment simulator
that combines the visual fidelity of Unity with the artificial intelligence capabilities of
GPT-4, creating a dynamic, interactive, and adaptive simulation platform for lunar
exploration.

3.4 Conclusion

In conclusion, this chapter has presented the Doppelbot project, which introduces an
innovative approach to mission planning and user interaction within a virtual lunar
environment. A core concept in this research is built upon Cross-Reality, (Section
1.3.2), applied to the field of space exploration and operations. Through an im-
mersive environment encapsulating a simulated lunar environment and a simulated
digital twin of the Rover Mini by Rover Robotics called Doppelbot. The behavior
and locomotion of the actual rover is implemented within the Unity game engine and
provides independent motor control for each wheel based on user inputs. Doppelbot
showcases a wide range of movements that enable users to interact with it within the
virtual environment.

One of the notable aspects of the Doppelbot project is the incorporation of video
game metaphors and user interface elements, which significantly enhance the user’s
experience and navigation within the simulated environment. By drawing inspiration
from video games, elements like the minimap and the utilization of a computer mouse
for highlighting navigation points have been seamlessly integrated into the interface.
These game-inspired elements not only contribute to the interface’s intuitiveness but
also make the user’s interaction with Doppelbot engaging and immersive. Users can
navigate and explore the virtual lunar environment, benefiting from effective interac-
tion and a sense of control.

The detailed discussion in this chapter on the Real-Time Strategy (RTS) inspired
user interface further explores the application of the Unity game engine and physics
simulation to create an interface reminiscent of popular RTS games. By implement-
ing a color-coded time-based visualization approach, users can gain a clear visual

73

understanding of the planned, current, and past paths of the rover. This visualiza-
tion method provides valuable context for users, allowing them to track the rover’s
movements over time. Additionally, the inclusion of a minimap offers users a com-
prehensive overview of the virtual environment, enhancing situational awareness and
aiding navigation. The ability to seamlessly switch between manual and automated
control modes empowers users to adapt their control methods based on their prefer-
ences and requirements.

A system investigation has been conducted to explore the synchronisation of the
Rover Mini with the Doppelbot, through the integration of powerful embedded sys-
tems, depth cameras, and third party SLAM platforms. These include the utiliza-
tion of embedded computing and sensing platforms such as the Nvidia Xavier, Intel
RealSense Cameras, Ubuntu running ROS (Robot Operating System), and SLAM
(Simultaneous Localization and Mapping). Integrating these technologies will enable
accurate spatial representation and seamless synchronization between Doppelbots,
physical, and virtual environments.

Finally, in the future and on-going work section of this chapter, (Section 3.3.1), a pro-
posed visualization concept, that suggests overlaying several anticipated, and current
known positions of the digital twin along with the dimension of time in a virtual mon-
itoring platforms, to provide users with a comprehensive understanding of the rover’s
movement and positioning in the free of the large data delays implicit in the plane-
tary missions. Additionally, the integration of large language models (LLMs), such
as OpenAI’s GPT-4, holds immense potential for creating dynamic and responsive
non-player characters (NPCs) within the virtual environment. By leveraging the ca-
pabilities of LLMs and the Unity game engine, more realistic, adaptive, and intelligent
simulations can be transformative in several fields such as remote construction and
farming, intelligent monitoring environments, manufacturing, and space exploration.

74

Chapter 4

Doppelspot

Virtual Possession - Applications in Human-Robot Interaction and Remote En-
vironments through Augmented Virtuality.

4.1 Introduction

4.1.1 A Brief Overview of this Chapter

This chapter expands on the literature and concept of the Doppelbot presented in
Chapter 3, with the introduction of more complex robotic systems in space analog
environments. Through the implementation of a robotic telepresence system, cen-
tering its focus on the remarkable Spot, the quadruped robot designed by Boston
Dynamics renowned for its exceptional mobility and agility in navigating outdoor
terrains. Spot emerges as an ideal candidate for automating routine inspection tasks
and data collection in a multitude of industries [178, 179]. Its versatility has rendered
it indispensable for warehouse management, inspection tasks, and even construction
[180], adapting to challenging terrains through its advanced mobility, accurate, and
frequent data gathering. The extensive adoption of Spot spans various sectors, prov-
ing its mettle as an invaluable assistant in inspections and industrial monitoring,
public safety, and scientific exploration. Astonishingly, Spot made its way in the per-
formance art industries since its flexibility, and connection to human beings, is not
confined to traditional applications; it has even graced fashion show runways [181],
showcasing its adaptability and potential for diverse and innovative uses.

The following sections of this chapter introduces the Doppelspot, a telepresence ex-
ploration experience in a space analog environment. The Spot robot is augmented
with a custom-built payload that facilitates the streaming of real-time data, includ-
ing LiDAR data and 360° video, to a Virtual Reality (VR) headset. This integration
of Spot’s capabilities with VR enhances the immersive experience and allows users
to remotely explore and interact with the environment. Doppelspot demonstrates a
blend of visualisation techniques into remote operations and data collection, enabling
humans to navigate and study challenging terrains and environments from a safe and
distant location. The emphasis on autonomy in Spot’s navigation offers efficient and

75

independent exploration, while introducing the ability to involve a human operator
when needed through the telepresence system, providing a valuable combination of
human intervention and robotic capabilities.

Figure 4-1: Spot is an advanced robotic quadruped designed and developed by Boston Dy-
namics. This diagram illustrates the remarkable features of Spot, including its 12 degrees of
freedom and actuator distribution in the hips and knees. Equipped with stereo cameras, Spot
captures detailed black and white images and videos, making it a versatile and agile robotic
platform for various applications. Image courtesy: Boston Dynamics.

4.1.2 Presentation of Spot by Boston Dynamics

Spot, (Figure 4-1), is equipped with an array of advanced features that enable its effi-
cient operation. It incorporates five pairs of stereo cameras, providing high-resolution
black and white images and video for comprehensive perception and sensing capa-
bilities. These cameras contribute to Spot’s ability to navigate and interact with
its surroundings effectively. Spot also has a variety of sensors, including a LiDAR
scanner, which helps it to create a 3D map of its surroundings. This allows Spot to
avoid obstacles and navigate through complex environments. Spot also has a variety
of sensors that allow it to detect and avoid hazards, such as stairs and ledges. This
makes Spot a safe and reliable robot for a variety of applications. The robot’s loco-
motion is facilitated by its hips and joints, which consist of two actuators in each hip
and one actuator in each knee. This configuration allows for precise control of Spot’s
movements and results in 12 degrees of freedom, with three degrees of freedom per
leg. The hip joints, referred to as HX and HY, offer a wide range of motion, including
rotation and flexion/extension, while the knees provide additional flexion/extension
capabilities within a specific range.

76

Figure 4-2: The Spot API provides a flexible and versatile framework for controlling Spot,
accessing sensor data, and integrating custom payloads. This diagram showcases the client-
server model, where client applications communicate with Spot’s network services over vari-
ous IP networks. The architecture allows for seamless integration of client applications and
expansion through payloads, such as Spot CAM, offering additional control and functionality.
Image courtesy: Boston Dynamics.

Figure 4-3: The Android app provides intuitive features for controlling Spot. To change
camera views, users can utilize the top-down perspective for a comprehensive overview, and
employ touch-to-go functionality to guide Spot to specific locations. With a range of up to
50m and adaptability to different wireless configurations, the app ensures a safe teleoperation
of Spot while avoiding obstacles for optimal performance. Image courtesy: Boston Dynamics.

To facilitate seamless integration and control of Spot, Boston Dynamics has devel-
oped a proprietary Python API1 that enables applications to interact with the robot,
access sensor information, and create and integrate payloads, (Figure 4-2). The Spot
API follows a client-server model, where client applications establish network con-
nections with services running on the robot. This API offers a comprehensive set of

1dev.bostondynamics.com

77

https://dev.bostondynamics.com/

functionalities, empowering developers to leverage Spot’s capabilities and customize
its behavior to suit their specific needs. The Spot API architecture consists of various
network services that operate within the robot’s framework. These services include
the image service, responsible for handling image-related operations, and the robot-
command service, which facilitates commanding and controlling Spot’s movements
and actions.

These services form the foundation of the API stack, with higher-level services, such
as autonomy services and choreography, built on top of them. Client applications
can run on a range of platforms, including tablets, laptops, cloud-based applications,
or payloads connected to Spot. As long as a network connection can be established,
the client application can communicate with Spot. This connection can be estab-
lished through various IP networks, such as direct WiFi or Ethernet connections to
the robot, intranet, or even the internet, ensuring flexibility in deployment scenarios.
Furthermore, Spot’s API allows for the integration of additional payloads, expanding
the range of services and capabilities beyond what is provided by the robot itself.
For example, Spot CAM offers services that allow control of stream quality and LED
lights, enhancing the visual and communication aspects of the robot’s operation. De-
velopers utilizing the Spot API have access to a wide range of functionalities, including
networking, base services, geometry and frames, robot services, e-stop functionality
(safety and emergency stop button), lease management, fault handling, autonomy
services, Spot Arm control, and access to Spot’s data. These capabilities empower
developers to create innovative applications and solutions, leveraging Spot’s mobility,
sensing, and manipulation capabilities for various use cases.

4.2 Overview of Spot’s Payloads

4.2.1 LiDAR Enabled Payload

One of the notable payloads available for Spot is the Spot Enhanced Autonomy Pay-
load (EAP), which incorporates a Velodyne LiDAR assembly, (Figure 4-4), to enhance
the robot’s sensing capabilities. The addition of the LiDAR sensor significantly en-
hances Spot’s depth perception, extending it to approximately 120 meters compared
to the 2 to 4 meters range without the LiDAR. This feature is particularly beneficial
when navigating areas with limited physical features, referred to as "feature deserts,"
where the robot needs sufficient data to localize itself within an “Autowalk” map.
The EAP assembly consists of several components, including the Velodyne Puck Li-
DAR, previously known as the Velodyne VLP-16, a mount plate, roll cage, and the
integrated Spot CORE, which hosts Spot’s General Expansion Payload (GXP) and
provides additional computing capability. Spot CORE serves as the interface for the
Velodyne LiDAR service to connect with the robot, offering network and data inter-
faces, as well as regulated power within an integrated package. By incorporating the
EAP, Spot’s autonomous navigation capabilities are significantly enhanced. Without
the EAP, the effective range of the base platform is limited to 4 meters, constraining

78

Figure 4-4: Spot, equipped with the Enhanced Autonomy Payload (EAP) combining a Spot
CORE payload and the Velodyne VLP-16 assembly. This LiDAR significantly enhances
Spot’s depth perception, extending it up to approximately 120 meters compared to the stan-
dard range of 2 to 4 meters. Image courtesy: Boston Dynamics / Velodyne.

the GraphNav maps to features within this range. The EAP, utilizing the VLP-
16 LiDAR, extends the mapping range to approximately 120 meters, enabling Spot
to gather more comprehensive data for navigation and mapping purposes. The Spot
CORE comes preloaded with the Velodyne service software, which facilitates seamless
integration with the LiDAR. This service registers the LiDAR payload and provides
a RemotePointCloud service, which sends processed and filtered data to one or more
clients. The GraphNav service utilizes this data for map creation and navigation.

Technical Specifications (VLP-16):

The Velodyne LiDAR Puck2 is a LiDAR depth sensor with a 360° horizontal field of
view (FoV) and a 30° vertical FoV. It offers an angular horizontal resolution of 0.1°-
0.4° and a vertical angular resolution of 2°. The VLP-16 achieves a depth accuracy
of ±3 cm within a measurement range of up to 100 meters.

4.2.2 Modular Custom Payload

Spot is equipped with various other integrated cameras and depth sensors that pro-
vide a comprehensive range of imaging capabilities, as well as a versatile payload
that was used to house several instruments for the purposes of this project. These
cameras and sensors play a crucial role in data collection and telepresence applica-
tions, as well as autonomy, enhancing Spot’s visual perception and enabling it to
capture a variety of visual information. Spot is equipped with five stereo cameras
featuring global shutter image sensors. Each camera can provide a fisheye image, a

2velodynelidar.com/products/puck

79

https://velodynelidar.com/products/puck/

depth image, and a depth image adjusted within the frame of reference of the fisheye
image. The ideal operating range for depth images is 4 meters. The integrated Spot
cameras are strategically positioned, with two in the front, one on each side, and one
in the back, providing a 360° horizontal FoV. Two fisheye images taken from the front
cameras could be stitched together using Boston Dynamic’s proprietary Python API.
The Intel RealSense D435i is a stereoscopic depth camera with an 87° horizontal FoV
and a 58° vertical FoV. It offers a depth stream output resolution of up to 1280x720
at a maximum frame rate of 90 fps. This camera module also includes an RGB cam-
era with a 69° horizontal FoV and a 42° vertical FoV, providing a 2 MP resolution.
The recommended operating range for the D435i is between 0.3 meters to 3 meters.
Additionally, the integrated IMU collects time-stamped data on camera movement
and orientation, contributing to more robust depth data reconstruction.

Figure 4-5: Equipped to handle diverse terrains, Spot confidently traverses various surfaces
encountered during its missions. From rugged landscapes to urban environments, Spot is
designed to “go where humans go”. This image was captured from a custom payload featuring
the Insta360 ONE X VR camera during a tour on the MIT Campusa on Augustth, 2021.

aSpot MIT Tour in a 360° video.

During the field experiment, two additional Intel RealSense cameras, the D435i and
the L515, were mounted on a custom 3D printed payload mount designed in collabora-
tion with Ferrous Ward from the MIT RESOURCE team, (Figure 4-6). Each camera
was assessed separately, (Appendix B Tables B.2-B.3), to evaluate their capabilities
and suitability for data collection in space analog environments [182]. The D435i
camera, equipped with RGB and stereo-depth capabilities, was utilized to capture
data, by Alexandra Forsey-Smerek, at each waypoint along the traverse. A python
script was developed to collect images from the D435i camera, ensuring efficient data

80

https://youtu.be/qD03Wd8V8D8

gathering and organization. The camera was manually rotated 360° at each waypoint,
capturing both RGB and depth data. The L515 camera, incorporating Time-of-Flight
(ToF) technology, was also employed, by Cody Paige, to capture data at each way-
point. Similar to the D435i, a separate python script was developed to control and
capture data from the L515 camera. The camera was activated at each waypoint, and
a recording was initiated while manually rotating the camera 360° to capture RGB
and high-resolution depth data.

The Insta3603 ONE X is a 360° action camera designed to capture immersive pho-
tos and videos, (Figures 4-10, 4-5). It offers a full 360° view by using two ultra-
wide-angle fisheye lenses. The camera’s software stitches the two images together,
creating a seamless 360° image or video. It captures RGB photos at a resolution
up to 6080x3040. It can also record RGB video at a resolution up to 5.7K and 30
fps. The camera provides an immersive view with a 360° horizontal FoV and a 180°
vertical FoV. These integrated cameras and depth sensors provide Spot with a rich
visual perception and imaging capabilities, enabling it to gather comprehensive data
for various applications, including data collection, telepresence, and visual analysis in
space analog environments.

Figure 4-6: A photograph of Spot in nighttime conditions with single spotlight lighting.
Payload I consists of the Spot Core Computer and Velodyne LiDAR. Payload II is designed
and developed by the MIT RESOURCE team, and carried either both Intel RealSense cameras
or the Insta360 ONE X camera on the custom payload tower.
Image courtesy: MIT RESOURCE & Nikita Borodenko.

3insta360.com

81

https://www.insta360.com/

4.3 Analog Mission In Marblehead, MA

4.3.1 Description of the Designated Environment

A two-day field experiment was conducted on a granitic beach with exposed bedrock
in Marblehead, MA to evaluate the performance of the selected cameras in a realistic
and challenging setting. The chosen environment fulfilled several criteria necessary
for meaningful testing, including:

• Exposed bedrock and unstable terrain: The site offered a natural setting with
exposed granitic bedrock, providing geological features of interest for analysis.
The unstable terrain made it difficult to set up and maintain the cameras, which
tested their durability and reliability, as well as drive Spot.

• Variable lighting conditions: The beach was located in a coastal area with a
variety of lighting conditions, including direct sunlight, indirect sunlight, and
shade. This tested the cameras’ ability to capture images in a variety of lighting
conditions.

• Variable weather conditions: The beach was located in an area with a variety
of weather conditions, including rain, wind, and fog. This tested the cameras’
ability to capture images in a variety of atmospheric conditions.

• Minimal human activity: The site was located in a private area with mini-
mal human activity, and offered amenities such as electricity, internet access,
and other comforts. This made it an ideal location for scientific research in a
controlled yet challenging environment.

• Accessible Geological Features: The selected site contained identifiable geolog-
ical features such as distinct 90° fracture angles and continuous quartz veining
within the granitic rock. These features served as points of interest for evaluat-
ing the cameras’ ability to capture color-specific and geometry-specific geological
information.

• Accessibility and Power/WiFi Availability: The site’s location near a street
allowed for easy transport of heavy equipment. Additionally, the site provided
power and WiFi accessibility, crucial for operating the cameras and remotely
accessing the data throughout the traverse.

• Daytime and Nighttime Conditions: The experiment encompassed traverses
conducted both during daytime and nighttime conditions. This allowed for
a comprehensive evaluation of the cameras’ performance in different lighting
scenarios, considering the impact of lighting conditions on image quality and
depth perception.

82

4.3.2 Analysis of Test Results and Implications

Samples of the data collected during the field experiment, Appendix B Table B.1,
yielded valuable insights into the cameras’ performance and their implications for
data collection in space analog environments. These key findings played a crucial role
in selecting the most suitable cameras to create the immersive telepresence experience
fused with depth information.

The FoV and Depth of Field (DoF): The cameras’ FoV varied, with the integrated
Spot cameras providing a full 360° FoV through multiple camera setups. The Intel
RealSense cameras required manual rotation to capture a complete 360° FoV. The
DoF varied across the cameras, with the Velodyne LiDAR offering the largest DoF
of up to 100 meters. It was observed that Velodyne’s large DoF, although beneficial
in some scenarios, posed challenges in terms of resolution and identification of geo-
logical features. The resolution of depth data varied among the cameras, with the
Velodyne LiDAR capturing a large number of points but at reduced resolution due to
the viewing distance. The Intel RealSense cameras exhibited higher resolution depth
data, enabling more detailed surface texture representation. Higher resolution data
was particularly relevant for geological analysis tasks that required precise feature
identification.

Each camera generated different file types and sizes, impacting the bandwidth re-
quirements for data transmission and storage. The combination of RGB with ToF
data, as provided by the Intel RealSense L515, posed higher bandwidth requirements
compared to other cameras. Bandwidth considerations became essential for design-
ing an efficient data pipeline and assessing the feasibility of onboard processing and
transmission. Testing in both daytime and nighttime conditions revealed that the
Intel RealSense stereo cameras performed surprisingly well in low-light environments,
despite lower RGB image resolution.

This unexpected result indicated the stereo cameras’ ability to function effectively for
depth data extraction, even in challenging lighting conditions. The analysis of the
test results highlighted the strengths and limitations of the Intel RealSense cameras
for data collection in rocky analog environments. These findings provide essential
insights for refining data pipelines, camera selection, and tool development tailored
for geological analysis tasks in outdoor environments. Specifically, the cameras were
systematically tested to determine their suitability for the Doppelspot telepresence
application. The selection process considered multiple factors, including data band-
width, accuracy in outdoor settings, and seamless integration with real-time function-
ality within the Unity application. By carefully evaluating these criteria, we aimed
to identify the optimal camera solution that would enable effective and reliable op-
erations in the challenging outdoor scenarios encountered by Doppelspot. Based on
those tests, the Velodyne VLP-16 LiDAR, capable of capturing files in the format of
.pcap, was selected to complement the 360° video stream from the Insta360 ONE X.

83

Figure 4-7: Image A and B showcase the immersive teleoperation application developed in
Unity 3D for the Oculus Quest, allowing users to experience real-time telepresence with a
fusion of Velodyne VLP-16 LiDAR data and 360° video. Whereas image C highlights the raw
.pcap data captured by the Velodyne VLP-16 LiDAR in the same outdoor rocky environment
at Marblehead, MA.

4.4 Mobile Immersive LiDAR Telepresence

4.4.1 Augmented Virtuality in Space Analog Environments

Augmented Virtuality (AV) is a concept that combines elements of both AR and VR,
(Section 1.2.3), as a blend between visual elements to refine the telepresence experi-
ence. It involves overlaying virtual information or objects onto the real-world as per-
ceived through a head-mounted display with an immersive live video feed, essentially
providing users with additional contextual data and enhancing their understanding
and interaction with remote environments. In the context of robotics and telepres-
ence, (Section 1.2.1), AV plays a significant role in blending the physical and virtual
worlds, enabling users to have a more immersive and informative telepresence experi-
ence. By leveraging AV applications, users can access real-time data, annotations, and
visualizations that are superimposed onto the live video feed from the remote robot
via several cameras. This additional information enhances the situational awareness
and understanding of the remote environment within depth, allowing users to make
informed decisions and perform tasks effectively. AV also facilitates the interaction
between users and the remote environment, enabling virtual objects or tools to be
manipulated and utilized for various purposes.

The utilization of AV in robotic telepresence offered several benefits. Firstly, it en-
hanced the users’ perception and understanding of the remote environment by pro-
viding contextual information and visual cues. This improved situational awareness
empowered users to make better decisions and perform tasks more efficiently. Addi-
tionally, AV facilitated collaboration and communication between remote users and
on-site personnel, as both parties could interact with the same augmented content

84

in real-time, fostering effective teamwork and information sharing. However, imple-
menting AV also presented certain challenges and technological limitations. Ensuring
the accurate alignment and registration of virtual overlays with the real-world en-
vironment required sophisticated computer vision algorithms and precise calibration
techniques. The latency introduced by processing and rendering the augmented con-
tent could potentially impact the real-time nature of the telepresence experience.

Moreover, the selection and design of intuitive and user-friendly interfaces for interact-
ing with the virtual overlays required careful consideration to ensure a seamless and
efficient user experience. The review of the benefits and challenges encountered with
AV contributed to the understanding of its potential for enhancing robotic telepres-
ence. It provided insights into the technical aspects, user experience considerations,
and future directions for further refinement and optimization of AV systems in the
context of robotic telepresence.

4.4.2 Technical Implementation

The telepresence aspect of the system involved the utilization of a 360° video camera
to provide an immersive experience for remote users. The 360° video camera captured
a panoramic view of the environment, allowing users to visualize and explore the sur-
roundings in the VR application. This camera played a crucial role in enhancing the
telepresence capabilities of the system, enabling remote users to feel as if they were
physically present at the location where the robot was operating. Spot can be con-
trolled either by a handheld tablet, (Figure 4-3), or a laptop computer using WASD
controls. The type of control used depends on the type of data being collected. To
collect data from Spot’s stereo cameras, a laptop must be connected and controlling
Spot. If data is not being collected from Spot’s stereo cameras for a given traverse,
the handheld tablet is used. To control Spot using WASD keyboard controls, the
Boston Dynamics wasd.py script from the Spot SDK is used.

Two Python scripts were developed to collect images from Spot’s five stereo cameras.
The Spot SDK provided a sample script called get image.py, which takes arguments
for camera names and image types and collects data of that type for that specific
camera when called. This script was adapted to prevent having to pass in each cam-
era type and each data type as arguments at every collection point. The adapted
script takes in arguments of "front" or "back" to either collect all data types from
either the two front and two side cameras, or to collect all data types from the back
camera. Two argument options were required because the Spot image service was
unable to handle all data types being requested from all five cameras at once.

A second Python script was written to efficiently gather data at each set of waypoints
along a traverse. The goals of the script were to ensure that only one script call was
necessary for each traverse, to allow users to uniquely label each waypoint, and to
inform the user when image collection was complete at a waypoint. The script first
prompts users to input where they would like to save the traverse data. Next, the

85

script prompts users to input the name of a waypoint. Once users enter a name, the
script runs the adapted get image.py script twice, capturing stereo camera data for
all cameras on Spot. Once this process is done, the script reports that data capture
at the waypoint is complete, and waits for the input of the next waypoint name. A
separate folder is created for each waypoint. Each folder contains the fifteen images
captured at that waypoint, three for each of the five cameras [182].

The streaming process involved compressing and transmitting the recorded 360° video
from the camera to a custom application running on the Oculus Quest 2 VR headset.
To facilitate this streaming, an RTMP server running Nginx4 was employed. The
compressed video data was transmitted over a network connection from the camera
to the VR application, allowing users wearing the Oculus Quest 2 headset to receive
and experience the live 360° video feed with networked induced latency. The utiliza-
tion of 360° video for telepresence purposes offered several advantages.

The immersive nature of the technology provided users with a sense of presence and
an enhanced feeling of being physically present at the remote location. By offering a
panoramic view of the environment, users could freely look around and explore their
surroundings, mimicking the experience of being physically present. The effectiveness
of 360° video for telepresence was assessed based on several factors, including the qual-
ity of the video feed, the level of immersion provided, and the overall user experience.
The system’s ability to transmit high-quality video in real-time without significant
latency (40-100ms) was crucial for maintaining a seamless telepresence experience.
Additionally, the extent to which users felt immersed and connected to the remote
environment determined the success of the telepresence solution. Furthermore, offline
applications were developed to replay cached LiDAR and 360° videos captured during
the field experiments. These applications allowed for in-depth analysis and review of
the recorded data, enabling researchers to revisit specific moments and examine the
details captured by the LiDAR overlaid with the 360° video.

4.5 Doppelspot in Virtual Analog Environments

The development of the digital twin for Spot, also known as Doppelspot, presented
unique challenges due to the complexity of this four-legged robot, which differs from
the rover animated in Chapter 3. To accurately replicate Spot’s movements and be-
haviors within the virtual environment, an investigation into procedural animation
in Unity was conducted. Procedural animation involves defining the robot’s joints,
constraints, and parameters to govern its movement dynamically, ensuring precise
control over its motions. By leveraging Blender, a powerful 3D computer graphics
software, the team meticulously rigged the 3D model of Spot, enabling realistic ani-
mations and simulations that mirrored the actions of the physical robot.

4nginx.com

86

https://www.nginx.com/

This highly detailed and accurate representation of Spot served as a visually appealing
and interactive counterpart for users, elevating the telepresence experience and foster-
ing a deeper understanding and engagement with Spot’s interactions and movements
within the Unity game engine. To achieve realistic leg animations for the digital twin
of Spot, a C Sharp script was implemented in the Unity game engine. This custom
implementation enables procedural animation techniques, through inverse kinematics
(IK) simulation algorithms, to control the movements of the robot’s legs. IK simu-
lation algorithms are computational methods that calculate the joint angles required
to position the end effector (in this case, the feet of the robot) at a desired target
position. The IK simulation algorithms used in the C Sharp script aimed to achieve
natural and stable leg movements for the digital twin of Spot. These algorithms con-
sidered factors such as joint limits, joint constraints, and environmental obstacles to
calculate the optimal joint angles for each leg segment. By iteratively adjusting the
joint angles based on the desired foot position, the IK simulation algorithms ensured
that the feet of the digital twin followed a given trajectory while maintaining stability
and adherence to physical constraints [183].

Figure 4-8: The script utilizes inverse
kinematics (IK) simulation algorithms to
control the movements of the robot’s legs,
ensuring natural and stable leg motions.
Challenges such as replicating the com-
plex leg kinematics, handling environmen-
tal constraints, and integrating collision
detection mechanisms were overcome to
create lifelike leg movements in the dig-
ital environment.

The implementation of the IK simulation algorithms for the procedural leg animation
of the digital twin posed several challenges. One challenge was to accurately replicate
the complex leg kinematics of the physical Spot robot in the digital environment.
This required meticulous calibration and parameter tuning to ensure that the virtual
legs moved in a manner consistent with the real robot. Another challenge involved
handling environmental constraints and obstacles in real-time. The IK simulation al-
gorithms needed to detect and respond to collisions or unexpected terrain conditions
to maintain the stability and natural movement of the virtual legs. This necessitated
the integration of collision detection and avoidance mechanisms within the script,
allowing the digital twin to adapt its leg movements based on the encountered obsta-
cles [184]. A complete reference of the procedural animation in pseudocode could be
retrieved in Appendix B, Section B.2.

Doppelspot, the digital twin of the Spot robot, played a pivotal and dynamic role
throughout the project, serving as a robust and lifelike virtual representation of the
physical robot. Its immersive and interactive nature allowed users to closely observe

87

and analyze Spot’s intricate movements, leg articulation, and adaptability to diverse
environmental conditions. As a powerful visualization tool, Doppelspot provided a
safe and controlled virtual environment for users to experiment, simulate, and fine-
tune their teleoperation techniques and control strategies. This capability proved
particularly valuable for remote operation training of quadruped robots in challeng-
ing and remote environments. By replicating Spot’s behaviors and responses within
the 3D environment, users could test various scenarios and operational concepts be-
fore real-world deployment, aiding in the development and refinement of efficient and
effective teleoperation strategies.

It’s worth noting that the testing space analog environment for Doppelspot was syn-
thesized from real-world data collected during an analog mission in Svalbard, Norway.
Chapter 5 provides a detailed account of this process. The integration of authentic
environmental data into Doppelspot’s virtual world, (Figure 4-9), enhanced its re-
alism and provided users with a comprehensive and accurate simulation of remote
terrains. This integration allowed for more realistic training scenarios, enabling users
to tackle the challenges of operating in remote and unpredictable terrains, pushing
the boundaries of robotic telepresence exploration in space analog environments.

88

Figure 4-9: Images of the simulated Spot as it navigates a virtual analog site. The terrain
is generated using a blend of high resolution aerial imaging based photogrammetry as well
as other high resolution 3D assets, providing an immersive and realistic simulation. For
a more detailed exploration of the terrain generation process, refer to the comprehensive
insights outlined in Chapter 5.

89

Figure 4-10: A 360° photo captured by the Insta360 ONE X VR camera mounted on Spot
that offers a panoramic perspective. With its wide 360° horizontal FoV and 180° vertical
FoV, this image provides a comprehensive and immersive view of Spot’s surroundings at the
E14 Building of the MIT Media Lab.

4.6 Conclusion

In summary, this chapter introduced two projects centered around robotic telep-
resence that make use of a versatile quadruped robot, Spot, By Boston Dynamics.
The first project involves the development of a VR application with the capability
to stream and replay 360° videos mixed with LiDAR data collected from a space
analog environment site, drawing parallels with Quadrasense’s approach [152], which
integrated immersive VR cameras with unmanned aerial vehicles (UAVs) and an ap-
plication designed around a real-time strategy (RTS) interface within the Unity game
engine. Following a thorough evaluation of various camera options, the Insta360 ONE
X camera, (depicted in Figure 4-10), and the Velodyne VLP-16 LiDAR were chosen
as the optimal devices for creating this immersive experience, although many other
devices were tested. Through an augmentation of the Doppelbot concept, Doppelspot
provides users with an exceptional telepresence experience, empowering them to vir-
tually explore challenging environments in an interactive and lifelike manner.

The successful implementation of this teleoperation system highlights a potential use
case for robotic telepresence in scenarios unaffected by communication delays. For
example, astronauts in orbit or space habitats could partake in virtual extra-vehicular
activities through Doppelspot-like interfaces, capitalizing on its capabilities for explo-
ration and research. In contrast to Chapter 3, which concentrated on employing vir-
tual environments to simulate time delays in immersive visualization as a strategy to
address remote navigation delays. Doppelspot’s integration into telepresence systems
introduces fresh opportunities for remote operation and data collection in demand-

90

ing environments. This integration presents novel avenues for remote operation and
data collection in challenging contexts, as evidenced by the tests conducted in space
analog environments. Throughout this chapter, the core capabilities of Doppelspot
were underscored, illuminating its remarkable capacity to navigate outdoor terrains.
Augmented with the Spot Enhanced Autonomy Payload (EAP) and Velodyne Li-
DAR, Spot emerges as an advanced mobile sensing platform, enhancing navigation,
perception, and data collection in otherwise inaccessible locations.

This VR application could also be termed as an Augmented Virtuality (AV) experi-
ence. Presenting this application through this taxonomy highlights the role of enhanc-
ing the telepresence experience by seamlessly blending the real analog environment
captured by the 360° video camera with LiDAR data. This fusion occurred within
a Unity application, where the analog environment was streamed alongside LiDAR
information. The LiDAR data was visualized with a color code to indicate depth and
distances. Virtual overlays and annotations furnished real-time and cached access to
data and visualizations, all superimposed on the live video feed. This approach effec-
tively bridged the gap between the physical and virtual realms, facilitating simulta-
neous interaction with both domains. In parallel, the creation of a detailed 3D rigged
model of Spot within a virtual space analog environment, also developed with the
Unity game engine, was explored. Special emphasis is placed on the implementation
of procedural leg animation through the utilization of inverse kinematics simulation
algorithms built into Unity’s custom rigging system. This essentially creates a virtual
Spot, a "Doppelspot", that can be imported into various virtual environments, such
as those synthesized from real-world data. Notably, this analog site was previously
captured during a separate analog mission detailed in Chapter 5.

Looking ahead, future work for Doppelspot entails anticipated improvements to its
payloads and telepresence capabilities. Advancements in 3D scanning technologies
and communication present the potential for enhanced data reconstruction and al-
ternative perspectives, which could potentially replace our current 360° based telep-
resence. Additionally, the integration of procedural animation into this type of telep-
resence system could further enhance realism and interactivity, providing users with
a more immersive experience. Chapter 6 of this thesis further explores the use of
commercial advanced depth cameras adapted for space environments, into robotic
platforms like these, focusing on low bandwidth 3D transmission and reconstruction.

91

92

Chapter 5

Synthesizing Analog Environments

Virtual Space Analog Environments Sourced from Real-world Information Har-
vested within Human-Robot Operations.

5.1 Introduction

5.1.1 A Brief Overview of this Chapter

The study of terrestrial analog sites, (Figure 5-1), has become integral to scientific
space exploration. These sites simulate geological, environmental, sometimes even
biological conditions that resemble those found on celestial bodies [185], aiding re-
searchers and astronauts to practice techniques and approaches on Earth’s geological
features that can be extrapolated to other planets. Geologists have employed a range
of tools and methodologies to investigate Earth’s geological processes for centuries
[186]. The combination of traditional fieldwork and modern technologies has greatly
advanced understanding of Earth’s geological history. In this chapter, the application
of 3D reconstruction and data visualization in virtual analog environments [187] is ex-
plored with specific attention to a Martian analog site situated in Svalbard, Norway.
Found within the Arctic circle between Greenland and Norway, Svalbard features
landscapes that closely mirror Martian terrain, making it an optimal location for ge-
ological study and research.

This chapter explores the methodologies for the synthesis [85] of virtual environments
in space analog settings, using techniques like photogrammetry with high-resolution
textures and 3D assets, as well as Unity’s High-Definition Render Pipeline (HDRP).
Photogrammetry, a process extracting three-dimensional data from two-dimensional
images or videos [188], aids in constructing realistic models of real-world settings.
High-resolution textures, characterized by a multitude of pixels, contribute to en-
hanced realism. The integration of 3D materials is pivotal for defining object appear-
ances, encompassing lifelike textures, lighting, and reflections. Accompanying these,
3D assets—digital models of objects—complement the process, enriching the virtual
environment’s resemblance to Svalbard.

93

Figure 5-1: This image captures NASA’s Lunar Electric Rover ascending a hill at Black
Point Lava Flow in Arizona during the 2008 Desert RATS - Research and Technology Stud-
ies. The site remarkably resembles the Martian landscape, allowing scientists to simulate
extraterrestrial conditions and test rover capabilities in preparation for future missions.
Image courtesy: NASA/Regan Geeseman.

94

In this chapter, a comprehensive list of both hardware, (Section 5.3.1), and software,
(Section 5.3.2), were used in the implementation, data collection, and data process-
ing of this research. A wide range of cameras and sensor technologies have also been
adapted to serve the purposes of geological exploration and documentation.

In addition to terrestrial imaging, aerial photography was obtained using a DJI Phan-
tom 4 Pro V2 drone, making it possible to generate point-clouds (.ply) meshes with
high resolution textures of various terrains. Environmental sensor nodes capable of
measuring the temperature, humidity, illuminance and barometric pressure, among
other things, were deployed at three different sites, operating for several hours.

Figure 5-2: Satellite image of sites near Longyearbyen, Svalbard, Norway, selected by
fellow RA and collaborator Cody Paige from the MIT RESOURCE on the Space Exploration
Initiative 2022 analog mission to the arctic. Site 1 is a river bed at the base of a glacial
valley, site 2 is a permafrost feature, and site 4 is a recently exposed glacial moraine. No
data was collected at Site 3. Image courtesy: Norwegian Polar Institute.

The study sites in Svalbard were selected based on their distinct geological features,
including a glacially carved valley with a braided stream, a permafrost feature [189],
and a recently exposed glacial moraine. Virtual reality (VR) might hold the potential
to enhance analysis and decision-making processes for geological data in exploration
missions. By providing naturalistic visualization tools that enable multiple team
members to analyze, discuss, and interpret data, cross-disciplinary communication
can be improved, real-time decision-making processes can be enhanced, task loads
can be reduced, and flexibility in temporal and spatial planning can be achieved.

Although VR has gained traction as a tool for space applications, including Mars
exploration and astronaut training [68], the specific benefits and operational contexts
in which VR provides the most value are yet to be defined. These questions need to

95

be answered before investing in the development of VR as an operational tool. This
study focuses on the use of VR for geological analysis of lunar and planetary surfaces,
utilizing Svalbard, Norway, as an environmental analog [98, 190].

In particular, this chapter explores the application of 3D reconstruction and data vi-
sualization in virtual analogs, (Section 5.6), focusing on the Svalbard site as a Martian
analog. By leveraging drone imagery, environmental data, and advanced rendering
techniques, accurate 3D models and digital twins of the analog environments were
created.

Both Desktop-based and VR application running on the HTC Vive were developed
based on these reconstructions, provide users with an immersive and interactive ex-
ploration experience that facilitate geological study and research. The comparative
analysis between the two applications aimed to assess the effectiveness of VR as a
tool of study for space analog environments and geological surface exploration.

5.1.2 Analog Sites Selection in Svalbard, Norway

Svalbard’s resemblance to Mars stems from its limited plant life and extensive ex-
posure of rock formations [191]. These factors make it easier to discern the geologic
history of the region, mirroring the conditions observed on Mars. The field sites, (Fig-
ure 5-2), in Svalbard that were explored during this study suggest some geological
resemblance.

As mentioned, Svalbard offers an exceptionally intriguing location for geological study
due to the preservation and exposure of its long geological history. The rock for-
mations in Svalbard reflect mountain building processes during the Early Paleozoic,
overlain by sedimentary deposits and layers that span millions of years. Glacial activ-
ity has sculpted the terrain, leaving behind sharp mountains, U-shaped valleys, and
fjords that beautifully showcase the region’s geological history [192]. The absence
of vegetation, lack of soil, and rugged topography provide an excellent opportunity
to study Earth’s history and simulate conditions found on planetary surfaces [193].
Svalbard’s other environmental advantages, such as a low azimuth sun angle, mini-
mal vegetation, low temperature, and desert-like conditions with low humidity and
precipitation, make it a suitable analog for Martian environments [194].

5.2 Operational Geology In a Virtual Environment

This chapter presents an innovative methodology for operational geology studies con-
ducted within a virtual environment, designed in collaboration with Cody Paige from
the MIT RESOURCE team [195]. The Operational Geology In a Virtual Environment
(OGIVE) application was specifically tailored for the usage as space research through
analog terrains on Earth [196]. By seamlessly integrating advanced 3D reconstruction
techniques such as photogrammetry and RGBD-based reconstruction with cutting-

96

Figure 5-3: This image showcases one of the synthesized virtual environments of the
OGIVE application, blending cutting-edge techniques like photogrammetry and advanced
shaders. Through a fusion of technologies, this chapter explores the creation of a realis-
tic and immersive digital landscape driven by real-world data.

edge game engine technology, digital twins of analog sites have been developed to
accurately replicate the geological properties of these environments. Leveraging the
immersive capabilities of Virtual Reality (VR), a comprehensive suite of tools has been
designed to empower geologists and virtual explorers in conducting virtual geological
surveys on distant planets. In order to evaluate the effectiveness of this approach,
an extensive user study engaged participants of varying geological expertise in our
Svalbard world, tasking them with exploring the virtual landscapes and identifying
noteworthy geological features. The findings revealed the efficacy of this approach in
aiding participants in identifying these features, effectively highlighting the utility of
VR as a valuable tool for geologists to navigate and explore distant terrains. This re-
search showcases the vast potential of digital twins and virtual environments in fields
of space exploration and telepresence, while also providing profound insights into the
application of these technologies for geological investigations.

The data generated for the OGIVE project originated from the Svalbard analog site
expeditions conducted in the summer of 2022 by the MIT Media Lab Space Ex-
ploration Initiative (SEI)1. The analog mission to Svalbard focuses specifically on
geological analysis in Martian analog environments to synthesise a virtual analog en-
vironment that was used as a base platform to conduct research on virtual operational
geology [197]. By incorporating high-resolution depth data, aerial photography, and
environmental data, the Svalbard project aims to assess scientists’ abilities to analyze
and interpret the local geology using VR compared to traditional desktop applications.
While Doppellab and Doppelmarsh primarily explored the emergent functionality of
digital twins and their impact on telepresence, the Svalbard project extends this ex-
ploration to the field of geology and planetary exploration. It leverages VR as a tool
to enhance scientific analysis, offering immersive documentation processes in the field
of virtual geology and space exploration [98, 190].

1media.mit.edu/groups/space-exploration

97

https://www.media.mit.edu/groups/space-exploration/overview/

5.3 Data Collection in Svalbard

The study employed comprehensive data collection methodologies and hardware in
Svalbard analog environments. Jessica Todd conducted aerial photography using a
DJI Phantom 4 Pro V2 drone in collaboration with National Geographic. Envi-
ronmental data collection and terrestrial imaging were also conducted. Cody Paige
operated a Rover Mini augmented with the Microsoft Azure Kinect camera, and also
deployed sensor nodes and selected the geological sites. The node is built of the Ar-
duino MKR WiFi 1010 augmented with the MKR ENV shield offering an array of
environmental sensors with a custom 3D-printed weatherproof enclosure designed by
Ferrous Ward. These were the key components of the data collection process.

Figure 5-4: Collaboration between terrestrial and aerial unmanned vehicles for data collec-
tion purposes. The Microsoft Azure Kinect is integrated as a custom payload atop the Rover
Mini body. This dynamic setup, detailed in Chapter 3, empowers the rover with depth data
collection capabilities. As the Rover Mini traverses the field sites, the Azure Kinect captures
high resolution ground-view scenes for precise 3D reconstruction, while the DJI Phantom
drone soars above, to capture larger terrains. Image Courtesy of Maggie Coblentz.

5.3.1 Hardware Apparatus for Data Collection

Microsoft Azure Kinect Rover Payload:

The Microsoft Azure Kinect is a stand alone commercial product designed and de-
veloped by Microsoft after the successful and ubiquitous use of the XBox Kinect
module in various fields, notably the fields of Human Computer Interaction (HCI)
and robotics [198]. This special camera is equipped with a 12 megapixel RGB module
supplemented with a 1 megapixel-depth module. It captures depth maps by measur-

98

ing the time it takes for near-IR (NIR) light to return to the camera sensor, along
with recording the amount of NIR light reflected from the scene, (Section 6.1.2). The
camera provided high-resolution depth data with different depth-modes. The data
collected was stored as .mkv video files, which were then processed using the Open3D
library [199] to generate 3D reconstructions (.ply files) [200]. These reconstructions
were subsequently stitched together in the Unity game engine to create a 3D mesh of
the field site for virtual environment rendering. A comprehensive illustration of the
Microsoft Azure Kinect camera is expanded on in Chapter 6, Section 6.1.2.

The Microsoft Azure Kinect was integrated within a Doppelbot, (Figure 5-4), as a
custom payload, which was positioned on top of a 3D printed extension of the Rover
Mini body; refer to Chapter 3, (Section 3.1.2), for an in depth description of the Rover
Mini by Rover Robotics. This setup facilitated the collection of data for purposes of
3D reconstruction using the camera while moving across the field sites.

Figure 5-5: Image A - Arduino environmental sensor in custom hard-shell case. Image B
and C- C. Paige collecting field notes, C. Paige collecting data using the Microsoft Azure
Kinect, C. Paige, S. Image D - Auffinger and J. Todd preparing a mini rover with the
Microsoft Azure Kinect mounted on a custom payload tower for data collection. Image E -
C. Paige and J. Todd collecting data using a Velodyne puck on a custom 360° rotating mount
(collection for a separate project, Ward et al., at ICES 2023) [190].

Azure Kinect Development Kit (DK):

Microsoft Azure Kinect DK is a developer kit featuring advanced AI sensors that
incorporate sophisticated computer vision and speech models. The Azure Kinect DK
includes a depth sensor, a spatial microphone array with a video camera, and an
orientation sensor, (Figure 6-3). This compact and versatile device offers multiple
modes, options, and software development kits (SDKs) to support various applica-
tions, check Chapter 6 for a comprehensive list of capabilities of the Microsoft Azure
Kinect device as well as its development kit [151].

99

DJI Phantom 4 Pro V2 Drone:

Aerial photography was conducted using a DJI Phantom 4 Pro V2 drone. The drone,
a commercial off-the-shelf platform commonly used in videography and drone piloting,
was operated using an iPad app by Jessica Todd from the MIT RESOURCE team in
collaboration with National Geographic. The drone captured high-resolution aerial
images by following preprogrammed raster, (Figure 5-12), patterns designed to cover
the entire field site [201].

Environmental Sensor Node:

The Arduino MKR WIFI 10102 board, enhanced by the Arduino MKR Environmental
Shield3 rev2 (see Appendix A for details), forms an integrated environmental sensor
suite. This comprehensive suite was designed to capture diverse environmental pa-
rameters, including color, sound, motion, temperature, humidity, pressure, light, and
UV levels (see Appendix C.3 for more information). These environmental readings
were stored as .CSV files, facilitating subsequent calibration and analysis. The incor-
porated shield conveniently accommodates a microSD card, enabling local storage of
the acquired data. Furthermore, the collected data was enriched with geolocation co-
ordinates of deployment, as well as timestamps indicating operation and data capture
times. To provide a glimpse into the collected data’s richness, sample plots (refer to
Figures 5-7, 5-8, and 5-9) showcase data from distinct nodes and various sites over the
operational days. For a comprehensive rundown of technical specifications regarding
this sensor node, please refer to Appendix B Table B.4.

Figure 5-6: The Arduino MKR WIFI 1010
board, enhanced with the Arduino MKR En-
vironmental Shield rev2, provides a compre-
hensive sensor package. This setup captured
crucial environmental data, including color,
sound, motion, temperature, humidity, pres-
sure, light, and UV levels. It Incorporated
modules such as ST LPS22HB for atmospheric
pressure, ST HTS221 for temperature and hu-
midity, and VISHAY TEMT6000 for ambient
light. Image courtesy of Arduino.cc

2docs.arduino.cc/hardware/mkr-wifi-1010
3docs.arduino.cc/hardware/mkr-env-shield

100

https://docs.arduino.cc/hardware/mkr-wifi-1010
https://docs.arduino.cc/hardware/mkr-env-shield

Figure 5-7: These graphs show calibrated environmental sensor data from Node 1 on Site
1, Outcrop 1 (78.165984, 15.989823) for a period of 5 hours and 56 minutes and Node 1
on Site 2 (78.213312, 15.747577). It is important to note that the sensor Node 1 on Site
2 enclosure was closed, thus blocking the light sensors, as observed by the low amount of
illuminance recorded.

101

Figure 5-8: These graphs show calibrated environmental sensor data from Node 2
(78.165974, 15.988111) and Node 3 (78.165081, 15.987596) on Site 1, Outcrop 2 and for a
period of 7 hours and 42 minutes. It is important to note that both nodes’ enclosures were
closed, thus blocking the light sensors, as observed by the low amount of illuminance recorded.

102

Figure 5-9: These graphs show calibrated environmental sensor data from Node 2
(78.194296, 15.544605) and Node 3 (78,200254, 15.573699) on Site 4 for a period of 2
hours, and 03 minutes and 8 hours and 22 min, respectively.

103

5.3.2 Software Apparatus for Data Collection

Agisoft Metashape:

Agisoft Metashape is a versatile software toolkit renowned for its capability to conduct
photogrammetric processing of digital images, ultimately yielding three-dimensional
spatial data. Its usage spans across an array of domains, including but not limited to
geographic information systems (GIS), the preservation of cultural heritage artifacts,
the production of visual effects in the film industry, and the derivation of indirect
measurements for objects at diverse scales. Notably, this tool has found its application
in numerous projects focusing on aerial 3D reconstruction, showcasing its adaptability
and effectiveness in a variety of contexts where accurate and detailed spatial data is
essential [202].

Figure 5-10: 3D reconstruction of a site featuring a pingo, a periglacial landform sculpted
by the forces of colder climates. These three images, viewed in MeshLab, provide a closer
look at the textured terrain. Each rendering offers a different overlay after precise model
processing to optimize mesh face counts through decimation filters.

MeshLab:

MeshLab, (Figure 5-10), is a specialized software system designed for processing and
manipulating 3D meshes. Unlike general-purpose modeling software, MeshLab fo-
cuses on the management and refinement of large, unstructured mesh models. This
software provides a comprehensive suite of tools tailored to tasks such as editing,
cleaning, inspecting, rendering, and converting these mesh structures [203, 204]. Its
unique capabilities make it an essential resource for professionals and researchers
across various domains, including computer graphics, archaeology, and biology, who
require powerful tools to effectively handle, enhance, convert, process, compress and
analyze complex 3D mesh data.

Open3D:

Open3D is an open-source library that provides a comprehensive platform for devel-
oping software focused on processing 3D data. It offers a well-curated selection of
data structures and algorithms available in both C++ and Python, enabling a wide
spectrum of 3D data manipulation tasks. The library’s backend is optimized for ef-
ficient parallel processing, ensuring smooth performance [199]. Open3D is not only

104

prominent in research projects but is also actively deployed in cloud environments.
This versatility underscores its relevance in contemporary computing contexts. This
library stands as an invaluable resource for researchers, developers, and professionals
working with 3D data, providing a robust toolkit for various applications, and was
extensively applied to generate 3D reconstructions of RGBD cameras throughout this
research, specifically in Chapter 5 and 6 [205, 206].

Tablet Application - Field Notes:

Cody Paige from the MIT RESOURCE team, also trained as a field geologist, col-
lected field notes using a specialized tablet application, custom-developed by the
University of Western Ontario. The application was designed to streamline the data
collection process during fieldwork by enabling the recording of annotated images,
textual field notes, voice recordings, and mapping across multiple locations. By in-
tegrating these various data types into one platform, the application enhanced the
efficiency of recording observations, detailed site characteristics, and distinctive fea-
tures. The ability to collect such metadata was crucial, as it not only enabled a good
documentation of the experiments but also allowed for a systematic collation and
export of the collected information. This comprehensive approach was instrumental
in developing the virtual scenes, setting the stage for subsequent in-depth analysis,
and ensuring the accuracy and realism of the virtual representations.

Figure 5-11: Image A is of Site 2 - Adventdalen Valley, highlighting the permafrost feature
captured by aerial imaging. Image B - a closer look at the site location with a (10 x 10 square
meters) highlighted area of study with orange markers that were also used to calibrate the
scale of the virtual environment.

5.4 Methodology

Each field site was demarcated using orange flags to establish a (3.3 x 3.3 square
meters) grid within a (10 x 10 square meters) area, (as depicted in Figure 5-11-B).
The tablet application facilitated recording field notes encompassing essential details

105

like date, time, GPS coordinates, weather conditions, site identification, and distin-
guishing features. The Microsoft Azure Kinect camera mounted on the Rover Mini
was utilized in open spaces, while it was manually maneuvered by Cody Paige across
challenging terrains. This approach ensured the generation of a high-resolution, com-
prehensive 3D depiction of the field site to be captured, with high quality instruments.
The drone executed depth data collection through a raster pattern flight, as operated
by Jessica Todd, at a 15 meters height, covering the entire site. Additionally, data
was gathered at a height of 25 meters to capture a less detailed view of the site.

By leveraging a range of data collection methods, encompassing drone imagery (Fig-
ure 5-11-A), readings from environmental sensors, and data captured by the Microsoft
Azure Kinect camera, a comprehensive dataset was amassed. This dataset serves as
a foundational resource for the synthesis, (Section 5.6), of virtual environments. The
environmental sensor, housed in a custom weatherproof enclosure, was positioned at
the north-east corner of the grid. It passively collected data for 2-3 hours while other
data collection procedures were performed.

Subsequently, the sensor housing was closed, and data was collected overnight with
a designated flag. The duration of data collection depended on factors like team
availability and battery life, usually ranging from 12 to 15 hours. The sensor data
encompassed temperature (℃), humidity (%), pressure (kPa), and illuminance (Lux),
with readings taken every second. Calibration of the data was accomplished using
archived weather data from Svalbard Airport, involving temperature at 2 meters
above ground, relative humidity at 2 meters, mean sea level pressure, and total cloud
cover. Graphical samples of the calibrated data are illustrated in Figures 5-7, 5-8, and
5-9. This collected data is integrated into virtual environments as done in previous
work, visually representing environmental conditions using sensor nodes time-lapse
[85, 69].

The Microsoft Azure Kinect camera was held approximately 1 meter above the
ground, (as illustrated in Figure 5-5-E), and was manually guided through a des-
ignated pattern. This manual approach proved crucial at Site 2 due to its soft and
wet ground conditions, unsuitable for tripod use. Similarly, at Site 3, high winds
posed a challenge to tripod stability. Finally, drone-based depth data collection oc-
curred at each site. Flags, with the exception of corner markers, were removed to
minimize visual obstruction within the drone’s field of view while retaining the site’s
external parameters. The drone executed a raster pattern flight at 15 meters above
ground, capturing 1 meter by 1 meter sections across the entire site. Additionally,
lower-resolution data was acquired at a 25 meter height, covering a (10 x 10 square
meters) area surrounding each site.

106

Figure 5-12: Photogrammetry based 3D reconstruction using Metashape by Agisoft of the
river bed located at Site 1. Image courtesy of Jessica Todd & National Geographic.

5.5 Data Processing and 3D Reconstruction

Photogrammetry techniques were employed to generate high-resolution 3D models of
the terrain based on the aerial imagery captured by Jessica Tod, who also played a
key role in utilizing Agisoft Metashape for this purpose, in collaboration with Na-
tional Geographic. The process involved matching features across images to create
a dense point cloud, which accurately mapped the field site. From the point cloud
data, a 3D mesh was generated and subsequently enhanced with image data to pro-
duce a 3D texture or orthomosaic. The outcome was a digital twin of the analog
environment, capturing the geological features and ensuring a high level of accuracy.
The 3D models were then optimized for performance, enabling real-time rendering
and interaction within the Virtual Reality system. Agisoft Metashape, a renowned
photogrammetry software, was instrumental in this process, allowing for the creation
of 3D point clouds and meshes that represented the surface and shape of the terrain.
The final 3D textures and orthomosaics were realized by skillfully combining the point
cloud data with image data [201].

The GPS coordinates from the drone were used to provide an initial estimate of the
camera locations. The extrinsic and intrinsic camera properties together with the de-
tected and matched features were then used to exactly determine the location of each
photo. Once a point cloud was generated, the point cloud data was used to generate
a 3D mesh of the field site, or combined with image data to generate a 3D texture
or orthomosaic. An example of this data for a field-site, by Jessica Todd is shown in
Figure 5-12. The figure shows a 3D mesh of a field-site that was created using Agisoft
Metashape [207]. The mesh is accurate and detailed, and it can be used for a variety
of purposes, such as Virtual Reality and 3D printing. To create highly detailed and
accurate 3D models of objects and features in the environments, 3D reconstruction
techniques using the Azure Kinect camera and the Open3D library were employed.

These techniques can benefit a wide range of applications, including Virtual Real-
ity, robotics, and computer-aided design. First, by leveraging the capabilities of
the Azure Kinect camera and a modern library for 3D data processing provided by

107

Open3D [205], objects of geological interest were captured and reconstructed. On
the other hand, the photogrammetry was performed to generate high-resolution 3D
models of the overall terrain, (as described in Section 5.4).

The second step involved refining the 3D model to optimize its performance in a
virtual environment. The initial 3D model, with its high polygon count, resulted in
performance issues when integrated into the VR system. To address this, we used the
quadratic decimation filter in MeshLab [208], an open-source 3D processing software.
The quadratic decimation filter was applied iteratively to reduce the polygon count of
the mesh while preserving its overall geometry and topology. This process optimized
the model for real-time rendering and interaction within the game engine, ensuring a
smooth and immersive experience for users in the virtual environment. The resulting
digital twin of the analog environment not only maintained a high level of accuracy in
terms of geological features but also proved to be efficient in terms of computational
resources, thus providing an optimal balance between realism and performance in the
VR system. To perform a 3D reconstruction with Open3D [206], specific commands
have been employed, and can be found in Appendix B.4.

The quadric for a given plane (defined by equation 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0)
is represented by the 4× 4 symmetric matrix below:

𝑄 =

⎡⎢⎢⎣
𝑎2 𝑎𝑏 𝑎𝑐 𝑎𝑑
𝑎𝑏 𝑏2 𝑏𝑐 𝑏𝑑
𝑎𝑐 𝑏𝑐 𝑐2 𝑐𝑑
𝑎𝑑 𝑏𝑑 𝑐𝑑 𝑑2

⎤⎥⎥⎦
The decimation process iteratively collapses edges, repositions vertices, or removes
vertices to reduce the overall complexity. The decision of which operation to perform
is typically based on the error metric – the action that minimizes the quadric error
is chosen [208]. The error for a given vertex 𝑣 = [𝑥, 𝑦, 𝑧, 1] is then given by:

Error(𝑣) = 𝑣𝑇 ·𝑄 · 𝑣

5.6 Synthesizing Analog Environments

The photorealism and immersion of the virtual environment were further enhanced
by using built-in features of the Unity 3D game engine [209]. Unity’s extensive library
of standard game assets was used to supplement the digital twin with realistic water,
Skybox, and surrounding mountains, contributing to a more convincing and engaging
virtual experience for users. These elements were carefully integrated into the scene
to maintain the consistency and authenticity of the geological context. Moreover,
Unity’s High-Definition Render Pipeline (HDRP) and its volumetric post-processing
stack were employed to achieve advanced rendering capabilities within the virtual
environment [120].

108

5.6.1 Unity’s High Definition Render Pipelines

The High Definition Render Pipeline (HDRP) is a rendering system employed by
Unity that enables the creation of highly realistic and visually stunning graphics. In
the context of painting virtual environments, HDRP provides a range of features and
tools that contribute to the overall visual fidelity of the scenes. One of the key aspects
of HDRP is its support for physically-based lighting. The HDRP light types use phys-
ical light units (PLUs) to ensure that the lighting in the scene replicates real-world
light sources accurately. The Light component in HDRP includes properties such as
Intensity and Temperature, which can be adjusted to match the characteristics of
different light sources. By respecting the HDRP unit convention, where 1 Unity unit
equals 1 meter, lights can behave realistically within the virtual environment. The
HDRP light types include Directional, Spot, Point, Rectangle, and Tube lights, each
offering various properties such as color temperature, colored cookies, and shadow
mask support.

In addition to physically-based lighting, HDRP also supports a variety of other fea-
tures that can be used to create realistic virtual environments. These include:

• Physically-based materials: HDRP materials are based on the physically-based
rendering (PBR) model, which ensures that the appearance of materials is ac-
curate and consistent with real-world materials.

• Global illumination: HDRP supports global illumination, which is a technique
that simulates the way light bounces around a scene. This can be used to create
more realistic lighting effects, such as indirect lighting and reflections.

• Post-processing effects: HDRP includes a variety of post-processing effects that
can be used to further enhance the visual appearance of scenes. These include
effects such as depth of field, bloom, and motion blur.

By using the features and tools provided by HDRP, artists can create highly realistic
and visually stunning virtual environments. Rendering Layers are an important con-
cept in the High-Definition Render Pipeline (HDRP) for controlling the interaction
between lights, decals, and meshes. Rendering Layers, or Layer Masks, are used to
specify which objects are illuminated by specific lights. This allows for precise control
over the lighting in the scene, ensuring that only relevant objects receive illumination
from specific lights. Additionally, Rendering Layers can be utilized in shadow map
settings to decouple shadows from lighting, providing further control and customiza-
tion options.

HDRP supports the use of IES Profiles, which describe the distribution of light from a
light source based on the Illuminating Engineering Society’s file format. IES Profiles
are particularly useful for Point, Spot, and rectangular Area Lights, as they enable
the accurate representation of real-world lighting characteristics. These profiles can
be combined with light cookies and utilized for light map baking as well, adding an-
other layer of realism to the virtual environment. To enhance the visual quality and

109

Figure 5-13: A collage showcasing nine scenes from the three rendered sites in the Unity
game engine, brought to life through a combination of photogrammetry and high-resolution
assets using the Unity High Definition Render Pipeline (HDRP). Image A unveils the spa-
tial 3D filter tool, offering a glimpse into the analog rendering of the virtual environments,
whereas Image B depicts the analog version of that same site, resembling a Martian terrain.
The glacier terrain and analog of Site 2 is seen in Images D and E respectively, while Image
H highlights the permafrost-rich pingo site. Images G and C features The riverbed terrain of
Site 1. Witness the sensor node deployed on Site 1 in Image F, complemented by the flash-
light tool showcased in Image I, enabling precise focus on rocks and features while controlling
the play of shadows and lights.

110

realism of the scenes, HDRP offers various effects and features. One of these is the
Lens Flare system, which provides customizable lens flare effects that can be applied
to any GameObject in the scene. The Screen Space Lens Flare effect utilizes screen
information and the Bloom texture to generate view-dependent flares, simulating
bright spots and reflections. Reflection Probes in HDRP provide accurate cubemap
reflections that consider surface smoothness, enabling realistic real-time reflections.

Planar reflection probes are also supported, allowing for the creation of effects such
as shiny mirrors or wet floors. Screen-space techniques play a vital role in HDRP for
rendering certain effects. Screen Space Reflection and Refraction techniques use the
depth and color buffers of the screen to simulate accurate reflections and refractions.
These techniques are particularly useful for transparent materials like windows or
water. HDRP also includes Screen Space Ambient Occlusion, which approximates
the intensity and position of ambient light on surfaces based on the lighting in the
scene, adding depth and realism to the virtual environment. Screen Space Specular
Occlusion can further improve the accuracy of specular occlusion by using a texture
containing bent normal information corresponding to the light direction.

Adaptive Probe Volumes (APV) is a sophisticated feature in HDRP that automat-
ically positions light probes according to the geometry density in the scene. APV
offers per-pixel probe selection and lighting, volumetric light support, reduced light
leaking, and settings for blending different lighting scenarios. This feature improves
the overall lighting quality and efficiency in the virtual environment. Another notable
feature in HDRP is the support for ray tracing. Ray tracing can be utilized as an
alternative to certain screen space effects, shadowing techniques, and mesh rendering
techniques. It provides more accurate rendering of effects such as ambient occlusion,
contact shadows, global illumination, reflections, shadows, subsurface scattering, and
more. Ray tracing in HDRP allows for high-fidelity rendering with realistic light in-
teractions and accurate simulations of real-world phenomena.

Environmental effects are also an important part of the High-Definition Render Pipeline
(HDRP). The sky can be configured within a Volume, allowing for dynamic changes
in sky settings based on the Camera’s position in the scene. HDRP offers various
built-in sky types, including Gradient Sky, HDRI Sky, and Physically Based Sky,
each providing different visual characteristics for the virtual environment. For exam-
ple, a Gradient Sky can be used to create a simple sky with a single color gradient,
while an HDRI Sky can be used to create a more realistic sky with a high-resolution
image of a real-world location.

A Physically Based Sky can be used to create a sky that simulates the way light
interacts with the atmosphere, creating a more realistic and immersive experience.
Volumetric Clouds can be integrated into the scenes, allowing for the creation of re-
alistic and interactive cloud formations that interact with the sky, sun, and fog. This
can be used to create a more dynamic and realistic environment, as the clouds will
move and change based on the time of day and the weather conditions. Additionally,

111

HDRP supports the setup of fog within a Volume, enabling the customization of fog
settings and types based on the Camera’s position. This can be used to create a
more atmospheric and immersive experience, as the fog will appear thicker or thinner
depending on the Camera’s distance from the ground.

Post-processing is a critical component of achieving high-quality visuals in HDRP.
HDRP provides its own dedicated post-processing implementation, which allows for
the application of full-screen filters and effects to the Camera. Post-processing effects
can significantly improve the visual appeal of scenes by providing capabilities such
as tone mapping, color grading, exposure calculation, and anti-aliasing. HDRP offers
multiple anti-aliasing methods, including Multisample Antialiasing (MSAA), Tem-
poral Antialiasing (TAA), Subpixel Morphological Antialiasing (SMAA), and Fast
Approximate Antialiasing (FXAA), allowing developers to choose the most appropri-
ate technique based on performance and quality requirements.

The physically based camera system in HDRP ensures unified and realistic results
by mimicking the behavior of real-world cameras. It allows for the configuration of
exposure, depth of field, and other camera properties, resulting in visually accurate
representations of the virtual environment. Additionally, HDRP provides options
for custom post-processing and the implementation of custom passes. Custom post-
processes can be integrated into the volume framework, allowing for the injection
of custom shaders and scripts at specific points in the rendering pipeline. Custom
passes enable the rendering of additional objects, overriding rendering properties, per-
forming fullscreen passes, and accessing camera buffers such as depth, color, normal,
and motion vectors. These features provide flexibility and customization options for
developers to achieve specific visual effects and rendering behaviors.

5.6.2 Examination of the Level of Photorealism

The combination of high-quality photogrammetry, Unity’s HDRP, and the Post Pro-
cessing Stack contributes to achieving a high level of photorealism in the constructed
virtual environment, (Figure 5-13). Photogrammetry plays a crucial role in capturing
the real-world environment with great detail and accuracy. Aerial photogrammetry
was compiled using images from multiple angles, allowing for the creation of high-
resolution 3D models of the terrain. These models preserve the geological features
and provide a realistic representation of the analog environment.

The captured imagery is then processed using Agisoft Metashape, a photogrammetric
software. This software utilizes feature matching and dense point cloud generation
techniques to accurately map the captured area. The resulting 3D models and point
cloud data serve as the foundation for creating digital twins of the analog environ-
ments. Unity’s HDRP plays a crucial role in rendering these digital twins with ex-
ceptional visual fidelity. HDRP’s physically-based lighting system ensures that the
virtual environment is illuminated realistically, replicating the behavior of real-world
light sources. The HDRP light types, such as directional, spot, point, rectangle,

112

and tube lights, enable the simulation of various light sources accurately. By using
physical light units and respecting the HDRP unit convention, the lighting within the
virtual environment matches the characteristics of real-world lighting, further enhanc-
ing the photorealism. The Post Processing Stack is a post-processing pipeline that
applies a variety of effects to the rendered image, such as tonemapping, bloom, depth
of field, and motion blur. These effects can be used to further enhance the realism of
the virtual environment. The combination of high-quality photogrammetry, Unity’s
HDRP, and the Post Processing Stack allows for the creation of virtual environments
that are highly realistic and immersive.

Furthermore, HDRP’s support for IES Profiles enables the accurate representation
of light distribution from various light sources. These profiles can be combined with
light cookies and used for light map baking, ensuring that the virtual environment
accurately replicates the lighting conditions of the captured analog environment. The
Post Processing Stack in Unity enhances the visual quality and realism of the virtual
environment. Various post-processing effects can be applied, such as tone mapping,
color grading, and exposure adjustment. These effects help to refine the lighting and
color reproduction, resulting in a more realistic and visually appealing representation
of the analog environment. Additionally, HDRP supports screen-space techniques,
such as screen space reflection, ambient occlusion, and refraction, which further con-
tribute to the overall photorealism. Screen space reflection accurately captures and
renders reflections, while ambient occlusion adds depth and realism by approximating
the intensity of ambient light on surfaces. Screen space refraction allows for the real-
istic rendering of transparent materials like windows or water, simulating the bending
of light as it passes through these surfaces.

The combination of high-quality photogrammetry, Unity’s HDRP, and the Post Pro-
cessing Stack ensures that the virtual environment closely resembles the captured
analog environment. The detailed 3D models generated from photogrammetry, com-
bined with HDRP’s realistic lighting and post-processing effects, create a visually
stunning and immersive experience. The accurate representation of lighting con-
ditions, the rendering of reflections and shadows, and the fine-tuning of colors and
exposure all contribute to achieving a high level of photorealism in the virtual environ-
ment. Overall, through the careful integration of high-quality photogrammetry data,
Unity’s HDRP, and the Post Processing Stack, the constructed virtual environment
exhibits a remarkable level of photorealism, allowing users to immerse themselves in
a visually captivating and lifelike digital representation of the analog world.

113

Figure 5-14: Sensor data are represented in the virtual environment on top of a virtual
sensor node model, reminiscent of Brian Mayton’s sensor node in the Doppelmarsh project,
(Section 1.3.2). 3D Model of sensor node by Brian Mayton.

5.6.3 Immersive Sensor Data Player

The review of sensor data replaying, (Figure 5-14), in the constructed virtual environ-
ment enhances the overall realism and functionality of the environment. The sensor
data captured using the Arduino MKR WiFi 1010, (Section 5.3.1), augmented with
its environmental shield is crucial for providing cached information about various
environmental parameters such as light, temperature, humidity, and pressure. This
information is replayed in the virtual environment to enhance the user experience.
The captured sensor data is integrated into the virtual environment.

A user interface (UI) is overlaid spatially on top of a depiction of a sensor node within
the virtual environment to visualize and present the sensor data. This UI allows users
to access and interpret the recorded sensor data in a numerical manner. The replay-
ing of sensor data within the virtual environment offers several advantages. Firstly,
it provides a means to validate the accuracy and fidelity of the virtual environment
by comparing the recorded sensor data with the virtual representation of the analog
environment. This validation process ensures that the virtual environment accurately
reflects the real-world conditions captured by the sensors. Secondly, it allows users to
interact with the virtual environment in a more realistic manner by providing them
with real-time feedback on the environmental conditions. This can be useful for train-
ing purposes or for simply exploring the virtual environment.

The replayed sensor data enhances the interactivity and functionality of the virtual
environment. Users can monitor and analyze environmental parameters within the
virtual environment by visualizing the sensor readings. This capability is particularly
useful for research and analysis processes that require an understanding of real-world
environmental conditions. Furthermore, the replayed sensor data contributes to a
more immersive and dynamic user experience within the virtual environment.

114

By overlaying a UI that depicts the sensor node in a virtual environment, users can
interact with and explore the sensor data, evaluating environmental conditions in
different locations. This visualization enables the assessment of various scenarios and
their impact, allowing users to understand the consequences of changes or interven-
tions in the real environment. Such capability facilitates informed decision-making
and exploration of potential outcomes in a controlled virtual setting. In space set-
tings, such sensor valuing could analogously come from stand-alone sensors in the
environment, sensors on rovers, remote sensory capability, etc.

5.6.4 Virtual Analog Toolkit

Virtual Reality experiences and applications offer a wide selection of tools that aug-
ment users’ ability interact with the virtual analog environments. A taxonomy sug-
gests to organize these modes of interaction into three categories: Explore, Experi-
ence, and Experiment, as proposed by S. W. Greenwald in "The Equipped Explorer:
Virtual Reality as a Medium for Learning" [210], enable users to perform a variety of
tasks within the virtual medium.

Three intuitive and user-friendly tools were developed and integrate with the OGIVE
application to facilitate exploration and analysis within the virtual environment, The
flashlight tool ,(Figure 5-13-C, 5-13-F, 5-13-I), illuminated and highlighted geolog-
ical features of interest, thereby enabling users to examine detailed structures and
formations more closely. Moreover, users have the option to change the functional-
ity of this tool as a medium for visualizing different aspects of particular areas of
the analog terrain, (Figure 5-18). This tool could also be utilized to render selected
multi-spectral data, when available, in the virtual environment. The measurement
tool, (Figure 5-16), provided users with accurate measurements of geological features,
aiding in the assessment of dimensions and spatial relationships. Additionally, a filter
tool, (Figure 5-17), was implemented, transforming the environment into a Martian-
like landscape that simulated the challenges and conditions of conducting geological
surveys on other planets.

These tools collectively enhanced the utility and applicability of the virtual explo-
ration system, catering to a wide range of users interested in space research. The
flashlight tool, (Figure 5-13-C, 5-13-F, 5-13-I), served as a means to illuminate and
highlight specific areas of interest within the virtual environment. By controlling the
shadows cast on geological features, users were able to draw attention to particular
details and structures. The flashlight tool presented users with a range of light colors
to choose from, (Figure 5-13-A, 5-13-B), allowing for customization and highlighting
specific aspects of the environment. Acting as a virtual tunnel, the flashlight tool
guided users through the environment, illuminating it to resemble the analog site,
which in this case was Mars. This feature provided a visually immersive experience
and allowed users to explore the virtual environment with greater on-demand clarity
to highlight and study features of interest in the virtual environments.

115

Figure 5-15: Two images highlight-
ing the measurement tool integrated
into the virtual environment, allow-
ing users to explore, annotate, and
extract precise measurements. In
addition, the analog site filter re-
moves certain high-resolution assets,
such as water meshes, providing a
direct comparison between the ana-
log and real environments. Image A
showcases the analog site, while Im-
age B reveals the corresponding real
site, offering a comprehensive under-
standing of the virtual representation
and its real-world counterpart.

The filter tool, (Figure 5-17, 5-13-E, 5-13-H), allowed users to select specific features
to view within the virtual environment. This was useful for users who wanted to
focus on a particular aspect of the environment, such as geological features or plant
life. The filter tool could be used to isolate individual features or groups of features,
providing users with a more detailed view of the environment.
Moreover, these intuitive, immersive, and user-friendly tools were developed to en-
hance user exploration and analysis within synthesized analog sites. These tools were
designed with the intention to provide users with interactive capabilities and facilitate
a deeper understanding of the virtual environments.

The measurement tool, (Figure 5-16), played a crucial role in enabling users to obtain
accurate measurements of geological features within the virtual environment. By pro-
viding precise spatial information, this tool assisted users in assessing dimensions and
spatial relationships between different elements. It allowed users to toggle between
using the metric or imperial systems, catering to users with different measurement
preferences. With a precision of two decimal points, the measurement tool facilitated
the translation of real-world measurements into the virtual environment, aiding in
building a better spatial intuition. Through Unity’s Raycast object, the tool dynam-
ically calculates distances by projecting an invisible ray from a designated start point
to a specified end point in the virtual environment.

To ensure the development of an accurate measurement tool in the virtual environ-
ment, a careful calibration process was conducted for each scene. In the experiments
methodology, (Section 5.4), flags were strategically placed within the environment
and captured by aerial imaging. The distance between flags was accurately measured
in the real world, establishing a reference for calibration. This calibration data was
then utilized to fine-tune the measurement tool in the virtual environment, aligning

116

Figure 5-16: This image showcases a range of tools designed to augment the virtual explo-
ration experience with a virtual ruler, and replay cached sensor data.

it with real-world measurements. By calibrating the tool in this manner, users could
confidently rely on its accuracy and precision, enhancing the reliability of measure-
ments taken within the virtual space.

The virtual lens tool, (Figure 5-15), was devised to alternate between analog and
real environments, giving users diverse visual perspectives. In analog environment
mode, the lighting conditions and scattering color were modified to simulate the look
of Martian landscapes. This was accomplished by adjusting the color scheme based
on images provided by NASA’s Perseverance and Curiosity rovers. By switching to
analog environment mode, users could experience the virtual environment as it would
look on Mars, enhancing the authenticity and realism of the exploration experience.
This tool provided users with the opportunity to explore the unique challenges and
conditions of conducting geological surveys on other planets.

The user interface tools collectively enhanced the virtual exploration system’s utility
and applicability. They provided users with interactive features for investigating ge-
ological features, obtaining precise measurements, and experiencing the environment
as it would appear on Mars. The tools catered to a wide range of users interested
in space research, including researchers, scientists, and enthusiasts. By incorporating
these tools into the user interface, the exploration and analysis capabilities of the
digital twin environments were significantly augmented, allowing users to immerse
themselves in a realistic and informative virtual experience.

117

Figure 5-17: “Earth to Mars” filter and vice-versa – Allowing users to switch back and
forth from the analog / real site while maintaining the same camera perspective. Utilizing
several image filters and an emulation of natural light diffusion to mimic the atmosphere on
Martian landscapes through the metaphor of a virtual lens.

118

Figure 5-18: Analog spotlight tool rendering parts of the terrain as it appears in the analog
version, rather than a full immersive filter. This visualization metaphor can also be extended
to render different types of spatially-varying data superimposed on the terrain, such as multi-
spectral data, providing a comprehensive understanding of the landscape’s characteristics and
enhancing spatial analysis capabilities.

119

Figure 5-19: The desktop’s application navigation menu, featuring keyboard and mouse
shortcuts as well as voice commands allowing a user to navigate the site, and teleport to
areas of interest using natural language.

To enhance user interaction and immersion within the virtual environment, voice com-
mands were implemented using Unity’s PhraseRecognizer capabilities, and accessed
by the user from the navigation menu, (Figure 5-19). Three types of PhraseRecog-
nizer were utilized: KeywordRecognizer, GrammarRecognizer, and DictationRecog-
nizer. The KeywordRecognizer allowed users to speak specific phrases, such as "zoom
in," "zoom out," "move left," "move right," "move up," "move down," and "jump to
point of interest," triggering corresponding actions within the virtual environment.
The GrammarRecognizer enabled the definition of a specific grammar using an SRGS
file, providing structured voice commands for users. Additionally, the DictationRec-
ognizer allowed users to freely speak, with their speech used for various purposes in
the application.

To enable voice input, the Microphone capability was declared in the Unity project
settings. Users could navigate the virtual environment by simply speaking commands,
enhancing the user experience and enabling a more intuitive interaction. Furthermore,
the words "analog" and "real" were utilized as voice commands to switch between
the virtual analog site and the real environment, respectively. By incorporating voice
commands, the virtual environment became more accessible and immersive, allowing
users to explore and interact using natural language.

120

5.7 User Study

The study conducted a comparison between the spatial presence and immersion qual-
ity experienced in Virtual Reality (VR) and desktop applications. Participants ex-
plored the Svalbard field sites through both mediums, focusing on identifying key
geological features and forming interpretations based on available facts, (as depicted
in Figure 5-20). Both platforms provided access to datasets including high-resolution
3D imagery, environmental data, measurement tools, a Mars analog view, and geo-
logical fact sheets. Feedback was collected from the participants to gain additional
insights into their experiences and preferences.

The research findings suggested that the VR applications present a more engaging
sense of spatial presence and immersion compared to desktop applications. This per-
ception may be influenced by the more interactive nature of the VR environment, or
its resemblance to real-world experiences. Some participants also indicated that they
felt more confident in making geological interpretations using the VR applications,
though this was not universal across all participants. These preliminary findings hint
at the potential benefits of VR in geological exploration and education as valuable
tools converging scientific exploration with immersive experiences.

5.7.1 Description of the Study

This study investigated the potential of VR for virtual geological surface exploration,
through a custom-made application known as OGIVE (detailed in Section 5.2). The
exploration was conducted within virtual analog environments synthesized from a
real-world expedition in Svalbard, Norway, (as described in Section 5.6). The pri-
mary focus was on the spatial presence and immersion quality of the applications,
along with the unique capabilities offered by using a Mars analog as a tool for scien-
tific exploration. The experiment’s primary independent variable was the exploration
medium, with participants engaging with either the VR or desktop application for the
duration of a trial. Site 1, known as the river site, served as a training location, al-
lowing users to familiarize themselves with the controls and toolkit for both mediums.

Subsequently, participants explored Sites 2 and 3, representing permafrost and glacial
moraine terrains, through both the VR application on a modern Head Mounted Dis-
play4 and the corresponding desktop application. During these explorations, they
were provided with a geology fact sheet, (Figure 5-20), that introduced two potential
geological features for each site. Key defining elements for these features were pre-
sented, and participants were required to utilize all available tools, (refer to Section
5.6.4), to deduce the features represented at the sites. This methodology allowed
the study to highlight the effectiveness and immersion of VR as a medium for vir-
tual geological exploration, offering insights into both the process and the potential
educational applications.

4vive.com/us/product/vive-pro2

121

https://www.vive.com/us/product/vive-pro2/overview/

Figure 5-20: This image illustrates the VR-based application and the accompanying User
Study Requirement document. The document provides an overview of the user study, outlin-
ing the objectives and requirements. It also includes the necessary consent form for partic-
ipants. The VR application serves as the platform for conducting the study, enabling users
to engage with the immersive environment and provide valuable feedback.
Image courtesy: Cody Paige and Trent Piercy.

Both applications provided the user access to the following datasets: high-resolution
3D imagery, environmental data, a series of tools, a Mars analog view, and the geolog-
ical fact sheet pertaining to the field site being explored. Each subject performed the
exploration task in each mode once for two field sites, for a total of four trials. Each
trial contained a critical geological feature to be identified with 7-8 facts available
to make the identification. The subjects all explored Sites 2 and 3, with the order
of VR and desktop application and the order of sites randomized. They were then
asked to provide feedback on their experience. All testing took place in a (2.5 x 2.5
square meter) open laboratory space under ambient light conditions. Twenty subjects
participated in the study [195].

The results, (Figure 5-22, 5-23) showed that the VR application was significantly more
effective than the desktop application for spatial presence and immersion. The VR
application also resulted in significantly higher accuracy in identifying the critical ge-
ological features. The participants also reported that they found the VR application
to be more enjoyable and engaging than the desktop application. These results sug-
gest that VR has the potential to be a valuable tool for geological surface exploration.
The Spatial Presence Experience Scale [211, 212] was used to assess the participant’s

122

impression of immersion within each environment. A qualitative approach was used
to assess the impact of using the Mars analog for scientific exploration.

In collaboration with Cody Paige, and Trent Piercy (MIT UROP), a mirror ver-
sion of the environment was fashioned in VR to align with the desktop application,
maintaining a consistent visual correspondence between the two. The VR application
served as a conduit for replicating the 3D reconstructions of the analog environments,
aimed at affording a more immersive user experience. Traditional tools presented in
the desktop version, such as the flashlight, measurement device, and filter tool, were
thoughtfully adapted to the VR context. To further amplify the user experience, VR-
specific tools were developed, encompassing features like teleportation and a PDF
viewing tool for geology fact sheets, (as shown in Figure 5-20). Although the VR
application’s intention was to enable users to traverse the synthesized analog envi-
ronments within their physical space, it was primarily an exploration into new ways
of immersive interaction rather than a definitive enhancement of exploration capabil-
ities. Participants were asked the following two questions after completing their tasks
in both the VR and Desktop applications:

1. What features of the environment did you notice changes when you were in the
Martian analog view?

2. Did you find the Martian analog view useful in imagining the Earth feature as
a Martian feature? Explain.

Figure 5-21: A collection of word clouds generated from the study’s questionnaire re-
sponses. The word clouds highlight the participants’ perceptions of the analog environment,
specifically noting the Martian-like characteristics such as color lights, absence of water, and
various geological features. The prominent use of these terms in the participants’ feedback
indicates their strong association of the analog environment with the Martian landscape,
showcasing the success of the immersive experience in the simulated analog environments.

123

5.7.2 Analysis and User Feedback

The Spatial Presence Experience Scale (SPES) [211] was used to assess the partici-
pant’s impression of immersion within each environment. This is a scaled response (1-
5) questionnaire with 4 questions relating to the participant’s concept of self-location,
which has been linked to the feeling of being enveloped by or surrounded by a media
environment and 4 questions relating to the participant’s concept of their perceived
possible actions within the environment. The questionnaire was presented to the par-
ticipant after they completed their task in both the VR and Desktop applications.
For both self-location and perceived action, participants were found to have a higher
spatial presence in the VR application compared to the Desktop application.
The responses were then filtered to remove insignificant words (such as "and", "the",
and "I") and fed into a word cloud generator. Figure 5-21 shows the word clouds
generated for both the VR and Desktop applications for questions 1 and 2, respec-
tively. For question 1, the participants most significantly noticed the water, color,
and contrast for both applications. The main difference between the two applications
was the number of features listed by the participants. More features were listed for
VR than for the Desktop application.

Figure 5-22: Box and whisker plot
representing the results of the four
’possible actions’ questions for both
environments. The findings indicate
the participants reported a higher
sense of perceived actions in the VR
application compared to the desktop
application.

Figure 5-23: Box and whisker
plot displaying the results of the
’self-location’ questions for both the
VR and desktop applications. The
findings indicate a higher spatial
presence reported by participants in
the VR application compared to the
Desktop application.

For question 2, (Figure 5-21), both the VR (left) and desktop (right) applications
had "yes" as the most common answer, with "somewhat" also visible for the desktop
application. Additionally, the words used for the VR analog, such as "immersion",
"detail", "imagine", and "accurate", are more indicative of a representative analog,
while some of the verbiage for the desktop, such as "sunglasses", and "different",

124

indicated a less immersive experience, similar to the SPES results. Finally, as with
question 1, more diversity in the key words was observed for the VR application than
for the desktop application, suggesting that the VR incited a stronger response from
participants [195].

5.8 Conclusion

5.8.1 Summary

The Svalbard analog mission is a compelling example of the application of digital twin
analog environments in the field of geology. The project leverages high-resolution 3D
reconstructions, environmental data, and advanced visualization techniques to offer
researchers and scientists a unique opportunity to explore and study the geological
features of the Svalbard site as a Martian analog. The carefully selected field sites in
Svalbard provide geological formations and characteristics that closely resemble those
found on both Earth and Mars.

By capturing comprehensive data using aerial photography, environmental sensors,
and LiDAR/RGBD cameras, the project enables accurate representation and analysis
of these analog environments. This detailed exploration and analysis in a virtual set-
ting contributes to a better understanding of geological processes and offers valuable
insights into potential geological formations and habitability on other planets. The
data visualization and manifestation techniques employed in the recreation of the vir-
tual environments are essential for effectively representing and interpreting geological
information within the digital twin analog environments. The project utilizes Unity’s
HDRP and Post Processing Stack to create photorealistic visualizations, ensuring a
high level of fidelity and immersion. The integration of high-quality photogrammetry
data captured from drones and the use of HDRP’s physically-based lighting system
results in realistic and accurate representation of the analog environments. The post-
processing effects provided by the Post Processing Stack further enhance the visual
quality, including tone mapping, color grading, and exposure adjustment. The com-
bination of these techniques enables researchers to visualize and analyze geological
features with exceptional detail and realism, facilitating meaningful scientific explo-
ration and interpretation.

A coherent user study conducted by OGIVE demonstrates the significant impact
and potential of utilizing digital twin analog environments in geological exploration.
These virtual environments provide an immersive and interactive platform for study-
ing geological formations, allowing researchers to overcome challenges associated with
conducting fieldwork in remote or hazardous locations. The ability to navigate and
analyze digital twin analog environments using intuitive tools and user interfaces en-
hances the efficiency and effectiveness of geological exploration and analysis. More-
over, these virtual environments can be utilized as training tools for future astronauts,
preparing them for lunar and Martian field geology missions. The insights gained from

125

studying analog environments can be extrapolated to inform and guide geological ex-
ploration on other planets, contributing to the broader understanding of our solar
system’s geological history and potential habitability. Overall, digital twin analog en-
vironments have the potential to revolutionize geological exploration, enabling more
accessible, efficient, and accurate study of planetary surfaces. More studies relating
to geological applications of these digital twin environments are presented in Cody
Paige’s PhD thesis [197].

5.8.2 Discussion

This chapter has delved into the application of 3D reconstruction and data visualiza-
tion in virtual analog environments, with a specific emphasis on the Svalbard site as a
Martian analog. The utilization of cutting-edge technologies, including aerial photog-
raphy, photogrammetry, LiDAR modules and Depth Cameras, and Unity’s powerful
rendering capabilities, has enabled the creation of highly accurate and immersive dig-
ital twins of the analog environments. These digital twins, coupled with intuitive user
tools and interfaces, have facilitated the exploration and analysis of geological fea-
tures, offering researchers and scientists an invaluable platform for studying distant
environments and enhancing our understanding of other planets.

The achievement of photorealistic rendering through the integration of high-quality
photogrammetry, Unity’s HDRP, and the Post Processing Stack has elevated the
virtual environments to a remarkable level of realism. The accurate replication of
lighting conditions, the rendering of reflections and shadows, and the fine-tuning of
colors and exposure have contributed to an immersive and visually captivating ex-
ploration experience. The addition of voice commands has further enhanced user
interaction and immersion, enabling intuitive navigation and exploration within the
digital twin analog environments. Through user studies and feedback, it has become
evident that the VR application surpasses the desktop application in terms of spa-
tial presence and immersion. The incorporation of a Mars analog view has provided
users with a unique perspective, allowing them to visualize Earth features as Martian
counterparts. This feature has added an additional layer of understanding and en-
gagement to the exploration process, enabling researchers to better comprehend the
similarities and differences between the two environments.

5.8.3 Future Work

The development of digital twin analog environments holds great promise for future
missions and explorations. By expanding the application to other planetary surfaces
and incorporating more advanced technologies, researchers can gain even deeper in-
sights into the geological history and potential habitability of our solar system. The
ongoing collaboration between geologists, data scientists, and Virtual Reality experts
will drive further advancements in this field, ultimately pushing the boundaries of
remote research. In addition to their relevance in remote exploration, digital twin
analog environments offer immense potential for studying and preserving sensitive

126

environments on Earth. By providing scientists with virtual access to areas such as
the Galapagos or the Antarctic, these environments minimize the ecological impact of
physical exploration while still providing valuable insights. Through a virtual analog,
space and time become fluid and malleable dimensions as well as shift in displayed
data modality, giving explorers sensorial capabilities that promise to surpass affor-
dances of the physical words. Furthermore, the tools and techniques developed for
virtual exploration can be extended to remote and hazardous locations on Earth,
aiding in research and conservation efforts.

The OGIVE application not only showcases the effectiveness of 3D reconstruction,
data visualization, and virtual exploration tools in geological analysis and research but
also highlights the broader impact and potential of digital twin analog environments.
By offering naturalistic visualization tools and immersive experiences, these environ-
ments have the capability to enhance scientific exploration, improve decision-making
processes, and increase the scientific return on both robotic and human missions.
They enable researchers to analyze and interpret data collaboratively, providing a
shared virtual space for knowledge exchange and discussion. The ongoing develop-
ment and refinement of these virtual environments, combined with advancements in
data collection and analysis techniques, will augment the way environments are ex-
plored. By bridging the gap between physical and virtual realities, digital twin analog
environments pave the way for new discoveries, scientific insight, and the preparation
of future astronauts for missions to Lunar and Martian surfaces.

127

128

Chapter 6

Azure Kinect à la Luna

Three-dimensional Reconstruction of Distant Environments.
In-situ Resource Reconnaissance (ISRR).

6.1 Introduction

6.1.1 A Brief Overview of this Chapter

In situ resource utilization (ISRU) is a key step in establishing a permanent hu-
man and robotic presence on the moon. It will foster a self-sustaining lunar techno-
ecosystem that will prepare humanity for deep-space exploration. Human-computer
interaction, particularly in mission planning, will play a major role in maximizing the
scientific potential of ISRU missions [213]. Volatile prospecting missions, in particu-
lar, can benefit from advanced visualization tools that allow multiple team members
to analyze, discuss, and interpret geological data through naturalistic visualization
tools [8]. ISRU will be very beneficial for a number of Artemis II and III science
investigations, including instrumentation to support volatile monitoring [214].

The MIT RESOURCE team has made preliminary progress in developing tools to
construct a virtual reality platform for lunar surface exploration by testing low-cost
techniques [215] for collecting high-resolution depth data for integration within vir-
tual environments [196]. Current lunar surface maps available from orbital data, such
as those produced by the Lunar Orbiter Laser Altimeter (LOLA) with radial eleva-
tion accuracy of 10 m, do not provide high enough depth data resolution for surface
in-situ geological data analysis. This requires depth data with a higher resolution
than is available from orbital data alone [216]. As previously mentioned in Chapter
1, (Section 1.3.3), project OnSight [101], provides scientists the ability to virtually
work together on Mars using the Microsoft Hololens headset. The software creates an
immersive 3D terrain model using images down-linked from NASA’s Curiosity Rover,
and processed using structure from motion (SfM) photogrammetry to create a digital
outcrop model of the Martian surface.

129

Figure 6-1: Exploring the south pole of the Moon with NASA’s Lunar Trek. Image A
displays the south pole of the Moon. Image B reveals potential locations of landing for the
Artemis III mission [3]. Image courtesy: NASA Trek.

The Structure from Motion (SfM) photogrammetry method used in OnSight faces
limitations due to the need for extensive data sets and a time-consuming alignment
process to reconstruct three-dimensional point clouds [187]. This photogrammetric
approach primarily relies on three sets of cameras: the Navcam, a pair of wide-angle
stereo cameras; the Mastcam, a pair of high-resolution RGB cameras; and the Mars
Hand Lens Imager (MAHLI), a color, high-resolution microscope. Although Navcam
images provide significant overlap, they lack detailed high-resolution information.
The varying focal lengths of the Mastcams lead to poorly overlapping images, mak-
ing initial image alignment automation challenging. Consequently, the reconstruction
process demands large data sets, and for instance, reconstructing the Kimberly out-
crop required 638 images from the Navcam alone, with over 2000 total images used
throughout the entire process [217].

The use of stereo cameras for Lunar surface applications presents an additional chal-
lenge concerning the necessity to precisely determine the distance between the two
cameras [216]. During take-off and landing, these cameras experience extreme levels
of vibration, making them susceptible to misalignment. As a result, re-calibration
becomes necessary before use, and this process can be challenging to perform re-
motely. Moreover, using two cameras increases the payload mass requirements, while
overlapping imagery leads to higher transmission bandwidth demands. Furthermore,
this stereo camera method relies on an external or natural light source to illuminate
the imaged area, posing potential challenges when mapping permanently shadowed
regions and lava tubes—both of which are areas of significant interest on the Lunar
surface. The team has undertaken experimentation with the use of a depth cam-
era for 3D reconstruction [182]. Depth cameras can be classified into three main
types: structured or coded light, stereo depth, and Time-of-Flight (ToF). Structured
or coded light cameras leverage the deformation of a known light pattern to calculate
object distance. Stereo depth cameras, as mentioned earlier, use the known distance

130

between two cameras and the light reflection from an object to triangulate its posi-
tion. On the other hand, ToF cameras measure distance by analyzing the time taken
for laser light to reflect off a surface. Stronger lasers enable ToF cameras to measure
greater distances. Both ToF and structured light cameras require distinctiveness be-
tween emitted and returned light, making them susceptible to sunlight or external
light source interference. However, this susceptibility proves advantageous in scenar-
ios like lunar night exploration or 3D mapping of subsurface structures, such as lava
tubes, where little to no external light is available [218].

One of the principal advantages of using ToF cameras is their simplicity as single-
camera systems, which eliminates the need for complex position calibration. More-
over, ToF cameras have gained popularity in the commercial sector and have been
integrated into the latest mobile devices. The availability of Commercial-off-the-Shelf
(COTS) components has made it easier to adapt them for lunar applications with min-
imal modifications, as demonstrated in this study; There is enormous potential now
in pivoting rapidly evolving terrestrial technology into space applications [71]. The
recent commitment from the United States Government to return to the moon has
opened new possibilities for university-scale teams to participate in lunar missions.
The reduced cost of such missions and increased collaboration opportunities among
institutions and research groups have contributed to this feasibility. By utilizing
COTS parts, it becomes more accessible for teams to send payloads on commercial
lunar rovers. COTS components to capture depth data on the Moon heralds a new
era in the visualization of the lunar surface. This advancement facilitates the ren-
dering of virtual environments, enriching the exploration for scientists and extending
the reach of lunar study to a global audience [216, 195].

The team, in collaboration with NASA Ames and Lunar Outpost, has been exploring
the integration of depth-mapping into a Virtual Reality (VR) platform for lunar rover
exploration missions utilizing a COTS RGB plus ToF camera (RGBD camera) to pro-
vide centimeter-scale resolution imagery and depth data for geological and scientific
analysis of portions of the lunar surface. During the preliminary testing phase, a com-
bination of a ToF camera and an RGB camera was used for data collection. Through
these tests, it became evident that an RGBD camera offered the most comprehen-
sive mapping capabilities while optimizing data-return bandwidth and development
costs. To this end, the team selected the Microsoft Azure Kinect, a COTS camera
with integrated ToF and RGB imaging, which allowed for quick hardware adaptation
for near-term lunar missions, reducing the typical prohibitive cost associated with
lunar surface data collection. The utilization of a COTS RGBD camera streamlines
the alignment of different camera view fields and positions when rendering the VR
environment. By harnessing the capabilities of off-the-shelf technology, the team is
actively developing the hardware, software, and Concept of Operations (ConOps)
for a modified COTS RGBD camera, targeting its deployment on a rover aboard a
Commercial Lunar Payload Services (CLPS) mission [216, 195].
This chapter introduces research that explores the use of a specific depth camera,
the Microsoft Azure Kinect, which has been modified in both hardware and software

131

components to operate as a stand-alone payload on a lunar rover module, (as shown
in Figure 6-2). Depth cameras come in three major categories: structured or coded
light, stereo depth, and ToF. Among these, ToF cameras offer several advantages,
including their single-camera setup without position-calibration dependency and in-
creasing use in commercial industry. By utilizing a COTS RGBD camera, such as the
Microsoft Azure Kinect, the MIT RESOURCE team aims to integrate depth mapping
into a virtual reality platform for lunar rover exploration missions. This approach en-
ables centimeter-scale resolution imagery and depth data for geological and scientific
analysis of the lunar surface.

Figure 6-2: An illustration of the Lunar Outpost’s lunar rover, engineer to incorporate a
modified version of the Azure Kinect as part of the AKALL payload. The design indicates
the placement and integration of the camera in the rover’s system.
Image courtesy: Lunar Outpost [219].

This chapter documents the development of a custom software package, Azure Kinect
à la Luna (AKALL) [215], while covering the hardware modification and testing
performed by NASA Ames Research Center and the ConOps designed by the MIT
RESOURCE team in collaboration with Lunar Outpost, a space systems and rovers
company based in Colorado, USA [219]. The chapter begins by providing an overview
of the research problem, followed by a discussion of the related work. The next section
describes the hardware and software modifications that were made to the Microsoft
Azure Kinect to enable its use as a stand-alone payload on a lunar rover module
[220]. The following section presents the results of the hardware and software testing
that was performed, followed by a discussion of the ConOps that was designed for
the lunar rover exploration missions.

The chapter concludes with a discussion of the future work that is planned for this
research. The collected data will provide a basis for rendering highly detailed virtual
lunar environments, offering scientists and the general public a closer look into lunar

132

environments. Additionally, the successful implementation of depth data collection
through the modified COTS camera can pave the way for more realistic astronaut
training and robotic data collection in challenging lunar regions, such as craters and
lava tubes.

6.1.2 Technical Overview of the Azure Kinect Device

The Microsoft Azure Kinect is a ToF depth-camera with an integrated OV12A10
12MP CMOS sensor. The camera has two separate systems for depth and RGB
imagery. The ToF camera uses modulated near-IR (NIR) light to process and generate
a depth-map of a scene. This is created by measuring the time it takes for the NIR
light projected by the camera to return to the camera sensor. The amount of NIR
light returned from the scene is also recorded, providing an IR image alongside the
ToF depth-image. The ToF camera has different modes (narrow field of view - NFoV,
wide field of view - WFoV, binned and unbinned) to allow for customization of the
X- Y- and Z-axis range. The ToF camera has a resolution range of (320 x 288 pixels)
to (1024 x 1024 pixels) and a Z-range of (0.5 to 5.5 meters) depending on the settings
used. The RGB camera provides aspect ratios of 16:9 and 4:3. To have the RGB
image completely overlap with the depth map, the 4:3 aspect ratio is used with the
NFoV depth setting [221].

Figure 6-3: Microsoft Azure Kinect internal hardware – 1) 1-MP depth sensor with wide
and narrow field-of-view (FoV) options that help you optimize for your application 2) 7-
microphone array for far-field speech and sound capture 3) 12-MP RGB video camera for
an additional color stream that’s aligned to the depth stream 4) accelerometer and gyroscope
(IMU) for sensor orientation and spatial tracking 5) External sync pins to easily synchronize
sensor streams from multiple Kinect devices. Image courtesy: Microsoft [221].

133

Figure 6-4: Lunar Outpost is supporting Nokia’s LTE/4G NASA Tipping Point project
with Intuitive Machines, a leader in cutting-edge technologies for space, to build, integrate
and test the first-ever LTE/4G network on the surface of the Moon. One of the primary ob-
jectives of the Nokia technology demonstration is to validate that Nokia’s LTE/4G technology
can support proximity communications for lunar operations and future human spaceflight as
shown in the antennas design on the lunar rover [219]. Image courtesy: Lunar Outpost.

6.1.3 Ruggedization of the Microsoft Azure Kinect

The selected RGBD camera, the Microsoft Azure Kinect, was evaluated for flight-
compliant materials and modified to reduce mass by the team at NASA Ames, re-
ported in Jha, V. et al [222]. The camera was modified to reduce mass by removing
the outer aluminum casing, the microphone array, RF shield and front face, resulting
in a mass reduction of 140g. Plastic parts were replaced with vacuum-compatible ma-
terials and cables were replaced with specialized cables for integration into the Lunar
Outpost rover. The environmental testing, (Appendix B Table B.9), was performed
on the modified Kinect with Random Vibration/Sine testing, per GEVS (NASA’s
General Environmental Verification Standard for spaceflight launch survival). Ther-
mal Vacuum testing cycled the instrument between expected hot (+85ºC) and cold
survival temperatures, as well as +50ºC and -25ºC operational temperatures. The
instrument functioned nominally at the conclusion of vibration and thermal cycling
tests [222]. The camera was flight qualified to TRL 6 including thermal vacuum and
random vibration testing by NASA Ames.

6.1.4 Motivation

The Azure Kinect à la Luna (AKALL) system was motivated by the desire to uti-
lize the powerful capabilities of the Azure Kinect, (Figure 6-3), device in a new
and innovative way, particularly in the field of space exploration and robotics [223].
AKALL was designed to operate on board the flight computer of the Lunar Outpost’s
Mobile Autonomous Prospecting Platform (MAPP) rover to telecommand the MIT
RESOURCE Kinect payload. The Azure Kinect offers a powerful platform that can
be used for a variety of tasks, including object detection, tracking, and mapping.
However, in the context of the upcoming IM-2 mission, (Section 6.5.3), the camera’s
sole purpose is to collect and send RGBD images that will later be processed and
turned into textured 3D meshes of lunar environments.

134

The project aimed to build a custom software application that could fully utilize
the Azure Kinect Development Kit (DK) to control the device’s camera and cap-
ture data from its various sensors. The goal was to create a system that could be
seamlessly integrated within larger computing systems, while also providing a high
degree of portability and isolation. This was achieved by using Docker containers.
Moreover, the AKALL software was motivated by the need for a robust communi-
cation mechanism that could allow the application to interact with other programs
and devices. To meet this requirement, a UNIX socket server was implemented, en-
abling the application to send and receive commands using the UNIX socket protocol.

In addition, the project introduced a unique capture sequence messaging scheme
to control the camera and manipulate its parameters, opening up a wide range of
possibilities for data capture and analysis. The AKALL software has been successful
in developing a custom software application that can fully utilize the Azure Kinect
DK. The application has been tested and demonstrated in a variety of environments,
including a simulated Mars rover environment. The results of the project have shown
that the Azure Kinect device is a powerful tool that can be used for a variety of tasks
in space exploration and robotics.

6.2 Concepts of Operation

The MIT RESOURCE conducted a series of comprehensive experiments to evaluate
the ConOps of the Microsoft Azure Kinect, which offers four distinct modes [216].
These modes include narrow field of view (NFoV) and wide field of view (WFoV),
each with 2 x 2 binned and unbinned options, influencing the camera’s range and
sensitivity. Such selections have implications for the instrument data budget and the
quality of output imagery. Given the mission’s constraints on power consumption
and data minimization, optimizing both aspects becomes crucial. To achieve this,
four capture modes were devised: Single Target Capture, Traverse Capture, Science
Station Capture and Single Target Circumference Capture. Each mode serves specific
purposes an is tailored to meet the mission’s objectives effectively.

By default, the Azure Kinect captures and stores RGBD data into .mkv file for-
mat, but the AKALL software, (as detailed in Section 6.3), facilitates the extraction
and storage of individual frames, allowing for data reduction while still enabling
the creation of composite point-clouds frame by frame through stitching. Although
this approach may slightly reduce image accuracy, it proves essential, given the low-
bandwidth of space operations, for efficient mission operations [216]. The NFoV mode
of the Azure Kinect provides a narrow field of view but high sensitivity, making it
well-suited for close-range tasks, such as object identification. On the other hand, the
WFoV mode offers a wide field of view but lower sensitivity, making it ideal for long-
range tasks, such as mapping. Additionally, the 2 x 2 binned modes provide a lower
resolution, but higher sensitivity, compared to the unbinned modes, offering flexibility
in balancing data storage requirements and improving image quality, particularly in

135

low-light conditions. These capabilities of the Azure Kinect are instrumental in ad-
dressing the specific requirements of lunar exploration missions, where efficient data
management and high-quality imagery are vital.

The Single Target Capture mode is employed to capture a single target object. This
is valuable for tasks such as object tracking or scene analysis. The Traverse Cap-
ture mode is employed to capture a series of images as the camera moves through a
scene. This is valuable for tasks such as 3D reconstruction or mapping. The Science
Station Capture mode is employed to capture a scene at a science station. This is
valuable for tasks such as monitoring experiments or collecting data. The Single Tar-
get Circumference Capture mode is employed to capture a single target object from
multiple angles. This is valuable for tasks such as object recognition or 3D scanning.
The Azure Kinect’s capture modes are tailored to the specific requirements of various
applications. The team’s experiments demonstrated that the camera can be used to
gather high-quality data in a variety of challenging environments. The team’s find-
ings will be utilized to create new applications for the Azure Kinect and to improve
its performance.

6.2.1 Capture Modes

The single target capture mode takes individual frame RGBD images of specific ar-
eas of interest when there’s limited time or data available for a full circumferential
capture. This data can be used to recreate a directional 3D image of the feature.
Since this is a single capture, any occlusion of data may limit the functionality of
this mode. Therefore, it should not be used when complete scene reconstruction is
required.

The Traverse capture mode takes single frame RGBD images along the rover’s tra-
verse path. Ideally, this should be done every 2 meters, allowing for overlap between
image captures for sections of the traverse approximately 10 meters long. This data
will be used to create a 3D model of the traverse path. Like the single target capture
mode, occlusion will result in a directional 3D reconstruction, missing data from the
backs of target objects. The science station capture mode records a complete site
by performing a raster pattern approach over the selected location, capturing single-
frame RGBD images at 1-meter intervals across the entire site. While this method
generates the same 3D corridors as described in the Traverse mode, the use of the
raster pattern also provides the reverse direction, with enough overlap between corri-
dors to construct a complete 3D scene. This data can be used to create a 3D model
of the science station environment at locations of interest, such as impact ejecta sites,
approaches to challenging terrain, or sites identified as having a high probability of
water content, etc [216, 195].

Finally, the single target circumference capture mode aims to capture all angles
around a single target object. These captures should be taken every 30º relative
to the object’s center, or for very large objects, as many as necessary to have approx-

136

imately 40° of overlap between frames. This data will be used to create a full 3D
reconstruction of all visible areas of the object, including lighting conditions, color,
and geometry. This capture type places the most significant demands on rover oper-
ation and is variable depending on mission constraints. For any capture, the target
distance must be no greater than 4 meters from the surface of the feature, and no less
than 0.5 meters for best resolution data. The ideal distance is set at 1 meter [216].

6.2.2 Mission Planning

Routine instrument command operations will adhere to the Lunar Outpost scheduling
process, ensuring well-coordinated rover and lander operations with effective commu-
nication. Notably, capture operations are distinct from data cross-link and down-link
processes due to their higher bandwidth requirements. The scheduling prioritizes the
primary rover payload, recognizing its paramount importance on the rover. As the
mission progresses, the Kinect payload is expected to gain higher priority, especially
towards lunar sunset, capitalizing on its ability to operate effectively in low-light con-
ditions. Although specific scenarios are yet to be developed, the ConOps are designed
to remain fully operational, adapting to diverse lighting and timing conditions [216].

6.3 The AKALL Payload Software Module
The Azure Kinect à la Luna (AKALL) software documents the steps taken to access,
compress, and archive RGBD images captured from a commercial camera, the Azure
Kinect, (Section 6.1.2), and integrate them within a larger robotic system, (Figure
6-2), encapsulated within a Docker container. This section aims to highlight the
primary objectives and anticipated outcomes of AKALL:

• To develop a versatile, modular, and portable framework that operates in a
variety of settings, including rovers and robots.

• To expose the various sensing capabilities of the Azure Kinect device through
the implementation of a novel parametric messaging service.

• To operate within an isolated Docker container and establish communication
with the host machine through UNIX Domain sockets.

• To capture, and archive data captured by the Azure Kinect device in a shared
directory, mounted and accessible by the host machine.

• To further optimise RGBD data collection into a new file format that is suitable
for low-bandwidth scenarios such as in space exploration.

In the context of space operations, the necessity of having isolated and robust sys-
tems cannot be overstated. The AKALL software was originally created to operate
on board the flight computer of Lunar Outpost’s Mobile Autonomous Prospecting
Platform (MAPP) rover, as a software module that remotely controls the MIT RE-
SOURCE Kinect Payload, (Figure 6-4). As required by the company, AKALL had

137

to be designed and utilized in an isolated Docker container, highlighting the critical
importance of maintaining a high level of system reliability to ensure that potential
issues within one system do not jeopardize the overall mission’s success [223].

Data compression is a crucial aspect of space exploration, as demonstrated by the
Galileo NASA mission to Jupiter in 1989 [224], and continues to be a common practice
in modern space missions. Given the challenges of limited communication bandwidth
and vast distances, efficient data compression is essential to optimize data transmis-
sion and storage. By default, the Azure Kinect DK captures and stores RGBD frames
in the .mkv format, also known as Matroska Video. While this format has been use-
ful for various applications, there was a need to transition to a more photo-focused
implementation, while performing both lossy and lossless compression, as indicated
by the ConOps, (Section 6.2), which emphasizes single captures instead of videos.

6.3.1 Technical Implementation

The AKALL application is designed to operate within a Docker [225] container run-
ning on Ubuntu 18.04 LTS. This design choice provides an isolated and portable
environment, making it ideal for integration within larger computing systems such as
rovers and robots. The hardware requirements needed to install AKALL on a devel-
opment machine include having a modern Nvidia GPU and USB3.1 Gen2, supports
speeds of up to 10Gbit/s, as stated by device’s technical specifications.

Using Docker containers provides a number of security benefits. It isolates the ap-
plication, which means that potential issues or vulnerabilities in one container don’t
affect others. It also means that the application has a limited effect on the host
system, as it’s confined to the container. In terms of upgrades, Docker containers
can be easily updated to include new versions of the application or any additional
dependencies. This can be done by creating a new Docker image and replacing the
running container with a new one based on the updated image. This makes it easy to
roll out updates across multiple environments, as the same Docker image can be used
in various computing platforms. The AKALL application utilizes custom commands
or instructions to control the Azure Kinect device and capture data. This application
is capable of adjusting parameters such as frame rate, compression, resolution, depth
mode, exposure, contrast, sharpness, gain, white balance, black light compensation,
power line frequency, and timestamp. By using these specific commands, users can
customize the data capture according to their requirements, offering a high level of
control and flexibility over the capture process.

The AKALL software yields a robust, flexible, and highly functional application de-
signed to interface with the Azure Kinect device, efficiently process incoming data,
and provide a streamlined user interaction interface. The application has been built
using a combination of C, C++, and Python programming languages and operates
within a Docker container to ensure isolation and portability. The most recent version
of the AKALL code-base can be retrieved in Appendix C.4.

138

The next section aims to describe key aspects of the AKALL application, focusing on
its interactive mode, the capture sequence console, and the specifics of data capture
and storage.

• Interactive mode: The AKALL application can be run in interactive mode,
which allows users to control the capture process in a Read-Eval-Print-Loop
(REPL) environment. This mode is useful for debugging and testing the appli-
cation, as well as for capturing data for specific purposes.

• Capture sequence console: The AKALL application also includes a capture
sequence console, which allows users to specify a sequence of commands to be
executed during the capture process. This is useful for automating the capture
process and for capturing data in a specific order.

• Data capture and storage: The AKALL application captures data in a variety
of formats, including raw data, point clouds, and RGBD images. The data can
be stored locally or on a remote server.

The AKALL application is a powerful tool for capturing data from the Azure Kinect
device. It offers a high level of flexibility and control over the capture process, and it
can be used for a variety of purposes.

6.3.2 Docker Containers as Payload

The Docker image for the AKALL application contains all the necessary dependencies
and configurations needed for the software to function. The Docker image is built
using a Dockerfile, which is a text document that contains all the commands a user
could call on the command line to assemble the image. Docker containers encapsulate
the application and its dependencies into a single, standalone unit, which can be run
on any system that has Docker installed. This makes it easier to manage, distribute,
and run applications. The AKALL application specifically uses Docker to provide a
controlled, isolated environment for its operation. Here’s an example Docker com-
mand to launch an instance of the AKALL application [215]. This command runs
the Docker container on the development machine with several flags:

docker run --rm --gpus all --privileged -v /storage:/storage

• –gpus all: This flag allows the Docker container to access all GPU devices on the
host machine, which is necessary for the Azure Kinect DK to operate correctly.

• –privileged: This flag gives the container almost the same privileges to the host
machine, which is sometimes necessary for certain operations during testing,
although this is only implemented on the development machine, a more specific,
and tailored, set of permissions on the rover’s flight computer is set by the Lunar
Outpost team.

139

• -v /storage:/storage: This flag mounts the storage directory from the current
working directory on the host to the /storage directory in the container, which
is used to store the captured image files.

Figure 6-5: System Architecture Diagrams of the AKALL payload.

6.3.3 System Architecture

The overall framework utilizes a number of key concepts in its operation. The pl-sock
binds messages that are incoming from the host machine to the payload’s container,
while the sm-sock binds messages that are incoming to the host machine from the pay-
load’s container, (Figure 6-5). This allows for two-way communication between the
host machine and the payload’s container. The shared directory, /storage, allows for
communication between the payload’s container and the host machine. This allows
the payload’s container to store and retrieve files from the host machine. A successful
capture will generate four files (color.jpg, depth16, ir16, and calibration.json); these
files are then compressed with gzip in a custom container format called ".nd3" and
then stored in a shared directory. This allows the host machine to access the captured
images and calibration data. The application’s socket server and logger are launched
using the script, (./scripts/entrypoint.sh), which enables communication with other
programs and devices using the UNIX socket protocol, and allows for control of the
camera using custom capture sequence messages. This allows the application to com-
municate with other programs and devices, and to control the camera. An in-depth
review of the custom ".nd3" file format is discussed in Section 6.4.3.

The core application features several modes to control the system. Through an inter-
active program, users can send specific commands or instructions to control the Azure
Kinect device, manipulate its parameters, and customize data capture according to

140

their unique requirements. This includes adjusting frame rate, compression, reso-
lution, depth mode, exposure, contrast, sharpness, gain, white balance, back light
compensation, power line frequency, and timestamp. A real-time console has also
been developed, allowing the user to have a deeper level of control over all of the
components of the application. This interface enables users to manage and monitor
the data capture process, providing a visual guide and feedback during operation.
The core application is a powerful tool that can be used to capture data in a variety
of ways. The interactive program allows users to easily adjust the settings to get
the perfect results for their needs. The real-time console provides valuable feedback
that can help users to troubleshoot any problems that may occur. Internally, these
commands interact with the Azure Kinect DK through the C++ library k4a wrapper,
allowing for direct control and fine-tuning of the Azure Kinect device’s capabilities. It
also manages the compression of captured data frames and their subsequent storage,
adding another layer of flexibility to the data capture process.

Data capture and storage in the AKALL application have been designed with effi-
ciency and versatility in mind. The application interfaces with the Azure Kinect DK
via a C++ program using the provided k4a library, which allows the AKALL appli-
cation to effectively control the device’s camera and capture data from its various
sensors. Once the data frames (rgb, depth, ir, and calibration.json) are captured,
they are stored in .nd3 format, then compressed using gzip. This step reduces the
size of the captured data, making it easier to store and transmit. The data follows a
naming convention, allowing the user to understand the content of each compressed
folder as well as a timestamp. For storage, the AKALL application leverages Docker’s
capability to share directories with the host machine. The compressed data frames
are stored on a disk in a directory that is mounted and shared by the Docker container
with the payload host machine. This configuration enables safe and easy access to the
captured data without breaching the isolation of these systems. The directories are
set by the flight computer administrators and system engineers, ensuring controlled
access to the data.

6.3.4 Modes of Operation

The AKALL application offers several modes of interaction, which can be utilized
to affect the camera’s built-in parameters and set compression and other relevant
parameters. One notable mode is through a novel messaging scheme that extracts
parameters from ASCII-based commands. This innovative approach enables users
to interact with the camera system efficiently, using plain-text commands to modify
settings and perform various actions. By employing this messaging scheme, users can
easily tailor the concepts of operation, (as mentioned in Section 6.2), and adapt it to
different scenarios, enhancing the flexibility and usability of the AKALL application.
Additionally, this messaging system allows for seamless integration with other tools
and applications, streamlining the overall workflow and facilitating seamless data
capture and discovery in lunar exploration missions. AKALL employs two main
capture sequences, a short capture sequence (SCS) and a long capture sequence (LSC).

141

Figure 6-6: Command code sequence breakdown for the AKALL software. Top shows an
example code with breakdown of meaning, bottom shows all options for each command code
component. FPS: frames per second, COMP: compression, RESO: resolution.

Short Capture Sequence:

In the list of example commands below, the first part is mandatory to ensure a success-
ful capture sequence ("K05MJPG07201", "K05MJPG10801", etc.), and it indicates
the frame rate (FPS) and compression used, as well as other parameters. For instance,
the "05" in the first part represents the FPS, "MJPG" represents the compression
used, and "0720" is the resolution (in this case, 720p). The "1" at the end of the first
part indicates the depth mode, (Figure 6-6). The camera is capable of capturing up
to 4k resolution, and there are four different depth modes, (Appendix B Table B.8),
available to access through the Azure Kinect DK. Appendix D.2 covers a complete
list of short capture sequences.

K15MJPG07201-612689613
K30MJPG10802-845455484
K15MJPG14403-957520555

Long Capture Sequence:

The second and optional part ("EA-B128-C5-S32-H2-G0-WA-P0-L2-1671006611",
etc.) specifies the Exposure, Contrast, Sharpness, Gain, White Balance, Black Light
Compensation, Power Line Frequency, and timestamp. The values for these parame-
ters may vary depending on the specific requirements of the application. For example,
the "EA" in the second part sets the exposure to automatic mode, if a number is spec-
ified, such as "B128" the Contrast option is set to 128, "S" indicates the Sharpness,
"G" indicates the Gain, "W" indicates the White Balance, and "1671006611" is the
timestamp, (Figure 6-7). Apendix D.3 features a list of randomly generated long
capture sequences, just like the list below.

K05MJPG07201-EA-B128-C5-S32-H2-G0-WA-P0-L2-1671006611
K30MJPG21602-E130000-B189-C3-S12-H1-G255-WA-P0-L2-1671006633
K15MJPG30720-EM11-B255-C8-S33-H3-G0-WA-P1-L1-1671006644

142

Figure 6-7: The longer messaging scheme of the AKALL system showing optional com-
mand sequence components for RGB camera settings for the AKALL software.

Storage management:

To remove a single capture, use the following command: SM-RM-FILENAME (times-
tamp). Please note that ".tar.gz" is automatically added to the filename. The files are
stored in the shared directory "/tmp/payload-storage" on the host machine. Within
the docker container, the software automatically assigns names to these files using
the format: timestamp.tar.gz. For example, 1673370956.tar.gz.
Storage management commands SM-RM-FILENAME (timestamp) Empty /storage
directory: SM-RM-ALL

Figure 6-8: An interface view of the interactive mode designed to test the AKALL ap-
plication’s messaging scheme. It offers insights into the hands-on user interaction with the
application and message transmission process.

143

Figure 6-9: The Azure Kinect Viewer Software (K4aviewer) is a tool that allows users to
visualize and analyze data from the Azure Kinect DK. It includes both IR/Depth and RGB
cameras, as well as IMU data. K4aviewer can also be used to quickly render 3D views, either
from recorded data or from the real-time videos stream.

6.3.5 Data Processing and 3D Reconstruction

In the data processing and 3D reconstruction stage, the captured .nd3 files, contain-
ing a color.jpg, a depth.b16g, an ir.b16g, and a calibration.json files, play a crucial
role in constructing the Polygon File Format (.ply) object. This process is facili-
tated by a custom program that utilizes the transformation functions available in
the Azure Kinect Development Kit (DK) which enable the conversion between color
images, depth images, and point clouds. These functions form the basis for creating
a comprehensive representation and 3D reconstructions of the captured scene.

k4a_transformation_color_image_to_depth_camera()
k4a_transformation_depth_image_to_color_camera()
k4a_transformation_depth_image_to_point_cloud()

To render the depth and ir data into a 2D Grayscale image, the following approach
was employed. Each pixel of the DEPTH16 and IR16 data consists of two bytes (16
bits) of Big-endian unsigned depth data (b16g). To convert these b16g files into a
Grayscale image, the ImageMagick software was utilized. By employing these conver-
sion techniques, with the command below, and utilizing the transformation functions
provided by the Azure Kinect DK, it becomes possible to generate a comprehensive
and detailed representation of the captured scene. The resulting .ply file will contain
valuable information about the geometry, color, and depth of the scene, facilitating
further analysis and visualization of the captured data.

144

convert -size 640x576 -depth 16 -endian MSB
-define quantum:format=unsigned -define quantum:separate
-depth 16 gray:IR16_FILENAME -normalize IR16_CONVERTED_FILENAME.pgm

This command converts the depth data into a Grayscale image format, such as .pgm
or .bmp, with a size of 640x576 pixels and a depth of 16 bits. The parameters "-endian
MSB" and "-define quantum:format=unsigned" specify the Big-endian byte order and
the unsigned format of the depth data, respectively. The "-define quantum:separate"
option separates each depth value into two bytes. Finally, the "-normalize" parameter
ensures the normalization of the image.

This data processing and 3D reconstruction option highlight the powerful capabilities
of the Azure Kinect camera and the sophisticated software ecosystem surrounding it.
By leveraging these tools, researchers can gain a deeper understanding of the cap-
tured environment, enabling insights and discoveries relevant to Lunar exploration
and beyond. The ability to transform raw sensor data into a comprehensive 3D rep-
resentation opens up a wide range of possibilities for scientific analysis, visualization,
and decision-making in various applications. For example, this technology could be
used to create detailed maps of the lunar surface, which would be invaluable for plan-
ning future missions. Additionally, it could be used to create 3D models of objects
or structures, which could be used for training purposes or to create virtual reality
experiences [226].

Figure 6-10: NASA Ames Research Center SSERVI Testbed a sandbox of simulated regolith
for lunar studies. Image courtesy: Ferrous Ward.

145

6.4 Hardware and Software Testing Review

A series of laboratory and field tests were conducted to assess the capabilities of RGBD
cameras for lunar conditions and optimal ConOps, (Section 6.2), design. For lunar
conditions, the capabilities were tested with dust interference and solar flux without
atmospheric dispersion [227]. The power and data rates for the four capture modes,
(Appendix B Table B.8), were tested, and each was optimized for RGB resolution
and depth resolution capture sequences. A field test was then conducted in Svalbard,
Norway, to design a capture methodology for optimal 3D reconstruction of the traverse
and science station capture modes. Finally, the 3D reconstruction techniques and
resolution capabilities were tested in the Solar System Exploration Research Virtual
Institute (SSERVI) Lunar Testbeds.

6.4.1 Testing Procedures

Dust Interference in Lunar Gravity:

Lunar dust poses significant challenges for human exploration of the Moon due to its
abrasive and cohesive nature, which can impair optical instrumentation. Moreover,
its fine particles can easily become airborne and remain suspended for extended pe-
riods, creating breathing difficulties for astronauts and potential equipment damage.
To evaluate the performance of COTS camera in lunar gravity and microgravity con-
ditions, researchers conducted experiments during a parabolic flight campaign with
Zero-G Corporation on May 20, 2022 [228, 229].

The experimental setup involved a sealed glove box containing a 1-inch layer of lunar
regolith simulant [230, 231], with a mounted RGBD camera and a rover wheel. The
camera was focused on a 3D-printed wall positioned across from the glove box. Dur-
ing the experiments, the rover wheel was activated to disturb the lunar simulant, and
the camera recorded the outcomes. Five lunar gravity parabolas and ten microgravity
parabolas were utilized. The lunar gravity parabolas simulated rover movement on
the Moon, while the microgravity parabolas simulated a worst-case scenario where
the kicked-up dust remained suspended.

The results of the experiments demonstrated that the camera effectively functioned
in both lunar gravity and microgravity environments, albeit with some visibility loss
caused by the lunar dust. Despite the dust interference, the camera was capable
of collecting depth data successfully. These findings will play a crucial role in en-
hancing the design of cameras for future lunar missions, ensuring better performance
and reliability. Prior to the flight, the experiment was sealed shut, necessitating an
operational system accessible from outside the box. To achieve this, the wiring for
both the Azure camera and the electronics of the light and wheel motor was fed
through the polycarbonate walls. The RGBD camera was operated using the pro-
vided recording software from the Microsoft Azure Kinect DK, specifically employing
the k4arecorder.exe operation. To avoid data loss mid-flight, thirty seconds of data

146

were recorded for each parabola, with each recording saved to a separate file instead
of continuous recording. The light and wheel motor were operated via a custom PCB,
with the wheel controller positioned outside the box. One of the flyers initiated and
stopped the run to coincide with the parabola’s beginning and end, ensuring better
synchronization with the flight path [216].

Solar Simulation Testing:

The Microsoft Azure Kinect ToF camera emits a near-infrared image with a wave-
length of 850 nanometers. Although it is not the peak wavelength for solar light, it
still impacts the camera’s functionality in Earth daylight due to atmospheric disper-
sion, which can saturate the infrared sensor. However, on the lunar surface, sunlight
is functionally directional, and the lack of atmosphere enhances its power. To as-
sess the RGBD camera’s performance in worst-case lunar solar conditions, a solar
simulator was utilized. The lunar surface’s solar flux for 850 nm (no atmospheric dis-
persion) is approximately 0.97 Wm-2nm-1. A 110,000 lux (1.02 Wm-2nm-1 at 850 nm)
full-spectrum halogen bulb was employed to simulate solar illumination for the lunar
surface. The RGBD camera was set up within the glovebox used for dust interference,
using the same lunar highland regolith simulant to emulate the lunar surface’s albedo.
RGBD videos were recorded for four different box positions. In Appendix B Table
B.5, the estimated lux and flux values at 850 nm for each position are listed [216].

Power and Data Rates:

Two of the most critical limiting factors for the Commercial Lunar Payload Services
(CLPS) mission are power and data rates. Specific values are not disclosed due to
confidentiality, imposed by Lunar Outpost, but they are described as either within
or exceeding the set limits. The rover has limited power available for its multiple
payloads, and data transmission is constrained by download limits in the MB range.
Given that a single 10-second RGBD (.mkv) video can require up to 1 GB of data,
this severely restricts the data collection for the RGBD camera. For some ConOps, a
minimum of 12 views from different directions is required, which could result in up to
120 GB of data for a single scene. However, much of the data in the 10-second video
may be extraneous.

To address this, the AKALL software uses a data reduction technique. It initiates
several single capture sequences, picks and stores the last frame, and then parses a
single still RGBD image from the end of the recording. Only this image is saved
for transmission to the lander, ensuring that the image has stabilized without trans-
mitting unnecessary data. Although some data is lost using this method, such as
gaps caused by dust, light reflection, and noise, it allows for increased image capture,
albeit at a slightly lower quality. Initial power tests were conducted to assess the
average power requirements for different camera modes: off, idle, streaming using
the K4aviewer, and recording using the K4arecording software. The baseline power
requirements (listed in Appendix B Table B.6) were used to ensure that the cam-

147

era would not draw power when off or idle and would remain within the mission’s
maximum power requirements during further development. The power and data re-
quirements for each capture mode were evaluated in a laboratory setting using an
unaltered Microsoft Azure Kinect mounted on a custom payload tower at the same
height as the Lunar Outpost rover-mounted Kinect (6.75 inches above the ground).
Capture sequences were conducted for each mode while monitoring the power. With
the AKALL software, the power and data loads were tested for various combinations
of RGB resolution and ToF camera resolution [216, 195].

ConOps Testing: Svalbard, Norway:

The Microsoft Azure Kinect was also tested at the same Marblehead, MA field site
in 2022 [182]. The assessment was carried out using the Microsoft Azure Kinect DK
software and involved manual manipulation of the camera position to evaluate the
baseline ConOps for data collection. Data was collected by manually rotating the
camera on a marked platform in 60º increments, allowing for 5% overlap on each side
of the image for the narrow field-of-view setting. A 10-second video was captured
at each position while moving the camera on a tripod in a raster-style pattern with
3-meter increments over a (10 x 10 square meters) field site. This data collection ap-
proach provided valuable insights into challenges, particularly in terms of data gaps
caused by the 360º rotation and grid-style capture.

A second field test was conducted in Svalbard, Norway, to assess two different capture
styles: grid-style data capture and raster-style data capture. Svalbard, known for its
exposed geology, minimal vegetation, and tundra conditions, served as a valuable
planetary surface analog. While not a true Lunar analog, these outdoor tests pro-
vided important developmental insights for the Lunar mission. The MIT RESOURCE
team conducted preliminary tests of concepts of operations using the Microsoft Azure
Kinect in conjunction with the development of a virtual environment to test the ef-
fectiveness of VR for Lunar and planetary surface exploration.

The tests involved two capture styles: raster and grid, to address blind spots observed
in the Marblehead fieldwork. The raster pattern provided long swathes of data side-
by-side, while the grid pattern offered 360º blocks of data with central blind spots
that could be partially eliminated by overlapping data from adjacent grids. The
Open3D software was utilized for capturing, processing, and visualizing data from
the RGBD camera, resulting in the creation of highly precise and detailed 3D models
from individual recordings. This software allowed for a single video capture approach,
streamlining the generation of comprehensive 3D point clouds without the need for
manual compilation of separate images or videos.

To ensure camera stability during recording, a manual data collection approach was
adopted, where the RGBD camera was held at a nearly constant height and moved in
selected patterns over the field site. This method enabled faster data collection, which
was crucial in low temperatures, while ensuring smoother video recording. The RGBD

148

camera traversed the field site in two patterns, capturing data as .ply video recordings
for complete (10 x 10 square meters) science station captures at three distinct field
sites. These data captures were used to assess 3D reconstruction ConOps for both
the traverse capture mode and the science station capture mode [232].

Figure 6-11: A view of the NASA Ames regolith test bed featuring the Azure Kinect camera
during its testing phase. This image provides a real-world representation of the camera’s
deployment in a lunar analog environment

ConOps Testing, SSERVI Lunar Sandbox:

The SSERVI Lunar Testbed, (as shown in Figure 6-11), is a (4 x 4 x 0.5 cubic meters)
Testbed filled with 8 tons of Lunar lowland simulant. This Testbed was equipped with
a simulated crater, small rocks, and ejecta features like rockslides and debris flows.
It served as a suitable environment to test various capture modes, including the sin-
gle capture mode, circumferential capture mode, and a potential future mode with
gimballing capabilities for changing the camera angle. Additionally, the AKALL cap-
ture modes and Open3D software, (Figure 6-12), were evaluated to generate detailed
3D reconstructions of the environment. These reconstructions facilitated analysis of
image quality and optimal rover positions in relation to the sun angle to minimize
washout effects [232].

Five testing scenarios were conducted within the JSC-1A Testbed, each employing
four different camera settings (as listed in Appendix B Table B.7). For tests 1 and 2,
the camera was manually moved around the object at 60º intervals while maintaining a
1m distance from the object. Tests 3 to 5 involved positioning the camera on the edge
of the crater and adjusting it to five different camera angles: yaw left and right (+/-
30º), pitch up and down (+12º/-13º), and neutral central. These tests demonstrated

149

individual image capture possibilities for potential future missions with gimballing
capabilities. Each of these scenarios was repeated for six simulated sun positions: 0º,
60º, 120º, 180º, 240º, and 300º, measured from the central line of the camera, with
0º behind the camera [232].

Figure 6-12: This image showcases a detailed 3D reconstruction of the SSERVI regolith
simulant Testbed at NASA Ames, achieved using the Azure Kinect camera. The camera’s
advanced depth sensing capabilities have enabled the accurate capture of the regolith’s surface
features and topography.

6.4.2 ConOps Analysis and Results

A series of comprehensive tests, comprising both laboratory and field experiments,
were conducted to assess the capabilities of the RGBD camera under Lunar condi-
tions and optimize the ConOps design. These tests addressed crucial aspects, such
as dust interference, solar flux without atmospheric dispersion, power and data rates,
and capture methodologies for 3D reconstruction. The results of these tests provide
valuable insights and implications for the success of the project.

To evaluate the camera’s performance in the presence of Lunar dust interference,
parabolic flights were utilized to simulate Lunar gravity. The camera’s functionality
amidst interfering particles and the impact of dust exposure on visibility were stud-
ied. Motorized rover wheels were employed to agitate the dust and simulate rover
movement while recording the camera’s output. These experiments provided valuable
insights into the camera’s performance in Lunar gravity and its ability to withstand
dust interference.

Solar simulation testing was conducted to evaluate the camera’s response under in-
tense solar illumination on the Lunar surface, where atmospheric dispersion is absent.
Using a solar simulator, the camera’s performance was assessed under different levels
of solar flux, enabling researchers to understand its behavior under challenging light-
ing conditions.

150

Power and data rates were critical factors considered for the success of the CLPS
mission. To optimize camera capture modes, power requirements were evaluated to
ensure compliance with specified limits. Data rates were also analyzed to manage
the transmission of large data volumes effectively. The AKALL software facilitated
testing power and data loads for various camera resolution combinations, providing
insights into efficient data capture and transmission.

Field tests conducted in Svalbard, Norway, and the SSERVI Lunar Testbed assessed
capture methodologies and 3D reconstruction techniques. Svalbard, with its charac-
teristics resembling planetary surfaces, served as an important analog environment.
The Open3D software enabled detailed 3D model generation from RGBD data, with
raster and grid capture styles eliminating previous blind spots. These field tests
provided crucial insights for the refinement of capture methodologies and stability
improvement. The analysis of test results has significant implications for the project.
The camera demonstrated its capability to capture high-resolution data in challenging
Lunar conditions. Optimized capture modes, power management, and data reduction
strategies ensure efficient resource utilization without compromising data quality. In-
sights from field tests and analog environments will contribute to the development of
robust ConOps for future Lunar missions. These findings foster enhanced data col-
lection, improved 3D reconstruction techniques, and support the successful execution
of Lunar exploration missions [232].

Figure 6-13: Image A presents a close-up view of the textured mesh, capturing with details,
the surface of the simulated lunar regolith. Meanwhile, Image B unveils the wire-frame
representation, revealing the underlying structure and geometry of the scene.

6.4.3 Software Testing: Analysis and Results

The AKALL software functioned as expected during the data collection at the SSERVI
Lunar Testbed, successfully meeting the specified data requirements and demonstrat-
ing effective download formatting. Due to the absence of custom rendering capabilities
in the AKALL software as of date, the Open3D software was utilized to capture rep-
resentative still videos, simulating the single image captures taken by AKALL. These
stills were subsequently processed using Open3D to generate 3D images, resembling
the AKALL captures, (Figure 6-14). By employing MeshLab, (Section 5.3.2), to

151

stitch together these images, the creation of 3D scenes allowing us to compare the
methodologies of single image capture and continuous video capture during move-
ment. This process also established the data pipeline to be used in conjunction with
the future custom rendering software.

The experiment conducted at NASA Ames provided significant insights regarding
the degrees of overlap required for a comprehensive circumferential 3D reconstruc-
tion, optimal sun direction determination through the crater test, and a comparison
between image reconstruction and video reconstruction. Furthermore, the analysis of
the astronaut boot print, designed and printed by Ferrous Ward, (Figure 6-15), and
crater data yielded valuable information regarding the obtainable feature resolution.
The data set features 180 samples captured with the Azure Kinect device in various
light conditions and scenarios, (as shown in the results in Figures 6-16 to 6-22), they
show a direct comparison between the file sizes generated by three different software
tools: K4A, AKALL, and Open3D. K4A, a software pack ,developed by Microsoft,
that includes various utilities and drivers for the Azure Kinect DK, stores streams
of data from the device into the Matroska multimedia container (.mkv), commonly
used for video formats. AKALL, on the other hand, adopts its own custom data
format (.nd3), (Section 6.4.3), that stands for the Natural Depth 3D format, which is
composed of 16-bit Grayscale images and metadata compressed in a gzip container.
Open3D employs a different approach, organizing data in a hierarchical folder struc-
ture that contains various scene information. This software provides functions to
reconstruct 3D footage captured using depth cameras into the Polygon file format
(.ply), (as described in Chapter 5, Section 5.5).

The results from these comparisons indicate that both the .nd3 file format and
AKALL software result in significantly smaller file sizes compared to the K4A record-
ings that capture .mkv files at the smallest allowed interval (1-second video), as well as
the .ply file generated by Open3D. The terminology list, in Appendix D.1, is utilized
to comprehend the naming convention of the data files, distinguishing various data
capture scenarios, locations, objects, and light properties. For instance, "BR_L300"
denotes that this file comprises experiments featuring the Bed Rock object, with
"L300" signifying the 300° angle of the light source in relation to the camera’s origin.
Note that the plots use a log scale to expand relative differences between .nd3, .mkv
and .ply formats. The difference in File size between .mkv and the other file formats
are well over an order of magnitude.

152

Figure 6-14: 3D reconstruction performed of various lighting conditions using the Azure
Kinect device and processed with Open3D and Meshlab.

Figure 6-15: This captivating image showcases the intricate detail of 3D printed soles
designed to replicate the footprints left by astronauts during extravehicular activities (EVAs).
These custom soles faithfully recreate the distinctive patterns and textures of the original boot
imprints, allowing for a precise and accurate representation of the astronaut’s footsteps.
Image courtesy: Cody Paige and Ferrous Ward.

153

Figure 6-16: Comparison of file sizes (MB) shown on log scale: K4A (.mkv), AKALL
(.nd3), and OPEN3D (.ply) for the Bed Rock Object with Varying Light Angles (0°, 60°, and
120°)

154

Figure 6-17: Comparison of file sizes (MB) shown on log scale: K4A (.mkv), AKALL
(.nd3), and OPEN3D (.ply) data types for bed rock object with varying light angles (180°,
240°, and 300°)

155

Figure 6-18: Comparison of file sizes (MB) shown on log scale: K4A (.mkv), AKALL
(.nd3), and OPEN3D (.ply) data types for crater capture with varying light angles (0°, 60°,
and 120°)

156

Figure 6-19: Comparison of file sizes (MB) shown on log scale: K4A (.mkv), AKALL
(.nd3), and OPEN3D (.ply) data types for crater capture with varying light angles (180°,
240°, and 300°)

157

Figure 6-20: Comparison of file sizes (MB) shown on log scale: K4A (.mkv), AKALL
(.nd3), and OPEN3D (.ply) data types for debris flow capture with varying light angles (0°
to 300°)

158

Figure 6-21: Comparison of file sizes (MB) shown on log scale: K4A (.mkv), AKALL
(.nd3), and OPEN3D (.ply) data types for little rock object with varying light angles (0° to
300°)

159

Figure 6-22: Comparison between AKALL (.nd3) and OPEN3D (.ply) file sizes (MB) in
various scenarios and lighting conditions.

160

6.5 Conclusion and Future Work

6.5.1 ".ND3": File Format for RGBD Imaging

The Azure Kinect device implements the Amplitude Modulated Continuous Wave
(AMCW) ToF principle for depth collection, (as detailed in Section 6.1.2). The de-
vice emits modulated illumination within the near-IR (NIR) spectrum [233]. It sub-
sequently captures an indirect measurement of the round-trip time taken by the light
to travel from the camera to the scene and back [151]. These recorded measurements
are then processed to create a depth map (depth.b16g), which contains Z-coordinate
values for each pixel in the image, measured in millimeters. Additionally, alongside
the depth map, a so called "clean IR reading" (ir.b16g) is recorded. The pixel val-
ues in this reading correspond to the quantity of light reflected back from the scene,
providing valuable information about the light in the scene. The second sensor in-
cluded in the Azure Kinect allows for capturing color images with native support
for JPEG and MJPEG compression. One of significant contributions highlighted in
this research involved optimizing the data generated by the Azure Kinect, through
AKALL, and developed a novel data format called .ND3. "ND" stands for "Natural
Depth", metaphorically connecting it to the illumination provided by, natural or ar-
tificial sources, Natural Light : as it entails that the ".ND3" file extension is tailored
for processing, capturing and storing the needed information to synthesize 3D Ob-
jects from 2D images [234], therefore making good use of existing image compression
algorithms such as the Joint Photographic Experts Group (JPEG) [235, 236]. This
uses three main components, a color image for example (color.jpeg) depth image
(depth.b16g) and calibration data (calibration.json). Optionally, the (ir.b16g)
image could be utilized to further focus on rending light texture maps, through ad-
vanced mapping techniques to achieve a more immersive and realistic final 3D Object.

6.5.2 Summary

The Azure Kinect à la Luna (AKALL) project was undertaken with the aim of creat-
ing a versatile and portable application that harnesses the extensive capabilities of the
Azure Kinect device, specifically in the context of space exploration and robotics. The
project set out to achieve multiple ambitious objectives, which are summarized in this
chapter. One of the primary goals of the AKALL software was to develop an appli-
cation that seamlessly integrates into existing computing systems, such as rovers and
robots, without disrupting established workflows. By fitting within the architecture
of these systems, the AKALL application can enhance capabilities and provide new
functionalities. Another crucial objective was to ensure high portability and isolation.

This was achieved by utilizing Docker containers, which encapsulate the application
and its dependencies, enabling deployment across different environments with minimal
configuration efforts. By leveraging Docker, the AKALL application remains isolated
from the host system, preventing any issues within the application from impacting
the wider system. A robust communication mechanism was also a key objective of the

161

AKALL software. The application implemented a UNIX socket server, allowing seam-
less interaction between the AKALL application and other programs or devices using
the UNIX socket protocol. This communication mechanism facilitates control of the
camera and data capture using custom capture sequence messages, enabling efficient
and customizable data collection. Furthermore, the AKALL software aimed to fully
utilize the data capturing capabilities of the Azure Kinect device. The application
offers a high level of control over the device’s parameters, allowing users to customize
the data capture process to their specific requirements. The ability to adjust pa-
rameters such as frame rate, compression, resolution, exposure, and more provides
users with a flexible and tailored data collection experience. Upon completion, the
AKALL software is expected to have significant outcomes and contributions. The
application’s portability, flexibility, and robust communication abilities open up nu-
merous possibilities for developers and researchers to utilize the Azure Kinect device
in innovative ways. With potential deployment in space exploration and robotics, the
AKALL software holds promise for making substantial contributions in these fields.

To evaluate the capabilities of the Azure Kinect device under Lunar conditions, a
series of tests were conducted, including laboratory and field experiments. These
tests addressed various aspects, such as dust interference, solar flux, power and data
rates, and capture methodologies for 3D reconstruction. Results from these tests
provided valuable insights into the camera’s performance and implications for the
project. Dust interference, a significant challenge in Lunar conditions, was evaluated
by conducting tests using a parabolic flight to simulate Lunar gravity. The camera’s
functionality and visibility in the presence of dust interference were assessed, provid-
ing insights into its performance and settling time required for capturing depth-data
after dust agitation. Solar simulation testing was conducted to evaluate the camera’s
response to intense solar illumination on the Lunar surface, considering the absence
of atmospheric dispersion. These tests aimed to ensure the camera’s robust perfor-
mance under such conditions. Optimizing power and data rates was crucial for the
success of the CLPS mission. The AKALL software was utilized to assess power
requirements and data management strategies for various camera modes. Capture
sequences were optimized based on specific mode requirements, ensuring efficient use
of limited resources while maintaining data quality. Field tests conducted in analog
environments, such as Svalbard, Norway, and the SSERVI Lunar Testbed, provided
insights into capture methodologies and 3D reconstruction techniques. These findings
contributed to the development of a robust ConOps for future Lunar missions.

6.5.3 IM-2 Mission Updates

Recent details have emerged [237] about the upcoming IM-2 mission, which marks
a significant milestone in commercial space exploration. Nokia Bell Labs 1 is at the
forefront of this groundbreaking endeavor, deploying the first-ever cellular network
on the Moon. The mission aims to demonstrate that cellular technologies can fulfill

1bell-labs.com

162

https://www.bell-labs.com/

Figure 6-23: MIT’s Lunar Payloads: Announced as of Nov 8, 2022 MIT contributes
two innovative payloads to the Lunar Outpost’s Mobile Autonomous Prospecting Platform
(MAPP) rover. Image courtesy: Forbesa.

aMIT Will Return to the Moon for the First Time since Apollo - Forbes.com

163

https://www.forbes.com/sites/ariannajohnson/2022/11/09/mit-will-return-to-the-moon-for-the-first-time-since-apollo-thanks-to-this-space-startup

the critical communications needs of future lunar and Martian missions. Collaborat-
ing with Intuitive Machines2 and Lunar Outpost3, Nokia has developed a low-power,
space-hardened version of its 4G/LTE MicroCell, specially designed to withstand the
extreme conditions of the lunar surface. Scheduled for launch in November 2023,
the IM-2 mission holds great promise for advancing space technologies. The inte-
gration of a cellular network will play a vital role in enabling reliable, high-capacity,
and efficient connectivity for both crewed and uncrewed missions to the Moon and
other planets. This connectivity will be crucial for astronauts, who will require ad-
vanced communication capabilities to support their missions and daily activities [237].

Through several collaborations, MIT was able to incorporate two payloads, (Figure
6-23), on board the MAPP rover. One of these is the RESOURCE camera, presented
in this chapter, running AKALL, to enable MAPP to capture ".nd3" files that will
later be transformed into 3D Objects of distinctive rock formations and craters on
the moon. It will diligently search for indications of lunar ice in the shadows near
the crater edges. Additionally, MIT Media Lab’s Responsive Environments group
has developed the AstroAnt, a miniature rover that will ride atop the Lunar Out-
post rover. Comparable in size to a Matchbox toy car, the AstroAnt will explore the
MAPP’s roof, collecting essential temperature data while the MAPP rover traverses
the lunar surface. The valuable images, data, and telemetry collected by MAPP
will be transmitted via the 4G/LTE network to the lander and then relayed back to
Earth. Through this connection, Lunar Outpost mission control center in Colorado
will efficiently issue commands to the rover, ensuring smooth operations during the
lunar mission [237].

As part of the IM-2 mission, Nokia’s 4G/LTE network will consist of a base station
unit integrated into the Nova-C lander and radio equipment installed on the Lunar
Outpost’s MAPP rover, (Figure 6-2), and Intuitive Machines’ Micro-Nova hopper.
These components will form a network allowing seamless communication between the
lander and the vehicles on the lunar surface. The direct-to-Earth radio connection
will enable mission controllers to receive essential data, images, and remotely operate
the vehicles over the cellular network. The insights gained from the IM-2 mission4

hold significant potential for both lunar and Martian economies. Cellular networks
will serve as a fundamental infrastructure, linking sensors, transport vehicles, scien-
tific payloads, drones, and rovers. The network will also enable remote operation of
essential machinery, such as mining and construction equipment, vital for astronauts’
survival. The IM-2 mission will provide invaluable data and knowledge for advancing
communications technologies in space exploration. As Nokia Bell Labs has a rich
history of contributing to space science, this mission adds another milestone to their
legacy of innovation and exploration in the realm of space technology [237].

2intuitivemachines.com
3lunaroutpost.com
4An Inside Look at Nokia’s Moon Mission - Spaceref.com

164

https://www.intuitivemachines.com/
https://lunaroutpost.com/
https://spaceref.com/newspace-and-tech/an-inside-look-at-nokias-moon-mission/

6.5.4 Future Work

Data compression plays a crucial role in space exploration, as exemplified by the
Galileo NASA mission to Jupiter launched in 1989 [224], and remains a common prac-
tice in modern space missions. Facing challenges of limited communication bandwidth
and vast distances, efficient data compression is vital to optimize data transmission
and storage. By utilizing lossless and lossy compression techniques [238], space mis-
sions can transmit and analyze vast amounts of scientific data, maximizing mission
success and enabling deeper insights into celestial bodies across the solar system. The
.nd3 file format holds great potential for shaping the landscape of RGBD devices and
their corresponding software environments. As hardware devices continually evolve
and adapt, the seamless encapsulation of data types becomes crucial in facilitating the
creation of innovative hardware that aligns with the needs and availability of current
software capable of processing such data files. Developing a companion media player,
editing, file export, and processing tool tailored specifically for .nd3 files can play
a pivotal role in advancing research conducted on RGBD devices in general. While
the 3D industry predominantly operates using established formats like .stl, .obj, .ply,
.fbx, and others, each format has been shaped by the requirements of specific software
and hardware environments that standardized them.

However, in the context of space exploration, where data size and efficiency are
paramount, there emerged an urgent need to devise a mechanism for efficiently storing
RGBD data in the most compact format possible. This necessity laid the groundwork
for the development of the .nd3 file format, as demonstrated through the research
presented in this chapter. As a novel and optimized format, .nd3 provides an ideal
solution for storing and processing RGBD data in space exploration missions. Further
research can investigate even better use of compression techniques and algorithms to
enhance the .nd3 file compression and 3D reconstruction capabilities. This ongoing
exploration can lead to even more efficient data storage and transmission for differ-
ent depth cameras in single capture mode, benefiting space missions and pushing the
boundaries of what is possible with RGBD devices in the context of space exploration.

6.5.5 Acknowledgment

This chapter presented a corpus of research that owes its realization to the synergistic
collaboration among multiple entities and individuals, including members of the MIT
RESOURCE team supervised by Prof. Dava Newman, her students Cody Paige, and
Ferrous Ward, as well as the contributions of the talented engineers and scientists at
NASA Ames Research Center and Lunar Outpost.

Moreover, Dr. Jennifer Heldmann and Dr. Amanda Cook from NASA Ames Re-
search Center, Dr. Ariel Ekblaw and Sean Auffinger from The MIT Media Lab Space
Exploration Initiative, and Ben Brokaw and Matt Mitchel from Lunar Outpost played
instrumental roles in shaping and supporting this research endeavor.

165

166

Chapter 7

Conclusion

7.1 Summary

In summary, this thesis highlighted the combination of multiple fields of research,
weaving together virtual environment design, robotics, sensor systems, and space op-
erations. By utilizing real-world data to generate virtual environments, it has forged
a novel futuristic concept for mission planning and execution. This research explored
the synergies and challenges associated with human-robot operations in virtual space
analog environments, thereby shedding light on new methodologies and technologies.
These innovative approaches not only offer practical solutions for current challenges,
but also set the stage for future explorations and discoveries. This blend of technol-
ogy and creativity serves as a testament to the power of interdisciplinary research
and underscores the potential for continued advancement and innovation in space
exploration.

The Doppelbot project, (Chapter 3), represents an innovative frontier in the field
of virtual space exploration, introducing an immersive approach to mission planning
and user interaction within a simulated lunar environment. Utilizing the concept of
cross-reality, the project creates a digital twin of the Rover Mini by Rover Robotics,
named Doppelbot, implemented within the Unity game engine. It simulates the actual
rover’s behavior and locomotion by offering independent motor control for each wheel
based on user inputs, allowing for a wide range of interactive movements. A standout
feature of the Doppelbot project is the incorporation of video game metaphors and
user interface elements, including minimaps and mouse-controlled navigation, thereby
enhancing user experience and navigation. Drawing inspiration from Real-Time Strat-
egy (RTS) games, the interface applies a color-coded time-based visualization method,
along with physics simulation, to offer users a conceptual visual understanding of the
rover’s planned, current, and past paths. This visualization is complemented by the
inclusion of a minimap to enhance situational awareness.

Furthermore, a detailed system investigation has synchronized the Rover Mini with
Doppelbot through the integration of advanced technologies such as Nvidia Xavier, In-

167

tel RealSense Cameras, Ubuntu running ROS (Robot Operating System), and SLAM
(Simultaneous Localization and Mapping). This allows accurate spatial representa-
tion and seamless synchronization between physical and virtual environments. The
chapter also proposes new visualization concepts, overlaying anticipated and current
positions of the digital twin with the dimension of time, and explores the transforma-
tive potential of integrating large language models (LLMs) such as OpenAI’s GPT-4.
The inclusion of these LLMs within the Unity game engine promises to create more
realistic, adaptive, and intelligent simulations

Two concepts revolving around robotic telepresence were introduced and explored in
Chapter 4, specifically using a quadruped robot. The first project focuses on the cre-
ation of a Virtual Reality (VR) application that streams and replays 360° videos with
LiDAR data, enabling a lifelike telepresence experience. The selected devices for this
immersive project were the Insta360 ONE X VR camera and the Velodyne VLP-16
LiDAR, integrated into the Doppelspot concept. The success of this teleoperation
system showed potential for use in scenarios unaffected by communication delays,
including astronauts’ virtual extra-vehicular activities. Doppelspot’s integration in-
troduces new possibilities for remote operation and data collection in challenging en-
vironments, and the chapter highlights the various capabilities, including integrated
cameras, depth sensors, and Python API for customization.

Augmented Virtuality played a critical role by blending real captured environments
with simulated ones, using a 360° video camera and LiDAR data. Virtual overlays
and annotations provided real-time data and visualizations on the live video feed,
enhancing the telepresence experience. The digital twin of Spot, named Doppelspot,
was presented with features like procedural leg animation, contributing to a realistic
telepresence experience. Future applications may involve offloading extra-vehicular
activities to robots, improving situational awareness, and facilitating collaborative
research. Future work for Doppelspot includes improvements to payloads and telep-
resence capabilities, with advancements in 3D scanning technologies and communi-
cation, offering the potential for enhanced data reconstruction and realism. The
chapter also anticipates a shift towards low bandwidth 3D transmission and recon-
struction. Overall, these insights aim to expand the applications and capabilities of
robotic telepresence in space missions and exploration, focusing on optimization and
potential future developments.

The Svalbard analog mission exemplifies the innovative application of digital twin
analog environments in geological research, utilizing high-resolution 3D reconstruc-
tions, environmental data, and advanced visualization techniques to study the Sval-
bard site as a Martian analog. By employing aerial photography, environmental
sensors, LiDAR/RGBD cameras, and Unity’s HDRP and Post Processing Stack, the
project offers a realistic and accurate representation of geological features that resem-
ble both Earth and Mars, enabling insightful exploration and analysis. The virtual
environments created are instrumental in enhancing the understanding of geological
processes and potential extraterrestrial formations. Researchers can visualize and

168

analyze these features in great detail, with post-processing effects augmenting the
visual quality. A study was conducted to evaluate OGIVE that highlights the impact
of digital twin analog environments in geological exploration, providing an immersive
platform to study formations remotely and efficiently, with future applications such
as training tools for astronauts. Chapter 5 explores the application of 3D reconstruc-
tion and data visualization in virtual analog environments, emphasizing the Svalbard
site. Technologies such as photogrammetry, LiDAR, and Unity’s rendering capabili-
ties have enabled the creation of accurate digital twins, facilitating exploration and
understanding of other planets.

Photorealistic rendering and voice commands have enhanced the user experience,
and user studies indicate that VR applications offer more spatial presence and im-
mersion than desktop applications. Transporting the user to distant planets with an
added feature of visualizing Earth features as Martian counterparts further enriches
the exploration process, as well as equipping them with two fundamental tools for
exploration, a ruler and a modality-shifting "flashlight". The OGIVE application
demonstrates the effectiveness of these tools in geological analysis, highlighting their
broader potential for scientific exploration, decision-making, and collaboration. On-
going development, advancements in technology, and interdisciplinary collaboration
will continue to push the boundaries of remote research, transforming the exploration
of environments and aiding in the preparation of future Lunar and Martian missions.

The Azure Kinect à la Luna (AKALL) project was developed to create a versatile and
portable application for space exploration and robotics, harnessing the capabilities of
the Azure Kinect device. The key objectives of the project included seamless inte-
gration with existing systems like rovers and robots, high portability and isolation,
robust communication, and parameterizing data capturing. The project achieved in-
tegration by fitting within existing architectures, and enhancing their functionalities.
Portability and isolation were ensured using Docker containers, which allowed the
application to be deployed across various environments without affecting the host
system. The custom Python server handling UNIX domain sockets enabled seamless
communication, facilitating control and access over the camera’s underlining sensing
modalities. The AKALL project took full advantage of the Azure Kinect’s data cap-
turing capabilities, providing control over parameters such as frame rate, compression,
resolution, and exposure. This enabled a tailored data collection experience, and the
application’s flexibility and robust communication abilities promised substantial con-
tributions to space exploration and robotics.

A series of laboratory and field tests were conducted by the MIT RESOURCE team,
and by NASA Ames, to evaluate the device’s performance under Lunar conditions,
while providing the necessary protection to make this device viable in space opera-
tions. These tests addressed challenges like dust interference, solar flux, power and
data rates, and capture methodologies for 3D reconstruction. Specific tests simulated
Lunar gravity and intense solar illumination to assess the camera’s performance and
develop strategies for power and data management. Field tests in locations such as

169

Svalbard, in Norway, and the SSERVI Lunar Testbed at NASA Ames contributed
insights into 3D reconstruction techniques and prepared a robust Concept of Opera-
tions (ConOps) for future Lunar missions.

A significant contribution of the research was the optimization of data generated
by the Azure Kinect, through AKALL, and the introduction of a novel data format
called .ND3, designed for processing, capturing, and storing information needed to
synthesize 3D Objects from 2D images. It utilizes components such as color and
depth images, calibration data, and optionally, an IR image for rendering light texture
maps, aiming for more immersive and realistic final 3D Objects. Overall, the AKALL
project demonstrates a forward-thinking application of technology in the field of space
exploration, promising to enhance both robotic capabilities and our understanding of
Lunar conditions.

7.2 Discussion

The pursuit of exploring distant space environments through robotics presents a com-
plex challenge. The further we venture, the slower the data transmission becomes,
and efficiency becomes paramount. This research has shed light on the necessity
of bridging the gap between distant robotic exploration and human understanding
by harnessing advanced techniques. Through combining automation and predictive
modeling with cutting-edge visualization, the research emphasizes keeping the human
in the loop. It explores innovative ways to synthesize sensorially scanned, and sam-
pled environments from space, allowing us to comprehend and interact with far-off
locations. The focus on making processes more efficient and better adapted to the
constraints of distance highlights a promising direction in space exploration. This
integrated approach ensures that as we push the boundaries of space, our ability to
understand and explore does not lag behind. It sets a path toward more intelligent,
responsive, and human-centric exploration of the cosmos, aligning our technological
advancements with our innate human curiosity and adaptability.

One of the remarkable aspects of modern space exploration is the adaptation of com-
mercially available technologies and products for space applications. This strategy
not only leverages existing technological advancements but also fosters collaboration
between commercial industries and space agencies. Adapting commercial products
like the Azure Kinect, as seen in the AKALL project, transforms tools initially de-
signed for other purposes into powerful instruments of exploration and discovery. By
integrating these readily available resources, space exploration becomes more cost-
effective, agile, and inclusive. It invites a broader community of innovators to con-
tribute to the endeavor of exploring the unknown, bridging the gap between commer-
cial technology and the specific needs of space exploration. This approach signifies
a democratization of space technology, aligning commercial interests with the noble
pursuit of knowledge and exploration, and ensures that space remains an accessible
frontier for all.

170

This integration of commercial products into the space exploration landscape further
emphasizes the holistic and interdisciplinary nature of space research. It demon-
strates that the pursuit of understanding distant environments is not confined to
specialized equipment and bespoke technology alone. Instead, it’s a dynamic and
flexible field that continually evolves, drawing from various sectors and adapting to
the ever-changing challenges and opportunities of space exploration. It underscores
the concept that space is not an isolated domain but an interconnected aspect of our
technological, commercial, and intellectual landscape.

Virtual environments play a pivotal role in bridging the vast distances of space, allow-
ing us to explore, comprehend, and interact with distant worlds as if they were within
our reach. Through advanced 3D reconstruction techniques, high-definition render-
ing, and immersive virtual reality, space exploration transcends physical limitations,
offering unprecedented access to far-off landscapes. These virtual realms not only
facilitate scientific research and mission planning but also serve as a powerful tool for
public outreach, education, and inspiration. By synthesizing remote environments,
space agencies and researchers can share the thrill of discovery with a broader audi-
ence, inviting everyone to partake in the journey of exploration. Virtual environments
democratize space, turning it from an exclusive domain of scientists and astronauts
into a shared experience that ignites curiosity and fosters a global appreciation for
the wonders of the universe.

This integration of virtual environments symbolizes a profound shift in how we ap-
proach space exploration. It acknowledges the importance of not just reaching distant
locations but also making them accessible and tangible to all. It’s a fusion of technol-
ogy, art, science, and human experience that enriches our connection to space, turning
distant planets and moons into places we can virtually visit, study, and even feel. It’s
an embodiment of the limitless possibilities that lie in the synergy between human
imagination and technological innovation, transforming space exploration from a re-
mote and abstract endeavor into a personal and shared journey.

171

172

Appendix A

Appendix A: Hardware

173

Figure A-1: Environmental Sensing Arduino Shield designed by Ubi De Feo.

174

Appendix B

Appendix B: Supporting Material

175

B.1 Chapter 4: Cameras Assessment

Camera File Type Total Size Reduced Size
Integrated Spot cameras .png 1.2 MB 1.09 MB
Intel RealSense D435i .ply 4.33 GB 7.975 MB
Intel RealSense L515 .ply 2.57 GB 21.35 MB
Velodyne VLP-16 .pcap 2.84 MB 0.87 MB

Table B.1: Further information about the data collected such as the file type, size as well
as compressed size [182].

Camera Type Field of View Range
Integrated Spot cameras Stereo, B&W, video 360 4m
Intel RealSense D435i Stereo, RGB, video 70 9m
Intel RealSense L515 ToF (laser), RGB, video 70 9m
Velodyne VLP-16 LiDAR (Class-1 laser) 360 (30 vertical) 100m
Insta360 One VR RGB video 360 (180 vertical) N/A

Table B.2: Features the various cameras installed on Spot for data collection, specifically
the FoV and Range [182].

Camera Camera Type Resolution
Integrated Spot cameras B&W image 424 x 240
Integrated Spot cameras stereo-depth 424 x 240
Intel RealSense D435i RGB 1920 x 1080
Intel RealSense D435i stereo-depth 1280 x 720
Intel RealSense L515 RGB 1920 x 1080
Intel RealSense L515 ToF 1024 x 768
Velodyne VLP-16 ToF V-2.0° H-0.1°,0.4°

Table B.3: Features the various cameras installed on Spot for data collection, specifically
camera type and resolution [182]. Distinguishing the Velodyne VLP-16a from other devices
due to it’s difference is nature as a depth computation device with an Angular Resolution
(Vertical): 2.0° and (Horizontal/Azimuth): 0.1° – 0.4°

aVelodyne LiDAR PUCK User Manual.

B.2 Chapter 4: Inverse Kinematics Procedural Ani-
mation Pseudocode

• Use Inverse Kinematics (IK) to Control Leg: Implement inverse kinematics
algorithms to calculate the joint angles required to position the leg correctly.
IK allows for dynamic positioning of the leg based on the desired target location.

176

https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf

• Fix Bottom of the Leg to the Ground: Ensure that the bottom part of the leg
remains fixed to the ground or any other surface it interacts with. This prevents
the leg from penetrating the ground and provides stability during movement.

• Make a Target Point Attached to the Body: Create a target point that is
attached to the body of the character or object. This target point represents
the desired location for the leg to move towards.

• Raycast from the Target Point Attached to the Body: Use raycasting to detect
the ground or other surfaces from the target point attached to the body. This
helps determine the contact point for the leg and ensures accurate placement.

• Raycast from the Target Point Downwards to Move It Up and Down: Perform
a downward raycast from the target point to adjust its height based on the
detected ground or surface. This allows the leg to adapt to uneven terrain or
inclined surfaces.

• Check Distance from Target Point: Measure the distance between the leg’s cur-
rent position and the target point. This distance is used to determine whether
the leg needs to move towards the target or stay in place.

• Move Leg Towards Target When Distance Gets Too Big: If the distance between
the leg and the target point exceeds a threshold, apply motion to move the leg
towards the target. This helps maintain a desired leg position relative to the
target.

• Put Legs in Zigzag Pattern: Arrange the leg movements in a zigzag pattern to
simulate a natural walking or running gait. This alternating pattern provides
balance and stability during locomotion.

• Only Move Leg When Opposite Legs are Grounded: Coordinate leg movements
so that they occur when the opposite legs are grounded. This mimics the
coordinated motion of real walking or running and adds to the realism of the
animation.

• Use Average Leg Position + Offset for the Body Position: Calculate the average
position of the legs and apply an offset to determine the position of the body.
This ensures that the body remains balanced and stable during leg movement.

• Rotate Body Based on Difference Between Left and Right Leg Height: Deter-
mine the height difference between the left and right legs and use it to rotate
the body. This adds a subtle sway or tilt to the character’s motion, enhancing
the naturalness of the animation1.

1https://youtu.be/e6Gjhr1IP6w

177

B.3 Chapter 5: Sensor Node Specifications

Figure B-1: The Arduino MKR WIFI 1010
board, enhanced with the Arduino MKR En-
vironmental Shield rev2, provides a compre-
hensive sensor package. This setup captured
crucial environmental data, including color,
sound, motion, temperature, humidity, pres-
sure, light, and UV levels. Incorporating mod-
ules such as ST LPS22HB for atmospheric
pressure, ST HTS221 for temperature and hu-
midity, and VISHAY TEMT6000 for ambient
light. Image courtesy of Arduino.cc

Parameter Value
Operating voltage 3.3 V
Dimensions 25.4 x 53.3 mm
Weight 32 g
Sensors ST LPS22HB, ST HTS221, VISHAY

TEMT6000
Data storage microSD card 32GB
Communication Wi-Fi, Analog/i2c
Software Arduino IDE

Table B.4: Arduino MKR WiFi 1010 + MKR ENV Shield Technical specifications
(ST LPS22HB: Atmospheric pressure, ST HTS221: Temperature and humidity, VISHAY
TEMT6000: Ambient light)

B.4 Chapter 5: 3D Reconstruction with Open3D
python azure_kinect_mkv_reader.py --input "
...\[folder]\[capture].mkv" --output "...\[folder]\[capture]"

python run_system.py --make "...\[folder]\[capture]\config.json"
python run_system.py --register "...\[folder]\[capture]\config.json"
python run_system.py --refine "...\[folder]\[capture]\config.json"
python run_system.py --integrate "...\[folder]\[capture]\config.json"

178

B.5 Chapter 6: Testing Procedures and Results

Position Distance (cm) Lux W/m2/nm
Horizontal 127 3500-4000 0.04
-21° Angle 105 7900-8200 0.08
Horizontal 58 22000-24000 0.22
+55° Angle 48 34000-37000 0.34

Table B.5: Solar simulation experimental setup details [216].

Mode Maximum Power (W) Settings
Off 0 N/A
Idle 0.577 N/A
Stand By 0.566 N/A
Streaming 1.082 WFOV, Binned, 2160p
Recording 1.077 NFOV, Unbinned, 2160p

Table B.6: Baseline Power Draw requirements for various settings on the Microsoft Azure
Kinect, streaming and recording at 30 FPS [216].

Scenario Frame Data P (W) Settings
1 1 2.20 MB 1.02 W 30MJPG15362
2 1/m 0.92 MB / m 1.08 W 30MJPG15361
3 1/m 0.92 MB / m 1.08 W 30MJPG15362
4 3 2.20 MB / img 1.02 W 30MJPG15364

Table B.7: Results from power and data rates experiments with optimized camera settings
for each capture mode [216]. Scenario: 1 - Single. 2 - Traverse. 3 - Science station. 4 -
Circumferential (10” object) [216].

ID Mode RES FOI RANGE EXP
0 OFF N/A N/A N/A N/A
1 NFOV 2x2 binned (SW) 320x288 75°x65° 0.5-5.46 12.8 ms
2 NFOV unbinned 640x576 75°x65° 0.5-3.86 12.8 ms
3 WFOV 2x2 binned 512x512 120°x120° 0.25-2.88 12.8 ms
4 WFOV unbinned 1024x1024 120°x120° 0.25-2.21 20.3 ms
5 Passive IR 1024x1024 N/A N/A 1.6 ms

Table B.8: AKALL depth modes and their corresponding specifications, including Resolu-
tion (RES), field of Illumination (FoI), Range (meters), and Exposure (ms).

179

Test Type Plan Requirements/Location
Vibration table Open COTS part, stake down

parts and add supports where
failure occurs

NASA Ames - one day on
shake 3-axis shake table

Vacuum testing 1-week in vacuum, then re-
move and power on (prelim
testing). Then 1-week in high-
vacuum, assess any parts that
may impact vacuum

Prelim - MIT, High-vacuum -
NASA Ames

Thermal testing Prepare for need to provide
heating on rover - thermal heat
tape tests

NASA Ames and MIT - test
power requirements of heat
tape

Laser function Assess the visibility of hav-
ing the field of view in the
rover’s shadow to avoid in-
creasing laser power

MIT field testing - varying
ground reflectivity and light
source angles

Power supply Modify to 28 V power regu-
lated by rover - meet 5V at 6W
to meet camera peak power
draw

MIT in collaboration with Mi-
crosoft - hardware modifica-
tion

Data rates Rover maximum data trans-
mission with limited budget in
the range of (MB) for the en-
tire mission - heavy optimisa-
tion and compression needed

MIT RESOURCE, in collabo-
ration with NASA Ames

Table B.9: Original plan to adapt the Microsoft Azure Kinect in both hardware and software
for space exploration [182, 195].

180

Appendix C

Appendix C: Code

C.1 Unity Projects Code Base
• Doppelmarsh (https://github.com/mitmedialab/Doppelmarsh)

• Doppelbot (https://github.mit.edu/ddh/Doppelbot)

• Doppelspot (https://github.mit.edu/ddh/Doppelspot)

• OGIVE (https://github.mit.edu/ddh/OGIVE)

181

https://github.com/mitmedialab/Doppelmarsh
https://github.mit.edu/ddh/Doppelbot
https://github.mit.edu/ddh/Doppelspot
https://github.mit.edu/ddh/OGIVE

C.2 Chapter 3: Rover Mini Configuration

1

2 <!---
3 Author : Don D . Haddad
4 Description : These instructions outline configuring the

Nvidia Xavier NX, which operates the Doppelbot , to
handle various scenarios , including building and
installing Open3D on ARM64 , and more.

5 -->
6

7 *Resize Partition with gparted
8 ‘‘‘
9 sudo apt install gparted

10 sudo gparted
11 ‘‘‘
12

13 *Add Cuda to PATH (append to ~/. bashrc)
14

15 ‘‘‘
16 export CUDA_HOME =/usr/local/cuda
17 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/usr/local/cuda/

lib64 :/usr/local/cuda/extras/CUPTI/lib64
18 export PATH=$PATH:$CUDA_HOME/bin
19 ‘‘‘
20

21 *Required for USB issues on Nvidia Jetson Xavier NX (append
to ~/. bashrc)

22

23 ‘‘‘
24 export OPENBLAS_CORETYPE=ARMV8
25 ‘‘‘
26

27 source: https :// stackoverflow.com/questions /65631801/
illegal -instructioncore -dumped -error -on-jetson -nano

28

29 *check cmake version
30

31 ‘‘‘
32 cmake --version
33 ‘‘‘
34

35 *upgrade cmake to version 3.20

36

37 ‘‘‘
38 #!/ bin/bash
39

40 version =3.20
41 build =1
42 mkdir ~/temp
43 cd ~/temp
44 wget https :// cmake.org/files/v$version/cmake -$version.

$build.tar.gz
45 tar -xzvf cmake -$version.$build.tar.gz
46 cd cmake -$version.$build/
47 ‘‘‘
48

49 *install and extract source by running
50 ‘‘‘
51 ./ bootstrap
52 make -j$(nproc)
53 sudo make install
54 ‘‘‘
55

56 ‘‘‘
57 cmake --version
58 ‘‘‘
59

60 source: https :// askubuntu.com/questions /355565/how -do-i-
install -the -latest -version -of -cmake -from -the -command -
line

61

62 Build and Install Open3D from source.
63 Tested on Nvidia Jetson Xavier NX supporting Azure Kinect.
64 *Open3D (0.15.1)
65 *Azure Kinect SDK (1.4.1)
66 *cmake (3.24.1)
67 *JetPack (4.4)
68 *Ubuntu (18.04)
69 *Python3 (3.6.9)
70

71 ‘‘‘
72 git clone --recursive https :// github.com/isl -org/Open3D.git
73 git checkout v0 .15.1

74 ‘‘‘
75

76 *install dependencies
77

78 ‘‘‘
79 ./util/install_deps_ubuntu.sh
80 sudo apt -get install -y libc++-7-dev libc++abi -7-dev clang

-7 python -pip3 ccache gfortran
81 sudo -H pip3 install --upgrade pip ==20.3
82 pip3 install matplotlib
83 ‘‘‘
84

85 *build
86 ‘‘‘
87 cd Open3D && mkdir build && cd build
88 cmake -DBUILD_AZURE_KINECT=ON -DBUILD_CUDA_MODULE=ON -

DBUILD_GUI=ON ..
89

90 #Alternatively
91 cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=ON -

DBUILD_CUDA_MODULE=ON -DBUILD_GUI=ON -
DBUILD_TENSORFLOW_OPS=OFF -DBUILD_PYTORCH_OPS=OFF -
DBUILD_UNIT_TEST=ON -DCMAKE_INSTALL_PREFIX =~/
open3d_install -DBUILD_AZURE_KINECT=ON -
DUSE_SYSTEM_LIBREALSENSE=ON -DGLIBCXX_USE_CXX11_ABI=ON
-DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++ -
DBUILD_FILAMENT_FROM_SOURCE=ON -DPYTHON_EXECUTABLE=$(
which python3) -CMAKE_CUDA_COMPILER =/usr/local/cuda/bin
/nvcc ..

92

93 #Alternatively
94 cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=ON -

DBUILD_CUDA_MODULE=ON -DBUILD_GUI=ON -
DBUILD_TENSORFLOW_OPS=OFF -DBUILD_PYTORCH_OPS=OFF -
DBUILD_UNIT_TEST=ON -DCMAKE_INSTALL_PREFIX =~/
open3d_install -DBUILD_AZURE_KINECT=ON -
DUSE_SYSTEM_LIBREALSENSE=ON -DGLIBCXX_USE_CXX11_ABI=ON
-DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++ -
DBUILD_FILAMENT_FROM_SOURCE=ON -DPYTHON_EXECUTABLE=$(
which python3) ..

95

96 make -j$(nproc)
97 sudo make install
98 make install -pip -package -j$(nproc)
99 ‘‘‘

100 source: http ://www.open3d.org/docs/release/arm.html#install
-dependencies

101

102 *Run Open3D GUI
103 ‘‘‘
104 ./bin/Open3D/Open3D
105 ‘‘‘
106

107 *3D Reconstruction with Azure Kinect and Open3D
108

109 ‘‘‘
110 python3 ~/ Open3D/examples/python/reconstruction_system/

sensors/azure_kinect_recorder.py --output frames.mkv
111

112 python3 ~/ Open3D/examples/python/reconstruction_system/
sensors/azure_kinect_mkv_reader.py --input frames.mkv
--output frames

113

114 python3 ~/ Open3D/examples/python/reconstruction_system/
run_system.py --config ./ frames/config.json --make

115

116 python3 ~/ Open3D/examples/python/reconstruction_system/
run_system.py --config ./ frames/config.json --register

117

118 python3 ~/ Open3D/examples/python/reconstruction_system/
run_system.py --config ./ frames/config.json --refine

119

120 python3 ~/ Open3D/examples/python/reconstruction_system/
run_system.py --config ./ frames/config.json --integrate

121 ‘‘‘
122

123 #Enable screen recording and streaming with gstreamer
124 ‘‘‘
125 sudo apt -get install libgstrtspserver -1.0 libgstreamer1 .0-

dev
126 wget https :// gstreamer.freedesktop.org/src/gst -rtsp/gst -

rtsp -server -1.14.1. tar.xz
127 tar -xvf gst -rtsp -server -1.14.1. tar.xz
128 cd gst -rtsp -server -1.14.1
129 cd examples
130 gcc test -launch.c -o test -launch $(pkg -config --cflags --

libs gstreamer -1.0 gstreamer -rtsp -server -1.0)
131 ‘‘‘
132

133 #Launch RTSP Server

134 ‘‘‘
135 ./test -launch "ximagesrc use -damage =0 ! nvvidconv !

omxh264enc ! video/x-h264 , profile=baseline ! h264parse
! video/x-h264 , stream -format=byte -stream ! rtph264pay
name=pay0 pt=96 "

136 ‘‘‘
137

138 source: https :// forums.developer.nvidia.com/t/streaming -
desktop -with -rtsp -gstreamer -server /143765/19? page=2

139

140 #Aliases
141 ‘‘‘
142 alias stream=’/home/nini/gst -rtsp -server -1.14.1/ examples/

test -launch "ximagesrc use -damage =0 ! nvvidconv !
omxh264enc ! video/x-h264 , profile=baseline ! h264parse
! video/x-h264 , stream -format=byte -stream ! rtph264pay
name=pay0 pt=96 "’

143 alias azure=’python3 /home/nini/Open3D/examples/python/

reconstruction_system/sensors/azure_kinect_recorder.py
--output mini.mkv ’

144 ‘‘‘
145

146 #Setup VNC server
147 ‘‘‘
148 mkdir -p ~/. config/autostart
149 cp /usr/share/applications/vino -server.desktop ~/. config/

autostart /.
150 gsettings set org.gnome.Vino prompt -enabled false
151 gsettings set org.gnome.Vino require -encryption false
152 # Replace thepassword with your desired password
153 gsettings set org.gnome.Vino authentication -methods "[’vnc

’]"
154 gsettings set org.gnome.Vino vnc -password $(echo -n ’nini<

3’|base64)
155 sudo reboot
156 ‘‘‘

C.3 Chapter 5: Sensor Node

1 // Author: Don D. Haddad
2 // Description: Program to read environment data from MKR

ENV shield and write to SD card on an Arduino
3

4 #include <SPI.h>
5 #include <SD.h>
6 #include <Arduino_MKRENV.h>
7 #include <WiFiNINA.h>
8 #include <utility/wifi_drv.h>
9

10 const int chipSelect = 4;
11 String node_id = "0x004";
12 String filename = "ENVD004.csv";
13

14 bool verbose = false;
15

16 // Initialize the system
17 void setup() {
18 Serial.begin (9600);

19

20 // Initialize RGB LED pins
21 WiFiDrv :: pinMode (25, OUTPUT);
22 WiFiDrv :: pinMode (26, OUTPUT);
23 WiFiDrv :: pinMode (27, OUTPUT);
24

25 // Start the MKR ENV shield
26 if (!ENV.begin ()) {
27 Serial.println("Failed to initialize MKR ENV shield!");
28 while (1);
29 }
30

31 // Initialize SD card
32 Serial.print("Initializing SD card ...");
33 if (!SD.begin(chipSelect)) {
34 Serial.println("Card failed , or not present");
35 LED(0, 255, 0, 300);
36 while (1);
37 }

38 Serial.println("card initialized.");
39

40 // Create a file or clear the existing one
41 File dataFile = SD.open(filename , FILE_WRITE);
42 if (dataFile) {
43 dataFile.println("-,-,-,-,-,-,-");
44 dataFile.close ();
45 }
46 }
47

48 // Main loop to gather and store environmental data
49 void loop() {
50 String dataString = "";
51

52 // Read environmental data
53 float temperature = ENV.readTemperature ();
54 float humidity = ENV.readHumidity ();
55 float pressure = ENV.readPressure ();
56 float illuminance = ENV.readIlluminance ();
57 float uva = ENV.readUVA ();
58 float uvb = ENV.readUVB ();
59 float uvIndex = ENV.readUVIndex ();
60

61 // Create comma -separated string of data
62 dataString = String(temperature) + ", " + String(humidity

) + ", " + String(pressure) + ", " + String(
illuminance) + ", " + String(uva) + ", " + String(uvb
) + ", " + String(uvIndex);

63

64 // Verbose output to Serial monitor
65 if(verbose) {
66 Serial.print("Temperature = ");
67 Serial.print(temperature);
68 Serial.println(" C ");
69

70 Serial.print("Humidity = ");
71 Serial.print(humidity);
72 Serial.println(" %");
73

74 Serial.print("Pressure = ");
75 Serial.print(pressure);

76 Serial.println(" kPa");
77

78 Serial.print("Illuminance = ");
79 Serial.print(illuminance);
80 Serial.println(" lx");
81

82 Serial.print("UVA = ");
83 Serial.println(uva);
84 Serial.print("UVB = ");
85 Serial.println(uvb);
86 Serial.print("UV Index = ");
87 Serial.println(uvIndex);
88 Serial.println ();
89 }
90

91 // Write data to SD card
92 File dataFile = SD.open(filename , FILE_WRITE);
93 if (dataFile) {
94 dataFile.println(dataString);
95 dataFile.close();
96 Serial.println(dataString);
97 LED(255, 0, 128, 100); // Success LED pattern
98 }
99 else {

100 Serial.println("error opening " + filename);
101 LED(0, 255, 0, 300); // Error LED pattern
102 }
103

104 delay (900);
105 }
106

107 // Function to control RGB LED
108 void LED(int r, int g, int b, int freq) {
109 WiFiDrv :: analogWrite (25, g);
110 WiFiDrv :: analogWrite (26, r);
111 WiFiDrv :: analogWrite (27, b);
112 delay(freq);
113 WiFiDrv :: analogWrite (25, 0);
114 WiFiDrv :: analogWrite (26, 0);
115 WiFiDrv :: analogWrite (27, 0);
116 }

C.4 Chapter 6: AKALL Code Base

1 ###
2 ### To Build:
3 ### docker build -t <payload_image_name > <

path_to_folder_containing_Dockerfile >
4 ###
5 ### To Run:
6 ### ./ scripts/launch_container.sh <payload_container_name >

<payload_image_name >
7 ###
8

9 ### Set the base image using Nvidia CUDA on Ubuntu
10 FROM nvidia/cuda :11.4.0 -base -ubuntu18 .04
11

12 LABEL maintainer="Don Derek Haddad <ddh@mit.edu >, Dogi <
stefan@unterhauser.name >"

13 LABEL version="1.1"
14 LABEL description="Docker image for Azure Kinect SDK with

CUDA 11.4.0 on Ubuntu 18.04"
15

16 ### Install essential packages and dependencies
17 RUN apt update -y && apt install -y \
18 python3 \
19 python3 -pip \
20 curl \
21 software -properties -common \
22 build -essential
23

24 ### Add Microsoft ’s package signing key and repository
25 RUN curl https :// packages.microsoft.com/keys/microsoft.asc

| apt -key add - && \
26 apt -add -repository https :// packages.microsoft.com/

ubuntu /18.04/ multiarch/prod
27

28 ### Install Azure Kinect SDK and development libraries
29 RUN apt update -y && ACCEPT_EULA=y apt install -y k4a -tools

&& \
30 apt install -y \
31 libk4a1.4-dev
32

33 ### Copy the source code to the container
34 COPY src /home/payload/workspace/src

35 COPY include /home/payload/workspace/include
36 COPY scripts /home/payload/workspace/scripts
37 RUN chmod +x /home/payload/workspace/scripts /*.sh
38

39 ### Compile the payload software
40 RUN gcc -g -Wall /home/payload/workspace/src/k4a -capture.

cpp -o /usr/local/bin/check -device -lk4a -lstdc ++; \
41 gcc -g -Wall /home/payload/workspace/src/get -calibration.

cpp -o /usr/local/bin/calibrate -lk4a -lstdc ++
42

43 ### Set environment variables for Nvidia container runtime
44 ENV NVIDIA_VISIBLE_DEVICES all
45 ENV NVIDIA_DRIVER_CAPABILITIES graphics ,utility ,compute
46

47 ### Set entrypoint for the container
48 WORKDIR /home/payload/workspace
49 CMD ["/bin/bash", "/home/payload/workspace/scripts/

entrypoint.sh"]

1 ### * ** * ###
2 ### * Docker Container Shell Script Debugging & * ###
3 ### * Logging * ###
4 ### * Author: Don D. Haddad <ddh@mit.edu > * ###
5 ### * File Name: entrypoint.sh * ###
6 ### * Location: /scripts * ###
7 ### * Description: Initializes UNIX Domain socket * ###
8 ### * Python server for local communication with * ###
9 ### * Docker container & logs output. Useful for * ###

10 ### * debugging and data transmission. * ###
11 ### * ** * ###
12

13 #!/bin/sh
14

15 touch /output.log
16 python3 /home/payload/workspace/include/socket_coms_local.

py &>> /output.log &
17

18 #Used for debugging
19 bash

1 ### * *** * ###
2 ### * Docker Shell Script for Launching Payload * ###
3 ### * Docker Container * ###
4 ### * Author: Don D. Haddad <ddh@mit.edu > * ###
5 ### * File Name: launch_container.sh * ###
6 ### * Location: /scripts * ###
7 ### * Description: Launch Docker container in * ###
8 ### * privileged mode with custom parameters * ###
9 ### * on the development machine. * ###

10 ### * *** * ###
11

12 #!/bin/sh
13

14 # Expose the X server on the host , only needed on dev
machine.

15 sudo xhost +local:root
16

17 export PAYLOAD_STORAGE =/tmp/payload_storage
18

19 export PAYLOAD_SOCKETS =/tmp/payload_sockets/kinect_luna
20

21 export ENTRYPOINT =/home/payload/workspace/scripts/
entrypoint.sh

22

23 sudo docker run -it --rm \
24 \
25 --gpus all --privileged \
26 -e DISPLAY=$DISPLAY \
27 -v ${PAYLOAD_SOCKETS }:/ tmp/payload_sockets/ \
28 -v /tmp/.X11 -unix:/tmp/.X11 -unix \
29 -v ${PAYLOAD_STORAGE }:/ storage \
30 -w /home/payload/ \
31 \
32 --name=$1 \
33 $2 \
34 ${ENTRYPOINT}

1 /* ** *
2 * Custom C++ Program for Azure Kinect Data Capture *
3 * Author: Don D. Haddad <ddh@mit.edu > *
4 * File Name: k4a -capture.cpp *
5 * Location: /src *
6 * Description: This code is designed to capture *
7 * a single frame JPEG image , depth , and IR image *
8 * (b16g), then apply gzip compression to these *
9 * three fragments along with a calibration.json *

10 * file generated from get -calibration.cpp. *
11 * Compiled and built within the instantiation of *
12 * the Docker container. *
13 * ** */
14

15 #include <k4a/k4a.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <iostream >
19 #include <fstream >
20 #include <sys/socket.h>
21 #include <sys/un.h>
22 #include <string >
23 #include <vector >
24 #include <unistd.h>
25 #include <chrono >
26 #include <cerrno >
27

28 using namespace std;
29

30 // Function to write binary data to a file
31 // Parameters:
32 // - fileName: name of the file to write to
33 // - buffer: pointer to the data buffer that contains the

data to be written
34 // - bufferSize: size of the data buffer in bytes
35 // Returns:
36 // - 0: indicating successful write operation
37 long WriteToFile(const char *fileName , void *buffer , size_t

bufferSize) {
38 ofstream hFile;
39 hFile.open(fileName , ios::out | ios::trunc | ios:: binary)

;
40 if (hFile.is_open ()){
41 hFile.write((char *)buffer , static_cast <streamsize >(

bufferSize));

42 hFile.close();
43 }
44 return 0;
45 }
46

47 int main(int argc ,char* argv []){
48 // Declare configuration strings for capturing Azure

Kinect data
49 string fps , color , resolution , depth , unix_time;
50 string exposure , brightness , contrast , saturation;
51 string sharpness , gain , white_balance , blacklight_comp ,

powerline_freq;
52

53 // Read command line arguments for configuring image
capture

54 if(argc >= 2){
55 fps = argv [2];
56 color = argv [4];
57 resolution = argv [6];
58 depth = argv [8];
59 unix_time = argv [10];
60 printf("[AZURE KINECT] K4A Image config: \nfps: %s,

color: %s, resolution: %s, depth: %s\n", fps.c_str
(), color.c_str (), resolution.c_str(), depth.c_str
());

61 }
62

63 // Read additional command line arguments for configuring
color settings if provided

64 if (argc > 12){
65 exposure = argv [12];
66 brightness = argv [14];
67 contrast = argv [16];
68 saturation = argv [18];
69 sharpness = argv [20];
70 gain = argv [22];
71 white_balance = argv [24];
72 blacklight_comp = argv [26];
73 powerline_freq = argv [28];
74 printf("[AZURE KINECT] K4A Image config: \nfps: %s,

color: %s, resolution: %s, depth: %s\n[AZURE KINECT
] color settings: exposure: %s, brightness: %s,
contrast: %s, saturation: %s, sharpness: %s, gain:
%s, white_balance: %s, blacklight_comp: %s,
powerline_freq: %s\n", fps.c_str (), color.c_str (),

resolution.c_str(), depth.c_str(), exposure.c_str ()
, brightness.c_str (), contrast.c_str(), saturation.
c_str(), sharpness.c_str(), gain.c_str(),
white_balance.c_str(), blacklight_comp.c_str(),
powerline_freq.c_str ());

75 }
76

77 // Check the number of connected Kinect devices
78 uint32_t count = k4a_device_get_installed_count ();
79 k4a_capture_t capture = NULL;
80 int returnCode = 1;
81

82 const int32_t TIMEOUT_IN_MS = 1000;
83

84 if (count == 0) {
85 printf("\n[AZURE KINECT] No k4a devices attached !\n");
86 return 1;
87 }
88

89 // Open the first plugged -in Kinect device
90 k4a_device_t device = NULL;
91 if (K4A_FAILED(k4a_device_open(K4A_DEVICE_DEFAULT , &

device))) {
92 printf("[AZURE KINECT] Failed to open k4a device !\n");
93 return 1;
94 }
95

96 // Retrieve device serial number
97 size_t serial_size = 0;
98 k4a_device_get_serialnum(device , NULL , &serial_size);
99

100 // Allocate memory for the serial , then acquire it
101 char *serial = (char*)(malloc(serial_size));
102 k4a_device_get_serialnum(device , serial , &serial_size);
103 printf("[AZURE KINECT] Opened device: %s\n", serial);
104 free(serial);
105

106 // Set up default camera settings
107 k4a_device_configuration_t config =

K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;
108 config.camera_fps = K4A_FRAMES_PER_SECOND_15;
109 config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
110 config.color_resolution = K4A_COLOR_RESOLUTION_1080P;
111 config.depth_mode = K4A_DEPTH_MODE_NFOV_2X2BINNED;
112

113 // Customize camera settings based on command line input
114 // Customize FPS
115 if(fps=="5")
116 config.camera_fps = K4A_FRAMES_PER_SECOND_5;
117 else if(fps=="15")
118 config.camera_fps = K4A_FRAMES_PER_SECOND_15;
119 else if(fps=="30")
120 config.camera_fps = K4A_FRAMES_PER_SECOND_15;
121

122 // Customize compression type
123 if(color=="MJPG")
124 config.color_format = K4A_IMAGE_FORMAT_COLOR_MJPG;
125 else if(color=="NV12")
126 config.color_format = K4A_IMAGE_FORMAT_COLOR_NV12;
127 else if(color=="YUY2")
128 config.color_format = K4A_IMAGE_FORMAT_COLOR_YUY2;
129 else if(color=="BGRA32")
130 config.color_format = K4A_IMAGE_FORMAT_COLOR_BGRA32;
131 else if(color=="DEPTH16")
132 config.color_format = K4A_IMAGE_FORMAT_DEPTH16;
133 else if(color=="IR16")
134 config.color_format = K4A_IMAGE_FORMAT_IR16;
135

136 // Customize resolution
137 if(resolution =="OFF")
138 config.color_resolution = K4A_COLOR_RESOLUTION_OFF;
139 else if(resolution =="720P")
140 config.color_resolution = K4A_COLOR_RESOLUTION_720P;
141 else if(resolution =="1080P")
142 config.color_resolution = K4A_COLOR_RESOLUTION_1080P;
143 else if(resolution =="1440P")
144 config.color_resolution = K4A_COLOR_RESOLUTION_1440P;
145 else if(resolution =="1536P")
146 config.color_resolution = K4A_COLOR_RESOLUTION_1536P;
147 else if(resolution =="2160P")
148 config.color_resolution = K4A_COLOR_RESOLUTION_2160P;
149 else if(resolution =="3072P")
150 config.color_resolution = K4A_COLOR_RESOLUTION_3072P;
151

152 // Customize depth mode
153 if(depth=="OFF")
154 config.depth_mode = K4A_DEPTH_MODE_OFF;
155 else if(depth=="NFOV_2X2BINNED")
156 config.depth_mode = K4A_DEPTH_MODE_NFOV_2X2BINNED;
157 else if(depth=="NFOV_UNBINNED")

158 config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;
159 else if(depth=="WFOV_2X2BINNED")
160 config.depth_mode = K4A_DEPTH_MODE_WFOV_2X2BINNED;
161 else if(depth=="WFOV_UNBINNED")
162 config.depth_mode = K4A_DEPTH_MODE_WFOV_UNBINNED;
163 else if(depth=="PASSIVE_IR")
164 config.depth_mode = K4A_DEPTH_MODE_PASSIVE_IR;
165

166 // Apply additional color settings if provided in the
command line

167 if(argc >12){
168 // Configure exposure (Default value is A)
169 if(exposure =="A")
170 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_AUTO , 0);

171 else if (exposure =="M1" || exposure =="M500")
172 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 500);

173 else if (exposure =="M2" || exposure =="M1250")
174 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 1250);

175 else if (exposure =="M3" || exposure =="M2500")
176 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 2500);

177 else if (exposure =="M4" || exposure =="M10000")
178 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 10000);

179 else if (exposure =="M5" || exposure =="M20000")
180 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 20000);

181 else if (exposure =="M6" || exposure =="M30000")
182 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 30000);

183 else if (exposure =="M7" || exposure =="M40000")
184 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 40000);

185 else if (exposure =="M8" || exposure =="M50000")

186 k4a_device_set_color_control(device ,
K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 50000);

187 else if (exposure =="M9" || exposure =="M60000")
188 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 60000);

189 else if (exposure =="M10" || exposure =="M80000")
190 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 80000);

191 else if (exposure =="M11" || exposure =="M100000")
192 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 100000);

193 else if (exposure =="M12" || exposure =="M120000")
194 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 120000);

195 else if (exposure =="M13" || exposure =="M130000")
196 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_EXPOSURE_TIME_ABSOLUTE ,
K4A_COLOR_CONTROL_MODE_MANUAL , 130000);

197

198 // Configure brightness (Default value is 128)
199 int brightness_integer = atoi(brightness.c_str());
200 if(brightness_integer >=0 || brightness_integer <=255)
201 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_BRIGHTNESS ,
K4A_COLOR_CONTROL_MODE_MANUAL , brightness_integer)
;

202

203 // Configure contrast (Defaul value is 5)
204 int contrast_integer = atoi(contrast.c_str());
205 if(contrast_integer >=0 || contrast_integer <=10)
206 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_CONTRAST ,
K4A_COLOR_CONTROL_MODE_MANUAL , contrast_integer);

207

208 // Configure sturation (Default value is 32)
209 int saturation_integer = atoi(saturation.c_str ());
210 if(saturation_integer >=0 || saturation_integer <=63)
211 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_SATURATION ,
K4A_COLOR_CONTROL_MODE_MANUAL , saturation_integer)

;
212

213 // Configure sharpness (Default value is 2)
214 int sharpness_integer = atoi(sharpness.c_str());
215 if(sharpness_integer >=0 || sharpness_integer <=4)
216 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_SHARPNESS ,
K4A_COLOR_CONTROL_MODE_MANUAL , sharpness_integer);

217

218 // Configure gain (Default value is 0)
219 int gain_integer = atoi(gain.c_str());
220 if(gain_integer >= 0 || gain_integer <=255)
221 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_GAIN ,
K4A_COLOR_CONTROL_MODE_MANUAL , gain_integer);

222

223 // Configure white balance (Defaul value is A)
224 if(white_balance == "A")
225 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_WHITEBALANCE ,
K4A_COLOR_CONTROL_MODE_AUTO , 0);

226 else{
227 int white_balance_integer = atoi(white_balance.c_str

());
228 white_balance_integer = white_balance_integer - (

white_balance_integer %10);
229 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_WHITEBALANCE ,
K4A_COLOR_CONTROL_MODE_MANUAL ,
white_balance_integer);

230 printf("DEBUG: %i\n", white_balance_integer);
231 }
232

233 // Configure blacklight compensation
234 int blacklight_comp_integer = atoi(blacklight_comp.

c_str());
235 if(blacklight_comp_integer == 0 ||

blacklight_comp_integer ==1)
236 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_BACKLIGHT_COMPENSATION ,
K4A_COLOR_CONTROL_MODE_MANUAL ,
blacklight_comp_integer);

237

238 // Configure powerline frequency
239 int powerline_freq_integer = atoi(powerline_freq.c_str

());
240 if(powerline_freq_integer == 0 ||

powerline_freq_integer ==1)
241 k4a_device_set_color_control(device ,

K4A_COLOR_CONTROL_BACKLIGHT_COMPENSATION ,
K4A_COLOR_CONTROL_MODE_MANUAL ,
powerline_freq_integer);

242 }
243 // Start the camera with the defined configuration
244 if (K4A_FAILED(k4a_device_start_cameras(device , &config))

)
245 {
246 printf("[AZURE KINECT] Failed to start cameras !\n");
247 k4a_device_close(device);
248 return 1;
249 }
250 int captureFrameCount = 30;
251 const auto ltt = chrono :: system_clock ::now();
252 int64_t timestamp = chrono :: duration_cast <chrono ::seconds

>(ltt.time_since_epoch ()).count () ;
253 const char* path = "/storage/";
254 string color_blk;
255 string depth_blk;
256 string ir_blk;
257

258 while (captureFrameCount -- > 0) {
259 k4a_image_t image;
260

261 // Get a depth frame
262 switch (k4a_device_get_capture(device , &capture ,

TIMEOUT_IN_MS))
263 {
264 case K4A_WAIT_RESULT_SUCCEEDED:
265 break;
266 case K4A_WAIT_RESULT_TIMEOUT:
267 printf("[AZURE KINECT] Timed out waiting for a

capture\n");
268 continue;
269 break;
270 case K4A_WAIT_RESULT_FAILED:
271 printf("[AZURE KINECT] Failed to read a capture\n");
272 goto Exit;
273 }
274

275 printf("Capture");

276

277 // Probe for a color image
278 image = k4a_capture_get_color_image(capture);
279 if (image)
280 {
281 string filename = path + to_string(timestamp) + "C" +

fps + color + resolution + ".jpeg";
282 color_blk = to_string(timestamp) + "C" + fps + color

+ resolution + ".jpeg";
283 printf(" | Color res:%4dx%4d stride :%5d ",
284 k4a_image_get_height_pixels(image),
285 k4a_image_get_width_pixels(image),
286 k4a_image_get_stride_bytes(image));
287 WriteToFile(filename.c_str(), k4a_image_get_buffer(

image), k4a_image_get_size(image));
288 k4a_image_release(image);
289 }
290 else
291 {
292 printf(" | Color None ");
293 }
294

295 // probe for a IR16 image
296 image = k4a_capture_get_ir_image(capture);
297 if (image != NULL)
298 {
299 string filename = path + to_string(timestamp) + "IR"

+ fps + to_string(k4a_image_get_width_pixels(
image)) + depth;

300 depth_blk = to_string(timestamp) + "IR" + fps +
to_string(k4a_image_get_width_pixels(image)) +
depth;

301 printf(" | Ir16 res :%4dx%4d stride :%5d ",
302 k4a_image_get_width_pixels(image),
303 k4a_image_get_height_pixels(image),
304 k4a_image_get_stride_bytes(image));
305 WriteToFile(filename.c_str(), k4a_image_get_buffer(

image), k4a_image_get_size(image));
306

307 k4a_image_release(image);
308 }
309 else
310 {
311 printf(" | Ir16 None ");
312 }

313

314 // Probe for a depth16 image
315 image = k4a_capture_get_depth_image(capture);
316 if (image != NULL)
317 {
318 string filename = path + to_string(timestamp) + "D" +

fps + to_string(k4a_image_get_width_pixels(image
)) + depth;

319 ir_blk = to_string(timestamp) + "D" + fps + to_string
(k4a_image_get_width_pixels(image)) + depth ;;

320 printf(" | Depth16 res:%4dx%4d stride :%5d\n",
321 k4a_image_get_width_pixels(image),
322 k4a_image_get_height_pixels(image),
323 k4a_image_get_stride_bytes(image));
324 WriteToFile(filename.c_str(), k4a_image_get_buffer(

image), k4a_image_get_size(image));
325

326 k4a_image_release(image);
327 }
328 else
329 {
330 printf(" | Depth16 None\n");
331 }
332

333 // release capture
334 k4a_capture_release(capture);
335 fflush(stdout);
336

337 if(captureFrameCount ==0){
338

339 // Shut down the camera when finished with
application logic

340 k4a_device_stop_cameras(device);
341 k4a_device_close(device);
342 // compress captured framgents
343 string compress_cmd = "calibrate;cd /storage; tar -

czf " + to_string(timestamp) + ".tar.gz " +
color_blk + " " + depth_blk + " " + ir_blk+"
calibration.json; rm calibration.json "+
color_blk + " " + depth_blk + " " + ir_blk;

344 system(compress_cmd.c_str());
345

346 //Send data fragments over UNIX socket
347 int sock = socket(AF_UNIX , SOCK_DGRAM , 0);
348 if (sock < 0) {

349 cerr << "Failed to create socket: " << strerror(
errno) << endl;

350 return 1;
351 }
352

353 struct sockaddr_un addr;
354 memset (&addr , 0, sizeof(addr));
355 addr.sun_family = AF_UNIX;
356 strcpy(addr.sun_path , "/tmp/payload_sockets/sm_sock")

;
357

358 if (connect(sock , (struct sockaddr *) &addr , sizeof(
addr)) < 0) {

359 cerr << "Failed to connect to socket: " << strerror
(errno) << endl;

360 return 1;
361 }
362

363 // Send data to the socket
364 string data = to_string(timestamp) + ".tar.gz";
365 if (write(sock , data.c_str (), data.size()) < 0) {
366 cerr << "Failed to send data to socket: " <<

strerror(errno) << endl;
367 return 1;
368 }
369 close(sock);
370 }
371 }
372

373 return 0;
374 returnCode = 0;
375 Exit:
376

377 if (device != NULL)
378 {
379 k4a_device_close(device);
380 }
381 return returnCode;
382 }

1 /* ** *
2 * Custom C++ Program for Azure Kinect Calibration *
3 * Author: Don D. Haddad <ddh@mit.edu > *
4 * File Name: get -calibration.cpp *
5 * Location: /src *
6 * Description: This code is designed to retrieve *
7 * the calibration data from an Azure Kinect device *
8 * and save it to a file in JSON format. This *
9 * includes details such as device serial numbers , *

10 * calibration blob sizes , and other relevant data. *
11 * Compiled and built within the instantiation of *
12 * the Docker container. *
13 * ** */
14

15 #include <iostream >
16 #include <fstream >
17 #include <string >
18 #include <iomanip >
19 #include <vector >
20 #include <k4a/k4a.h>
21

22 using namespace std;
23

24 static void calibration_blob(uint8_t deviceIndex = 0,
string filename = "calibration.json")

25 {
26 k4a_device_t device = NULL;
27

28 if (K4A_RESULT_SUCCEEDED != k4a_device_open(deviceIndex
, &device)) {

29 cout << deviceIndex << ": Failed to open device" <<
endl;

30 exit(-1);
31 }
32

33 size_t calibration_size = 0;
34 k4a_buffer_result_t buffer_result =

k4a_device_get_raw_calibration(device , NULL , &
calibration_size);

35

36 if (buffer_result == K4A_BUFFER_RESULT_TOO_SMALL) {
37 vector <uint8_t > calibration_buffer = vector <uint8_t

>(calibration_size);
38 buffer_result = k4a_device_get_raw_calibration(

device , calibration_buffer.data(), &

calibration_size);
39

40 if (buffer_result == K4A_BUFFER_RESULT_SUCCEEDED) {
41 ofstream file(filename , ofstream :: binary);
42 file.write(reinterpret_cast <const char *>(&

calibration_buffer [0]), (long)
calibration_size);

43 file.close();
44 cout << "Calibration blob for device " << (int)

deviceIndex << " (serial no. " <<
get_serial(device)

45 << ") is saved to " << filename << endl;
46 } else {
47 cout << "Failed to get calibration blob" <<

endl;
48 exit(-1);
49 }
50 } else {
51 cout << "Failed to get calibration blob size" <<

endl;
52 exit(-1);
53 }
54 }
55

56 static string get_serial(k4a_device_t device)
57 {
58 size_t serial_number_length = 0;
59

60 if (K4A_BUFFER_RESULT_TOO_SMALL !=
k4a_device_get_serialnum(device , NULL , &
serial_number_length)) {

61 cout << "Failed to get serial number length" <<
endl;

62 k4a_device_close(device);
63 exit(-1);
64 }
65

66 char *serial_number = new (std:: nothrow) char[
serial_number_length];

67

68 if (serial_number == NULL) {
69 cout << "Failed to allocate memory for serial

number (" << serial_number_length << " bytes)"
<< endl;

70 k4a_device_close(device);

71 exit(-1);
72 }
73

74 if (K4A_BUFFER_RESULT_SUCCEEDED !=
k4a_device_get_serialnum(device , serial_number , &
serial_number_length)) {

75 cout << "Failed to get serial number" << endl;
76 delete [] serial_number;
77 serial_number = NULL;
78 k4a_device_close(device);
79 exit(-1);
80 }
81

82 string s(serial_number);
83 delete [] serial_number;
84 serial_number = NULL;
85 return s;
86 }
87

88 int main(int argc , char **argv)
89 {
90 calibration_blob (0, "/storage/calibration.json");
91

92 return 0;
93 }

1 Camera Frames Per Second:
2 -f --fps
3 K4A_FRAMES_PER_SECOND_5
4 K4A_FRAMES_PER_SECOND_15
5 K4A_FRAMES_PER_SECOND_30
6

7 Color Format:
8 -c --color
9 K4A_IMAGE_FORMAT_COLOR_MJPG

10 K4A_IMAGE_FORMAT_COLOR_NV12
11 K4A_IMAGE_FORMAT_COLOR_YUY2
12 K4A_IMAGE_FORMAT_COLOR_BGRA32
13 K4A_IMAGE_FORMAT_DEPTH16
14 K4A_IMAGE_FORMAT_IR16
15

16 Color Resolution:

17 -r --resolution
18 K4A_COLOR_RESOLUTION_OFF
19 K4A_COLOR_RESOLUTION_720P
20 K4A_COLOR_RESOLUTION_1080P
21 K4A_COLOR_RESOLUTION_1440P
22 K4A_COLOR_RESOLUTION_1536P
23 K4A_COLOR_RESOLUTION_2160P
24 K4A_COLOR_RESOLUTION_3072P
25

26 Depth Mode:
27 -d --depth
28 K4A_DEPTH_MODE_OFF
29 K4A_DEPTH_MODE_NFOV_2X2BINNED
30 K4A_DEPTH_MODE_NFOV_UNBINNED
31 K4A_DEPTH_MODE_WFOV_2X2BINNED
32 K4A_DEPTH_MODE_WFOV_UNBINNED
33 K4A_DEPTH_MODE_PASSIVE_IR
34

35 Color Settings:
36 -s --settings
37 EXPOSURE TIME ABSOLUTE: (AUTO || MANUAL)
38 v: 1:500 to 12:130000
39 v: M 500 - 130000
40 V: A
41 BRIGHTNESS: (MANUAL)
42 v: 0-255
43 CONTRAST: (MANUAL)
44 v: 0-255
45 SATURATION: (MANUAL)
46 v: 0-255
47 SHARPNESS: (MANUAL)
48 v: 0-255
49 WHITEBALANCE: (MANUAL || AUTO)
50 v: M 1800 - 10000
51 v: A
52 BACKLIGHT COMPENSATION: (MANUAL)
53 v: 0,1
54 GAIN: (MANUAL)
55 v: 0-255
56 POWERLINE FREQUENCY: (MANUAL)
57 v: 1,2

1 #!/usr/bin/python
2

3 ### * *** * ###
4 ### * Host Machine Unix Socket Communication Console * ###
5 ### * Author: Don D. Haddad <ddh@mit.edu > * ###
6 ### * File Name: socket_coms_console.py * ###
7 ### * Location: /include * ###
8 ### * Description: Implements a threaded UNIX socket server that runs * ###
9 ### * within the host machine , providing functionalities for creating , * ###

10 ### * binding , and communicating through UNIX sockets. This module also * ###
11 ### * provides a console interface for manually sending messages via * ###
12 ### * the socket , enabling bi -directional communication between * ###
13 ### * processes , handling both incoming and outgoing messages , and * ###
14 ### * managing connections. * ###
15 ### * *** * ###
16

17 import socket
18 import os, os.path
19 import threading
20 import time
21

22 PRINT_PREPEND = ’[HOST MACHINE] ’
23 UNIX_SOCKETS_BASE_DIR = ’/tmp/payload_sockets/kinect_luna/’
24 UNIX_ADDR_OUT = UNIX_SOCKETS_BASE_DIR + ’pl_sock ’
25 UNIX_ADDR_IN = UNIX_SOCKETS_BASE_DIR + ’sm_sock ’
26

27 class UNIX_Coms ():
28

29 def __init__(self , host_addr):
30 self.sock = socket.socket(socket.AF_UNIX , socket.SOCK_DGRAM)
31 self.server_address = host_addr
32

33 ’’’
34 Creates and binds a new UNIX socket
35 Server (listener) side
36 - Removes existing socket if it exists
37 ’’’
38 def bind_to_socket(self):
39

40 if os.path.exists(self.server_address):
41 os.remove(self.server_address)
42

43 self.sock.bind(self.server_address)
44 print(PRINT_PREPEND + ’starting up on {}’.format(self.server_address))
45

46 self.unix_start ()
47

48 ’’’
49 Start listening for incoming messages
50 sever (listener) side
51 ’’’
52 def unix_start(self):
53 threading.Thread(target=self.listen).start ()
54

55 ’’’
56 Listen for incoming messages (called by unix_start)
57 ’’’
58 def listen(self):
59 print(PRINT_PREPEND + ’Listening for connections on {}’.format(self.

server_address))
60 while (True):
61 data = self.sock.recv (4096)
62 if data:
63 print(’\n’+PRINT_PREPEND + ’ Received data from {} | DATA [{}]:

{} ’.format(self.server_address , len(data), data))
64

65 ’’’
66 Connects to existing UNIX sockets

195

67 client (sender) side
68 ’’’
69 def connect_to_socket(self):
70 connect = False
71 try:
72 print(PRINT_PREPEND + ’connecting to {}’.format(self.server_address))
73 self.sock.connect(self.server_address)
74 connect = True
75 print(PRINT_PREPEND + ’Connected ’)
76 except socket.error as msg:
77 print(msg)
78

79 ’’’
80 Send data to the server
81 - connectsto the socket and sends the data
82 ’’’
83 def send(self , msg):
84 print(PRINT_PREPEND + ’Sending data on socket: {}’.format(self.

server_address))
85

86 self.connect_to_socket ()
87 self.sock.sendall(msg)
88

89 def close(self):
90 self.sock.close ()
91 print(PRINT_PREPEND + ’Socket closed: {}’.format(self.server_address))
92

93 def main():
94

95 unix_in = {}
96 unix_out = {}
97

98 def closeAll ():
99 [unix_in[key].close() for key in unix_in]

100 [unix_out[key].close () for key in unix_out]
101

102 try:
103 unix_in = {
104 ’IN’ : UNIX_Coms(UNIX_ADDR_IN),
105 }
106 [unix_in[key]. bind_to_socket () for key in unix_in]
107 except:
108 print(PRINT_PREPEND + ’Error creating outgoing UNIX socket(s)’)
109 unix_in = None
110

111 try:
112 unix_out = {
113 ’OUT’ : UNIX_Coms(UNIX_ADDR_OUT),
114 }
115 except:
116 print(PRINT_PREPEND + ’Error creating outgoing UNIX socket(s)’)
117 unix_out = None
118

119 time.sleep (1)
120

121 repeat = True
122

123 while(repeat):
124 input_cmd = input("Enter Capture Sequence # ")
125 params = input_cmd.split("-")
126 ts = int(time.time())
127

128 if(len(params)==10):
129 cmd_byte = bytearray(input_cmd+’-’+str(ts), ’utf -8’)
130 else:
131 cmd_byte = bytearray(input_cmd+’-’+str(ts), ’utf -8’)
132

133 print(’\n’+PRINT_PREPEND + ’K4A Capture cmd: ’ + input_cmd+’-’+str(ts))

196

134

135 unix_out[’OUT’].send(cmd_byte)
136

137 time.sleep (1)
138 print(PRINT_PREPEND + ’Done.. \n’)
139

140 return 0
141

142 if __name__ == ’__main__ ’:
143 main()

1 #!/usr/bin/python
2

3 ### * *** * ###
4 ### * Local Machine Python Payload Server * ###
5 ### * Author: Don D. Haddad <ddh@mit.edu > * ###
6 ### * File Name: socket_coms_local.py * ###
7 ### * Location: /include * ###
8 ### * Description: Implements a threaded UNIX socket server that * ###
9 ### * receives messages from the host machine and triggers capture * ###

10 ### * sequence commands. * ###
11 ### * *** * ###
12

13 import socket
14 import os, os.path
15 import threading
16 import time
17 import subprocess
18

19 PRINT_PREPEND = ’[KINECT LUNA] ’
20 ERROR_PREPEND = ’[ERROR] ’
21 UNIX_SOCKETS_BASE_DIR = ’/tmp/payload_sockets/’
22 UNIX_ADDR_IN = UNIX_SOCKETS_BASE_DIR + ’pl_sock ’
23

24 class UNIX_Coms ():
25

26 def __init__(self , host_addr):
27 self.sock = socket.socket(socket.AF_UNIX , socket.SOCK_DGRAM)
28 self.server_address = host_addr
29

30 ’’’
31 Creates and binds a new UNIX socket
32 Server (listener) side
33 - Removes existing socket if it exists
34 ’’’
35 def bind_to_socket(self):
36 if os.path.exists(self.server_address):
37 print(self.server_address);
38 os.remove(self.server_address)
39 self.sock.bind(self.server_address)
40 print(PRINT_PREPEND + ’starting up on {}’.format(self.server_address))
41 self.unix_start ()
42

43 ’’’
44 Start listening for incoming messages
45 sever (listener) side
46 ’’’
47 def unix_start(self):
48 threading.Thread(target=self.listen).start ()
49

50 ’’’
51 Listen for incoming messages (called by unix_start)
52 ’’’
53 def listen(self):
54 print(PRINT_PREPEND + ’Listening for connections on {}’.format(self.

server_address))
55 while (True):
56 data = self.sock.recv (4096)

197

57 if data:
58 print(PRINT_PREPEND + ’Received data from {} | DATA [{}]: {}’.

format(self.server_address , len(data), data))
59 cmd = data.decode(’utf -8’).split(’-’)
60 params = list(cmd [0])
61 input_error = False;
62

63 if(cmd[0] == "SM" or cmd[0] == "sm"):
64 if(cmd[1] == "RM" or cmd[1] == "rm"):
65 if(cmd[2] == "ALL" or cmd[2] == "all"):
66 if(os.path.exists(’/storage ’)):
67 os.system(’rm /storage /*’)
68 print(PRINT_PREPEND + ’All captures deleted from

/storage directory.’)
69 else:
70 if(os.path.exists(’/storage/’+cmd [2]+’.tar.gz’)):
71 os.system(’rm /storage/’+cmd [2]+’.tar.gz’)
72 print(PRINT_PREPEND + ’File ’+cmd [2]+’.tar.gz

removed from /storage directory.’)
73

74 if(len(params) == 12):
75 fps = params [1]+ params [2]
76 color = params [3]+ params [4]+ params [5]+ params [6]
77 resolution = params [7]+ params [8]+ params [9]+ params [10]
78 depth = params [11]
79

80 if fps != ’05’ and fps != ’15’ and fps != ’30’:
81 input_error = True
82 print(ERROR_PREPEND + ’Invalid FPS value ’ + fps + ’.’)
83 if color != ’MJPG’:
84 input_error = True
85 print(ERROR_PREPEND + ’Invalid color format ’ + color + ’

. Currently only supports MJPG.’)
86 if resolution != ’0720’ and resolution != ’1080’ and

resolution != ’1440’ and resolution != ’1536’ and
resolution != ’2160’ and resolution != ’3072’:

87 input_error = True
88 print(ERROR_PREPEND + ’Invalid resolution ’ + resolution

+ ’. Supported resolution: 720, 1080, 1440, 1536,
2160, 3072’)

89 if depth != ’0’ and depth != ’1’ and depth != ’2’ and depth
!= ’3’ and depth != ’4’ and depth != ’5’:

90 input_error = True
91 print(ERROR_PREPEND + ’Invalid Depth mode value ’ + depth

+ ’.’)
92

93 if input_error == False:
94 if fps == ’05’:
95 fps=’5’
96

97 if color == ’BGRA’:
98 color = ’BGRA32 ’
99 elif color == ’DP16’:

100 color = ’DEPTH16 ’
101

102 if resolution == ’0000’:
103 resolution = ’OFF’
104 elif resolution == ’0720’:
105 resolution = ’720P’
106 else:
107 resolution +=’P’
108

109 if depth == ’0’:
110 depth = ’OFF’
111 elif depth == ’1’:
112 depth = ’NFOV_2X2BINNED ’
113 elif depth == ’2’:
114 depth = ’NFOV_UNBINNED ’

198

115 elif depth == ’3’:
116 depth = ’WFOV_2X2BINNED ’
117 elif depth == ’4’:
118 depth = ’WFOV_UNBINNED ’
119 elif depth == ’5’:
120 depth = ’PASSIVE_IR ’
121

122 print(PRINT_PREPEND + ’K4A Image Capture: ’ + cmd[0] + ’
t:’ + cmd[len(cmd) -1])

123 else:
124 input_error = True;
125 print(ERROR_PREPEND + ’The following command ’ + cmd [0] +

’ is not a valid capture sequence ..’)
126

127 if(len(cmd)==11 or len(cmd)==10):
128 print(PRINT_PREPEND + ’K4A Color Settings: {} {} {} {} {}

{} {} {} {}’.format(cmd[1],cmd[2],cmd[3],cmd[4],cmd
[5],cmd[6],cmd[7],cmd[8],cmd [9]))

129 try:
130 exposure = cmd [1]. split(’E’)[1]
131 brightness = cmd [2]. split(’B’)[1]
132 contrast = cmd [3]. split(’C’)[1]
133 saturation = cmd [4]. split(’S’)[1]
134 sharpness = cmd [5]. split(’H’)[1]
135 gain = cmd [6]. split(’G’)[1]
136 white_balance = cmd [7]. split(’W’)[1]
137 blacklight_comp = cmd [8]. split(’P’)[1]
138 powerline_freq = cmd [9]. split(’L’)[1]
139 except IndexError:
140 input_error = False
141

142 if input_error == False:
143 os.system(’check -device -f {} -c {} -r {} -d {} -t {}

-xp {} -br {} -cn {} -st {} -sh {} -gn {} -wb {}
-bl {} -pl {}’.format(fps , color , resolution ,

depth , cmd[len(cmd) -1], exposure , brightness ,
contrast , saturation , sharpness , gain ,
white_balance , blacklight_comp , powerline_freq))

144 print(PRINT_PREPEND + ’K4A Color Settings: {} {} {}
{} {} {} {} {} {}’.format(exposure , brightness ,
contrast , saturation , sharpness , gain ,
white_balance , blacklight_comp , powerline_freq))

145 elif(len(cmd) >= 1 or len(cmd) <= 3):
146 print(PRINT_PREPEND + ’Loading K4A Default Color Settings

..’)
147 if input_error == False:
148 os.system(’check -device -f {} -c {} -r {} -d {} -t {}

’.format(fps , color , resolution , depth , cmd[len(
cmd) -1]))

149 print(PRINT_PREPEND+’check -device -f {} -c {} -r {} -
d {} -t {}’.format(fps , color , resolution , depth ,
cmd[len(cmd) -1]))

150 else:
151 input_error = True;
152 print(ERROR_PREPEND + ’The following command ’ + data.

decode(’utf -8’) + ’ is not a valid capture sequence ..
’)

153 ’’’
154 Connects to existing UNIX sockets
155 client (sender) side
156 ’’’
157 def connect_to_socket(self):
158 connect = False
159 try:
160 print(PRINT_PREPEND + ’connecting to {}’.format(self.server_address))
161 self.sock.connect(self.server_address)
162 connect = True
163 print(PRINT_PREPEND + ’Connected ’)

199

164 except socket.error as msg:
165 print(msg)
166

167 ’’’
168 Send data to the server
169 - connectsto the socket and sends the data
170 ’’’
171 def send(self , msg):
172 print(PRINT_PREPEND + ’Sending data on socket: {}’.format(self.

server_address))
173

174 self.connect_to_socket ()
175 self.sock.sendall(msg)
176

177 def close(self):
178 self.sock.close ()
179 print(PRINT_PREPEND + ’Socket closed: {}’.format(self.server_address))
180

181 def main():
182 unix_in = {}
183

184 def closeAll ():
185 [unix_in[key]. close() for key in unix_in]
186

187 try:
188 unix_in = {
189 ’IN’ : UNIX_Coms(UNIX_ADDR_IN),
190 }
191 [unix_in[key]. bind_to_socket () for key in unix_in]
192 except:
193 print(PRINT_PREPEND + ’Error creating outgoing UNIX socket(s)’)
194 unix_in = None
195

196 return 0
197

198 if __name__ == ’__main__ ’:
199 main()

200

1 #!/usr/bin/python
2

3 ### * *** * ###
4 ### * Host Machine Unix Socket Communication Module * ###
5 ### * Author: Don D. Haddad <ddh@mit.edu > * ###
6 ### * File Name: socket_coms_main.py * ###
7 ### * Location: /include * ###
8 ### * Description: Implements a threaded UNIX socket server that runs * ###
9 ### * within the host machine. It creates an interactive mode that * ###

10 ### * allows users to generate messages and send them through the * ###
11 ### * socket. It includes functionalities for creating , binding , * ###
12 ### * and communicating through UNIX sockets , handling both * ###
13 ### * incoming and outgoing messages , and managing connections. * ###
14 ### * *** * ###
15

16 import socket
17 import os, os.path
18 import threading
19 import time
20

21 PRINT_PREPEND = ’[HOST MACHINE] ’
22 UNIX_SOCKETS_BASE_DIR = ’/tmp/payload_sockets/kinect_luna/’
23 UNIX_ADDR_OUT = UNIX_SOCKETS_BASE_DIR + ’pl_sock ’
24

25 class UNIX_Coms ():
26

27 def __init__(self , host_addr):
28 self.sock = socket.socket(socket.AF_UNIX , socket.SOCK_DGRAM)
29 self.server_address = host_addr
30

31 ’’’
32 Creates and binds a new UNIX socket
33 Server (listener) side
34 - Removes existing socket if it exists
35 ’’’
36 def bind_to_socket(self):
37

38 if os.path.exists(self.server_address):
39 os.remove(self.server_address)
40

41 self.sock.bind(self.server_address)
42 print(PRINT_PREPEND + ’starting up on {}’.format(self.server_address))
43

44 self.unix_start ()
45

46 ’’’
47 Start listening for incoming messages
48 sever (listener) side
49 ’’’
50 def unix_start(self):
51 threading.Thread(target=self.listen).start ()
52

53 ’’’
54 Listen for incoming messages (called by unix_start)
55 ’’’
56 def listen(self):
57 print(PRINT_PREPEND + ’Listening for connections on {}’.format(self.

server_address))
58 while (True):
59 data = self.sock.recv (4096)
60 if data:
61 print(PRINT_PREPEND + ’Received data from {} | DATA [{}]: {}’.

format(self.server_address , len(data), data))
62

63 ’’’
64 Connects to existing UNIX sockets
65 client (sender) side
66 ’’’

201

67 def connect_to_socket(self):
68 connect = False
69 try:
70 print(PRINT_PREPEND + ’connecting to {}’.format(self.server_address))
71 self.sock.connect(self.server_address)
72 connect = True
73 print(PRINT_PREPEND + ’Connected ’)
74 except socket.error as msg:
75 print(msg)
76

77 ’’’
78 Send data to the server
79 - connectsto the socket and sends the data
80 ’’’
81 def send(self , msg):
82 print(PRINT_PREPEND + ’Sending data on socket: {}’.format(self.

server_address))
83

84 self.connect_to_socket ()
85 self.sock.sendall(msg)
86

87 def close(self):
88 self.sock.close ()
89 print(PRINT_PREPEND + ’Socket closed: {}’.format(self.server_address))
90

91 def main():
92

93 unix_out = {}
94

95 def closeAll ():
96 [unix_out[key].close () for key in unix_out]
97

98 try:
99 unix_out = {

100 ’OUT’ : UNIX_Coms(UNIX_ADDR_OUT),
101 }
102 except:
103 print(PRINT_PREPEND + ’Error creating outgoing UNIX socket(s)’)
104 unix_out = None
105

106 time.sleep (1)
107

108 input_error = "Invalid choice .. using default settings."
109 camera_fps = "K4A_FRAMES_PER_SECOND_5"
110 repeat = True
111

112 while(repeat):
113 input_0 = input("Enter K4A’s FPS (0:05 FPS 1:15 FPS 2:30 FPS) # ")
114 if input_0 == str(0):
115 camera_fps = "K4A_FRAMES_PER_SECOND_5"
116 elif input_0 == str (1):
117 camera_fps = "K4A_FRAMES_PER_SECOND_15"
118 elif input_0 == str (2):
119 camera_fps = "K4A_FRAMES_PER_SECOND_30"
120 else:
121 input_0 = 0
122 print(input_error)
123

124 input_1 = input("Enter K4A’s Color Format (0: MJPG 1:NV12 2:YUY2 3:BGRA 4:
DP16 5:IR16) # ")

125 color_format = "K4A_IMAGE_FORMAT_COLOR_MJPG"
126 if input_1 == str(0):
127 color_format = "K4A_IMAGE_FORMAT_COLOR_MJPG"
128 elif input_1 == str (1):
129 color_format = "K4A_IMAGE_FORMAT_COLOR_NV12"
130 elif input_1 == str (2):
131 color_format = "K4A_IMAGE_FORMAT_COLOR_YUY2"
132 elif input_1 == str (3):

202

133 color_format = "K4A_IMAGE_FORMAT_COLOR_BGRA32"
134 elif input_1 == str (4):
135 color_format = "K4A_IMAGE_FORMAT_DEPTH16"
136 elif input_1 == str (5):
137 color_format = "K4A_IMAGE_FORMAT_IR16"
138 else:
139 input_1 = 0
140 print(input_error)
141

142 input_2 = input("Enter K4A’s Color Resolution (0: Off 1:720 2:1080 3:1440
4:1536 5:2160 6:3072) # ")

143 color_resolution = "K4A_COLOR_RESOLUTION_720P"
144 if input_2 == str(0):
145 color_resolution = "K4A_COLOR_RESOLUTION_OFF"
146 elif input_2 == str (1):
147 color_resolution = "K4A_COLOR_RESOLUTION_720P"
148 elif input_2 == str (2):
149 color_resolution = "K4A_COLOR_RESOLUTION_1080P"
150 elif input_2 == str (3):
151 color_resolution = "K4A_COLOR_RESOLUTION_1440P"
152 elif input_2 == str (4):
153 color_resolution = "K4A_COLOR_RESOLUTION_1536P"
154 elif input_2 == str (5):
155 color_resolution = "K4A_COLOR_RESOLUTION_2160P"
156 elif input_2 == str (6):
157 color_resolution = "K4A_COLOR_RESOLUTION_3072P"
158 else:
159 input_2 = 1
160 print(input_error)
161

162 input_3 = input("Enter K4A’s Depth Mode (0: Off 1: NFOV_2X2B 2: NFOV_U 3:
WFOV_2X2B 4: WFOV_U 5:P_IR) # ")

163 depth_mode = "K4A_DEPTH_MODE_NFOV_2X2BINNED"
164 if input_3 == str(0):
165 depth_mode = "K4A_DEPTH_MODE_OFF"
166 elif input_3 == str (1):
167 depth_mode = "K4A_DEPTH_MODE_NFOV_2X2BINNED"
168 elif input_3 == str (2):
169 depth_mode = "K4A_DEPTH_MODE_NFOV_UNBINNED"
170 elif input_3 == str (3):
171 depth_mode = "K4A_DEPTH_MODE_WFOV_2X2BINNED"
172 elif input_3 == str (4):
173 depth_mode = "K4A_DEPTH_MODE_WFOV_UNBINNED"
174 elif input_3 == str (5):
175 depth_mode = "K4A_DEPTH_MODE_PASSIVE_IR"
176 else:
177 input_3 = 1
178 print(input_error)
179

180 input_4 = input("Set K4A’s Color Settings (y/n) #")
181 color_settings = "D"
182

183 if input_4 == "y" or input_4 == "Y":
184 input_4_1 = input("Enter Exposure Time (A, M1-M13 , M500 -M130000) d:A

#")
185 input_4_2 = input("Enter Brightness (0 -255) d:128 #")
186 input_4_3 = input("Enter Contrast (0-10) d:5 #")
187 input_4_4 = input("Enter Saturation (0-63) d:32 #")
188 input_4_5 = input("Enter Sharpness (0-4) d:2 #")
189 input_4_6 = input("Enter Gain (0 -255) d:0 #")
190 input_4_7 = input("Enter White Balance (A, 2500 -12500) d:A #")
191 input_4_8 = input("Enter Backlight Compensation (0,1) d:0 #")
192 input_4_9 = input("Enter Power Line Frequency (1: 50hz ,2: 60Hz) d:2

#")
193

194 color_settings = ’E’+input_4_1+"-"+’B’+input_4_2+"-"+’C’+input_4_3+"-
"+’S’+input_4_4+"-"+’H’+input_4_5+"-"+’G’+input_4_6+"-"+’W’+
input_4_7+"-"+’P’+input_4_8+"-"+’L’+input_4_9

203

195

196 print("Settings Recorded ..\n")
197 print("Capturing K4A Images with the following settings:")
198

199 print(camera_fps)
200 print(color_format)
201 print(color_resolution)
202 print(depth_mode)
203 print("CS " + color_settings)
204

205 opt = [[’05’,’15’,’30’], [’MJPG’,’NV12’,’YUY2’,’BGRA’,’DP16’,’IR16’], [’
0000’,’0720’,’1080’,’1440’,’1536’,’2160’,’3072’], [’0’,’1’,’2’,’3’,’4
’,’5’]]

206

207 cmd = ’K’+opt [0][int(input_0)] + opt [1][int(input_1)] + opt [2][int(
input_2)] + opt [3][int(input_3)]

208

209 print(’\n’+PRINT_PREPEND + ’K4A Image str: ’ + cmd)
210

211 ts = int(time.time())
212 cmd_byte = bytearray(cmd+’-’+color_settings+’-’+str(ts), ’utf -8’)
213

214 unix_out[’OUT’].send(cmd_byte)
215

216 time.sleep (1)
217 print(PRINT_PREPEND + ’Done.. \n’)
218

219 inpeat = True
220 while inpeat:
221 input_r = input(’[R] Repeat capture preserving settings \n[N] New

capture \n[E] Exit program \nChoice [R, N, E] # ’)
222 if input_r == ’R’ or input_r == ’r’:
223 print(’\n’+PRINT_PREPEND + ’K4A Image str: ’ + cmd)
224 ts = int(time.time())
225 cmd_byte = bytearray(cmd+’-’+str(ts), ’utf -8’)
226 unix_out[’OUT’].send(cmd_byte)
227 time.sleep (1)
228 print(PRINT_PREPEND + ’Done.. \n’)
229 elif input_r == ’N’ or input_r == ’n’:
230 inpeat = False
231 elif input_r == ’E’ or input_r == ’e’:
232 repeat = False
233 inpeat = False
234 closeAll ()
235 print(PRINT_PREPEND + ’END: Generating logfile .. \n’)
236 return 0
237 return 0
238

239 if __name__ == ’__main__ ’:
240 main()

204

1 #!/usr/bin/python
2

3 ### * *** * ###
4 ### * Python Test Script for Camera Capture Sequences * ###
5 ### * Author: Don D. Haddad <ddh@mit.edu > * ###
6 ### * File Name: socket_coms_test.py * ###
7 ### * Location: /include * ###
8 ### * Description: Generates 108 capture sequences covering all the * ###
9 ### * options of the camera (without color settings) to test the * ###

10 ### * device and generate all possible outcomes. * ###
11 ### * *** * ###
12

13 import socket
14 import os, os.path
15 import threading
16 import time
17

18 PRINT_PREPEND = ’[HOST MACHINE] ’
19 UNIX_SOCKETS_BASE_DIR = ’/tmp/payload_sockets/kinect_luna/’
20 UNIX_ADDR_OUT = UNIX_SOCKETS_BASE_DIR + ’pl_sock ’
21

22 class UNIX_Coms ():
23

24 def __init__(self , host_addr):
25 self.sock = socket.socket(socket.AF_UNIX , socket.SOCK_DGRAM)
26 self.server_address = host_addr
27

28 ’’’
29 Creates and binds a new UNIX socket
30 Server (listener) side
31 - Removes existing socket if it exists
32 ’’’
33 def bind_to_socket(self):
34

35 if os.path.exists(self.server_address):
36 os.remove(self.server_address)
37

38 self.sock.bind(self.server_address)
39 print(PRINT_PREPEND + ’starting up on {}’.format(self.server_address))
40

41 self.unix_start ()
42

43 ’’’
44 Start listening for incoming messages
45 sever (listener) side
46 ’’’
47 def unix_start(self):
48 threading.Thread(target=self.listen).start ()
49

50 ’’’
51 Listen for incoming messages (called by unix_start)
52 ’’’
53 def listen(self):
54 print(PRINT_PREPEND + ’Listening for connections on {}’.format(self.

server_address))
55 while (True):
56 data = self.sock.recv (4096)
57 if data:
58 print(PRINT_PREPEND + ’Received data from {} | DATA [{}]: {}’.

format(self.server_address , len(data), data))
59

60 ’’’
61 Connects to existing UNIX sockets
62 client (sender) side
63 ’’’
64 def connect_to_socket(self):
65 connect = False
66 try:

205

67 print(PRINT_PREPEND + ’connecting to {}’.format(self.server_address))
68 self.sock.connect(self.server_address)
69 connect = True
70 print(PRINT_PREPEND + ’Connected ’)
71 except socket.error as msg:
72 print(msg)
73

74 ’’’
75 Send data to the server
76 - connectsto the socket and sends the data
77 ’’’
78 def send(self , msg):
79 print(PRINT_PREPEND + ’Sending data on socket: {}’.format(self.

server_address))
80

81 self.connect_to_socket ()
82 self.sock.sendall(msg)
83

84 def close(self):
85 self.sock.close ()
86 print(PRINT_PREPEND + ’Socket closed: {}’.format(self.server_address))
87

88 def main():
89

90 unix_out = {}
91

92 def closeAll ():
93 [unix_out[key].close () for key in unix_out]
94

95 try:
96 unix_out = {
97 ’OUT’ : UNIX_Coms(UNIX_ADDR_OUT),
98 }
99 except:

100 print(PRINT_PREPEND + ’Error creating outgoing UNIX socket(s)’)
101 unix_out = None
102

103 time.sleep (1)
104

105 repeat = True
106

107 fps = [’05’,’15’,’30’]
108 res = [’0720’,’1080’,’1440’,’1536’,’2160’,’3072’]
109

110 for i, x in enumerate(fps):
111 for j, y in enumerate(res):
112 for k in range (6):
113 ts = int(time.time())
114 cmd = ’K’+fps[i]+’MJPG’+res[j]+str(k)
115 cmd_byte = bytearray(cmd+’-’+str(ts), ’utf -8’)
116 print(’\n’+PRINT_PREPEND + ’K4A Image str: ’ + cmd+’-’+str(ts))
117 unix_out[’OUT’].send(cmd_byte)
118 time.sleep (2)
119

120 return 0
121

122 if __name__ == ’__main__ ’:
123 main()

206

Appendix D

Appendix D: Mysc

D.1 Chapter 6: Filename Terminology
• NoSB: No scale Bar

• SB: Scale Bar

• BP: Boot Print

• C: Crater

• LR: Little rock

• BR: Big rock

• DF: Debris Flow

• LS: Light source (0, 60, 120, 180, 240, 300)

• PD: Pitch down

• PU: Pitch up

• YL: Yaw left

• YR: Yaw right

207

D.2 Chapter 6: Short AKALL Messages (All)

K05MJPG07200

K05MJPG07201

K05MJPG07202

K05MJPG07203

K05MJPG07204

K05MJPG07205

K15MJPG07200

K15MJPG07201

K15MJPG07202

K15MJPG07203

K15MJPG07204

K15MJPG07205

K30MJPG07200

K30MJPG07201

K30MJPG07202

K30MJPG07203

K30MJPG07204

K30MJPG07205

K05MJPG10800

K05MJPG10801

K05MJPG10802

K05MJPG10803

K05MJPG10804

K05MJPG10805

K15MJPG10800

K15MJPG10801

K15MJPG10802

K15MJPG10803

K15MJPG10804

K15MJPG10805

K30MJPG10800

K30MJPG10801

K30MJPG10802

K30MJPG10803

K30MJPG10804

K30MJPG10805

K05MJPG14400

K05MJPG14401

K05MJPG14402

K05MJPG14403

K05MJPG14404

K05MJPG14405

K15MJPG14400

K15MJPG14401

K15MJPG14402

K15MJPG14403

K15MJPG14404

K15MJPG14405

K30MJPG14400

K30MJPG14401

K30MJPG14402

K30MJPG14403

K30MJPG14404

K30MJPG14405

K05MJPG15360

K05MJPG15361

K05MJPG15362

K05MJPG15363

K05MJPG15364

K05MJPG15365

K15MJPG15360

K15MJPG15361

K15MJPG15362

K15MJPG15363

K15MJPG15364

K15MJPG15365

K30MJPG15360

K30MJPG15361

K30MJPG15362

K30MJPG15363

K30MJPG15364

K30MJPG15365

K05MJPG21600

K05MJPG21601

K05MJPG21602

208

K05MJPG21603

K05MJPG21604

K05MJPG21605

K15MJPG21600

K15MJPG21601

K15MJPG21602

K15MJPG21603

K15MJPG21604

K15MJPG21605

K30MJPG21600

K30MJPG21601

K30MJPG21602

K30MJPG21603

K30MJPG21604

K30MJPG21605

K05MJPG30720

K05MJPG30721

K05MJPG30722

K05MJPG30723

K05MJPG30724

K05MJPG30725

K15MJPG30720

K15MJPG30721

K15MJPG30722

K15MJPG30723

K15MJPG30724

K15MJPG30725

K30MJPG30720

K30MJPG30721

K30MJPG30722

K30MJPG30723

K30MJPG30724

K30MJPG30725

D.3 Chapter 6: Long AKALL Messages (Random)
K05MJPG07201-EA-B128-C5-S32-H2-G0-WA-P0-L2

K05MJPG10801-EM1-B100-C2-S62-H4-G10-W3611-P1-L1

K15MJPG14403-E80000-B60-C2-S40-H0-G128-W53611-P0-L1

K30MJPG21602-E130000-B189-C3-S12-H1-G255-WA-P0-L2

K15MJPG30720-EM11-B255-C8-S33-H3-G0-WA-P1-L1

K15MJPG07200-EA-B128-C5-S32-H2-G0-WA-P0-L2

K05MJPG10801-EM7-B78-C8-S22-H4-G56-W12500-P1-L2

K30MJPG07201-E70000-B255-C10-S10-H4-G0-W10000-P1-L1

K30MJPG10803-EM9-B128-C4-S32-H1-G140-WA-P0-L1

K05MJPG21602-E80000-B88-C7-S40-H3-G85-W8750-P1-L2

K30MJPG10802-EM10-B70-C5-S24-H2-G0-WA-P1-L1

K15MJPG15364-E130000-B60-C2-S38-H0-G128-WA-P1-L1

K05MJPG10801-EM1-B100-C3-S48-H2-G0-WA-P0-L2

K05MJPG21601-EM1-B128-C6-S32-H1-G200-WA-P1-L1

209

K05MJPG30723-EM6-B128-C5-S32-H1-G0-W3750-P1-L1

K15MJPG10802-EM1-B90-C3-S32-H2-G128-W7500-P0-L2

K15MJPG21603-E130000-B255-C9-S16-H2-G0-WA-P1-L1

K30MJPG10801-EM8-B128-C7-S48-H3-G0-W3750-P0-L2

K05MJPG15362-E70000-B70-C4-S32-H2-G0-WA-P1-L1

K15MJPG14400-EA-B128-C5-S32-H2-G0-W2500-P0-L2

K05MJPG07202-E130000-B128-C6-S32-H1-G0-W8750-P1-L1

K05MJPG21600-EM9-B128-C5-S32-H2-G0-W8750-P0-L1

K30MJPG15365-EM10-B128-C6-S40-H1-G0-W3750-P1-L2

K15MJPG07200-E130000-B80-C3-S30-H3-G0-WA-P0-L2

K30MJPG21601-EM10-B70-C5-S32-H3-G255-WA-P1-L2

K05MJPG10802-EM1-B80-C6-S48-H2-G0-W8750-P0-L2

K30MJPG30721-E80000-B128-C6-S32-H1-G0-WA-P1-L1

K15MJPG21602-E130000-B80-C4-S24-H0-G0-W8750-P1-L1

K05MJPG21600-EM6-B100-C8-S62-H4-G140-W2500-P0-L2

K30MJPG10800-EM7-B60-C4-S32-H3-G0-W10000-P1-L2

K15MJPG07202-EM11-B100-C3-S40-H1-G128-WA-P0-L1

K30MJPG14400-E130000-B128-C5-S32-H1-G0-WA-P1-L1

K05MJPG10801-EM1-B128-C5-S32-H3-G0-W2500-P0-L2

K05MJPG21601-EM6-B70-C5-S32-H0-G0-W2500-P0-L2

K05MJPG30721-EM1-B100-C2-S24-H2-G128-W10000-P1-L2

K30MJPG21600-EM1-B128-C5-S32-H2-G0-W8750-P1-L2

K05MJPG07201-EA-B128-C6-S40-H3-G0-WA-P0-L1

K05MJPG10803-EM10-B128-C5-S24-H1-G128-W3750-P0-L1

K30MJPG21603-EM9-B100-C6-S32-H2-G0-WA-P1-L2

K05MJPG21602-EM6-B100-C5-S48-H0-G0-W8750-P1-L1

K05MJPG15360-EA-B100-C3-S32-H1-G128-W8750-P0-L2

210

Bibliography

[1] P. Bizony, “The ageless appeal of 2001: A space odyssey,” Nature, vol. 555, no.
7698, 2018.

[2] C. Paige, D. Newman, D. Haddad, F. Ward, and T. Piercy, “Lunar instrument
data integration into the virtual reality mission simulation system for decision
making and situational awareness,” in Proc. 50th Int. Conf. Environ. Syst, 2021,
pp. 12–15.

[3] B. Day and E. Law, “Moon trek: Nasa’s new online portal for lunar mapping
and modeling,” in Annual Meeting of the Lunar Exploration Analysis Group,
vol. 1960, 2016, p. 5015.

[4] M. Minsky, “Proposal for a remotely manned space station,” NASA. Lewis Re-
search Center, Vision-21: Space Travel for the Next Millennium, 1990.

[5] G. Sanders, W. Larson, K. Sacksteder, and C. Mclemore, “Nasa in-situ resource
utilization (isru) project: Development and implementation,” in AIAA SPACE
2008 Conference & Exposition, 2008, p. 7853.

[6] J. L. Heldmann, A. Colaprete, R. C. Elphic, G. Mattes, K. Ennico, E. Fritzler,
M. M. Marinova, R. McMurray, S. Morse, T. L. Roush et al., “Real-time science
operations to support a lunar polar volatiles rover mission,” Advances in Space
Research, vol. 55, no. 10, pp. 2427–2437, 2015.

[7] J. L. Heldmann, A. Colaprete, R. C. Elphic, D. Lim, M. Deans, A. Cook,
T. Roush, J. Skok, N. E. Button, S. Karunatillake et al., “Lunar polar rover
science operations: Lessons learned and mission architecture implications de-
rived from the mojave volatiles prospector (mvp) terrestrial field campaign,”
Advances in Space Research, vol. 58, no. 4, pp. 545–559, 2016.

[8] R. Weber, S. Lawrence, B. Cohen, J. Bleacher, J. Boyce, M. Collier, D. Draper,
A. Fagan, C. Fassett, L. Gaddis et al., “The artemis iii science definition team
report,” in 52nd Lunar and Planetary Science Conference, no. 2548, 2021, p.
1261.

[9] J. E. Kleinhenz and A. Paz, “Case studies for lunar isru systems utilizing polar
water,” in ASCEND 2020, 2020, p. 4042.

211

[10] F. Ward, T. Piercy, J. Heldmann, D. Lim, A. Colaprete, A. Cook, and D. New-
man, “A virtual reality mission simulation system (vmss) supporting closed-loop
mission control.” 50th International Conference on Environmental Systems,
2021.

[11] J. M. Boyce, P. Mouginis-Mark, and M. Robinson, “The tsiolkovskiy crater
landslide, the moon: An lroc view,” Icarus, vol. 337, p. 113464, 2020.

[12] M. Minsky, “Telepresence,” 1980.

[13] C. Bracken and P. Skalski, “Telepresence in everyday life,” Immersed in media:
Telepresence in everyday life, pp. 5–8, 2010.

[14] E. Demaitre. (2022, Jan) Hyundai and boston dynamics dis-
cuss metamobility concept at ces 2022. Robotics 24/7. [Online].
Available: https://www.robotics247.com/article/hyundai_boston_dynamics_
discuss_metamobility_concept_ces_2022/supply_chain

[15] A. Kristoffersson, S. Coradeschi, and A. Loutfi, “A review of mobile robotic
telepresence,” Advances in Human-Computer Interaction, vol. 2013, pp. 3–3,
2013.

[16] A. Orlandini, A. Kristoffersson, L. Almquist, P. Björkman, A. Cesta, G. Cortel-
lessa, C. Galindo, J. Gonzalez-Jimenez, K. Gustafsson, A. Kiselev et al., “Excite
project: A review of forty-two months of robotic telepresence technology evo-
lution,” Presence: Teleoperators and Virtual Environments, vol. 25, no. 3, pp.
204–221, 2016.

[17] M. G. Smith, M. Kelley, and M. Basner, “A brief history of spaceflight from
1961 to 2020: An analysis of missions and astronaut demographics,” Acta as-
tronautica, vol. 175, pp. 290–299, 2020.

[18] R. Lange, L. Walker, M. Lenda, C. Morantz, T. Zorn, F. Alibay, L. DuCharme,
and J. Koch, “Mars 2020 perseverance rover surface operations commissioning
phase overview,” in 2022 IEEE aerospace conference (AERO). IEEE, 2022,
pp. 1–20.

[19] A. Witze et al., “Nasa plans mars sample-return rover,” Nature, vol. 509, no.
7500, p. 272, 2014.

[20] M. Golombek, R. Cook, T. Economou, W. Folkner, A. Haldemann, P. Kalle-
meyn, J. M. Knudsen, R. Manning, H. Moore, T. Parker et al., “Overview of the
mars pathfinder mission and assessment of landing site predictions,” Science,
vol. 278, no. 5344, pp. 1743–1748, 1997.

[21] J. Matijevic, “Sojourner: the mars pathfinder microrover flight experiment,”
Space Technology, vol. 3, no. 17, pp. 143–149, 1997.

212

https://www.robotics247.com/article/hyundai_boston_dynamics_discuss_metamobility_concept_ces_2022/supply_chain
https://www.robotics247.com/article/hyundai_boston_dynamics_discuss_metamobility_concept_ces_2022/supply_chain

[22] R. Team, “Characterization of the martian surface deposits by the mars
pathfinder rover, sojourner,” Science, vol. 278, no. 5344, pp. 1765–1768, 1997.

[23] M. Lemmon, M. Wolff, M. Smith, R. Clancy, D. Banfield, G. Landis, A. Ghosh,
P. Smith, N. Spanovich, B. Whitney et al., “Atmospheric imaging results from
the mars exploration rovers: Spirit and opportunity,” Science, vol. 306, no.
5702, pp. 1753–1756, 2004.

[24] J. S. Norris, M. W. Powell, M. A. Vona, P. G. Backes, and J. V. Wick, “Mars
exploration rover operations with the science activity planner,” in Proceedings of
the 2005 IEEE International Conference on Robotics and Automation. IEEE,
2005, pp. 4618–4623.

[25] M. Raith. (2021, Aug) History of nasa mars rovers. Blue Marble Space Institute
of Science. [Online]. Available: https://bmsis.org/history-of-nasa-mars-rovers/

[26] R. Welch, D. Limonadi, and R. Manning, “Systems engineering the curiosity
rover: A retrospective,” in 2013 8th international conference on system of sys-
tems engineering. IEEE, 2013, pp. 70–75.

[27] D. W. Way, R. W. Powell, A. Chen, A. D. Steltzner, A. M. San Martin, P. D.
Burkhart, and G. F. Mendeck, “Mars science laboratory: Entry, descent, and
landing system performance,” in 2007 IEEE Aerospace Conference. IEEE,
2007, pp. 1–19.

[28] P. R. Mahaffy, C. R. Webster, S. K. Atreya, H. Franz, M. Wong, P. G. Conrad,
D. Harpold, J. J. Jones, L. A. Leshin, H. Manning et al., “Abundance and
isotopic composition of gases in the martian atmosphere from the curiosity
rover,” Science, vol. 341, no. 6143, pp. 263–266, 2013.

[29] J. A. Rodriguez-Manfredi, M. De la Torre Juárez, A. Alonso, V. Apéstigue,
I. Arruego, T. Atienza, D. Banfield, J. Boland, M. Carrera, L. Castañer et al.,
“The mars environmental dynamics analyzer, meda. a suite of environmental
sensors for the mars 2020 mission,” Space science reviews, vol. 217, pp. 1–86,
2021.

[30] S.-E. Hamran, D. A. Paige, H. E. Amundsen, T. Berger, S. Brovoll, L. Carter,
L. Damsgård, H. Dypvik, J. Eide, S. Eide et al., “Radar imager for mars’ sub-
surface experiment—rimfax,” Space Science Reviews, vol. 216, pp. 1–39, 2020.

[31] R. Bhartia, L. W. Beegle, L. DeFlores, W. Abbey, J. Razzell Hollis, K. Uckert,
B. Monacelli, K. S. Edgett, M. R. Kennedy, M. Sylvia et al., “Perseverance’s
scanning habitable environments with raman and luminescence for organics and
chemicals (sherloc) investigation,” Space Science Reviews, vol. 217, no. 4, p. 58,
2021.

[32] J. A. Hoffman, M. H. Hecht, D. Rapp, J. J. Hartvigsen, J. G. SooHoo, A. M.
Aboobaker, J. B. McClean, A. M. Liu, E. D. Hinterman, M. Nasr et al., “Mars

213

https://bmsis.org/history-of-nasa-mars-rovers/

oxygen isru experiment (moxie)—preparing for human mars exploration,” Sci-
ence Advances, vol. 8, no. 35, p. eabp8636, 2022.

[33] J. Bell, J. Maki, G. Mehall, M. Ravine, M. Caplinger, Z. Bailey, S. Brylow,
J. Schaffner, K. Kinch, M. Madsen et al., “The mars 2020 perseverance rover
mast camera zoom (mastcam-z) multispectral, stereoscopic imaging investiga-
tion,” Space science reviews, vol. 217, pp. 1–40, 2021.

[34] I. E. Sutherland, “Sketch pad a man-machine graphical communication system,”
in Proceedings of the SHARE design automation workshop, 1964, pp. 6–329.

[35] W. Buxton, R. Baecker, W. Clark, F. Richardson, I. Sutherland, W. B. Suther-
land, and A. Henderson, “Interaction at lincoln laboratory in the 1960’s: look-
ing forward–looking back,” in CHI’05 Extended Abstracts on Human Factors in
Computing Systems, 2005, pp. 1162–1167.

[36] I. E. Sutherland et al., “The ultimate display,” in Proceedings of the IFIP
Congress, vol. 2, no. 506-508. New York, 1965, pp. 506–508.

[37] M. W. Krueger, “An easy entry artificial reality,” in Virtual Reality. Elsevier,
1993, pp. 147–161.

[38] M. W. Krueger, T. Gionfriddo, and K. Hinrichsen, “Videoplace—an artificial re-
ality,” in Proceedings of the SIGCHI conference on Human factors in computing
systems, 1985, pp. 35–40.

[39] N. Elmqaddem, “Augmented reality and virtual reality in education. myth or
reality?” International journal of emerging technologies in learning, vol. 14,
no. 3, 2019.

[40] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko, M. Oberman, and
M. Teitel, “Reality built for two: a virtual reality tool,” in Proceedings of the
1990 symposium on Interactive 3D graphics, 1990, pp. 35–36.

[41] Y. Liu and K. Goebel, “Information fusion for national airspace system prognos-
tics: A nasa uli project,” in Proceedings of the 10th Annual Conference of the
Prognostics and Health Management Society, PHM, Philadelphia Center City,
Philadelphia, PA, USA, 2018, pp. 24–27.

[42] J. Fung, F. Tang, and S. Mann, “Mediated reality using computer graphics
hardware for computer vision,” in Proceedings. Sixth International Symposium
on Wearable Computers,. IEEE, 2002, pp. 83–89.

[43] S. Mann, “Mediated reality with implementations for everyday life,” Presence
Connect, vol. 1, p. 2002, 2002.

[44] S. Mann and W. Barfield, “Introduction to mediated reality,” International
Journal of Human-Computer Interaction, vol. 15, no. 2, pp. 205–208, 2003.

214

[45] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual displays,”
IEICE TRANSACTIONS on Information and Systems, vol. 77, no. 12, pp.
1321–1329, 1994.

[46] R. T. Azuma, “A survey of augmented reality,” Presence: teleoperators & virtual
environments, vol. 6, no. 4, pp. 355–385, 1997.

[47] A. Hillstead, “Simulating psychedelic therapy through mediated reality,” 2017.

[48] S. K. Feiner, “Augmented reality: A new way of seeing,” Scientific American,
vol. 286, no. 4, pp. 48–55, 2002.

[49] T. Masson, Daffy, and K. Perlin, “Holo-doodle: an adaptation and expansion of
collaborative holojam virtual reality,” in ACM SIGGRAPH 2017 VR Village,
2017, pp. 1–2.

[50] J. Herling and W. Broll, “Advanced self-contained object removal for realizing
real-time diminished reality in unconstrained environments,” in 2010 IEEE In-
ternational Symposium on Mixed and Augmented Reality. IEEE, 2010, pp.
207–212.

[51] “What is mediated reality - interactive website and immersive infographics,”
https://mediatedreality.info/, 2022.

[52] J. Kauffman, “A successful failure: Nasa’s crisis communications regarding
apollo 13,” Public Relations Review, vol. 27, no. 4, pp. 437–448, 2001.

[53] B. D. Allen, “Digital twins and living models at nasa,” in Digital Twin Summit,
2021.

[54] K. Bruynseels, F. Santoni de Sio, and J. Van den Hoven, “Digital twins in health
care: ethical implications of an emerging engineering paradigm,” Frontiers in
genetics, vol. 9, p. 31, 2018.

[55] S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox, “Scaling digital twins
from the artisanal to the industrial,” Nature Computational Science, vol. 1,
no. 5, pp. 313–320, 2021.

[56] V. Qiuchen Lu, A. K. Parlikad, P. Woodall, G. D. Ranasinghe, and J. Heaton,
“Developing a dynamic digital twin at a building level: Using cambridge cam-
pus as case study,” in International Conference on Smart Infrastructure and
Construction 2019 (ICSIC) Driving data-informed decision-making. ICE Pub-
lishing, 2019, pp. 67–75.

[57] O. Foundation, “How “digital twins” protect the artist,” Medium, Feb 2022, 2
min read.

[58] K.-J. Wang, Y.-H. Lee, and S. Angelica, “Digital twin design for real-time
monitoring–a case study of die cutting machine,” International Journal of Pro-
duction Research, vol. 59, no. 21, pp. 6471–6485, 2021.

215

https://mediatedreality.info/

[59] P. Aivaliotis, K. Georgoulias, and G. Chryssolouris, “The use of digital twin for
predictive maintenance in manufacturing,” International Journal of Computer
Integrated Manufacturing, vol. 32, no. 11, pp. 1067–1080, 2019.

[60] S. West, O. Stoll, J. Meierhofer, and S. Züst, “Digital twin providing new op-
portunities for value co-creation through supporting decision-making,” Applied
Sciences, vol. 11, no. 9, p. 3750, 2021.

[61] M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, and D. Devine,
“Digital twin: Origin to future,” Applied System Innovation, vol. 4, no. 2, p. 36,
2021.

[62] L. Li, S. Aslam, A. Wileman, and S. Perinpanayagam, “Digital twin in aerospace
industry: A gentle introduction,” IEEE Access, vol. 10, pp. 9543–9562, 2021.

[63] Q. Qiao, J. Wang, L. Ye, and R. X. Gao, “Digital twin for machining tool
condition prediction,” Procedia CIRP, vol. 81, pp. 1388–1393, 2019.

[64] D.-G. J. Opoku, S. Perera, R. Osei-Kyei, and M. Rashidi, “Digital twin appli-
cation in the construction industry: A literature review,” Journal of Building
Engineering, vol. 40, p. 102726, 2021.

[65] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry: State-
of-the-art,” IEEE Transactions on industrial informatics, vol. 15, no. 4, pp.
2405–2415, 2018.

[66] A. Padovano, F. Longo, L. Nicoletti, and G. Mirabelli, “A digital twin based
service oriented application for a 4.0 knowledge navigation in the smart factory,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 631–636, 2018.

[67] E. Newman, J. Huang, M. Pomerantz, and J. Sellin, “Multi-project telemetry-
based digital twin environment for space-mission development, analysis, and
operations,” in 2023 IEEE Aerospace Conference. IEEE, 2023, pp. 1–12.

[68] A. D. Garcia, J. Schlueter, and E. Paddock, “Training astronauts using
hardware-in-the-loop simulations and virtual reality,” in AIAA Scitech 2020
Forum, 2020, p. 0167.

[69] D. D. Haddad, “Resynthesizing reality: Driving vivid virtual environments from
sensor networks,” Ph.D. dissertation, Massachusetts Institute of Technology,
2018.

[70] M. Weiser and J. S. Brown, “Designing calm technology,” PowerGrid Journal,
vol. 1, no. 1, pp. 75–85, 1996.

[71] A. Ekblaw, J. Cherston, F.-Z. Liu, I. Wicaksono, D. D. Haddad, V. Sumini,
and J. A. Paradiso, “From ubicomp to universe - moving pervasive computing
research into space applications,” IEEE Pervasive Computing, 2023.

216

[72] J. A. Paradiso and J. A. Landay, “Guest editors’ introduction: Cross-reality
environments,” IEEE Pervasive Computing, vol. 8, no. 3, pp. 14–15, 2009.

[73] S. A. Munir, B. Ren, W. Jiao, B. Wang, D. Xie, and J. Ma, “Mobile wireless
sensor network: Architecture and enabling technologies for ubiquitous com-
puting,” in 21st International Conference on Advanced Information Networking
and Applications Workshops (AINAW’07), vol. 2. IEEE, 2007, pp. 113–120.

[74] F. V. Paulovich, M. C. F. De Oliveira, and O. N. Oliveira Jr, “A future with
ubiquitous sensing and intelligent systems,” ACS sensors, vol. 3, no. 8, pp.
1433–1438, 2018.

[75] Y. Zhang, L. Sun, H. Song, and X. Cao, “Ubiquitous wsn for healthcare: Recent
advances and future prospects,” IEEE Internet of Things Journal, vol. 1, no. 4,
pp. 311–318, 2014.

[76] G. Dublon and J. A. Paradiso, “Extra sensory perception,” Scientific american,
vol. 311, no. 1, pp. 36–41, 2014.

[77] J. Lifton, M. Feldmeier, Y. Ono, C. Lewis, and J. A. Paradiso, “A platform
for ubiquitous sensor deployment in occupational and domestic environments,”
in Proceedings of the 6th international conference on Information processing in
sensor networks, 2007, pp. 119–127.

[78] J. Lifton, M. Laibowitz, D. Harry, N.-W. Gong, M. Mittal, and J. A. Paradiso,
“Metaphor and manifestation cross-reality with ubiquitous sensor/actuator net-
works,” IEEE Pervasive Computing, vol. 8, no. 3, pp. 24–33, 2009.

[79] J. Lifton and J. A. Paradiso, “Dual reality: Merging the real and virtual,” in
Facets of Virtual Environments: First International Conference, FaVE 2009,
Berlin, Germany, July 27-29, 2009, Revised Selected Papers 1. Springer, 2010,
pp. 12–28.

[80] G. Dublon, “Sensor (y) landscapes: Technologies for new perceptual sensibili-
ties,” Ph.D. dissertation, Massachusetts Institute of Technology, 2018.

[81] B. Mayton, G. Dublon, S. Russell, E. F. Lynch, D. D. Haddad, V. Ramasubra-
manian, C. Duhart, G. Davenport, and J. A. Paradiso, “The networked sensory
landscape: Capturing and experiencing ecological change across scales,” Pres-
ence, vol. 26, no. 2, pp. 182–209, 2017.

[82] R. Kleinberger, G. Dublon, J. A. Paradiso, and T. Machover, “Phox ears: a
parabolic, head-mounted, orientable, extrasensory listening device.” in NIME,
2015, pp. 30–31.

[83] S. Russell, G. Dublon, and J. A. Paradiso, “Hearthere: Networked sensory
prosthetics through auditory augmented reality,” in Proceedings of the 7th Aug-
mented Human International Conference 2016, 2016, pp. 1–8.

217

[84] G. Dublon, L. S. Pardue, B. Mayton, N. Swartz, N. Joliat, P. Hurst, and J. A.
Paradiso, “Doppellab: Tools for exploring and harnessing multimodal sensor
network data,” in SENSORS, 2011 IEEE. IEEE, 2011, pp. 1612–1615.

[85] D. D. Haddad, G. Dublon, B. Mayton, S. Russell, X. Xiao, K. Perlin, and
J. A. Paradiso, “Resynthesizing reality: Driving vivid virtual environments from
sensor networks,” in ACM SIGGRAPH 2017 Talks, 2017, pp. 1–2.

[86] Mangopus, “Mission iss on the oculus quest,” https://www.magnopus.com/
projects/mission-iss, 2023, designed and Developed by Mangopus.

[87] C. Magerkurth, A. D. Cheok, R. L. Mandryk, and T. Nilsen, “Pervasive games:
bringing computer entertainment back to the real world,” Computers in Enter-
tainment (CIE), vol. 3, no. 3, pp. 4–4, 2005.

[88] M. W. McGreevy, “Virtual reality and planetary exploration,” in Virtual Reality.
Elsevier, 1993, pp. 163–197.

[89] R. B. Loftin, “Virtual environments for aerospace training,” in Proceedings of
WESCON’94. IEEE, 1994, pp. 384–387.

[90] ——, “Aerospace applications of virtual environment technology,” ACM SIG-
GRAPH Computer Graphics, vol. 30, no. 4, pp. 33–35, 1996.

[91] B. R. Parsons, “Nasa ksc intern final report-virtual reality in stem engagement,”
Tech. Rep., 2019.

[92] B. Young, “Oled displays and the immersive experience,” Information Display,
vol. 34, no. 2, pp. 16–36, 2018.

[93] J. W. Hamstra, The F-35 lightning II: from concept to cockpit. American
Institute of Aeronautics and Astronautics, Inc., 2019.

[94] A. K. Noor, “Potential of virtual worlds for remote space exploration,” Advances
in Engineering Software, vol. 41, no. 4, pp. 666–673, 2010.

[95] R. Léveillé, “Validation of astrobiology technologies and instrument operations
in terrestrial analogue environments,” Comptes Rendus Palevol, vol. 8, no. 7,
pp. 637–648, 2009.

[96] W. J. Clancey, “A closed mars analog simulation: The approach of crew 5 at
the mars desert research station,” 2002.

[97] M. Reagan and N. M. Director, “Nasa extreme environment mission operations
(neemo),” LPI Contribution, vol. 8036, pp. 16–18, 2021.

[98] C. Paige, D. D. Haddad, F. Ward, G. R. Todd, Jessica Osinski, A. Ekblaw,
and D. Newman, “Data collection in svalbard, norway to test the use of virtual
reality for lunar and planetary surface exploration.”

218

https://www.magnopus.com/projects/mission-iss
https://www.magnopus.com/projects/mission-iss

[99] “Juno new origin, a space simulator game by simplerockets,” https://www.
simplerockets.com/, 2023.

[100] A. K. Noor, “The hololens revolution,” Mechanical Engineering, vol. 138, no. 10,
pp. 30–35, 2016.

[101] M. OMAN-REAGAN, “Telexploration, onsight, and hololens" on" mars,” 2015.

[102] J. Lidawer, A. Winter, R. Crocco, M. Vona, and A. Byon, “Multi-platform
immersive visualization of planetary, asteroid, and terrestrial analog terrain. sp
aber.”

[103] L. Bass, D. Siewiorek, M. Bauer, R. Casciola, C. Kasabach, R. Martin, J. Siegel,
A. Smailagic, and J. Stivoric, “Constructing wearable computers for mainte-
nance applications,” pp. 663–694, 2001.

[104] V. Kohn and D. Harborth, “Augmented reality-a game changing technology for
manufacturing processes?” in ECIS, 2018, p. 111.

[105] P. Higgins, G. Y. Kebe, A. Berlier, K. Darvish, D. Engel, F. Ferraro, and
C. Matuszek, “Towards making virtual human-robot interaction a reality,” in
Proc. of the 3rd International Workshop on Virtual, Augmented, and Mixed-
Reality for Human-Robot Interactions (VAM-HRI), 2021.

[106] D. Szafir, “Mediating human-robot interactions with virtual, augmented, and
mixed reality,” in Virtual, Augmented and Mixed Reality. Applications and Case
Studies: 11th International Conference, VAMR 2019, Held as Part of the 21st
HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31,
2019, Proceedings, Part II 21. Springer, 2019, pp. 124–149.

[107] J. Xiao, P. Wang, H. Lu, and H. Zhang, “A three-dimensional mapping and
virtual reality-based human–robot interaction for collaborative space explo-
ration,” International Journal of Advanced Robotic Systems, vol. 17, no. 3, p.
1729881420925293, 2020.

[108] J. M. Albani and D. I. Lee, “Virtual reality-assisted robotic surgery simulation,”
Journal of Endourology, vol. 21, no. 3, pp. 285–287, 2007.

[109] R. Suzuki, A. Karim, T. Xia, H. Hedayati, and N. Marquardt, “Augmented
reality and robotics: A survey and taxonomy for ar-enhanced human-robot
interaction and robotic interfaces,” in Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, 2022, pp. 1–33.

[110] S. Chernova, N. DePalma, E. Morant, and C. Breazeal, “Crowdsourcing human-
robot interaction: Application from virtual to physical worlds,” in 2011 RO-
MAN. IEEE, 2011, pp. 21–26.

219

https://www.simplerockets.com/
https://www.simplerockets.com/

[111] W. Hoenig, C. Milanes, L. Scaria, T. Phan, M. Bolas, and N. Ayanian, “Mixed
reality for robotics,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2015, pp. 5382–5387.

[112] A. Kelly, E. Capstick, D. Huber, H. Herman, P. Rander, and R. Warner, “Real-
time photorealistic virtualized reality interface for remote mobile robot control,”
in Robotics Research: The 14th International Symposium ISRR. Springer,
2011, pp. 211–226.

[113] Z. Makhataeva and H. A. Varol, “Augmented reality for robotics: A review,”
Robotics, vol. 9, no. 2, p. 21, 2020.

[114] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, M. Mozifian, F. Golemo, C. Atke-
son, D. Fox, K. Goldberg, J. Leonard et al., “Sim2real in robotics and automa-
tion: Applications and challenges,” IEEE transactions on automation science
and engineering, vol. 18, no. 2, pp. 398–400, 2021.

[115] S. Bustamante, J. Peters, B. Schölkopf, M. Grosse-Wentrup, and V. Jayaram,
“Armsym: A virtual human–robot interaction laboratory for assistive robotics,”
IEEE Transactions on Human-Machine Systems, vol. 51, no. 6, pp. 568–577,
2021.

[116] A. Fuste, B. Reynolds, J. Hobin, and V. Heun, “Kinetic ar: A framework for
robotic motion systems in spatial computing,” in Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems, 2020, pp. 1–8.

[117] R. Li, M. van Almkerk, S. van Waveren, E. Carter, and I. Leite, “Comparing
human-robot proxemics between virtual reality and the real world,” in 2019
14th ACM/IEEE international conference on human-robot interaction (HRI).
IEEE, 2019, pp. 431–439.

[118] M. Chen, P. Zhang, Z. Wu, and X. Chen, “A multichannel human-swarm robot
interaction system in augmented reality,” Virtual Reality & Intelligent Hard-
ware, vol. 2, no. 6, pp. 518–533, 2020.

[119] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman, “Flightgoggles: Photo-
realistic sensor simulation for perception-driven robotics using photogrammetry
and virtual reality,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2019, pp. 6941–6948.

[120] J. K. Haas, “A history of the unity game engine,” Diss. Worcester Polytechnic
Institute, vol. 483, no. 2014, p. 484, 2014.

[121] A. Koubâa et al., Robot Operating System (ROS). Springer, 2017, vol. 1.

[122] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Mug-
likar, and D. Scaramuzza, “Alphapilot: Autonomous drone racing,” Autonomous
Robots, vol. 46, no. 1, pp. 307–320, 2022.

220

[123] G. Schroeder, “Nasa’s ingenuity mars helicopter: The first attempt at powered
flight on another world.” American Scientist, vol. 108, no. 6, pp. 330–331, 2020.

[124] B. A. Aikenhead, R. G. Daniell, and F. M. Davis, “Canadarm and the space
shuttle,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and
Films, vol. 1, no. 2, pp. 126–132, 1983.

[125] M. Smith, D. Craig, N. Herrmann, E. Mahoney, J. Krezel, N. McIntyre, and
K. Goodliff, “The artemis program: An overview of nasa’s activities to return
humans to the moon,” in 2020 IEEE Aerospace Conference. IEEE, 2020, pp.
1–10.

[126] S. A. Green, M. Billinghurst, X. Chen, and J. G. Chase, “Human-robot col-
laboration: A literature review and augmented reality approach in design,”
International journal of advanced robotic systems, vol. 5, no. 1, p. 1, 2008.

[127] D. S. Katz and R. R. Some, “Nasa advances robotic space exploration,” Com-
puter, vol. 36, no. 1, pp. 52–61, 2003.

[128] C. E. Harriott, T. Zhang, and J. A. Adams, “Evaluating the applicability of
current models of workload to peer-based human-robot teams,” in Proceedings
of the 6th international conference on Human-robot interaction, 2011, pp. 45–52.

[129] R. C. Moeller, L. Jandura, K. Rosette, M. Robinson, J. Samuels, M. Silver-
man, K. Brown, E. Duffy, A. Yazzie, E. Jens et al., “The sampling and caching
subsystem (scs) for the scientific exploration of jezero crater by the mars 2020
perseverance rover,” Space Science Reviews, vol. 217, pp. 1–43, 2021.

[130] K. Hambuchen, J. Marquez, and T. Fong, “A review of nasa human-robot in-
teraction in space,” Current Robotics Reports, vol. 2, no. 3, pp. 265–272, 2021.

[131] T. Fong, J. Scholtz, J. A. Shah, L. Fluckiger, C. Kunz, D. Lees, J. Schreiner,
M. Siegel, L. M. Hiatt, I. Nourbakhsh et al., “A preliminary study of peer-
to-peer human-robot interaction,” in 2006 IEEE International Conference on
Systems, Man and Cybernetics, vol. 4. IEEE, 2006, pp. 3198–3203.

[132] T. Fong, I. Nourbakhsh, C. Kunz, L. Fluckiger, J. Schreiner, R. Ambrose,
R. Burridge, R. Simmons, L. Hiatt, A. Schultz et al., “The peer-to-peer human-
robot interaction project,” in Space 2005, 2005, p. 6750.

[133] D. Szafir and D. A. Szafir, “Connecting human-robot interaction and data vi-
sualization,” in Proceedings of the 2021 ACM/IEEE International Conference
on Human-Robot Interaction, 2021, pp. 281–292.

[134] I. Rekleitis, J.-L. Bedwani, S. Gemme, T. Lamarche, and E. Dupuis, “Terrain
modelling for planetary exploration,” in Fourth Canadian Conference on Com-
puter and Robot Vision (CRV’07). IEEE, 2007, pp. 243–249.

221

[135] M. Maurette, “Mars rover autonomous navigation,” Autonomous Robots, vol. 14,
no. 2-3, pp. 199–208, 2003.

[136] A. Johnson, J. Hoffman, D. Newman, E. Mazarico, and M. Zuber, “An inte-
grated traverse planner and analysis tool for planetary exploration,” in AIAA
SPACE 2010 Conference & Exposition, 2010, p. 8829.

[137] L. Jenner, “Nasa eyes gps at the moon for artemis missions, june 2019.”

[138] M. J. Schuster, S. G. Brunner, K. Bussmann, S. Büttner, A. Dömel, M. Hellerer,
H. Lehner, P. Lehner, O. Porges, J. Reill et al., “Towards autonomous planetary
exploration: The lightweight rover unit (lru), its success in the spacebotcamp
challenge, and beyond,” Journal of Intelligent & Robotic Systems, vol. 93, pp.
461–494, 2019.

[139] N. Abcouwer, S. Daftry, T. del Sesto, O. Toupet, M. Ono, S. Venkatraman,
R. Lanka, J. Song, and Y. Yue, “Machine learning based path planning for im-
proved rover navigation,” in 2021 IEEE Aerospace Conference (50100). IEEE,
2021, pp. 1–9.

[140] C. R. Stoker, D. Burch, B. P. Hine, and J. Barry, “Antarctic undersea explo-
ration using a robotic submarine with a telepresence user interface,” Ieee Expert,
vol. 10, no. 6, pp. 14–23, 1995.

[141] C. R. Stoker, “From antarctica to space: use of telepresence and virtual reality
in control of a remote underwater vehicle,” in Mobile Robots IX, vol. 2352.
SPIE, 1995, pp. 288–299.

[142] N. Thomas, J. Hamilton, A. Veillet, and C. Muir, “Biologic analog science
associated with lava terrains,” Biosignature Preservation and Detection in Mars
Analog Environments, vol. 1912, 2016.

[143] K. H. Beaton, S. P. Chappell, A. Menzies, V. Luo, S. Y. Kim-Castet, D. New-
man, J. Hoffman, J. Norheim, E. Anandapadmanaban, S. P. Abercrombie et al.,
“Mission enhancing capabilities for science-driven exploration extravehicular ac-
tivity derived from the nasa basalt research program,” Planetary and Space
Science, vol. 193, p. 105003, 2020.

[144] M. E. Walker, H. Hedayati, and D. Szafir, “Robot teleoperation with augmented
reality virtual surrogates,” in 2019 14th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). IEEE, 2019, pp. 202–210.

[145] K. Chen, B. T. Lopez, A.-a. Agha-mohammadi, and A. Mehta, “Direct lidar
odometry: Fast localization with dense point clouds,” IEEE Robotics and Au-
tomation Letters, vol. 7, no. 2, pp. 2000–2007, 2022.

[146] “Nebula-spot explores complex environments without human guidance,” https:
//www.jpl.nasa.gov/robotics-at-jpl/nebula-spot, 2021.

222

https://www.jpl.nasa.gov/robotics-at-jpl/nebula-spot
https://www.jpl.nasa.gov/robotics-at-jpl/nebula-spot

[147] M. H. Raibert, Legged robots that balance. MIT press, 1986.

[148] T. N. Titus, J. J. Wynne, M. J. Malaska, A.-a. Agha-Mohammadi, P. B. Buhler,
E. C. Alexander, J. W. Ashley, A. Azua-Bustos, P. J. Boston, D. L. Buczkowski
et al., “A roadmap for planetary caves science and exploration,” Nature Astron-
omy, vol. 5, no. 6, pp. 524–525, 2021.

[149] J. G. Blank, “Preparing for robotic astrobiology missions to lava caves on mars:
The braille project’s mars science mission simulation at lava beds national mon-
ument (n. ca, usa),” in AGU Fall Meeting Abstracts, vol. 2019, 2019, pp. P44B–
09.

[150] A. Agha, K. Otsu, B. Morrell, D. D. Fan, R. Thakker, A. Santamaria-Navarro,
S.-K. Kim, A. Bouman, X. Lei, J. Edlund et al., “Nebula: Quest for robotic
autonomy in challenging environments; team costar at the darpa subterranean
challenge,” arXiv preprint arXiv:2103.11470, 2021.

[151] G. Kurillo, E. Hemingway, M.-L. Cheng, and L. Cheng, “Evaluating the accu-
racy of the azure kinect and kinect v2,” Sensors, vol. 22, no. 7, p. 2469, 2022.

[152] V. Ramasubramanian, “Quadrasense: Immersive uav-based cross-reality en-
vironmental sensor networks,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2015.

[153] M. Wertheimer, “Gestalt theory.” 1938.

[154] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part
i,” IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[155] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[156] D. Ilett, “Introduction to shaders in unity,” in Building Quality Shaders for
Unity: Using Shader Graphs and HLSL Shaders. Springer, 2022, pp. 1–8.

[157] Q. Li, “Design and implementation of indoor disinfection robot system,” 2023.

[158] A. Milanovic, S. Srbljic, and V. Sruk, “Performance of udp and tcp communica-
tion on personal computers,” in 2000 10th Mediterranean Electrotechnical Con-
ference. Information Technology and Electrotechnology for the Mediterranean
Countries. Proceedings. MeleCon 2000 (Cat. No. 00CH37099), vol. 1. IEEE,
2000, pp. 286–289.

[159] T. B. Sheridan, “Space teleoperation through time delay: Review and progno-
sis,” IEEE Transactions on robotics and Automation, vol. 9, no. 5, pp. 592–606,
1993.

223

[160] J. A. Paradiso, “Global steering of single gimballed control moment gyroscopes
using a directed search,” Journal of Guidance, Control, and Dynamics, vol. 15,
no. 5, pp. 1236–1244, 1992.

[161] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural content
generation for games: A survey,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 9, no. 1, pp. 1–22, 2013.

[162] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[163] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436–444, 2015.

[164] G. Skinner and T. Walmsley, “Artificial intelligence and deep learning in video
games a brief review,” in 2019 ieee 4th international conference on computer
and communication systems (icccs). IEEE, 2019, pp. 404–408.

[165] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[166] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “Vizdoom:
A doom-based ai research platform for visual reinforcement learning,” in 2016
IEEE conference on computational intelligence and games (CIG). IEEE, 2016,
pp. 1–8.

[167] S. Nebel, S. Schneider, and G. D. Rey, “Mining learning and crafting scien-
tific experiments: a literature review on the use of minecraft in education and
research,” Journal of Educational Technology & Society, vol. 19, no. 2, pp. 355–
366, 2016.

[168] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grandmaster level in
starcraft ii using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782,
pp. 350–354, 2019.

[169] C. I. Tan, C.-M. Chen, W.-K. Tai, and S.-J. Yen, “An ai tool: Generating paths
for racing game,” in 2008 International Conference on Machine Learning and
Cybernetics, vol. 6. IEEE, 2008, pp. 3132–3137.

[170] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140–1144, 2018.

[171] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama,
M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities of large language
models,” arXiv preprint arXiv:2206.07682, 2022.

224

[172] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. Dementieva, F. Fischer,
U. Gasser, G. Groh, S. Günnemann, E. Hüllermeier et al., “Chatgpt for good?
on opportunities and challenges of large language models for education,” Learn-
ing and Individual Differences, vol. 103, p. 102274, 2023.

[173] L. K. Smetana and R. L. Bell, “Computer simulations to support science instruc-
tion and learning: A critical review of the literature,” International Journal of
Science Education, vol. 34, no. 9, pp. 1337–1370, 2012.

[174] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki,
S. Ota, and T. Isozumi, “Design of prototype humanoid robotics platform for
hrp,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 3. IEEE, 2002, pp. 2431–2436.

[175] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ international conference on
intelligent robots and systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3.
IEEE, 2004, pp. 2149–2154.

[176] O. Michel, “Cyberbotics ltd. webots™: professional mobile robot simulation,”
International Journal of Advanced Robotic Systems, vol. 1, no. 1, p. 5, 2004.

[177] S. Wolfram et al., A new kind of science. Wolfram media Champaign, IL,
2002, vol. 5.

[178] E. Wetzel, J. Liu, T. Leathem, and A. Sattineni, “The use of boston dynam-
ics spot in support of lidar scanning on active construction sites,” in ISARC.
Proceedings of the International Symposium on Automation and Robotics in
Construction, vol. 39. IAARC Publications, 2022, pp. 86–92.

[179] A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma, T. Pail-
evanian, S.-K. Kim, K. Otsu, J. Burdick et al., “Autonomous spot: Long-range
autonomous exploration of extreme environments with legged locomotion,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 2518–2525.

[180] S. Halder, K. Afsari, J. Serdakowski, S. DeVito, M. Ensafi, and W. Thabet,
“Real-time and remote construction progress monitoring with a quadruped
robot using augmented reality,” Buildings, vol. 12, no. 11, p. 2027, 2022.

[181] L. Maguire, “Behind the scenes: The making of coperni’s next act,” Vogue.

[182] A. Forsey-Smerek, C. Paige, F. Ward, D. D. Haddad, L. Sanneman, J. Todd,
J. Heldmann, D. Lim, and D. Newman, “Assessment of depth data acquisition
methods for virtual reality mission operations support tools,” in 2022 IEEE
Aerospace Conference (AERO). IEEE, 2022, pp. 1–14.

225

[183] L. Skrba, L. Reveret, F. Hétroy, M.-P. Cani, and C. O’Sullivan, “Quadruped
animation,” in Eurographics’ 2008-29th annual conference of the European As-
sociation for Computer Graphics. Eurographics, 2008, pp. 7–23.

[184] Z. Bhatti, A. Shah, M. Karabasi, and W. Mahesar, “Expression driven trigono-
metric based procedural animation of quadrupeds,” in 2013 International Con-
ference on Informatics and Creative Multimedia. IEEE, 2013, pp. 104–109.

[185] M. Reagan, B. Janoiko, J. Johnson, S. Chappell, Ph. D, and A. Abercromby,
“Nasa’s analog missions: Driving exploration through innovative testing,” in
AIAA SPACE 2012 Conference & Exposition, 2012, p. 5238.

[186] P. Lee, “Mars on earth: The nasa haughton-mars project,” Ad Astra: The
Magazine of the National Space Society, vol. 14, no. 3, pp. 5–8, 2002.

[187] G. Caravaca, S. Le Mouélic, N. Mangold, J. L’Haridon, L. Le Deit, and
M. Massé, “3d digital outcrop model reconstruction of the kimberley outcrop
(gale crater, mars) and its integration into virtual reality for simulated geolog-
ical analysis,” Planetary and Space Science, vol. 182, p. 104808, 2020.

[188] E. M. Mikhail, J. S. Bethel, and J. C. McGlone, Introduction to modern pho-
togrammetry. John Wiley & Sons, 2001.

[189] O. Liestol, “Pingos, springs and permafrost in spitsbergen,• rbok 1975,” Norsk
Polarinstitutt, TromsO, Norway, 1977.

[190] F. Ward, C. Paige, D. D. Haddad, J. Todd, J. Heldmann, D. Lim, A. Ek-
blaw, and D. Newman, “Multi-sensor 3d data visualization in virtual reality for
planetary science and mission operations.”

[191] D. M. Burr, K. L. Tanaka, and K. Yoshikawa, “Pingos on earth and mars,”
Planetary and Space Science, vol. 57, no. 5-6, pp. 541–555, 2009.

[192] T. L. Péwé, D. E. Rowan, R. H. Péwé, and R. Stuckenrath, Glacial and
periglacial geology of northwest Blomesletta peninsula, Spitsbergen, Svalbard,
1982.

[193] H. Sevestre, D. I. Benn, N. R. Hulton, and K. Bælum, “Thermal structure of
svalbard glaciers and implications for thermal switch models of glacier surging,”
Journal of Geophysical Research: Earth Surface, vol. 120, no. 10, pp. 2220–2236,
2015.

[194] E. Hauber, D. Reiss, M. Ulrich, F. Preusker, F. Trauthan, M. Zanetti,
H. Hiesinger, R. Jaumann, L. Johansson, A. Johnsson et al., “Landscape evolu-
tion in martian mid-latitude regions: insights from analogous periglacial land-
forms in svalbard,” Geological Society, London, Special Publications, vol. 356,
no. 1, pp. 111–131, 2011.

226

[195] C. Paige, “Enabling a permanent human presence beyond low earth orbit: wear-
able radiation protection and enhanced science through virtual reality,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2023.

[196] C. A. Paige, D. D. Haddad, F. S. Ward, T. J. Piercy, J. E. Todd, J. A. Paradiso,
and D. J. Newman, “Operational geology in a virtual environment (ogive) novel
approaches to virtualizing geological expeditions for planetary exploration,” in
Conference on Human-Computer Interaction for Space Exploration (SpaceCHI
3.0), June 2023, june 22 -23, 2023.

[197] C. Paige, F. Ward, D. D. Haddad, J. MacNeil, P. McGaffigan, A. Ekblaw,
and D. Newman, “Mit zero-g outreach initiative: using experiment design and
virtual reality to inspire the next generation of space scientists and engineers,”
Acta Astronautica, 2023.

[198] M. Tölgyessy, M. Dekan, L. Chovanec, and P. Hubinskỳ, “Evaluation of the
azure kinect and its comparison to kinect v1 and kinect v2,” Sensors, vol. 21,
no. 2, p. 413, 2021.

[199] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data
processing,” arXiv preprint arXiv:1801.09847, 2018.

[200] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein, and
A. Kolb, “State of the art on 3d reconstruction with rgb-d cameras,” in Computer
graphics forum, vol. 37, no. 2. Wiley Online Library, 2018, pp. 625–652.

[201] I. Colomina and P. Molina, “Unmanned aerial systems for photogrammetry
and remote sensing: A review,” ISPRS Journal of photogrammetry and remote
sensing, vol. 92, pp. 79–97, 2014.

[202] J.-S. R. Over, A. C. Ritchie, C. J. Kranenburg, J. A. Brown, D. D. Buscombe,
T. Noble, C. R. Sherwood, J. A. Warrick, and P. A. Wernette, “Processing
coastal imagery with agisoft metashape professional edition, version 1.6—struc-
ture from motion workflow documentation,” US Geological Survey, Tech. Rep.,
2021.

[203] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia
et al., “Meshlab: an open-source mesh processing tool.” in Eurographics Italian
chapter conference, vol. 2008. Salerno, Italy, 2008, pp. 129–136.

[204] P. Cignoni, G. Ranzuglia, M. Callieri, M. Corsini, F. Ganovelli, N. Pietroni,
M. Tarini et al., “Meshlab,” 2011.

[205] Q.-Y. Zhou and V. Koltun, “Color map optimization for 3d reconstruction with
consumer depth cameras,” ACM Transactions on Graphics (ToG), vol. 33, no. 4,
pp. 1–10, 2014.

227

[206] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust reconstruction of indoor scenes,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 5556–5565.

[207] Y. Zhou, M. Daakir, E. Rupnik, and M. Pierrot-Deseilligny, “A two-step ap-
proach for the correction of rolling shutter distortion in uav photogrammetry,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 160, pp. 51–66,
2020.

[208] M. Garland and P. S. Heckbert, “Surface simplification using quadric error met-
rics,” in Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, 1997, pp. 209–216.

[209] F. Messaoudi, G. Simon, and A. Ksentini, “Dissecting games engines: The case
of unity3d,” in 2015 international workshop on network and systems support for
games (NetGames). IEEE, 2015, pp. 1–6.

[210] S. W. Greenwald, “The equipped explorer: virtual reality as a medium for
learning,” Ph.D. dissertation, Massachusetts Institute of Technology, 2018.

[211] T. Hartmann, W. Wirth, H. Schramm, C. Klimmt, P. Vorderer, A. Gysbers,
S. Böcking, N. Ravaja, J. Laarni, T. Saari et al., “The spatial presence experi-
ence scale (spes): a short self-report measure for diverse media settings. j media
psychol 28: 1–15,” 2016.

[212] N. Keller, N. McHenry, C. Duncan, A. Johnston, R. S. Whittle, E. Koock, S. S.
Bhattacharya, G. De La Torre, L. Ploutz-Snyder, M. Sheffield-Moore et al.,
“Augmenting exercise protocols with interactive virtual reality environments,”
in 2021 IEEE aerospace conference (50100). IEEE, 2021, pp. 1–13.

[213] NASA, “Nasa’s plan for sustained lunar exploration and development,” 2020.

[214] A. Plan et al., “Nasa’s lunar exploration program overview,” NAaS Administra-
tion, 2020.

[215] D. D. Haddad, C. A. Paige, B. Brokaw, F. S. Ward, J. A. Paradiso, J. Held-
mann, and D. J. Newman, “Azure kinect a la luna (akall): Leveraging low-cost
rgb and depth-camera in lunar exploration,” in IEEE Aerospace Conference
(AeroAstro), 2024, in Proceedings.

[216] C. Paige, D. D. Haddad, F. Ward, A. Cook, V. Jhac, A. Deutsch, J. Shimadac,
A. Colaprete, J. Heldmann, and D. Newman, “Development and testing of the
concept of operations for a low-cost rgb and depth-camera for a lunar south
pole mission,” Nature Microgravity, 2023, waiting review.

[217] J. Bell III, S. Squyres, K. Herkenhoff, J. Maki, M. Schwochert, A. Dingizian,
D. Brown, R. Morris, H. Arneson, M. Johnson et al., “The panoramic camera
(pancam) investigation on the nasa 2003 mars exploration rover mission,” in
Lunar and Planetary Science Conference, 2003, p. 1980.

228

[218] D. Scott, M. Malenkov, J. Head, and A. Basilevsky, “Robotic and manned lunar
rovers of the xx century: The view from the xxi century,” in 50th Annual Lunar
and Planetary Science Conference, no. 2132, 2019, p. 2827.

[219] “Mobile autonomous prospecting platform built for extraterrestrial and extreme
environments - lunar outpost,” https://lunaroutpost.com/robotics/, 2023.

[220] S. Zennaro, M. Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni, and
E. Menegatti, “Performance evaluation of the 1st and 2nd generation kinect for
multimedia applications,” in 2015 IEEE International Conference on Multime-
dia and Expo (ICME). IEEE, 2015, pp. 1–6.

[221] “Microsoft azure kinect sdk documentation and hardware specification.” https:
//learn.microsoft.com/en-us/azure/kinect-dk/, 2021.

[222] V. Jha, M. Garrett, B. White, J. Shimada, A. Cook, A. Colaprete, J. Heldmann,
A. Dave, C. Paige, F. Ward et al., “Ruggedizing a commercial depth camera for
novel lunar exploration,” in AGU Fall Meeting Abstracts, vol. 2022, 2022, pp.
P55E–1617.

[223] D. D. Haddad, S. Unterhauser, C. A. Paige, B. Brokaw, F. S. Ward, J. A.
Paradiso, J. Heldmann, and D. J. Newman, “Leveraging docker containers for
azure kinect integration in space robotics: An overview of the azure kinect a
la luna (akall) framework,” in Conference on Human-Computer Interaction for
Space Exploration (SpaceCHI 3.0), June 2023, june 22 -23, 2023.

[224] K. P. Klaasen, M. J. Belton, H. H. Breneman, A. S. McEwen, M. Davies, R. J.
Sullivan, C. R. Chapman, G. Neukum, C. M. Heffernan, A. P. Harch et al.,
“Inflight performance characteristics, calibration, and utilization of the galileo
solid state imaging camera,” Optical Engineering, vol. 36, no. 11, pp. 3001–3027,
1997.

[225] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker ecosystem–
vulnerability analysis,” Computer Communications, vol. 122, pp. 30–43, 2018.

[226] Y. Wan, J. Wang, J. Hu, T. Song, Y. Bai, and Z. Ji, “A study in 3d-
reconstruction using kinect sensor,” in 2012 8th International Conference on
Wireless Communications, Networking and Mobile Computing. IEEE, 2012,
pp. 1–7.

[227] C. C. Liebe, L. Scherr, and R. Willson, “Sun-induced veiling glare in dusty
camera optics,” Optical Engineering, vol. 43, no. 2, pp. 493–499, 2004.

[228] C. Paige, F. Ward, D. Haddad, J. MacNeil, P. McGaffigan, A. Ekblaw, and
D. Newman, “Mit zero-g outreach initiative: Using experiment design and vir-
tual reality to inspire the next generation of space scientists and engineers,”
Acta Astronautica, 2023.

229

https://lunaroutpost.com/robotics/
https://learn.microsoft.com/en-us/azure/kinect-dk/
https://learn.microsoft.com/en-us/azure/kinect-dk/

[229] M. R. Apodaca Moreno, C. A. Paige, J. Stober, D. Rupasinghe, D. Wood,
and D. Newman, “Capturing the moon: 3d mapping and regolith collection for
low-cost lunar rover missions,” in ASCEND 2022, 2022, p. 4285.

[230] M. Isachenkov, S. Chugunov, Z. Landsman, I. Akhatov, A. Metke, A. Tikhonov,
and I. Shishkovsky, “Characterization of novel lunar highland and mare simu-
lants for isru research applications,” Icarus, vol. 376, p. 114873, 2022.

[231] M. Everingham and N. Pelster, “Lunar analog creation: Preparation and oper-
ation of a lunar regolith simulant testbed,” in AIAA SPACE 2009 Conference
& Exposition, 2009, p. 6510.

[232] C. A. Paige, D. D. Haddad, F. Ward, J. Todd, A. Ekblaw, and D. Newman,
“Data collection in svalbard, norway to test the use of virtual reality for lunar
and planetary surface,” in International Conference on Environmental Systems
(ICES), 2023.

[233] R. Salzer and H. W. Siesler, Infrared and Raman spectroscopic imaging. John
Wiley & Sons, 2014.

[234] H. Houshiar and A. Nüchter, “3d point cloud compression using conventional
image compression for efficient data transmission,” in 2015 XXV Interna-
tional Conference on Information, Communication and Automation Technolo-
gies (ICAT). IEEE, 2015, pp. 1–8.

[235] G. K. Wallace, “The jpeg still picture compression standard,” IEEE transactions
on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[236] W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compression
standard. Springer Science & Business Media, 1992.

[237] K. Cowing. (2023, July) An inside look at nokia’s moon mission.
Spaceref. [Online]. Available: https://spaceref.com/newspace-and-tech/
an-inside-look-at-nokias-moon-mission/

[238] K.-M. Cheung and K. Tong, “Proposed data compression schemes for the
galileo s-band contingency mission,” in NASA CONFERENCE PUBLICA-
TION. NASA, 1993, pp. 99–99.

230

https://spaceref.com/newspace-and-tech/an-inside-look-at-nokias-moon-mission/
https://spaceref.com/newspace-and-tech/an-inside-look-at-nokias-moon-mission/

	Introduction
	Prelude
	Background and History
	Mobile Robotic Telepresence
	History of NASA’s Unmanned Rovers on Mars
	Extended Reality: Pioneering Work & Taxonomies

	Related Work
	Digital Twin
	Data Visualization and Manifestation
	Virtual Operations in Space Exploration
	Virtual Human-Robot Interaction
	Human-Robot Systems in Space Exploration

	Thesis Overview
	Prologue
	Research Roadmap
	Selected Research Publications

	Doppelbots
	Introduction
	A Brief Overview of this Chapter
	Rover Mini By Rover Robotics

	Implementation and Design
	User Interface (UI) and User Experience (UX)
	Technical Implementation
	Synthesizing the Virtual Lunar Environment
	Synchronizing the Simulation

	On Going and Future Work
	Visualizing Time Delays in Space Operations
	Doppelbots and Large Language Models (LLMs)
	Integration of LLMs in Space Operations

	Conclusion

	Doppelspot
	Introduction
	A Brief Overview of this Chapter
	Presentation of Spot by Boston Dynamics

	Overview of Spot's Payloads
	LiDAR Enabled Payload
	Modular Custom Payload

	Analog Mission In Marblehead, MA
	Description of the Designated Environment
	Analysis of Test Results and Implications

	Mobile Immersive LiDAR Telepresence
	Augmented Virtuality in Space Analog Environments
	Technical Implementation

	Doppelspot in Virtual Analog Environments
	Conclusion

	Synthesizing Analog Environments
	Introduction
	A Brief Overview of this Chapter
	Analog Sites Selection in Svalbard, Norway

	Operational Geology In a Virtual Environment
	Data Collection in Svalbard
	Hardware Apparatus for Data Collection
	Software Apparatus for Data Collection

	Methodology
	Data Processing and 3D Reconstruction
	Synthesizing Analog Environments
	Unity's High Definition Render Pipelines
	Examination of the Level of Photorealism
	Immersive Sensor Data Player
	Virtual Analog Toolkit

	User Study
	Description of the Study
	Analysis and User Feedback

	Conclusion
	Summary
	Discussion
	Future Work

	Azure Kinect à la Luna
	Introduction
	A Brief Overview of this Chapter
	Technical Overview of the Azure Kinect Device
	Ruggedization of the Microsoft Azure Kinect
	Motivation

	Concepts of Operation
	Capture Modes
	Mission Planning

	The AKALL Payload Software Module
	Technical Implementation
	Docker Containers as Payload
	System Architecture
	Modes of Operation
	Data Processing and 3D Reconstruction

	Hardware and Software Testing Review
	Testing Procedures
	ConOps Analysis and Results
	Software Testing: Analysis and Results

	Conclusion and Future Work
	".ND3": File Format for RGBD Imaging
	Summary
	IM-2 Mission Updates
	Future Work
	Acknowledgment

	Conclusion
	Summary
	Discussion

	Appendix A: Hardware
	Appendix B: Supporting Material
	Chapter 4: Cameras Assessment
	Chapter 4: Inverse Kinematics Procedural Animation Pseudocode
	Chapter 5: Sensor Node Specifications
	Chapter 5: 3D Reconstruction with Open3D
	Chapter 6: Testing Procedures and Results

	Appendix C: Code
	Unity Projects Code Base
	Chapter 3: Rover Mini Configuration
	Chapter 5: Sensor Node
	Chapter 6: AKALL Code Base

	Appendix D: Mysc
	Chapter 6: Filename Terminology
	Chapter 6: Short AKALL Messages (All)
	Chapter 6: Long AKALL Messages (Random)

