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ABSTRACT

A system built on a layered reflective cognitive architecture presents many novel and
difficult software engineering problems. Some of these problems can be ameliorated by
erecting the system on a substrate that implicitly supports tracing the behavior of the system
to the data and through the procedures that produced that behavior. Good traces make the
system accountable; it enables the analysis of success and failure, and thus enhances the
ability to learn from mistakes.

This constructed substrate provides for general parallelism and concurrency, while
supporting the automatic collection of audit trails for all processes, including the processes
that analyze audit trails. My system natively supports a Lisp-like language. In such a
language, as in machine language, a program is data that can be easily manipulated by a
program, making it easier for a user or an automatic procedure to read, edit, and write
programs as they are debugged.

Constructed within this substrate is an implementation of the bottom four layers of
an Emotion Machine cognitive architecture, including built-in reactive, learned reactive,
deliberative, and reflective layers. A simple natural language planning language is presented
for the deliberative control of a problem domain. Also, a number of deliberative planning
algorithms are implemented in this natural planning language, allowing a recursive applica-
tion of reflectively planned control. This recursion is demonstrated in a fifth super-reflective
layer of planned control of the reflective planning layer, implying N reflective layers of
planned control.

Here, I build and demonstrate an example of reflective problem solving through the
use of English plans in a block building problem domain. In my demonstration an Al
model can learn from experience of success or failure. The Al not only learns about physical
activities but also reflectively learns about thinking activities, refining and learning the
utility of built-in knowledge. Procedurally traced memory can be used to assign credit to
those thinking processes that are responsible for the failure, facilitating learning how to
better plan for these types of problems in the future.
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Though there be no such thing as Chance in the world;
our ignorance of the real cause of any event
has the same influence on the understanding,
and begets a like species of belief or opinion.

— Hume (1748)

Dedicated to the loving memory of Pushpinder Singh.
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Eternity has nothing to do with time. Eternity is that dimension
of here and now which thinking and time cuts out. This is it.
And if you don’t get it here, you won't get it anywhere.

— Campbell (1988)
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INTRODUCTION

An intelligent system thinks about a problem domain, learning the
effects of its actions, constructing and executing plans to accomplish its
goals. I will refer to these types of thinking about a problem domain
as deliberative thinking. A reflective intelligence extends the delibera-
tive intelligence by learning to accomplish goals in its own deliberative
thinking process. Reflective thinking is sometimes referred to as “think-
ing about thinking” or “metacognition.” A reflective intelligence can
learn to select between different types of thinking that are appropri-
ate for generating plans toward different types of goals. In this thesis,
I present the Substrate for Accountable Layered Systems (SALS), an
open-source software platform for the development of experimental re-
flective Artificial Intelligences (AI). A deliberative Al system consists of
three processes: (1) perceptual data are generalized and categorized to
learn abstract models, (2) abstract models are used to infer hypothetical
states, i.e. states of future, past, or otherwise “hidden” variables, and
(3) actions are chosen based on considerations of hypothesis dependent
inferences. There are many approaches to machine learning that focus
on this abstract 3-step closed-loop process of learning to control, such
as: reinforcement learning (Kaelbling et al. 1996, DZeroski et al. 2001),
game theory (Bowling & Veloso 2000, Rapoport 2001), and control theory
(Simon 1982, Bertsekas 1995). The discipline of computational metacog-
nition (Cox & Raja 2008, 2010) focuses on making at least two layers
of closed-loop systems. Organizing the 3-step architecture within the
metacognitive framework, deliberative thinking is modeled as a closed-
loop learning algorithm that perceives and learns to control the external
world, while reflective thinking is modeled as a second closed-loop
learning algorithm that perceives and learns to control the delibera-
tive thinking process. In this thesis, I present a tractable approach to
reflective thinking that implies a linear scaling of time-complexity when
extended to N layers of reflective control.

1.1 CONTRIBUTIONS

The four contributions of this thesis are:
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1. Emotion Machine Cognitive Architecture: A computational imple-

mentation of the bottom four layers of the Emotion Machine six-
layered theory of mind (Minsky 2006). The implementation con-
tains a physical simulation that is controlled by a deliberative
physical object-level reasoning layer with another reflective meta-
level reasoning layer that learns to control the deliberative problem
solving resources. The architectural primitives include resources
that are organized into agencies that are organized into layers.
The implementation includes five layers that are described in
chapter 2: (1) built-in reactive thinking, (2) learned reacting think-
ing, (3) deliberative thinking, (4) reflective thinking, and (5) super-
reflective thinking. The implementation leaves self-reflective and
self-conscious layers of the Emotion Machine theory as future
extensions of this research.

. Learning from Being Told Natural Language Plans: A system needs

a plan library. Plan libraries can be authored by humans as se-
quences of simple natural language sentences. The implementation
includes the ability to interpret and imagine executing natural lan-
guage commands by using analogies to natural language plans
that it already knows. In this case, “being told” means that a
natural language plan is programmed into the Al by the user.
Interpreting a natural language plan involves parsing the English
and generating a compiled program, along with imagined hy-
potheses about the program’s effects. These hypotheses are based
on what partial states the plan checks for in the control domain as
well as rules learned from previous executions of similar actions
in the past.

. Learning Asynchronously from Experience: Executing plans in the ex-

ternal problem domain gives the system better expectations for
what plans will actually end up doing when they are interpreted
(section 3.2), imagined (section 3.6) and executed (section 4.1). 1
refer to this form of learning the effects of actions in the problem
domain as learning from “experience.” Many types of failures
can occur when interpreting, imagining and actually executing
ambiguous natural language plans, such as: expectation failures, in-
terpretation failures, type failures, activation failures, and a variety
of low-level system failures. These experiences of different types
of failures inform reflective learning algorithms to subsequently
predict these types of plan failures. Learning from experience is
executed concurrently and asynchronously with the currently ex-



1.2 A STORY OF REFLECTIVE LEARNING

ecuting plan. The learning algorithm receives a stream of frame
mutation trace events from the currently executing plan and uses
this stream to learn abstract causal rule-based models. In this way,
effects of physical and mental actions are learned through expe-
rience without slowing down the primary plan execution speed.
Such failures are input to the reflective layer, which can learn to
predict and avoid these failures in the future.

. Virtual Machine and Programming Language: A concurrent and par-
allel virtual machine and low-level Lisp-like programming lan-
guage provide the foundation upon which all of the above con-
tributions have been implemented. The virtual machine includes
native procedural tracing features that facilitate the automatic
monitoring and control of many concurrently executing tasks. The
virtual machine takes advantage of multiple CPU and multiple-
core CPU hardware configurations. The programming language is
a bytecode compiled language and all code for all contributions

are open source (Appendix A).

1.2 A STORY OF REFLECTIVE LEARNING

Before getting into abstract generalizations of reflective thinking, let us
consider the advice of Seymour Papert: “You can’t think about think-
ing without thinking about thinking about something.” Following this
advice, consider the simple physical block stacking world, depicted in

Figure 1, which is similar to the
Blocks World planning domain
(Winograd 1970). Imagine that the
robot arm in this simple scenario
is an entirely deliberative (non-
reflective) Al that wants to accom-
plish the deliberative goal of a
block being on a block. This Al
has the capability of learning both
from experience as well as from
being told knowledge. The delib-
erative Al has been told a num-
ber of natural language plans for
how to pick up and move around

LGripper-1y

Block-1 Block-2 Block-3 Block-4
Table-1

Figure 1: An example Blocks World
problem domain.

blocks in this problem domain. What types of thoughts might be going
through the mind of this deliberative block stacking AI? The following
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story might be what this type of deliberative Al would be thinking in
this block stacking domain:

I want to accomplish the deliberative goal of a block being
on a block. I must choose how to physically act. I have a
number of plans that I have been told, but I don’t know
what they will do. I am focused on my most recently learned
plan for how to physically act, which is called, “stack a
cube on a pyramid.” I have been told this plan in natural
language, so I must interpret what it means if I am going to
imagine executing it. If I can imagine a way that this plan
could accomplish my deliberative goals, I will execute it. I
will try interpreting and imagining the physical effects of
my most recently learned plan for physical action, “stack a
cube on a pyramid.” I imagine that executing this plan will
accomplish my goal of a block being on a block. I will stop
imagining the rest of my plans and try executing this plan
for physical action. I am picking up a cube and dropping it
on a pyramid. The cube is falling off of the pyramid and onto
the table. Oh no! A block is not on a block. My expectations
have failed! A deliberative plan has failed. I will relearn the
physical effects of my physical actions based on this new
physical knowledge. The next time that I am dropping a
block on a pyramid, I will expect the block to fall onto the
table. Now, I must stop executing this plan and again choose
how to physically act, given my new information.

In this story, the deliberative Al interprets and imagines executing
plans based on reasoning by natural language analogies. Because the
deliberative Al experiences a knowledge failure, the deliberative Al
learns a better model of the effects of its physical actions. If this Al were
reflective, it would be able to learn more from the deliberative failure of
the Al in this story. A reflective Al not only learns the effects of physical
actions but also learns the effects of deliberative actions, such as the
effects of imagining the effects of a plan. How would a reflective Al
approach thinking about accomplishing the same physical goal in the
same problem domain? If the Al were reflective, the following story
might be what it would think to itself as it tries to reflectively decide
how to deliberate about plans for physical action:

I want to accomplish the deliberative goal of a block being
on a block. I also want to avoid plan failures. I have been
told a number of reflective plans for deliberative action, but I
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don’t know what they will do. I must choose a reflective plan
for deliberative action. I am focused on my most recently
learned reflective plan, which is called, “Find and execute a
recently learned plan to accomplish my goals.” I choose to
imagine the effects of the various possible interpretations of
this underspecified natural language plan on my deliberative
knowledge. I can adapt other analogous plans to interpret
this one, and I imagine that at least one interpretation will
not lead to any deliberative plans having any execution
failures, so I choose to execute this reflective plan to “find
and execute a recently learned plan to accomplish my goals.”

At this point in the story, the Al has decided on a plan of deliberative
action. Notice that this story is very similar to the first story, except
rather than deciding on a plan of physical action, the reflective planner
is deciding on a plan for deliberative action. In this case, the “find and
execute a recently learned plan to accomplish my goals” plan is
an implementation of a planning algorithm within the natural planning
language itself. This reflective plan is a sequence of mental actions rather
than physical actions. The fact that the deliberative planning algorithm
is written in the reflective planning language is one key aspect to the
recursive nature of this approach to reflective learning and control. The
reflective Al has a number of reflective plans for how to deliberatively
plan, the method that the AI chose in this case tries to find a plan that it
has been told most recently. So, the Al begins executing this reflective
plan, which becomes the deliberative planning process that tries to find
a plan for acting in the physical problem domain:

I will try interpreting and imagining the physical effects of
my most recently learned plan for physical action, “stack a
cube on a pyramid.” I imagine that executing this plan will
accomplish my goal of a block being on a block. I will stop
imagining the rest of my plans and try executing this plan
for physical action. I am picking up a cube and dropping
it on a pyramid. The cube is falling off of the pyramid and
onto the table. A block is not on a block. Oh no! My deliber-
ative expectations have failed! A deliberative plan has failed.
Oh no, I was reflectively trying to avoid deliberative plan
failures! My reflective expectations have failed! A reflective
plan has failed.

At this point in the story, the Al has encountered two failures that will
lead to two opportunities for learning the effects of both its physical
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actions as well as its deliberative actions. If we consider what the Al
might learn from this story, the Al might think:

I have new support for the hypothesis that dropping a block
while being over a pyramid leads to two blocks being on
the table. I also have new support for the hypothesis that
executing plans that try to accomplish the goal of a cube
being on a pyramid may lead to an expectation failure when
executed.

The fact that the Al failed at both the deliberative and reflective levels
allowed the Al to learn two new sets of hypotheses: (1) about physi-
cal actions, and (2) about deliberative actions. The fact that more can
be learned by adding a reflective layer to a learning algorithm is in-
spiration for researching reflective machine learning in those domains
where physically acting is relatively costly while thinking is relatively
cheap. Now, see how the reflective Al approaches reflectively thinking
differently after it has learned from this initial experience:

I still want to accomplish the deliberative goal of a block be-
ing on a block. I still also want to avoid my negative reflective
goal by keeping the deliberative layer from having plans that
have failed. I must choose another reflective plan for deliber-
ative action. I am focused on my most recently learned reflec-
tive plan, which is called, “find and execute a recently
learned plan to accomplish my goals.” When I imagine
executing this plan, I use my learned hypothesis that pre-
dicts that executing this reflective plan will lead to a failure
in the deliberative knowledge. I choose to not execute this
plan because it does not avoid my negative reflective goal. I
focus on my next plan, “find and execute an old plan to
accomplish my goals.” I can adapt other analogous plans to
interpret this reflective plan, and I have no hypotheses that
predict that this plan will lead to any deliberative failures, so
I choose to execute this reflective plan to “find and execute
an old plan to accomplish my goals.”

After this second round of reflective reasoning, the first reflective plan is
considered and again imagined, but this time the reflective layer predicts
that this reflective plan will lead to a failure in the deliberative layer
because the deliberative conditions are so similar. For example, executing
the same reflective plan in the context of the same deliberative goals
is hypothesized to cause a deliberative failure. Because this conflicts
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with the negative reflective goal to avoid deliberative failures, the first
reflective plan is bypassed. The Al ends up considering another plan and
selecting it for execution. The difference between these two plans is in
how they organize their search through possible plans. The first reflective
plan considers deliberative plans that it has learned most recently, while
the second reflective plan considers deliberative plans that it has learned
furthest in the past. In general, plans may be reflectively organized in
more complicated mental structures, but in order to simply demonstrate
my point, plans are organized in a doubly-linked list structure that goes
forward and backward in time. One could imagine organizing plans by
location, goal, or other equally important metrics in more complex data
structures. Now that the Al has reflectively chosen a different way to
deliberatively plan, the Al executes this reflective plan, which becomes
the deliberative reasoning process:

I will try interpreting and imagining the physical effects of
my oldest plan for physical action, “stack a pyramid on a
cube.” I imagine that executing this plan will accomplish
my goal of a block being on a block. I will stop imagining
the rest of my plans and try executing this plan for physical
action. I am picking up a pyramid and dropping it on a cube.
The pyramid is now sitting on the cube. A block is on a
block. Yay! Executing my oldest plan for physical action has
accomplished my deliberative goal! Yay! I have also avoided
my negative reflective goal to avoid deliberative plan failures!

So, finally, the reflective Al is happy to accomplish its deliberative goal.
Note that the deliberative algorithm would have eventually found and
executed the correct deliberative plan, if it had gone through all of its
plans and imagined all of their effects, finally getting to its oldest plan,
which happened to be the successful one. The advantage of the reflective
learning algorithm is that it allows learning different ways of planning
for dealing with different types of deliberative goals. Reflective planning
allows learning how different plan representations, planning algorithms,
and other deliberative knowledge is relevant to creating plans toward
different types of deliberative goals.

1.3 LAYERS OF KNOWLEDGE

One tricky aspect of programming reflective learning algorithms is
keeping clear distinctions between different layers of knowledge in the
Al Table 1 shows a few examples of physical, deliberative and reflec-
tive knowledge. Note that there is a strict hierarchy in the knowledge
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Physical
Knowledge

A pyramid is on a cube.
A gripper is moving left.
A gripper is above a cube.

A cube is to the left of a pyramid.

Deliberative
Knowledge

Deliberative-Goal-1 is for a cube to be on a pyramid.
Deliberative-Plan-1 is to stack a pyramid on a cube.
Deliberative-Plan-1 fails for Deliberative-Goal-1.
Deliberative-Goal-2 is for a pyramid to be on a cube.

Deliberative-Plan-1 succeeds for Deliberative-Goal-2.

Reflective
Knowledge

Reflective-Goal-1 is to avoid a deliberative planner
being focused on a deliberative plan that has failed in
execution.

Reflective-Plan-1 is to find a recent deliberative plan
to acheive one of my positive deliberative goals.

Reflective-Plan-1 fails for Reflective-Goal-1.

Reflective-Plan-2 is to find an old deliberative plan to
acheive one of my positive deliberative goals.

Reflective-Plan-2 did not fail for Reflective-Goal-1.

Table 1: Examples of physical, deliberative and reflective knowledge.
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Reflective
Knowledge

references

\J

Deliberative
Knowledge

references v

Physical
Knowledge

Figure 2: Three knowledge layers.

references between these layers. Physical knowledge cannot reference
knowledge in other layers. An example of physical knowledge is: “a
pyramid is on a cube.” Physical knowledge is the representation of
the problem domain. Deliberative knowledge cannot reference reflective
knowledge but can reference physical knowledge. An example of delib-
erative knowledge is: “a deliberative planner has the goal for a
cube to be on a pyramid.” Deliberative knowledge includes positive
and negative goals that specify which partial states of the physical knowl-
edge should be sought or avoided. In addition to goals, deliberative
knowledge includes plans, a planner, and potentially failures as well. Re-
flective knowledge can reference deliberative knowledge, which allows
indirect reference to some deliberatively referenced physical knowl-
edge as well. An example of reflective knowledge is: “a reflective
planner has the reflective goal for a deliberative planner to be
focusing on a deliberative plan that is hypothesized to cause a
cube to be on a pyramid.” Reflective knowledge is analogous to delib-
erative knowledge, but instead of being about accomplishing goals in
physical knowledge, reflective knowledge is about accomplishing goals
in deliberative knowledge. Figure 2 shows the hierarchical relationship
between the physical, deliberative and reflective knowledge layers in
the Substrate for Accountable Layered Systems (SALS), the open-source
software platform for the development of experimental reflective Arti-
ficial Intelligences (Al) that I present in this thesis. In general, one can
imagine that the recursive nature of SALS allows for any number of
reflective layers to be added to the top of the reflective Al, resulting in
super-reflective layers of learning planned control.
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1.4 NATURAL LANGUAGE PLANS

SALS includes a simple but powerful planning language that is based
on the interpretation of natural language plans. Plans are sequences of
commands that can be created, mutated, and executed by a planner in
order to accomplish goals. Deliberative plans are sequences of physical
actions, while reflective plans are sequences of mental actions. The
following is an example of a definition of one of the deliberative plans
that the Al in the story could consider executing:

[defplan 'move slowly until over a cube’

[plan-call [plan ’'if a cube is to my left, move slowly
left until over a cube, otherwise if a
cube is to my right, move slowly right
until over a cube’]]

[plan-call [plan 'assert that a cube is below
me’]]]

This expression defines a new deliberative plan. The defplan command
is shorthand for “define plan.” The first argument to the defplan expres-
sion is the name of the plan: “move slowly until over a cube.” The
body of the plan is the remaining sequence of expressions. The first
expression in the body of this plan is to interpret and execute the natural
language phrase beginning with “if a cube...” The second expression
in the body of this plan is to interpret and execute the natural language
phrase beginning with “assert that...” This plan attempts to position
the Al over a cube and fails if a cube is not finally below the AL If
the planner wanted to find a plan to position the Al over a pyramid,
this plan would not help unless it was slightly modified, replacing all
mentions of “cube” with “pyramid.” To help the planner to know what
parts of plans might be analogously replaceable in this way, the SALS
planning language includes optional natural language pattern matching
templates and default frame variable bindings that can be specified for
each plan definition. The following example shows how this simple plan
can be generalized to allow positioning the Al over a range of shapes:

[defplan 'move slowly until over a cube’
:matches ['move slowly until over a [? shape]’]
:frame [[shape 'cube’]]

[plan-call [plan 'if a [? shape] is to my left, move
slowly left until over a [? shape],
otherwise if a [? shape] is to my
right, move slowly right until over
a [? shape]’]]

[plan-call [plan 'assert that a [? shape] is below
me’]]]

This generalized form of the original plan uses natural language vari-
ables that are specified with a question mark expression, “?” Note
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that there are two optional arguments to the defplan expression in this
example: (1) “:matches” and (2) “: frame.” The optional “:matches” ar-
gument specifies a list of potential patterns that this plan may match as
it is being interpreted. In this case, the variable expression “[? shape]”
is allowed to replace the word “cube” from the original name of the
plan. The optional “: frame” argument specifies the default natural lan-
guage variable bindings. In this case, the “shape” variable is assigned
the natural language phrase “cube” by default. In the body of the gen-
eralized form of the plan, all occurrences of cube have been replaced
with the variable expression “[? shape]”. Given this generalized form
of the original plan, the planner can create a new analogous plan as
an interpretation of the natural language phrase “move slowly until
over a pyramid.” In this way, plans can be communicated to the Al in
a natural language form. The AI has been told a total of approximately
one-hundred simple natural language plans, which can be adapted by
analogy to provide interpretations for a variety of complex possible
natural language plans, including recursive interpretations. The details
of the planning language will be described in chapter 3.

1.5 LAYERS OF LEARNING

SALS includes an efficient relational learning algorithm in each layer of
planned thinking. Relational learning in SALS is handled concurrently
with the plan execution in that layer. In this way, as plans are executed
at full speed, a trace of changes are produced and sent to a parallel
event consuming algorithm that induces abstract partial states that are
used to train a rule learning algorithm. The hypotheses that the rule
learning algorithm creates are used to provide explanations as to the
parts of the plan that have caused the traced changes. I have found
that the separation of learning and planning into concurrent algorithms
gives the learning algorithm the time to work more slowly, while the
plan execution can be performed in bursts at near full speed.

The deliberative layer makes deliberative plans composed of physi-
cal actions to accomplish deliberative goals, while the reflective layer
makes reflective plans composed of deliberative actions to accomplish
reflective goals. Deliberative learning allows the Al to better predict
the physical effects of deliberative plans for physical action, while re-
flective learning allows the Al to better predict the deliberative effects
of reflective plans for deliberative action. The Al is learning at a re-
flective level when it thinks to itself, “I also have new support for the
hypothesis that executing plans that try to accomplish the goal of a cube
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being on a pyramid may lead to an expectation failure when executed.”
This newly supported hypothesis is a reflective hypothesis about delib-
erative actions and objects. The Al hierarchically assigns credit to the
responsible parts of the executing plan, “find and execute a recently
learned plan to accomplish my goals,” that was currently executing
at the time of the unexpected failure. This precondition for the execution
of the plan is hypothesized to lead to the effects of this action in delib-
erative knowledge, “a deliberative planner is focused on a plan
that has failed.” The next time that the reflective layer is deciding
whether or not the deliberative planner should execute a given plan, it
can consider this new knowledge and predict whether or not executing
the current plan will put the deliberative planner into a negative or pos-
itive deliberative goal state. I will discuss the details of SALS’ parallel
relational learning algorithm in chapter 4.

1.6 DOCUMENT OVERVIEW

Each of the four contributions of this thesis will be discussed in one
of the following four chapters. My implementation of the bottom four
layers of an Emotion Machine cognitive architecture is discussed next in
chapter 2. In chapter 3, I will describe the natural language planning
language that allows natural language plans to be told to the Al This
chapter will also discuss how the planning process interprets natural
language plans by finding analogies to plans that the Al already knows.
In chapter 4, I will describe how the Al learns from the experience it
gains from actually executing its plans. This chapter will describe the
necessary procedurally reflective components that have been used to
attach complex time-intensive learning algorithms to quickly executing
plans of action. To describe my last contribution, I will describe the
SALS virtual machine and reflectively traced programming language in
chapter 5.

Chapter 6 relates my Al to other contemporary cognitive architec-
tures, approaches to reflective thinking, metacognition, and learning
to plan, as well as other massively multithreaded computer systems.
Chapter 7 evaluates the run-time performance of the SALS Al and
shows a sub-linear increase in time-complexity for each additional re-
flective layer. In chapter 8, I discuss promising directions of future
research for extending this architecture to learn at the top two layers
of the Emotion Machine theory, the self-reflective and self-conscious
layers. Finally, I discuss approaches to overcoming some of the current
limitations in the SALS cognitive architecture.
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EMOTION MACHINE COGNITIVE ARCHITECTURE

The SALS cognitive architecture is inspired by the bottom four layers of
the Emotion Machine theory of human commonsense thinking described
by Minsky (2006). SALS includes architectural primitives for defining
different types of reflective Als. The most basic component of the SALS
architecture is an object called a resource. In general, a resource is any
compiled procedure that can be executed by activating the resource. A
resource is said to be activated if it is currently executing. A resource may
be activated as an action in a plan. If a resource is currently executing, a
duplicate activation failure results from an attempted additional activation
of the resource. If a resource is not currently activated, a resource may
be suppressed, which is a logical internal state of the resource that causes
any attempts to activate the resource to result in a suppressed activation
failure. Resources are usually assigned simple functions that do not
do complicated or intelligent reasoning tasks themselves, but instead,
resources are generally designed so that they perform primitive activities
that can be combined in various ways to perform various resultingly
complex tasks. For example, the simplest resources in the SALS Al
that interact directly with the physical simulation do simple tasks like:
“start moving left,” “start moving right,” “stop moving,” “reach,
and “grab.” Resources may be activated or suppressed by plans in the
layer above those resources. If a resource is suppressed and activated at
the same time, this results in an activation failure that causes a plan to
stop executing, so that it may be reflectively debugged at a higher layer.
Some resources in SALS are referred to as vital resources because they
are activated when the Al is initially created and they never complete
execution. For example, one vital resource monitors any changes to a
visual knowledge base and attempts to create a stable physical model
of the world from these changes. Vital resources are usually used for
processing streams of reflective trace events that monitor and learn from
the effects of other executing resources.

Resources are grouped into collections called agencies. Agencies tend
to be used for combining resources that are used for accomplishing
similar types of goals. For example, the low-level resources that control
the physical simulation are referred to as a physical agency. Resources
that can be activated and used for solving problems are usually grouped
into agencies that separate them from the vital resources. For example,

awi s 7

35



36

EMOTION MACHINE COGNITIVE ARCHITECTURE

the vital resources that process low-level visual knowledge trace events
are separated into a sensory agency.

Agencies are further grouped into collections called layers. The SALS
Al consists of five layers of reflective control. These layers are:

1. The Built-In Reactive Layer
2. The Learned Reactive Layer
3. The Deliberative Layer

4. The Reflective Layer

5. The Super-Reflective Layer

Figure 3 shows an overview of the five layers of the reflective Al The
layers of the AI form cascaded control loops, where each layer controls
the layer below. One would expect that in a real human there are cases
where lower layers activate and suppress upper layers, such as hunger
suppressing rational deliberation. In SALS, this is implemented as a
reflective process that executes a deliberative plan that periodically
checks a specific negative physical goal state exists and fails if it does,
which would cause the reflective process to suppress the appropriate
deliberative resources.
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2.1 THE PHYSICAL SIMULATION

The physical simulation that is used to demonstrate the SALS Al, de-
picted in Figure 4, is similar to the Blocks World planning domain
(Winograd 1970). The physical
simulation is a 2-dimensional, de-
terministic, rigid-body physical
simulation based upon a floating-
point implementation of Newto-
nian physics (F = ma). The sim-
ulation is stepped with a time
step of 0.1 seconds. The grip- m
per can be controlled by the
SALS AI to move left or right

at one of two different speeds,

fast (1 m/s) or slow (0.25 m/s). Figure 4: An example .Blocks .World
problem domain, duplicated

from Figure 1.

The simulation is meant to be
a model of a continuous-time
domain, rather than the logical
propositional type of domain that is often used in other Blocks World
simulations. The dexterous manipulation problem of the gripper picking
up a block is simplified by simply allowing the gripper to magically
grab a block when it touches the top of the block. When a square block
is dropped on top of a triangular block, the square block will fall to
the table in the direction of the center of mass of the square relative
to the triangle. The physical simulation is programmed to recognize
spatial relationships between objects, such as “left-of,” “below,” and
“inside-of.” As the physical simulation is stepped, the SALS Al receives
a stream of relationship changes from the physical simulation.

2.2 THE BUILT-IN REACTIVE LAYER

The built-in reactive layer is the layer of the Al that connects to the
problem domain. In the example, the problem domain is a physical
block stacking world. The lowest level action and perception agencies
are in the built-in reactive layer, such as physical and sensory agencies.
The built-in reactive physical agency contains resources that send asyn-
chronous commands to the physical simulation, which means that these
resources do not receive any response from the physical world, and thus
do not report any types of failure or success status messages after they
have completed being activated. The built-in reactive physical resources
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are for the primitive actions of the physical simulation. The primitive
actions that are exported by the physical simulation directly change its
state. For example, the resource, “start moving left,” can be thought
of as applying 5 volts to a DC motor. The motor may or may not start
turning, but the application of the voltage cannot be sensed as a failure.
The “start moving left” built-in reactive resource puts the physical
simulation into the state of trying to move left. There is no way that this
very basic state changing function can fail in this sense. Any failure to ac-
tually move the robot arm to the left must be detected as an expectation
failure at a higher level of reasoning that correlates actions with changes
in sensory perceptions. The built-in reactive sensory agency receives a
stream of change events from the state of the physical simulation. A
change event is a frame' that consists of a removed attribute or property
to or from a given frame object at a given time. Details of change events
will be discussed in chapter 4, section 4.2. From this stream of changes,
a visual knowledge base is constructed in the built-in reactive layer.

2.2.1  The Visual Knowledge Base

Knowledge bases in SALS consist of collections of interconnected frame-
based objects. The visual knowledge base consists of visual objects that
have a number of property slots with different sets of possible symbolic
values:

e type: {“block”, “table”, “gripper”}

AT

* shape: {“cube”, “pyramid”}

/T

e color: {"red”, “green”, “blue”, “brown”, “white”, “black”}

s i

o movement-command: {“move-left”, “move-right”,

s i A /Tl

“move-right-slowly”, “stop”, “reach”, “grab”, “recoil”}

These properties are meant to be those aspects of the physical world that
the Al can see about a single object, including the type, shape and color
of a visual object. Also, the Al can see what the robot arm, or “gripper”,
is currently commanded to do. The current activity of a gripper object
is stored in the “movement-command” property slot. In addition to each

1 frame: A frame is a memory object that contains attribute or property values (Minsky
1975). Attributes of frames can be frames themselves, allowing for the definition of
recursive memories.
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Figure 5: The built-in reactive layer communicates with the physical simula-
tion.

visual object having properties, each visual object may have different
types of relations to other visual objects that the Al can currently see.

® on

® above

* below

® right-of

o left-of

® below-right-of
* below-left-of

® inside-of

As can be seen in Figure 5, the built-in reactive physical and sensory
agencies connect the Al to the physical simulation. Also shown is the
visual knowledge base, the initial sensory knowledge base in the Al

2.3 THE LEARNED REACTIVE LAYER

The learned reactive layer in SALS does not have direct access to the
physical simulation. Instead, the learned reactive layer perceives the
visual knowledge base in the built-in reactive layer and sends activation
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or suppression commands to the built-in reactive physical agency re-
sources. The learned reactive layer is similar to the built-in reactive layer
because it also contains a physical agency. However, the learned reactive
physical agency contains resources that execute compiled plans from
the deliberative layer above. When these resources are activated, they
execute plans that contain sequences of commands that end up either
activating or suppressing built-in reactive resources in the layer below.
Learned reactive physical resources can fail for a variety of reasons that
will be introduced later when I present the details of plans and the
planning process in chapter 3.

2.3.1 The Physical Knowledge Base

The learned reactive layer contains an agency called the physical knowl-
edge agency. The physical knowledge agency contains resources that
receive a trace event stream of any changes in the visual knowledge
base. In partially observable environments, the physical knowledge base
contains a representations of the physical world that is larger than the
current visual knowledge base may contain as direct sensory knowledge.
The block stacking domain is not a partially observable environment, so
the physical knowledge base in this case is simply a reconstructed copy
of the visual knowledge base. However, in IsisWorld (Smith & Morgan
2010), the partially observable physical problem domain, SALS utilizes
the distinction between visual and physical knowledge as the physical
knowledge base is larger than the partial view of knowledge provided
by the visual knowledge base. In this dissertation, I will not describe
the larger number of different types of objects with more complex rela-
tionships and properties that occur in the IsisWorld physical simulation.
Because my focus is on learning to plan and learning to reflectively plan,
the visual and physical details of the IsisWorld simulation would only
confuse my point.

As can be seen in Figure 6, the learned reactive physical and physical
knowledge agencies connect the higher layers of the Al to the built-in
reactive layer. Also shown is the physical knowledge base, the focus
knowledge base that the deliberative planning layer attempts to accom-
plish goals within.

The basic mechanism for perceptual abstraction in SALS is based
on an object called a partial state. Because all knowledge in SALS is
represented as frames with slots, these knowledge bases can be si-
multaneously represented as semantic graphs with objects and their
symbolic properties as nodes of the graph, while slot names are consid-
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Figure 6: The learned reactive layer communicates with the built-in reactive
layer.
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Figure 7: A graph representation of the physical knowledge base, where frame-
based objects become interconnected collections of elliptical node
labels and rectangular edge labels. This representation is consis-
tent with the physical situation shown previously on page 38 in
Figure 4.

ered the edges of the graph. Figure 7 shows a graph representation for
the physical knowledge base. Given this graph representation of any
SALS knowledge base, a partial state of a SALS knowledge base is any
subgraph of one of these knowledge base graphs. The details of specific
partial state object definitions and how the partial state abstraction pro-
cess works, while avoiding the complexity of a general graph matching
algorithm are described in chapter 4.

2.4 THE DELIBERATIVE LAYER

The deliberative layer is the first planning layer in the SALS cognitive
architecture. The deliberative layer tries to accomplish goals that are
partial states of the physical knowledge base in the learned reactive
layer. Figure 8 shows an overview of the deliberative layer and its con-
nections to the learned reactive layer below. The following are functional
explanations of the labeled parts, A-G, in Figure 8:

A. Natural language plans can enter the deliberative plan knowledge
base from outside of the Al by “being told” by a human user or
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layer. See text in section 2.4 for descriptions of labeled functional
areas, A—G.
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another Al One such natural language plan that has been told to
the SALS Al is to “stack a cube on a pyramid.”

. The deliberative plan knowledge base is where all deliberative natural
language plans for physical action are stored along with the state
of the deliberative planning machine and plan failures. When nat-
ural language plans are told to the deliberative layer of the SALS
Al the plan is stored in the deliberative plan knowledge base.
When plans are manipulated and new plans are created, these
new plans are also stored in the deliberative plan knowledge base.
In the example story presented in chapter 1, the deliberative plan-
ning machine focuses on a plan to “stack a cube on pyramid.”
At this point in the example story, the fact that the deliberative
planning machine is focused on this plan is also stored as knowl-
edge in the deliberative plan knowledge base: “a deliberative
planning machine is focused on a plan to stack a cube on a
pyramid.” Details of the internal representation of the deliberative
plan knowledge base will be described in subsection 2.4.1. The
state of the deliberative plan knowledge base is reflected upon by
the reflective layer, which will be described in section 2.5.

. The deliberative planning agency contains the resources for planning
activities that manipulate plans in the deliberative plan knowledge
base as well as resources that in turn activate the resources in the
neighboring deliberative imagination and execution agencies. The
deliberative planning agency includes resources that cause the
imagination of the effects of a plan in focus, change the planning
focus, manipulate plans currently in focus, as well as cause the
execution of plans currently in focus. The reflective layer, described
in section 2.5, activates the resources in the deliberative planning
agency to control the deliberative planning machine.

. The deliberative imagination agency imagines the hypothetical future
effects of executing deliberative plans for physical action. The
deliberative counterfactual partial state event knowledge base is used as
a scratchpad for storing these hypothetical future physical states.
The current state of the physical knowledge base in the layer below
is used as a starting point for the counterfactual knowledge created
by the deliberative imagination agency. For example, when the
deliberative planning agency focuses the planning machine on the
plan to “stack a cube on a pyramid” and subsequently activates
the deliberative imagination agency, the effects of the plan are
imagined and the deliberative counterfactual partial state event
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knowledge base subsequently contains the physical partial state
for “a cube to be on a pyramid.”

. The deliberative execution agency executes plans by activating and

suppressing resources in the learned reactive physical agency in
the layer below. For example, when the deliberative planning
agency focuses the planning machine on the plan to “stack a
cube on a pyramid” and subsequently activates the deliberative
execution agency, the body of the plan is executed, including acti-
vating resources in the physical agency to “move right,” “grab,”
“move left,” and “drop.”

. A column of agencies and knowledge bases abstract partial states

from the physical knowledge base in the learned reactive layer
below. Because partial state abstraction can be a slow process,
this process is performed asynchronously based on a stream of
change events. A detailed description of partial states and their
asynchronous abstraction will be given in chapter 4, section 4.2.
Abstracted partial state event knowledge is stored in the physical
partial state event knowledge base. The abstraction of partial states is
one of two types of asynchronous processing streams that consti-
tute the SALS Al's ability to learn from the experience of executing
plans.

. A column of agencies and knowledge bases perform asynchronous

learning of abstract causal rule hypotheses from physical agency re-
source execution preconditions. The advantage of an asynchronous
learning algorithm is that it does not slow down the execution of
plans in the deliberative layer. Historical versions of knowledge
bases are reconstructed so that the slower learning algorithms can
discover relevant patterns in this data for predicting the effects of
actions. For example, when the deliberative execution agency exe-
cutes the plan “stack a cube on a pyramid,” the SALS Al learns
that when “a gripper is holding a cube” and “a pyramid is
below a gripper,” the resulting state will not be “a cube is on
a pyramid.” The details of the asynchronous learning of abstract
causal rules from the experience of executing plans will be de-
scribed in chapter 4, section 4.3.

The Deliberative Plan Knowledge Base

The deliberative plan knowledge base is the heart of the deliberative layer,
where all deliberative natural language plans for physical action are
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stored along with the deliberative planning machine and deliberative
plan failures. Natural language plans can enter the deliberative plan
knowledge base from outside of the Al by “being told,” which is a form
of natural language programming, possibly in the form of an natural
language expression from the user. The deliberative planning agency is
the center of executive control in the deliberative layer. The deliberative
planning agency manipulates plans and also activates the deliberative
imagination agency and the deliberative execution agency when these plans
should be imagined or executed. The deliberative imagination agency
uses learned rules that map preconditions of learned reactive physical
agency resource activations to changes that these resources cause to
occur in the learned reactive physical knowledge base. The deliberative
imagination agency uses the deliberative counterfactual partial state event
knowledge base as a scratchpad that can store hypothetical future states of
the learned reactive physical knowledge base if the appropriate learned
reactive physical agency resources are activated. Once the deliberative
planning agency has decided to execute a given plan, the deliberative
execution agency is activated, which executes plans by activating and
suppressing resources in the learned reactive physical agency in the
layer below.
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Similar to the visual and physical knowledge bases, the deliberative
plan knowledge base also consists of collections of interconnected frame-
based objects. The following are different possible property slots and
symbolic values for the deliberative objects in the deliberative plan
knowledge base:

7 i

* type: {“plan”, “planner”, “execution-node”, “failure”}

* has-been-imagined: {“true”, “false”}

default-slot-value: {all natural language strings}

hypothesized-to-cause: {all physical partial states}
* positive-goal: {all physical partial states}
* negative-goal: {all physical partial states}

These properties are examples of those aspects of the deliberative think-
ing layer that the Al can reflectively see about a single deliberative object,
including the type, the default slot values of a natural language plan,
and the goals of a planner. In addition to each deliberative object having
properties, each deliberative object may have different types of relations
to other deliberative objects that the Al can reflectively perceive. Some
are these relations are as follows:

* focus-plan

* execution-plan

* imagination-failure
e execution-failure

* start-execution-node
* previous

* next

* subnode

* supernode

I will describe the details of the objects in the deliberative plan knowl-
edge base in chapter 3, where I will describe learning from being told
and the natural language planning process. A simplified graph repre-
sentation of the deliberative plan knowledge base is shown in Figure 9.
In this figure, knowledge labels A and B refer to the following different
types of deliberative knowledge:

A. The state of the deliberative planning machine includes positive and
negative physical goals as well as references to plans for physical
action that the planning machine is currently focusing on or exe-
cuting. For example, in the story presented in chapter 1, the plan
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unique-identifier

deliberative-planning-machine

positive-goal

unique-identifier, deliberative-goal-1

english-name

positive-goal a cube to be on a pyramid

unique-identifier

deliberative-goal-2

english-name

a pyramid to be on a cube

unique-identifier, deliberative-plan-1

english-name

stack a cube on a pyramid

next-plan fails-for-goal

a cube to be on a pyramid

deliberative-plan-2

english-name

pick up a cube

hypothesized-to-cause

focus-plan

unique-identifier

next-plan

a gripper to be holding a cube

deliberative-plan-3

english-name

move until over a pyramid

hypothesized-to-cause

unique-identifier

next-plan

pyramid to be below a gripper

deliberative-plan-4

english-name

stack a pyramid on a cube

succeeds-for-goal

unique-identifier,

a pyramid to be on a cube

Figure 9: Part of the deliberative plan knowledge base represented as a graph.
See text in subsection 2.4.1 on page 48 for descriptions of knowl-
edge labels, A and B.
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to “want a block to be on a block” is a reflective plan that has
previously been told to the reflective layer of the SALS Al The
execution of this reflective plan causes the deliberative planning
machine to be given two specific positive goals for either “a cube
to be on a pyramid” or “a pyramid to be on a cube.” At the
end of the story, the reflective SALS Al successfully accomplishes
its goal for “a pyramid to be on a cube” by first focusing on the
last plan that it has been told and then executing this plan.

B. Representations of deliberative plans are organized into a linked-
list structure that goes forward and backward in time. Plans that
have been told to the SALS Al furthest in the past are at the be-
ginning of the list. In the example story, the SALS AI uses this
linked-list structure to organize its search through deliberative
plans for physical action. Initially, the SALS Al considers plans
from newest to oldest, which results in finding the plan, “stack
a cube on a pyramid,” which fails to accomplish its goal for “a
cube to be on a pyramid.” Finally, the SALS Al searches through
deliberative plans from oldest to newest and this results in find-
ing the plan, “stack a pyramid on a cube,” which succeeds in
accomplishing its goal for “a pyramid to be on a cube.” At this
point in the example, the SALS Al reflectively learns to apply a
different planning method for the current goals of the deliberative
planning machine.

2.4.2 Asynchronous Learning

To imagine the effects of executing plans, the deliberative layer learns
abstract hypothetical models of the effects of learned reactive physical
agency resource activations. These learned models are generated by
a rule learning algorithm that predicts a hypothetical transframe (Min-
sky 1975) given the preconditions for an action. Transframes represent
changes between one collection of frames and another collection of
frames. The details of transframes in the SALS Al will be discussed in
chapter 4, section 4.3. Asynchronous learning is implemented as two
stages of stream processing. The first stage abstracts partial state events
from a trace event stream composed of any change events that occur in
the learned reactive physical knowledge base. The second stage receives
a stream of activation and completion events from the learned reactive
physical agency resources. Because both of these asynchronous stages
process different types of event streams at different rates, the resulting
knowledge bases are accurate for different points of time in the past.
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Although the timing of the two-staged asynchronous learning in SALS
complicates the implementation, the advantage is simple: the execution
of learned reactive physical agency resources and the manipulation
of the learned reactive physical knowledge base can both operate at
tull speed, while the slower learning algorithm can operate at its own
pace. In practice, resource activations and knowledge changes occur in
high-speed bursts, followed by periods of deliberation, which generally
gives the slower learning algorithms time to catch up. The details of the
SALS asynchronous learning algorithm will be discussed in chapter 4.

2.5 THE REFLECTIVE LAYER

While the deliberative layer focuses on learning the effects of physical
actions to make plans to control the physical knowledge base, the
reflective layer focuses on learning the effects of deliberative planning
actions to make plans to control the deliberative plan knowledge base.
This similarity is abstracted in SALS and is called a planning layer. The
deliberative, reflective, and super-reflective layers are all instantiations
of these planning layer cognitive architectural objects. A planning layer
is an extension that can be added to any paired combination of a
knowledge base and an agency of resources to learn how to use to
control the partial states within the knowledge base. Figure 10 shows
the reflective layer and its connection to the deliberative layer. While
the deliberative layer focuses on learning about making plans to control
the physical knowledge base, the reflective layer focuses on learning
about making plans to control the deliberative plan knowledge base.
This similarity is abstracted in SALS and is called a planning layer. The
deliberative, reflective, and super-reflective layers are all instantiations
of these planning layer cognitive architectural objects.

A. Natural language plans can enter the reflective plan knowledge base
from outside of the Al by “being told” by a human user or another
Al One such reflective natural language plan that has been told
to the SALS Al in the example presented in chapter 1 is to “find
an old plan to accomplish a goal.” Plans in the reflective plan
knowledge base include different methods for how to find or
create plans to accomplish different types of physical partial states,
or deliberative goals.

B. The reflective plan knowledge base is where all reflective natural lan-
guage plans for deliberative action are stored along with the state
of the reflective planning machine and reflective plan failures.
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for descriptions of labeled functional areas, A-G.
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When natural language plans are told to the reflective layer of
the SALS Al, the plan is stored in the reflective plan knowledge
base. In the example story presented in chapter 1, the reflective
planning machine focuses on a plan to “find a recent plan to
accomplish a goal.” At this point in the example story, the fact
that the reflective planning machine is focused on this plan is
also stored as knowledge in the reflective plan knowledge base:
“a reflective planning machine is focused on a plan to find a
recent plan to accomplish a goal.” Details of the internal repre-
sentation of the reflective plan knowledge base will be described
in subsection 2.5.1. The state of the reflective plan knowledge base
is further reflected upon by the super-reflective layer, which will
be described in section 2.6.

. The reflective planning agency contains the resources for reflective
planning activities that manipulate plans in the reflective plan
knowledge base as well as resources that in turn activate the
resources in the neighboring reflective imagination and execu-
tion agencies. The reflective planning agency includes resources
that cause the imagination of the effects of a reflective plan in
focus, change the reflective planning focus, manipulate reflective
plans currently in focus, as well as cause the execution of reflec-
tive plans currently in focus. The super-reflective layer, described
in section 2.6, activates the resources in the reflective planning
agency to control the reflective planning machine.

. The reflective imagination agency imagines the hypothetical future
effects of executing reflective plans for deliberative action. The
reflective counterfactual partial state event knowledge base is used as a
scratchpad for storing these hypothetical future deliberative states.
The current state of the deliberative plan knowledge base in the
layer below is used as a starting point for the counterfactual knowl-
edge created by the reflective imagination agency. For example,
when the reflective planning agency focuses the reflective plan-
ning machine on the plan to “find a recent deliberative plan
to accomplish a goal” and subsequently activates the reflective
imagination agency, the effects of the plan are imagined and the
reflective counterfactual partial state event knowledge base sub-
sequently contains the deliberative partial state for “a plan has
an expectation failure.” This prediction of plan failure does
not require the deliberative layer to imagine the physical effects
of executing physical actions; instead, plan failure is predicted
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reflectively from the structure of the deliberative plan and its
relationship to the deliberative planning machine, including the
current deliberative goals.

. The reflective execution agency executes reflective plans by activating

and suppressing resources in the deliberative plan agency in the
layer below. For example, when the reflective planning agency
focuses the reflective planning machine on the plan to “find
a recent deliberative plan to accomplish a goal” and sub-
sequently activates the reflective execution agency, the body of the
plan is executed, including activating resources in the deliberative
plan agency to “focus on most recent plan,” “focus on previous

plan,” “imagine effects of plan in focus,” and “execute plan
in focus.”

. A column of agencies and knowledge bases abstract partial states

from the deliberative plan knowledge base in the deliberative layer
below. Because partial state abstraction can be a slow process,
this process is performed asynchronously based on a stream of
change events. A detailed description of partial states and their
asynchronous abstraction will be given in chapter 4, section 4.2.
Abstracted partial state event knowledge is stored in the deliberative
plan partial state event knowledge base. The abstraction of partial
states is one of two types of asynchronous processing streams that
constitute the SALS Al’s ability to learn from the experience of
executing plans.

. A column of agencies and knowledge bases perform asynchronous

learning of abstract causal rule hypotheses from deliberative plan
agency resource execution preconditions. The advantage of an
asynchronous learning algorithm is that it does not slow down
the execution of plans in the reflective layer. Historical versions
of the deliberative plan knowledge base are reconstructed so
that the slower learning algorithms in the reflective layer can
discover relevant patterns in this data for predicting the effects
of deliberative actions. For example, when the reflective execu-
tion agency executes the plan to “find a recent deliberative
plan to accomplish a goal,” the SALS Al learns that when “a
planner has the goal for a cube to be on a pyramid” and “a
planner has the goal for a pyramid to be on a cube,” the re-
sulting state will be “a plan has an expectation failure.” The
details of the asynchronous learning of abstract causal rules from
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the experience of executing plans will be described in chapter 4,
section 4.3.

2.5.1 The Reflective Plan Knowledge Base

A simplified graph representation of the reflective plan knowledge base
is shown in Figure 11. In this figure, knowledge labels A and B refer
to the following different types of reflective knowledge:

A. The state of the reflective planning machine includes positive and
negative reflective goals as well as references to reflective plans
for deliberative action. For example, in the story presented in
chapter 1, the reflective planning machine has the negative goal
for avoiding “a planner to be focused on a plan that has failed.”
The reflective planning machine fails to avoid this deliberative
partial state when it executes a plan to “execute a recent plan to
accomplish a goal,” which leads to a failure while executing the
deliberative plan to “stack a cube on a pyramid.”

B. Representations of reflective plans are organized into a linked-list
structure that goes forward and backward in time. Plans that have
been told to the SALS Al furthest in the past are at the beginning
of the list. In the example story, the SALS Al uses this linked-
list structure to organize its search through reflective plans for
deliberative action. Initially, the SALS Al executes the reflective
plan to “execute a recent plan to accomplish a goal,” which
results in a search through deliberative plans for physical action
starting with most recently learned deliberative plans. This search
method leads to a failure to accomplish a deliberative goal, one of
the physical partial states for “a block to be on a block.” The
failure of the deliberative plan to “stack a cube on a pyramid”
subsequently causes the failure of the reflective plan to avoid the
reflective goal of avoiding “a deliberative planner to be focused
on aplan that has failed.” At this point in the example, the SALS
Al reflectively learns to apply a different reflective plan given the
state of the deliberative plan knowledge base, including the current
deliberative goals. The reflective plan to “execute an old plan to
accomplish a goal” initiates a search through deliberative plans
from oldest to newest, which results in accomplishing a positive
deliberative goal and avoiding the negative reflective goal. In this
way, the SALS Al learns to apply different search strategies, or
planning methods, for successfully accomplishing different types
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Figure 11: Part of the reflective plan knowledge base represented as a graph.
See text in subsection 2.5.1 on page 55 for descriptions of knowl-
edge labels, A and B.
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of goals, given feedback from the experience of actually executing
the plans that it has found.

Although the reflective layer of the SALS cognitive architecture is super-
ficially similar to the deliberative layer, the type of knowledge that the
reflective layer reasons about is categorically different. While the deliber-
ative layer plans toward relatively simple physical goals, such as “a cube
to be on a pyramid,” the partial states in the reflective layer are the
much more complex partial states of the deliberative layer below, such
as “a planner to be focusing on a plan that is hypothesized to
cause a cube to be on a pyramid.” Because of the categorically dif-
ferent types of knowledge in different planning layers, each planning
layer has a separate communication path for being told natural language
plans. In general, natural language plans in the deliberative layer are
about controlling the physical robot arm, while natural language plans
in the reflective layer are about controlling the deliberative planner.

2.6 THE SUPER-REFLECTIVE LAYER

The super-reflective layer is the third planning layer in the SALS cogni-
tive architecture, after the deliberative and reflective layers. The learning
examples in this dissertation are focused on two layers of learning: (1) in
the deliberative layer about the physical effects of physical actions, and
(2) in the reflective layer about the deliberative effects of deliberative
actions. To simplify the logistics of implementing the reflective planning
process in the SALS Al, a super-reflective planning layer is included
that contains natural language plans that when executed become the
reflective planning process. The super-reflective plans are very similar
to reflective plans because both of these layers control planning lay-
ers below: the reflective layer controls the deliberative planning layer,
while the super-reflective layer controls the reflective planning layer.
For example, in the story presented in chapter 1, the super-reflective
layer is initially executing a natural language plan to “execute a recent
reflective plan to avoid all negative reflective goals.” An analo-
gous plan exists in the reflective layer for finding a deliberative plan
that avoids all negative deliberative goals, partial states of the physical
knowledge base. This type of plan search can be used in general for
any reflective planning layer that is controlling a planning layer below.
The negative reflective goal that is being avoided in the example story is
for “a deliberative planner to be focused on a plan that has failed.”
In this way, the relationship between the super-reflective layer and the
reflective layer is analogous to the relationship between the reflective
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layer and the deliberative layer. Although the example story does not
include descriptions of super-reflective learning from experience, the
super-reflective layer in the SALS Al is a completely functioning plan-
ning layer and learning from experience is implemented and does occur
in this layer as well.

I have now completed my description of the Emotion Machine cog-
nitive architecture included in the SALS Al I have described how the
bottom four layers of the Emotion Machine theory of mind have been
implemented in terms of the example story presented in chapter 1.
These four layers of the Emotion Machine that have been described are:

1. Built-In Reactive Layer
2. Learned Reactive Layer
3. Deliberative Layer

4. Reflective Layer

I have also described a fifth layer that has been implemented in the SALS
Al the Super-Reflective Layer. I see additions of super-reflective layers as
a means to implementing the Self-Reflective Layer and the Self-Conscious
Layer that exist as layers five and six of the Emotion Machine theory
of mind, which I will describe briefly as future research in chapter 8,
section 8.4 and section 8.5. In the next three chapters I will describe the
remaining three contributions of this thesis:

* Chapter 3: Learning from Being Told Natural Language Plans
e Chapter 4: Learning Asynchronously from Experience

¢ Chapter 5: Virtual Machine and Programming Language



LEARNING FROM BEING TOLD NATURAL
LANGUAGE PLANS

Every planning layer in the SALS cognitive architecture, including the
deliberative, reflective and super-reflective layers, is capable of learning
in two different ways: (1) from “being told” and (2) from “experience.”
Learning from being told occurs in terms of natural language plans
that are programmed into the different layers of the Al by the user or
potentially another Al Figure 12 shows the information pathways in
SALS that are involved in learning from being told as well as learning
from experience. When a layer of the Al learns from being told, a natural
language plan is communicated to that layer from a source external
to the Al, such as a human user. When a layer of the Al learns from
experience, two streams of trace events are received from the layer
below that are asynchronously woven into hypothetical causal models
of the effects of actions. In this chapter, I will focus on learning from
being told natural language plans. I will describe the details of how
each planning layer in SALS asynchronously learns from experience
in chapter 4. The important point that I will elaborate upon in this
chapter is that the SALS Al interprets natural language plans, while
simultaneously considering syntax, semantics, current environmental
context, learned hypothetical knowledge about the effects of actions as
well as the current positive and negative goals of the AI. My approach
is as opposed to linguistic traditions that focus on only one or two of
these aspects of natural language understanding.

Natural language plans in SALS are in the form of a programming
language with variables, conditionals, recursion, ambiguous values, an
imaginative compiler, and the ability to use analogical patterns between
collections of these plans to interpret natural language sentences and
phrases. SALS natural language plans are sequences of commands
that can be created, mutated, and executed by a planning layer to
accomplish goals. The following is an example of a definition of one of
the deliberative plans that the Al in the story could consider executing:

[defplan 'move left’
[call-below 'move left’]]

This expression defines a new deliberative plan. The “defplan” com-
mand is shorthand for “define plan.” The first argument to the “defplan”
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“Being Told” Super-Reflective Layer
planning layer

A

“Experience”

M Reflective Layer
planning layer

A

“Experience”

M Deliberative Layer
planning layer

“Experience”

Learned Reactive Layer
controllable object

Figure 12: Learning from being told and learning from experience both occur
in each SALS planning layer.

expression is the name of the plan: “move left.” The body of the plan
is the remaining sequence of expressions. The only expression in the
body of this plan is the “call-below” expression with the “move left”
argument. This expression activates a resource in the layer below, in this
case, the “move left” resource, which is in the built-in reactive layer of
the AL The “call-below” expression not only activates a resource in
the layer below but also waits for that resource to complete execution or
fail. The “move left” plan defines a possible natural language interpre-
tation for the “move left” phrase, stating that this phrase refers to the
synchronous execution of the “move left” resource in the layer below.
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Consider this analogous plan to the “move left” plan that defines an
interpretation of the “move right” phrase:

[defplan 'move right’
[call-below 'move right’]]

The analogous similarity between the “move left” and “move right”
commands can be abstracted into a new “move left” natural language
plan that uses the following syntax:

[defplan 'move left’
:matches ['move [? direction]’]
:frame [[direction 'left’]]
[call-below 'move [? direction]’]]

This generalized form of the original “move left” and “move right”
plans uses a natural language variable, “direction.” Note that there are
two optional arguments to the “defplan” expression in this example:
(1) “:matches” and (2) “:frame.” The optional “:matches” argument
specifies a list of potential natural language patterns that this plan may
match as it is being interpreted. In this case, the variable expression “[?
direction]” is allowed to replace the word “left” from the original
name of the plan. The optional “: frame” argument specifies the default
natural language variable bindings. In this case, the “direction” vari-
able is assigned the natural language phrase “left” by default. In the
body of the generalized form of the plan, all occurrences of “left” have
been replaced with the variable expression “[? direction]”. Given this
generalized form of the original plan, the planner can create a new
analogous plan as an interpretation of either of the natural language
phrases: “move left” or “move right.”
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3.1 CONDITIONALS AND PARTIAL STATES

The SALS natural planning language includes conditional branches that
can change the course of plan execution based on the existence of partial
states in the knowledge base that it is trying to control. For example,
here is a more complicated SALS plan that shows a number of new
SALS primitives that will be discussed next:

[defplan 'move toward a cube’
[if [exists [relationship block property shape cube
preposition left-of
gripper property is-me true]]
[call-below 'move left’]
[if [exists [relationship block property shape cube
preposition right-of
gripper property is-me truel]
[call-below 'move right’]
[failllll

This plan checks to see if there is a cube to the left of the gripper that
the Al is controlling. If there is a cube to the left, this plan will activate
the “move left” resource in the layer below. If there is not a cube to
the left, this plan then checks to see if there is a cube to the right of
the gripper that the Al is controlling. If there is a cube to the right, this
plan will activate the “move right” resource in the layer below. At this
point, if there is not a cube to the left or to the right, the plan fails. There
are a number of new primitives that are introduced in this example of
conditional branches:

° /lif/l
e “exists”
* “relationship”

e “fail”

The syntax for the SALS “if” expression is similar to the “if” expression
in most lisp-like languages: the first argument is the conditional, the
second argument is the true branch, and the remaining arguments are
the optional body of the false branch. Unlike most lisp-like languages,
the SALS “if” expression’s conditional value must be a Boolean type
object and will fail with any other value. The “fail” expression is a
simple way for a plan to stop executing and mark the plan with the
knowledge of a failure object.
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The “exists” expression accepts a partial state as its only argument
and checks to see if this partial state exists in the knowledge base that
the planning layer is trying to control. When the effects of a plan are
being imagined, the return value of the “exists” expression are not
known, so multiple possible ambiguous values are returned: (1) the
result based on current hypothetical models of the effects of previous
actions or the current state of the knowledge base that this planning
layer is trying to control if no previous actions have been imagined,
(2) a true value based on the possibility that learned models are incor-
rect, and (3) a false value based on the possibility that learned models
are incorrect. The “relationship” expression is one of two special ex-
pressions in SALS that return partial state objects. The “relationship”
expression accepts ten arguments, which map directly to the internal
semantic graph representation of the knowledge base that the planning
layer is trying to control. The following are the ten arguments to the
“relationship” expression:

[y

source-type
source-key-type
source-key
source-value
key-type

key

target-type
target-key-type

o XN PN

target-key

[y
©

target-value

Figure 13 shows how the arguments to the “relationship” expression
map to the frame types, slot values, and properties of a frame-based
knowledge base that is represented as a graph. When an argument
to the “relationship” expression is a symbol, this symbol is checked
against a list of known symbols within the SALS Al If an argument to
the “relationship” expression is not a known symbol, this results in an
interpretation failure, limiting the number of possible interpretations.
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@ source-key-type

source-key

target-key-type
target-key

preposition
left-of

property

Figure 13: The SALS “relationship” expression returns a partial state ob-
ject. The (A) top graph shows the ten argument names for the
“relationship” expression, while the (B) bottom graph shows a
potential partial state of the physical knowledge base that literally
means, “a cube shaped block to be to the left of a gripper
that is me.”

Now, let us consider a slightly different type of partial state expression
in the following example plan that attempts to control the gripper to
grab a block:

[defplan 'attempt to grab block’
[call-below ’'grab’]
[wait-for [property gripper property is-me true
property movement-command
stop]]]

In this plan, two new types of SALS expressions are introduced:

* “wait-for”

* “property”

The “wait-for” expression takes one argument, which similarly to
the “exists” expression, must be a partial state object, such as that
returned by the “relationship” expression. Functionally, the “wait-for”
expression puts the plan to sleep until the specified partial state exists in
the knowledge base in the layer below that this plan is trying to control.
The “property” expression is similar to the “relationship” expression
in that it does return a partial state object, but the “property” expression
only takes the following seven arguments:

7

1. source-type
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@ source-key-type

source-key

source-value

-

is-me

property
movement-command

Figure 14: The SALS “property” expression returns a partial state object. The
(A) top graph shows the seven argument names for the “property”
expression, while the (B) bottom graph shows a potential par-
tial state of the physical knowledge base that literally means, “a
gripper to be me and have a stop movement command.”

source-key-type
source-key
source-value
key-type

key

value

N T WD

Figure 14 shows how the above arguments to the “property” expression
map to the frame types, slot values, and properties of a frame-based
knowledge base that is represented as a graph.
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property
layer

deliberative

property
positive-goal

a cube shaped block to be on a pyramid shaped block >
-a cube shaped block tc pyramid shaped block-

Figure 15: The SALS “relationship” and “property” expressions can be hi-
erarchically combined in planning layers above the deliberative.
Note that any partial states that are sub-expressions of other partial
states become symbolically reified to maintain a frame-based graph
structure for all knowledge.

While the deliberative layer may create plans that refer to partial
states in the physical knowledge base, the reflective layer may create
plans that refer to partial states in the deliberative plan knowledge base,
which may in turn also refer to partial states in the physical knowledge
base. Consider the following example of a reflective plan that includes
this form of hierarchical partial state reference:

[defplan ’'a deliberative planner to have a positive goal
for a cube to be on a pyramid’
[property planner property layer deliberative
property positive-goal
[relationship block property shape cube
preposition on
block property shape pyramid]]]

In this reflective plan, the “property” expression describes a partial
state of the deliberative plan knowledge base, while the “relationship”
expression describes a partial state of the physical knowledge base. For
SALS to convert this expression to a purely deliberative form of knowl-
edge, hierarchical partial states are reified in SALS so that they become
a simple partial state that is purely of one layer’s type of knowledge.
When a partial state object is passed as an argument to another partial
state object, the first partial state is converted to a symbolic form, so that
the entire structure can continue to exist as a simple frame-based graph
structure. Figure 15 shows an example of a hierarchical embedding
of “relationship” and “property” partial states that may occur in any
planning layer above the deliberative layer.
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3.2 PLANS INTERPRETING PLANS

The most powerful capability of the SALS natural language program-
ming language is the ability to find correct interpretations of ambiguous
natural language plans. Let us first define the following simple natural
language plan that returns a “relationship” partial state object:

[defplan 'a cube to be to my left’
[relationship block property shape cube
preposition left-of
gripper property is-me true]]

This plan can be generalized to analogously work for any type of shape
as in the following example:

[defplan ’'a cube to be to my left’
:matches ['a [? shape] to be to my left’]
:frame [[shape ’'cube’]]
[relationship block property shape [? shape]
preposition left-of
gripper property is-me true]]

Now, consider the following plan that makes use of this previous plan
definition and introduces two new SALS expression types for evaluating
natural language plans:

[defplan ’'a cube is to my left’
[exists [plan-call [plan 'a cube to be to my left’]]]]

This last plan returns a true or false value depending on whether or
not the partial state returned by the plan, “a cube to be to my left,”
exists in the knowledge base that the planning layer is trying to control.
Two new types of SALS natural language programming expressions are
introduced in the last plan:

1. “plan-call”

2. “plan”

The “plan” expression can be thought of as taking one argument, a nat-
ural language phrase, and creating and returning one plan object that is
analogous to a plan in the current planning layer. The returned plan is a
procedural interpretation of the natural language expression. While this
is the correct run-time functionality of the “plan” expression, the plan
compiling process can often completely eliminate most plan expressions.
Further, the “plan” expression is further complicated because of the
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common occurrence that multiple analogous plans may match and be
returned from the “plan” expression. In most cases, there are multiple
possible matches for any given natural language phrase. In these cases,
the SALS natural language plan compiler is responsible for imagining
the effects of different interpretations on the knowledge base that the
planning layer is trying to control, while avoiding natural language
plan interpretation failures. The compiling stage in the SALS Al is re-
sponsible for removing all ambiguity from natural language phrases,
so that there is only one procedural interpretation once a plan is in its
final compiled form, ready to be executed. During the compiling stage,
the “plan” expression returns an ambiguous value object. An ambiguous
value object contains multiple possible values that each depend on dif-
ferent analogous natural language plan matches. To handle ambiguous
value objects, each expression in the SALS natural planning language
must separately consider each combination of ambiguous values that are
used as arguments to those expressions. For example, the “plan-call”
expression often takes as its first argument an ambiguous value object
returned by a “plan” expression and must consider each of the possible
ambiguous values during the compiling stage.*

The “plan-call” expression accepts one argument, a plan object,
such as that returned by a previous “plan” expression. The purpose of
the “plan-call” expression is to compile a plan object into the current
location in the current plan that is being defined by the “defplan” ex-
pression. The “plan-call” expression is similar to a macro expansion
operator in Lisp, which allows compiling plans into its own current
location in another plan.> When the first argument is an ambiguous
value object, the “plan-call” expression must choose one of the set of
ambiguous values to compile into the current location. Plans are elimi-
nated by simulating, or “imagining,” their execution and eliminating
those plans that encounter failures that can be detected at compile-time,
such as type mismatch failures. If multiple possible plans still exist after
this elimination process, the first successfully simulated plan is chosen.

The simulation of each of multiple ambiguous values during the compiling stage for
interpreting natural language plans is performed in parallel on concurrent hardware by
the SALS AL

If the plan object is not knowable at compile-time, the SALS AI will delay this macro
expansion process until run-time, but all plans in the example story presented in
chapter 1 have been implemented to allow compile-time macro expansion of the
“plan-call” expressions.
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Now, consider the following redefinition of the previous “move toward
a cube” plan that I defined previously:

[defplan 'move toward a cube’
[if [plan-call [plan ’'a cube is to my left']]
[call-below 'move left’]
[if [plan-call [plan ’'a cube is to my right’']]
[call-below ’'move right’]
[fail]lll

This version of the “move toward a cube” natural language plan is
simpler because it only indirectly references the “relationship” and
“exists” expressions through the “plan” and “plan-call” expressions

that refer to the appropriate analogies to other natural language plans.

Now, consider the following expression that defines an analogy for any
natural language plans that use the “if” expression:

[defplan 'if a cube is to my left, move left,
otherwise move right’
:matches ['if [? condition], [? true-branch],
otherwise [? false-branch]’]

:frame [[condition 'a cube is to my left’]
[true-branch 'move left’]
[false-branch 'move right’]]

[if [plan-call [plan [? condition]]]
[plan-call [plan [? true-branch]]]
[plan-call [plan [? false-branchl]]l]]

Using this definition of an analogy for the “if” expression, the origi-
nal “move toward a cube” natural language plan can be rewritten as
follows:

[defplan 'move toward a cube’

[plan-call [plan ’'if a cube is to my left, move
left, otherwise if a cube is
to my right, move right,
otherwise fail’]l]]

Note that this last plan uses two “if” statements, the second is in the
false branch of the first.
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Before getting to the details of how ambiguity is searched through
and eliminated in the SALS natural language plan compiler, consider
the following definitions that include the SALS “not” expression:

[defplan ’'a cube is not to my left’
[not [plan-call [plan ’'a cube is to my left’']]1]]

The SALS “not” expression is similar to the “not” expression in most
lisp-like programming languages in that it takes one argument. Unlike
most lisp-like languages, the SALS “not” expression only accepts a
Boolean type of object. The “not” expression returns a new Boolean
type object that represents the opposite value of the argument. The
following is an analogous plan that can be used to generalize this
natural language usage of the “not” expression:

[defplan 'a cube is not to my left’
:matches ['[? subject] is not [? preposition]’]
:frame [[subject "a cube’]
[preposition 'to my left’]]
[not [plan-call [plan '[? subject] is
[? preposition]’]]]]

This plan allows many negative expressions to analogously have a cor-
rect interpretation, such as “if a pyramid is not to my right, move
left, otherwise fail.”
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3.3 PLANS WITH RECURSIVE INTERPRETATIONS

Another powerful component of the SALS natural programming lan-
guage is the ability to compile natural language plans that include
recursive references, which enable plans to describe looping functional-
ity. SALS also has a primitive capability to imagine the possible effects
of loops by imaginatively unrolling the loop only once. Plan objects
have a slot-value Boolean property that keeps track of whether or not
the plan “has been imagined.” This property is false when a plan is
first learned or created and becomes true once the effects of a plan are
imagined in the current context, given the currect goals. A planning
process must search through possible plans to find a plan whose effects
accomplish positive goals and avoid negative goals. Part of this planning
process must find plans whose effects have not yet been imagined. The
following example is a definition of a reflective natural language plan
that searches for a deliberative plan whose effects have not yet been
imagined:

[defplan ’'find next unimagined plan’
[call-below ’'focus on next object’]
[plan-call [plan 'if a planner is focusing on
a plan that has been imagined,
find next unimagined plan’]]]

7

Notice that the name of this plan is “find next unimagined plan,”
which is the same as the true branch of the natural language “if”
statement in the body of the plan. This plan checks to see if the plan
currently in the focus of the deliberative planner has been imagined. If
the plan in deliberative focus has been imagined, this plan calls itself
recursively until the deliberative planner is focusing on a plan that has
not been imagined.
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3.4 PLANS REIFY HIERARCHICAL PARTIAL STATES

As a final example of a natural language plan interpreting a natural
language plan, consider again the following hierarchical partial state
construction from a reflective natural language plan from earlier in this
chapter in Figure 15 on page 66:

[defplan 'a deliberative planner to have a positive goal
for a cube to be on a pyramid’
[property planner property layer deliberative
property positive-goal
[relationship block property shape cube
preposition on
block property shape pyramid]]]

This reflective natural language plan can be abstracted with “plan” and
“plan-call” expressions as in the following example:

[defplan ’'a deliberative planner to have a positive goal
for a cube to be on a pyramid’
:matches ['a deliberative planner to have a positive
goal for [? partial-state]’]
:frame [[partial-state ’'a cube to be on a pyramid’]]
[property planner property layer deliberative
property positive-goal
[plan-call [plan [? partial-state]]]]]

In this way, analogous reflective plans can be created to allow the
interpretation of any natural language physical partial state being a
positive goal of the deliberative planning layer. While the above plan
provides interpretations for partial states that involve a planner pursuing
a positive goal, the same technique can be used to create reflective
natural language plans that provide interpretations of partial states that
include a planner that is avoiding negative goals.

3.5 ANALOGOUS PLAN INTERPRETATION

As previously described, the “plan” expression in a SALS natural lan-
guage plan returns a plan object that either matches the name of a plan
previously defined via the “defplan” expression, or if an analogy can
be found to an existing plan, a new analogous plan object is created
and returned as the result of the “plan” expression. Because of the
possibility that multiple plans may match a given “plan” expression, it
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is the task of the SALS compiler to imagine the effects of the different
interpretations and decide upon one for execution. The SALS natural
language plan compiler must handle multiple ambiguous return values
for each “plan” expression. Let us consider again the following natural
language plan that must be imagined and interpreted, which requires
the compiler to sort through multiple possible interpretations:

[plan-call [plan 'if a cube is not on a pyramid, stack a
cube on a pyramid’]]

A reasonable way to expect this natural language phrase to be inter-
preted is as a plan analogous to the natural language plan for the “if”
expression similar to the one previously defined, as in the following:

[defplan 'if a cube is not on a pyramid, stack a cube on a

pyramid’
:matches ['if [? condition], [? true-branch]’]
:frame [[condition "a cube is not on a pyramid’]

[true-branch ’'stack a cube on a pyramid’]]
[if [plan-call [plan [? condition]]]
[plan-call [plan [? true-branch]]l1]1]

Although this plan makes sense, there are many other possible problem-
atic analogies to previously defined natural language plans that do not
make any sense at all. The following problematic interpretation is one
example:

[defplan 'if a cube is not on a pyramid, stack a cube on a

pyramid’
:matches [’'[? subject] is not [? preposition]’]
:frame [[subject "if a cube']
[preposition ’'on a pyramid, stack a cube on a

pyramid’]]
[not [plan-call [plan ’'[? subject] is
[? preposition]’']]]]

Notice that the natural language value of the “subject” variable in the
previous problematic interpretation is equal to “if a cube.” The follow-
ing is the result of one step in compiling this problematic interpretation:

[not [plan-call [plan ’'if a cube is on a pyramid, stack a
cube on a pyramid’]]]

Notice that the “not” expression has been moved to the front of this
expression after it has been partially compiled. The following is the
result of another couple steps of further interpreting the remaining
natural language in this expression:
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[not [if [exists [plan-call [plan ’'a cube to be on a
pyramid’]]]
[plan-call [plan ’'stack a cube on a pyramid’]]1]]

When this problematic interpretation is imagined, the result from the
“exists” expression is a Boolean value, so this satisfies the “if” condi-
tional type requirement. However, the result of the “if” expression is
the special type “nil,” which is not a Boolean value in the SALS natural
programming language. Because the “not” expression strictly requires
a Boolean type value, the imaginative interpretation of this plan fails
when the nil value from the “if” statement reaches the “not” expres-
sion. Using strict typing in the low-level details of the SALS natural
programming language allows ambiguous high-level expressions with
many possible interpretations to be narrowed down to a few that make
programmatic sense. By introducing more constraints to the low-level
details of the SALS natural programming language, many types of plan
failures can be imagined and avoided, even while using this very loose
type of natural language analogical matching technique. Not all errors
can be imagined and avoided through imaginative compiling, but many
types of failures are avoided in this way. However, some failures, such
as expectation failures, can only be realized during the actual execution
of the plan.

36 IMAGINING THE EFFECTS OF AMBIGUOUS PLANS

As natural language plans are interpreted, the hypothetical effects of any
resource activations in the layer below are also simultaneously imagined
in the counterfactual knowledge base of that planning layer. Imagining
the effects of resource activations first requires that hypothetical models
of the effects of resource activations exist. Hypothetical models of the
effects of resource activations in SALS provide a rule-based mapping
from the preconditions of the resource activation to the potential trans-
frames for the resource activation. The preconditions and transframes
are in terms of the abstract partial states that have previously existed
in the knowledge base that the planning layer is trying to control. For
example, “a gripper that is me being above a cube shaped block”
could be one of many preconditions for an action. All partial states that
can be returned by the “relationship” and “property” expressions
in the SALS natural programming language are efficiently abstracted
asynchronously from the knowledge base that the planning layer is
trying to control. I will describe the details of the abstract asynchronous
learning algorithm for each planning layer in chapter 4. For now, know
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that abstract hypothetical models of resource activations are learned
and can be used for imagining the effects of resource activations during
the natural language plan interpretation process.

Because some expressions in the SALS natural planning language can
return multiple possible ambiguous values, one task of the planning
layer is to decide which of the multiple possible interpretations is com-
plete, accomplishes positive goals and avoids negative goals. This means
that each expression in the SALS natural programming language may
have one or more possible different outcomes, depending on the inter-
pretation path and which one of potentially multiple ambiguous values
is chosen to be executed when a decision must be made. In order to keep
track of each of these different interpretations, each plan expression
is allocated an execution node object and each decision among multiple
ambiguous argument values is allocated an argument decision node object
in the plan knowledge base of that planning layer. The execution node
objects correspond to the functional hierarchy of the imagined natural
language plan execution, while the argument decision node objects
represent any points in the imagined execution where two potentially
different sub-trees of the functional execution could occur based on dif-
ferent choices between multiple possible ambiguous return values from
sub-expressions of the current expression being imaginatively executed.
Figure 16 shows a graph representation of the frame-based deliberative
plan knowledge base as it is in the process of imaginatively evaluating
the following simple plan:

[defplan 'a cube is not on a pyramid’
:matches ['[? subject] is not [? preposition]’]
:frame [[subject "a cube’]
[preposition ’'on a pyramid’]]
[not [plan-call [plan '[? subject] is
[? preposition]’']]]]

When this natural language plan is imaginatively interpreted, there are
multiple possible values returned from the “plan” expression, which
returns analogous plans that match the natural language phrase, “a
cube is on a pyramid.” In this case, there are the two following plans
that are created as analogies to other known plans:
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| focus-plan I | positive-goal I | execution-plan
é@
| first-node I | has-been-imagined I

Execution-Node

| subnode I | expression-type I
©
| expression-type I | argument-decision I | argument-decision I

Argument-Decision-Node Execution-Node

Execution-Node

expression-type

Argument-Decision-Node

Execution-Node

expression-type

expression-type

Figure 16: A graph representation of the deliberative plan knowledge base
where nodes are represented by ellipses and edge labels are rep-
resented by rectangles. A simple plan with multiple ambiguous
interpretations is being imaginatively interpreted and evaluated.
The deliberative planner object is focusing on a plan object that has
been partially evaluated. The first execution-node object of this plan
object represents the partial interpretation of a “not” expression
that has a “plan-call” sub-expression. The “plan” expression re-
turns two possible values, which are interpreted separately under
“argument-decision-node” expressions.
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1. [defplan 'a pyramid is on a cube’
:matches ['a [? top-shape] is on a [? bottom-shape]’]
:frame [[top-shape "pyramid’ ]
[bottom-shape 'cube’]]
[exists [relationship block property shape
[? top-shape]
preposition on
block property shape
[? bottom-shape]]]l]

2. [defplan 'a pyramid is on a cube’
:matches ['a [? top-color] is on a [? bottom-color]’]
:frame [[top-color "pyramid’ ]
[bottom-color 'cube’]]
[exists [relationship block property color
[? top-color]
preposition on
block property color
[? bottom-color]]]]

The first of these two analogous interpretations is what one would ex-
pect: the natural language phrases “pyramid” and “cube” are interpreted
to be shapes of blocks that are on top of one another. The second of
these interpretations is less obvious and incorrectly interprets “pyramid”
and “cube” to be colors. This problematic interpretation is an analogy
to the following plan that the SALS Al already knows:

[defplan 'a red is on a blue’
:matches ['a [? top-color] is on a [? bottom-color]’]
:frame [[top-color "red’]
[bottom-color 'blue’]]
[exists [relationship block property color
[? top-color]
preposition on
block property color
[? bottom-color]]l]

The SALS Al does not immediately know that “red” and “blue” are col-
ors, while “cube” and “pyramid” are shapes. While types of partial states
could be programmed into the SALS Al so that these specific words
could be assigned specific symbolic types, this is not the approach taken
in the SALS AL Instead, both of these interpretations are plausible in the
SALS Al However, when the SALS Al does finish imagining all possible
interpretations of a natural language phrase, each different resulting
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analogous plan has a set of associated hypothetical states that this plan
may or may not accomplish. If the possible effects of a plan include a
“pyramid” color, which does not make sense, the SALS Al sees that this is
not one of its goals, so it ignores this interpretation for that reason alone.
The SALS Al is a goal-oriented natural language understanding system
in this sense—finding those natural language plan interpretations that
it thinks will accomplish its positive goals. On the other hand, the SALS
Al considers its negative goals in the opposite sense: when a natural
language plan interpretation is hypothesized to accomplish a negative
goal, that plan interpretation is ignored. The SALS Al can be considered
to be an “optimistic” or “pessimistic” natural language understanding
system in these cases. The important point here is that the SALS Al
interprets natural language plans, while simultaneously considering
syntax, semantics, current environmental context, learned hypothetical
knowledge about the effects of actions as well as the current positive
and negative goals of the AL

There are two ways that a natural language plan is hypothesized to
cause a specific partial state: (1) learned hypothetical models are used to
predict the effects of actions, and (2) existence checks for partial states
during the imaginative interpretation of the plan are used as secondary
evidence that a plan may or may not be expecting a specific partial state
to exist during its execution. For example, if a natural language plan
checks for the existence of the partial state, “a cube shaped block to
be on top of a pyramid shaped block,” this existence check provides
secondary evidence that this plan could be expecting this state to exist
during its execution. This secondary evidence of the possible intentions
of a plan is an example of knowledge learned during the imaginative
interpretation of natural language plans in the SALS Al



LEARNING ASYNCHRONOUSLY FROM EXPERIENCE

In the previous chapter, chapter 3, I have described the details of one
of two main types of learning in the SALS cognitive architecture. To
briefly review, every planning layer in the SALS cognitive architecture,
including the deliberative, reflective and super-reflective layers, is ca-
pable of learning in two different ways: (1) from “being told” and (2)
from “experience.” Learning from being told occurs in terms of natural
language plans that are programmed into the different planning layers
of the Al by the user or potentially another AI. When plans are told to
a planning layer in the Al, the planning layer reasons about different
interpretations and imagined effects of the natural language plans. In
Figure 12, which is reproduced in Figure 17 for convenience, shows the
information pathways in SALS that are involved in learning from being
told as well as learning from experience. When a layer of the Al learns
from being told, a natural language plan is communicated to that layer
from a source external to the Al, such as a human user. When a layer of
the Al learns from experience, two streams of trace events are received
from the layer below that are asynchronously woven into hypothetical
causal models of the effects of actions. In this chapter, I will focus on
how the SALS Al learns from the experience of actually executing the
compiled natural language plans that result from the successful interpre-
tation and imagination described in the previous chapter. Learning from
experience gives the SALS Al new hypothetical models of the effects of
activating resources in the layers below that a given planning layer is
trying to control.
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“Experience”
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I‘“Experience”

Learned Reactive Layer
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Figure 17: Learning from being told and learning from experience both oc-
cur in each SALS planning layer. This figure is reproduced from
Figure 12 on page 60 of the previous chapter.

4.1 TWO EXPERIENTIAL EVENT STREAMS

Each planning layer in the SALS Al receives two event streams from the
layer below that it is trying to control: (1) a stream of all changes in the
knowledge base that the planning layer is trying to control and (2) a
stream of all activations and completions of resource executions. I will
refer to these two asynchronous information processing pathways as:

1. partial state event reification, and

2. resource causal rule-learning.

For the deliberative planning layer, these two streams of events come
from (1) the changes in the physical knowledge base in the learned reac-
tive layer and (2) the activation and completion events for the resources
in the learned reactive physical agency. Analogously, for the reflective
layer, these two streams of events come from (1) changes in the delibera-
tive plan knowledge base in the deliberative layer and (2) the activation
and completion events for the resources in the deliberative plan agency.
The super-reflective layer follows the same pattern with the two streams
of events coming from (1) the changes in the reflective plan knowledge
base in the reflective layer and (2) the activation and completion events
for the resources in the reflective plan agency. Figure 18 shows two
experiential event streams that flow into the deliberative planning layer



4.1 TWO EXPERIENTIAL EVENT STREAMS

from the learned reactive layer. Analogous event streams flow from the
deliberative planning layer to the reflective planning layer and from
the reflective planning layer to the super-reflective planning layer. Each
of these two event streams are processed by separate information pro-
cessing pathways each involving multiple planning layer agencies and
knowledge bases before being woven into hypothetical models of the
effects of resource executions of the learned reactive layer. Partial state
event reification is performed in the first stage of asynchronous informa-
tion processing. Changes in the physical knowledge base are streamed
to the deliberative planning layer where they are reified into the physi-
cal partial state event knowledge base. Resource causal rule-learning is
performed in the second stage of asynchronous information processing.
Activation and completion events of resources in the learned reactive
physical agency are streamed to the deliberative planning layer where
they are correlated with the physical partial state event knowledge base
where rule learning is used to develop hypothetical models of the effects
of actions.

Figure 19 shows the two experiential event streams that flow into the
reflective planning layer from the deliberative planning layer. Analogous
event streams flow from the learned reactive layer to the deliberative
planning layer and from the reflective planning layer to the super-
reflective planning layer. Each of these two event streams are processed
by separate information processing pathways each involving multiple
planning layer agencies and knowledge bases before being woven into
hypothetical models of the effects of resource executions of the delib-
erative planning layer. Partial state event reification is performed in
the first stage of asynchronous information processing. Changes in the
deliberative plan knowledge base are streamed to the reflective plan-
ning layer where they are reified into the deliberative plan partial state
event knowledge base. Resource causal rule-learning is performed in
the second stage of asynchronous information processing. Activation
and completion events of resources in the deliberative planning agency
are streamed to the reflective planning layer where they are correlated
with the deliberative plan partial state event knowledge base where rule
learning is used to develop hypothetical models of the effects of actions.

Figure 20 shows the two experiential event streams that flow into
the super-reflective planning layer from the reflective planning layer.
Analogous event streams flow from the learned reactive layer to the
deliberative planning layer and from the deliberative planning layer
to the reflective planning layer. Each of these two event streams are
processed by separate information processing pathways each involving
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Figure 18: Two experiential event streams flow from the learned reactive layer

into the deliberative planning layer in the SALS Al Analogous
event streams flow from the deliberative planning layer to the re-
flective planning layer and from the reflective planning layer to
the super-reflective planning layer. Each of these two event streams
are processed by separate information processing pathways each
involving multiple planning layer agencies and knowledge bases be-
fore being woven into hypothetical models of the effects of resource
executions of the learned reactive layer. (A) Partial state event reifi-
cation is performed in the first stage of asynchronous information
processing. Changes in the physical knowledge base are streamed
to the deliberative planning layer where they are reified into the
physical partial state event knowledge base. (B) Resource causal
rule-learning is performed in the second stage of asynchronous
information processing. Activation and completion events of re-
sources in the learned reactive physical agency are streamed to
the deliberative planning layer where they are correlated with the
physical partial state event knowledge base where rule learning is
used to develop hypothetical models of the effects of actions.
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Figure 19: Two experiential event streams flow from the deliberative planning
layer into the reflective planning layer in the SALS Al. Analogous
event streams flow from the learned reactive layer to the deliber-
ative planning layer and from the reflective planning layer to the
super-reflective planning layer. Each of these two event streams
are processed by separate information processing pathways each
involving multiple planning layer agencies and knowledge bases be-
fore being woven into hypothetical models of the effects of resource
executions of the deliberative planning layer. (A) Partial state event
reification is performed in the first stage of asynchronous informa-
tion processing. Changes in the deliberative plan knowledge base
are streamed to the reflective planning layer where they are reified
into the deliberative plan partial state event knowledge base. (B)
Resource causal rule-learning is performed in the second stage of
asynchronous information processing. Activation and completion
events of resources in the deliberative planning agency are streamed
to the reflective planning layer where they are correlated with the
deliberative plan partial state event knowledge base where rule
learning is used to develop hypothetical models of the effects of
actions.
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Figure 20: Two experiential event streams flow from the reflective planning
layer into the super-reflective planning layer in the SALS Al Anal-
ogous event streams flow from the learned reactive layer to the
deliberative planning layer and from the deliberative planning layer
to the reflective planning layer. Each of these two event streams
are processed by separate information processing pathways each
involving multiple planning layer agencies and knowledge bases
before being woven into hypothetical models of the effects of re-
source executions of the reflective planning layer. (A) Partial state
event reification is performed in the first stage of asynchronous
information processing. Changes in the reflective plan knowledge
base are streamed to the super-reflective planning layer where they
are reified into the reflective plan partial state event knowledge base.
(B) Resource causal rule-learning is performed in the second stage
of asynchronous information processing. Activation and completion
events of resources in the reflective planning agency are streamed
to the super-reflective planning layer where they are correlated with
the reflective plan partial state event knowledge base where rule
learning is used to develop hypothetical models of the effects of
actions.
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multiple planning layer agencies and knowledge bases before being
woven into hypothetical models of the effects of resource executions of
the reflective planning layer. Partial state event reification is performed
in the first stage of asynchronous information processing. Changes in
the reflective plan knowledge base are streamed to the super-reflective
planning layer where they are reified into the reflective plan partial state
event knowledge base. Resource causal rule-learning is performed in
the second stage of asynchronous information processing. Activation
and completion events of resources in the reflective planning agency are
streamed to the super-reflective planning layer where they are correlated
with the reflective plan partial state event knowledge base where rule
learning is used to develop hypothetical models of the effects of actions.

4.2 PARTIAL STATE EVENT REIFICATION

Partial state event reification is the first stage of asynchronous informa-
tion processing of an experiential event stream that any given planning
layer receives from the changes in the knowledge base that it is trying
to control. Reification is the process that allows a subgraph in the layer
below to be replaced by a symbol in the layer above. A change event
object has the following six properties:

1. time
change-type
source
key-type
key

AL

target

The “time” of the change event object is the clock time at which the
change occurred. The “change-type” property of the change event
object is one of two symbolic values: (1) “add” or (2) “remove.” The
“source” property of the change event object is the frame-based object
in the knowledge base that has had a slot value added or removed. The
“key-type” and “key” properties of the change event object are both
symbolic values that together refer to the name of the slot of the frame-
based object in the knowledge base that has been added or removed.
The “target” property of the change event object is the slot value of
the frame-based object in the knowledge base that has been added or
removed. The “target” property can either be a symbolic property or
another frame-based object.
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Every single change that occurs within the knowledge base that a
planning layer is trying to control results in a change event object being
appended to a procedurally reflective event stream that flows into the
planning layer above. The first agency in the planning layer that receives
this event stream reconstructs a copy of the knowledge base that it is
trying to control. Because an event stream can be buffered, this recon-
structed knowledge base can move forward in time more slowly than the
knowledge base that the planning layer is trying to control. Creating a
reconstruction of the knowledge base under control is important because
this allows the partial state event reification to occur asynchronously
with the process that is making changes to the knowledge base under
control. In practice, because sets of changes to knowledge bases often
occur in bursts, the buffering of event streams usually does not lead
to arbitrarily long buffer lengths. Once an event has been integrated
into the knowledge base reconstruction, this change results in adding or
removing a subset of partial states from the knowledge base reconstruc-
tion. This subset of partial state changes is computed and each change
in this subset is integrated into the partial state event knowledge base.
Computing all possible partial states would be an intractable problem,
so the SALS Al does not reify all partial states that occur in the recon-
structed knowledge base, but instead only focuses on two specific types
of partial states: (1) “relationship” partial states and (2) “property”
partial states.

The SALS “relationship” and “property” types of partial states
are the same as those described in chapter 3 as the return values of
the “relationship” and “property” expressions of the SALS natural
programming language. To briefly review, the following are the ten
arguments to the “relationship” expression, which define a SALS
“relationship” partial state:

1. source-type

2. source-key-type
3. source-key

4. source-value

5. key-type

6. key

7. target-type

8. target-key-type
9. target-key

10. target-value
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@ source-key-type

source-key

key-type
key

target-key-type
target-key

preposition
left-of
property

Figure 21: A SALS “relationship” partial state. This figure is reproduced
from Figure 13 on page 64 for convenience. The (A) top graph
shows the ten argument names for the “relationship” expression.
The (B) bottom graph shows a potential partial state of the physical
knowledge base that literally means, “a cube shaped block to be
to the left of a gripper that is me.”

Figure 21 shows how the arguments to the SALS “relationship” par-
tial state map to the frame types, slot values, and properties of a
frame-based knowledge base as it is represented as a graph. The SALS
“property” partial state represents the conjunction of two different prop-
erties of a frame-based object and takes the following seven arguments:

1. source-type
source-key-type
source-key
source-value
key-type

key

NN

value

Figure 21 shows how the arguments to the “property” expression map
to the frame types, slot values, and properties of a frame-based knowl-
edge base that is represented as a graph. While the reception of a single
“add” or “remove” change event object only adds or removes a single
edge from the knowledge base, this results in potentially adding or
removing many “relationship” and “property” type partial states to
or from that knowledge base. Figure 23 shows how a “remove” change
event object is integrated into the reconstructed physical knowledge
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@ source-key-type

source-key

source-value

property
is-me

property
movement-command

Figure 22: The SALS “property” partial state object. This figure is reproduced
from Figure 14 on page 65 for convenience. The (A) top graph
shows the seven argument names for the “property” expression.
The (B) bottom graph shows a potential partial state of the physi-
cal knowledge base that literally means, “a gripper to be me and
have a stop movement command.”

base. Figure 24 shows how an “add” change event object is integrated
into the reconstructed physical knowledge base.

The fact that the SALS cognitive architecture only has two types of
partial state objects, the “relationship” and “property” partial state
objects, is a current limitation of the SALS cognitive architecture. This
means that the architecture cannot pursue goals or make judgments
about other potentially more complex types of partial states in the
knowledge bases that planning layers are attempting to control. For
example, the “property” partial state object is only able to describe
partial states of a knowledge base that involve two properties of a single
frame-based object, while the “relationship” partial state object is only
able to describe partial states of a knowledge base that involve one rela-
tionship between two frame-based objects with one symbolic property
each. While these two types of partial state objects can sometimes be
combined in clever ways to describe some more complex partial states,
generally, if a goal condition requires a partial state object description
of three or more frame-based objects that are related with three or more
properties each, there are not currently SALS partial state objects that di-
rectly describe these more complex types of partial states. In chapter 8, I
will describe an idea for how types of partial states in the SALS cognitive
architecture could be reified in future research to include any specific
type of subgraph in a frame-based knowledge base, but for now, the
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Figure 23: A “remove” change event object is integrated into the reconstructed
physical knowledge base. In this case, a pyramid shaped block is
no longer related by the “on” relationship to a white colored table
object. While the reception of a single “remove” change event object
only removes a single edge from the knowledge base, this results in
potentially removing many partial states from that knowledge base.
(A) The reconstructed physical knowledge base in the deliberative
layer before a “remove” change event object is received by the delib-
erative physical knowledge agency. (B) The reconstructed physical
knowledge base in the deliberative layer after a “remove” change
event object is received by the deliberative physical knowledge
agency.
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Figure 24: An “add” change event object is integrated into the reconstructed
physical knowledge base. In this case, a pyramid shaped block is
now related by the “on” relationship to a cube shaped block ob-
ject. While the reception of a single “add” change event object only
adds a single edge to the knowledge base, this results in potentially
adding many partial states to that knowledge base. (A) The recon-
structed physical knowledge base in the deliberative layer before
an “add” change event object is received by the deliberative physi-
cal knowledge agency. (B) The reconstructed physical knowledge
base in the deliberative layer after an “add” change event object is
received by the deliberative physical knowledge agency.
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reification of the “relationship” and “property” types in SALS are
each specially implemented to efficiently reify each of these types of
partial state objects from a frame-based knowledge base, avoiding the
NP-complete subgraph isomorphism decision problem (Messmer 1995,
Messmer & Bunke 2000) implied by a careless implementation of this
more specific problem, which gains in efficiency by taking advantage of
specially implemented locally directed searches for each different type
of partial state object. After a change event from the physical knowledge
base is received by the deliberative physical knowledge agency, the same
change event is passed to the deliberative physical partial state agency
to focus a local search around this change in the reconstructed physi-
cal knowledge base that searches for “property” and “relationship”
partial state objects. If the change event object is a “remove” event ob-
ject, the local search in the reconstructed physical knowledge base is
performed before the reconstructed physical knowledge base is updated,
while if the change event object is an “add” event object, the local search
in the reconstructed physical knowledge base is performed after the
reconstructed physical knowledge base is updated.

When a partial state object is found to be added by the deliberative
physical partial state agency, a partial state event object is added to the
physical partial state event knowledge base in the deliberative layer. A
partial state event object consists of the following three properties:

1. start-time
2. end-time

3. partial-state

A partial state event object that has just been created has an absolute
“start-time” value, which is a copy of the “time” slot value of the
change event object from the physical knowledge base in the learned
reactive layer. The “end-time” value for the partial state event object is
initially unknown, so the symbol “after” is used to indicate that the
partial state event object has not yet ended. The “partial-state” slot
of the partial state event object is a reference to the partial state object
that has been found in the reconstructed physical knowledge base in
the deliberative layer. When a partial state object is found to be removed
by the deliberative physical partial state agency, an absolute “end-time”
slot value is added to the partial state event object that was previously
added to the physical partial state event knowledge base.

Although I have described this process of partial state event reification
in terms of the deliberative layer reifying partial state event objects
from a stream of change event objects derived from changes in the
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physical knowledge base in the learned reactive layer, an analogous
process exists between each planning layer and the knowledge base in
the layer below that it is trying to control. The reflective deliberative
plan knowledge agency receives a stream of change event objects from
the deliberative plan knowledge base in the deliberative layer, and
the reflective deliberative plan partial state knowledge agency in the
reflective layer reifies the partial states in the reconstructed deliberative
plan knowledge base into partial state event objects that are added to
the deliberative plan partial state event knowledge base in the reflective
layer. Similarly, the super-reflective layer reifies partial states of the
reflective plan knowledge base and adds new partial state event objects
to the reflective plan partial state event knowledge base.

4.3 RESOURCE CAUSAL RULE-LEARNING

The second asynchronous stage of information processing involved in
asynchronously learning from experience in the SALS Al is the resource
causal rule-learning stage. I will first focus on how this stage works when
the deliberative layer receives a stream of procedurally reflective events
from the learned reactive layer with the understanding that an analogous
asynchronous information process exists in each planning layer in the
SALS Al The reactive resource knowledge agency in the deliberative
layer receives a stream of activation and completion event objects from
the resources in the learned reactive physical agency of the learned
reactive layer. When an activation event object is received by the reactive
resource knowledge agency in the deliberative layer, a resource execution
event object is added to the reactive resource event knowledge base. Like
the partial state event object, a resource execution event object consists
of the following three properties:

1. start-time
2. end-time

3. resource

When a new resource execution event object is created, its “start-time”
slot value is copied from the “time” slot of the activation event object
that the reactive resource knowledge agency in the deliberative layer has
received from the learned reactive physical agency in the learned reactive
layer. When a completion event object is received from the learned
reactive layer, the “end-time” slot value of the appropriate resource
execution event object is copied from the “time” slot of the completion
event object. Transframes (Minsky 1975) represent change. When a
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resource execution event has completed, a transframe is created that
keeps track of the added or removed information in the physical partial
state event knowledge base between the “start-time” and “end-time”
slot values of the resource execution event. Creating this transframe
requires retrieving all of the partial state events that intersect with the
“start-time” slot value as well as all of the partial state events that
intersect with the “end-time” slot value.

Every knowledge base that contains event objects in the SALS Al is
organized for indexing by time by using an interval tree that stores all
events that have been added to that knowledge base. These types of
knowledge bases in the SALS Al are called event knowledge bases, and
they have a O(log (n)) time complexity for retrieving events by time,
given that n is the number of events in the event knowledge base. To
maintain consistency within the interval tree within the event knowledge
base, some precautions must be taken when changing the values of the
“start-time” and “end-time” slots of any event object, which could
potentially invalidate the entire interval tree. To make this bookkeeping
transparent to the plan execution, reflectively traced callbacks are called
whenever a slot value is added to or removed from the event knowledge
base. If the slot value refers to the “start-time” or the “end-time” of
an event object, the event object is first removed from the interval tree
with its old slot value, the slot value is changed, then the event object is
inserted into the interval tree once the slot value change is complete. This
means that the plan simply executes normally, which reflectively causes
the addition and removal of event objects to the reconstructed event
knowledge base, freely changing their “start-time” and “end-time”
slot values as callbacks take care of the interval tree organization.

4.4 DELIBERATIVELY LEARNING ABOUT PHYSICAL ACTIONS

Table 2 and Table 3 present an example of a learning opportunity in the
deliberative layer because of a failure to predict the effects of physical
actions during deliberative planning. This learning opportunity results
from an expectation failure that occurs when the SALS Al imagines
and then actually executes the action of dropping a cube on a pyramid.
Once the partial state transframe has been computed for a given action
resource execution event, this transframe is used to train a rule-learning
algorithm that attempts to categorize the partial state preconditions for
different sets of the possible “add” (+) and “remove” (—) changes. A
rule-learning algorithm is used in the SALS Al to predict the transframe
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A “a pyramid shaped block to be
sitting on a white colored table”

B “a gripper that is me to be above a
' pyramid shaped block”

C “a gripper that is me to be holding
a cube shaped block”

D “a cube shaped block to be sitting
' on a pyramid shaped block”

E “a cube shaped block to be sitting
' on a white colored table”

Table 2: A selection of physical partial states that occur during the example
learning story presented in chapter 1.

Partial | Precond. | Expected  Expected | Actual Actual

State Trans. Post- Trans. Post-
cond. cond.

A 1 1 1

B 1 1 1

C 1 — 0 — 0

D 0 + 1 0

E 0 0 + 1

Table 3: An example expectation failure when the deliberative layer incorrectly
hypothesizes physical partial states. Refer to Table 2 for definitions of
partial states, A-E. Shown are the imagined and actual transitions for
executing the action of dropping a cube on a pyramid. The fact that
the expected transframe does not match the actual transframe presents
the Al with a learning opportunity. The shaded area highlights the
expectation failure. The symbol “1” represents that the partial state
exists. The symbol “0” represents that the partial state does not exist.
The symbol “+” represents that the partial state is added. The symbol
“—" represents that the partial state is removed.



94

LEARNING ASYNCHRONOUSLY FROM EXPERIENCE

change | positive | negative
example | example
ABCDE ABCDE
—A 11100
+A 11100
—B 11100
+B 11100
—C 11100
+C 11100
-D 11100
+D 11100
—E 11100
+E 11100

Table 4: Positive and negative training preconditions from the physical learn-
ing example presented previously in Table 3. This learning situation
involves two changes that led to incorrect predictions: “+D” and “+E.”
The addition of partial state “D” is incorrectly expected, while the
addition of partial state “E” is incorrectly not expected. The shaded
areas represent the expectation failure, the failure to predict the cor-
rect state changes. The precondition state, “11100,” can be used as
a positive or negative training example for the appropriate version
hypothesis spaces for learning new rules for predicting these changes
correctly in the future.

that will result from executing a resource in given preconditions. This
rule-learning algorithm is based on version spaces (Mitchell 1997).
Version spaces are an efficient representation for all possible conjunc-
tive functions that map a set of binary inputs to a single binary output.
These functions are also called hypotheses. When these hypotheses turn
out to be wrong given new data, the hypothesis version space is refined.
In the case of a false positive, the most general functions of the version
space are specialized. In the case of a false negative, the most specific
hypotheses of the version space are generalized. Table 4 shows an ex-
ample of preconditions being used as positive and negative training
examples for the version hypothesis spaces that lead to an expectation
failure in the example previously presented in Table 3. In the SALS Al,
the binary inputs to the rule-learning algorithm represent whether or
not a partial state exists in the preconditions of the resource execution
event. The single binary output from the rule-learning algorithm repre-
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sents whether or not a set of partial state transframe changes will be the
result of executing the resource in the given partial state preconditions.
These hypothesis version spaces are used to predict the effects of natural
language plans in the counterfactual knowledge base of each planning
layer during the interpretation and imagination process described in
chapter 3.

4.5 REFLECTIVELY LEARNING ABOUT DELIBERATIVE ACTIONS

Table 5and Table 6 present an example of a learning opportunity in the
reflective layer because of a failure to predict the effects of deliberative
planning actions during reflective planning. This learning opportunity
results from an expectation failure that occurs when the SALS Al imag-
ines and then actually executes the action of executing a plan to “stack
a cube on a pyramid.” In the example story presented in chapter 1,
the reflective layer predicts that executing the plan to “stack a cube
on a pyramid” will not result in any deliberative plans having physi-
cal execution failures, a negative goal state that the reflective planner
is trying to avoid in the deliberative plan knowledge base. When the
reflective plan decides to execute this deliberative plan, based on the
prediction that it will not lead to failure, there is an expectation failure at
the reflective layer when the deliberative plan actually does fail during
its execution. This expectation failure in the reflective layer is shown as
highlighted areas of Table 5 and Table 6. This failure of the reflective
layer to predict the effects of deliberative actions on the deliberative plan
knowledge base presents the SALS Al with a learning opportunity at the
reflective layer. Table 7 shows an example of preconditions being used
as positive and negative training examples for the version hypothesis
spaces that lead to an expectation failure in the example previously
presented in Table 3.
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“a deliberative planner to be
A. focusing on a plan that has been
imagined”

“a deliberative planner to

B. be focused on a plan that is
hypothesized to cause a cube to
be on a pyramid”

“a deliberative planner to

C. be focused on a plan that is
hypothesized to cause a pyramid
to be on a cube”

“a deliberative planner to be
D. focusing on a plan that has been
executed”

“a deliberative planner to be
E. focused on a plan that has failed
in execution”

Table 5: A selection of deliberative plan partial states that occur during the

example learning story presented in chapter 1.

Partial | Precond. | Expected  Expected | Actual Actual

State Trans. Post- Trans. Post-
cond. cond.

A 1 1 1

B 1 1 1

C 0 0 0

D 0 + 1 + 1

E 0 0 + 1

Table 6: An example expectation failure when the reflective layer incorrectly

hypothesizes deliberative plan partial states. Refer to Table 5 for def-
initions of partial states, A—E. Shown are the imagined and actual
transitions for executing the action of executing a plan to “stack a
cube on a pyramid.” The fact that the expected transframe does not
match the actual transframe presents the Al with a learning opportu-
nity. The shaded area highlights the expectation failure. The symbol
“1” represents that the partial state exists. The symbol “0” represents
that the partial state does not exist. The symbol “4” represents that
the partial state is added. The symbol “—" represents that the partial
state is removed.
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change | positive | negative
example | example
ABCDE ABCDE
—A 11000
+A 11000
—B 11000
+B 11000
—C 11000
+C 11000
-D 11000
+D 11000
—E 11000
+E 11000

Table 7: Positive and negative training preconditions from the deliberative
plan learning example presented previously in Table 6. This learning
situation involves one change that led to an incorrect prediction:
“+E.” The addition of partial state “E” is incorrectly not expected. The
shaded areas represent the expectation failure, the failure to predict
the correct state changes. The precondition state, “11000,” can be used
as a positive training example for the appropriate version hypothesis
spaces for learning new rules for predicting this change correctly in

the future.
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46 LAZY ALLOCATION OF HYPOTHESIS SPACES

It would be inefficient to allocate a new hypothesis version space object
for each type of “add” or “remove” change in a partial state transframe
for a given action resource because sets of partial state changes often
occur together and multiple hypothesis version space rule-learning
algorithms would contain redundant information for these sets of partial
state changes. To reduce the number of hypothesis version spaces that
are allocated to each action resource to predict the partial state changes
that it may cause when executed, each co-occurring set of partial state
changes for each action resource is calculated.

For example, consider the physical partial state changes presented in
Table 4. For the moment, imagine that the AI has had no previous expe-
rience and that the information in this table is the only experience avail-
able to the deliberative layer’s hypothesis version space rule-learning
algorithm. In this case, notice that many of the partial state changes
have exactly the same positive and negative training examples thus
far. Table 8 shows how hypothesis version spaces are not allocated in
order to predict every partial state change. Given only the information
in Table 4, Table 8 shows that only two hypothesis version spaces are
allocated in order to predict 10 different partial state changes. As more
learning experience is added to each layer of the SALS Al, these sets of
partial state changes are subdivided and new hypothesis version spaces
are allocated in this conservative manner. I refer to this conservative
method of hypothesis version space allocation as “lazy,” which avoids
allocating what would be redundant hypotheses in multiple version
spaces.
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hypothesis | change | positive | negative
version example | example
space
change set
ABCDE ABCDE
#1 —A 11100
+A 11100
—B 11100
+B 11100
+C 11100
-D 11100
+D 11100
—E 11100
#2 —C 11100
+E 11100

Table 8: Lazy allocation of hypothesis version spaces by grouping sets of
transframe changes that occur in identical contexts. Each of these sets
is only allocated one hypothesis version space rule-learning algorithm.
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4.7 SUMMARY

In this chapter, I have described how a planning layer reifies a select
subset of partial states from the layer below that it uses as an efficient
representation for learning, imagination, and goal recognition. Also, I
have discussed two examples of learning: (1) one focused on the de-
liberative planning layer learning from expectation failures in physical
knowledge, and (2) one focused on the reflective planning layer learning
from expectation failures in deliberative plan knowledge. Finally, I have
described a method of “lazy” hypothesis version space allocation that
avoids redundant hypotheses from being stored in multiple version
spaces, allowing learning to predict entire sets of partial state changes
from the layer below by using fewer non-redundant hypothesis version
spaces. In the next chapter, I will describe how the examples in this
thesis are programmed in the low-level lisp-like programming language
and virtual machine. I hope that the open-source nature of the SALS Al
implementation will allow this Substrate for Accountable Layered Sys-
tems to enable other researchers to apply these techniques to their own
research problem domains, given the practical programming knowledge
presented in the next chapter.



VIRTUAL MACHINE AND PROGRAMMING
LANGUAGE

The SALS Al is a cognitive architecture that is constructed on a virtual
machine and low-level Lisp-like programming language that implicitly
supports the tracing of results and behavior of the system to the data and
through the procedures that produced those results and that behavior
(Morgan 2009). Good traces make a system accountable and help to
enable the analysis of success and failure, and thus enhancing the ability
of the system to learn from mistakes. The SALS virtual machine and low-
level Lisp-like programming language collectively form the substrate
that executes the entire SALS cognitive architecture. In this chapter, I will
focus on the details of the low-level Lisp-like programming language
that enable learning from failure. In chapter 4, I described the details of
how an asynchronous learning algorithm can learn from these failures
so that these failures can be avoided in future natural language plan
executions through learning refined causal models of the hypothetical
imagined effects of natural language plans. In this chapter, I will describe
the details of the low-level Lisp-like language that enable these types of
asynchronous learning algorithms.

The SALS virtual machine provides for general parallelism and con-
currency, while supporting the automatic collection of audit trails for all
processes, including the processes that analyze audit trails. The native
support of a low-level Lisp-like language in the SALS architecture al-
lows, as in machine language, a program to be data that can be easily
manipulated by a program, making it easier for a user or an automatic
procedure to read, edit, and write programs as they are debugged. Large
concurrent and parallel systems are often difficult to build and debug
because of the complex causal interactions between all of the different
processes. For this reason, every parallel task in SALS has an associated
cause object. If any task creates a new parallel task, then a new cause
object is created for the child task with a parent cause object reference.
Cause objects represent meta-information about a task, such as in what
way a compiled procedure should be executed, which can be used for
causally organizing the effects of groups of parallel tasks, controlling
and monitoring the occurrence of any type of event through any of
the procedural abstraction barriers of the SALS virtual machine. Every
parallel process in the SALS virtual machine has a trace that we can
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compute from, that we can reason about. The built-in processes for
reasoning about reflective traces in the SALS virtual machine are critical
to the asynchronous learning examples presented in the previous two
chapters.

5.1 VIRTUAL MACHINE

The SALS virtual machine is designed to take advantage of the next
generation of multithreaded and multicore CPUs, so that new reflective
algorithms will more easily be designed to exhibit “strong” scaling
properties (Sodan et al. 2010). To allow the development of these new
types of algorithms, the SALS virtual machine includes an explicit
representation, called a wvirtual processor object, that represents each
hyperthread in each core of each CPU in the target hardware platform.
Each of the SALS virtual processors is used in order to organize the
scheduling of SALS fiber objects, which are the bytecode threads that
execute in the SALS virtual machine. In this way, each SALS fiber can be
assigned to a specific hyperthread in the target hardware platform. To
prevent local cache misses for on-chip caches, the SALS virtual machine
has a separate memory pool allocated for each of the SALS virtual
processors. CPUs that have 4 cores and 2 hyperthreads per core, 8
memory pools are allocated when the SALS virtual machine is created.
A major bottleneck in systems with large numbers of processors and
cores are mutual exclusion or mutex locks that protect shared resources.
The SALS virtual machine avoids all mutexes in the memory layer by
using these separate dedicated memory pools for each hyperthread in
each CPU core for memory allocation and concurrent garbage collection.
Mutexes are provided in the SALS architecture but low-level memory
allocation and collection can operate at full-speed without any mutex
locks for low-level memory operations. Figure 25 shows an example
of how SALS allocates virtual processors for a hardware configuration
with two processors, each having four cores and each core having two
hyperthreads. Each hyperthread is organized into a binary tree structure
that is used to calculate distances between hardware hyperthreads. This
binary tree distance metric is used to dynamically distribute fiber loads
across hyperthreaded CPU cores in order to attempt to utilize as much
on-chip CPU cache as possible.

The SALS virtual machine has been tested with a maximum of 32
processors and 128 gigabytes of RAM on the Nautilus supercomputer
at the National Institute for Computational Sciences. However, most
of the examples presented in this dissertation have been executed on a



Figure 25: An example of how SALS allocates virtual processors (VP) for a
hardware configuration with two multithreaded multicore proces-
sors, each having four cores and each core having two hyperthreads
(HT). Each hyperthread is organized into a binary tree structure
that is used to calculate distances between hardware hyperthreads.
This binary tree distance metric is used to dynamically distribute
fiber loads across hyperthreaded CPU cores in order to attempt to

5.1 VIRTUAL MACHINE
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utilize as much on-chip CPU cache as possible.
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bit range | # of values memory tier name
1—17 | 131,072 computer identity

18 — 27 1,024 pool index

28 — 64 137,438,953,472 | block address

Table 9: Bit allocation within the SALS memory pointer.

personal computer with only 4 CPU cores and 2 hyperthreads per core.
The SALS virtual machine has a tricolor garbage collection algorithm
that takes advantage of parallelizing work in concurrent processors.
Memory pointers in the SALS memory system are 64-bit integers that
have space reserved for three hierarchical memory tiers: (1) “computer
identity,” (2) “pool index,” (3) and “block address.” Table 9 shows
the bit allocation within the 64-bit SALS memory pointer. The computer
identity is zero if the memory pointer is referencing memory on the
local computer. The computer identity is an integer greater than zero
if the memory is on another computer that has connected to the SALS
memory system through a low-level peer-to-peer socket connection.
The ability of the SALS architecture to connect to other running SALS
architectures allows it to potentially scale to take advantage of the
hardware on multiple networked computers to solve one large shared-
memory problem. The pool index is an integer reference into an array
of memory pools on the given computer. On any given computer, one
memory pool is allocated for each hyperthread in each CPU core on
each CPU. The block address is an integer that is a block index into
the given memory pool. A block size of one byte has been used for the
examples presented in this dissertation but larger block sizes have been
tested and can be used if more memory must be addressed.
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5.2 PACKAGE MANAGER

The SALS programming language allows compiling and running com-
puter programs that consist of many thousands of lines of code. For
example, the examples presented in this dissertation depend on loading
154 packages, which are composed of over 30,000 lines of code that are
written in the SALS low-level Lisp-like programming language. The
SALS programming language includes a package manager to organize
dependencies within this codebase. In addition to a low-level Lisp-like
codebase of packages, the SALS virtual machine has the ability to load
packages that contain optimized routines that are composed of compiled
machine code. Machine code extensions to the SALS virtual machine are
written in the C programming language. The C codebase that compiles
to this machine code totals over 150,000 lines of C code. The virtual
machine compiles and runs on any POSIX compliant operating system.
The following is a declaration of a package definition in the SALS low-
level Lisp-like language that helps to organize these different types of
dependencies within the SALS codebase:

[defpackage semantic_knowledge_base

:packages [equals_hash
forgetful_event_stream
semantic_realm
semantic_causal_event
semantic_relationship_key
semantic_frame
semantic_object
semantic_event]

1sources ['semantic_knowledge_base-core.sals’]

:dynamic_libraries [’libf2e_semantic_knowledge_base.so’]]

The “defpackage” expression in the SALS programming language means
“define package.” The first argument to the defpackage expression is
the name of the package to be defined, “semantic knowledge base”
in this case. The remaining arguments to the defpackage expression
are optional and three such arguments are shown in this example: (1)
“packages,” (2) “sources,” and (3) “dynamic libraries.” The “packages”
optional argument specifies a list of other packages that must be loaded
before this package is loaded. The “sources” optional argument speci-
fies a list of SALS files that are to be loaded when this package is loaded.
The “dynamic libraries” optional argument specifies a list of files that
contain machine code extensions that should be loaded into the SALS
virtual machine when this package is loaded.
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Every package and machine code extension to the SALS virtual ma-
chine and programming language performs “causal reflective tracing”
on each concurrently executing process. The following sections describe
examples of different uses of the causal reflective tracing features that
have been implemented throughout the SALS virtual machine and its
extensions. At the end of this chapter, I will describe one high-level
package in the SALS programming language that performs the conjunc-
tive hypothesis space version space rule-learning algorithm, which is
key to the asynchronous experiential learning presented in chapter 4.

5.3 CAUSAL REFLECTIVE TRACING

Parallel tasks in the virtual machine are called fibers in order to distin-
guish them from the threads in the underlying operating system kernel.
The parallel fibers create, mutate, and read from memory as they exe-
cute sequences of compiled bytecodes. At any point between bytecode
executions, the memory system is static and can be saved to or loaded
from non-volatile memory, such as a harddisk. The current execution
state of every fiber is represented in the global environment. To be fully
reflective on all of the procedural effects of any given fiber, I introduce
a technique called causal reflective tracing. Causal reflective tracing is
a way of defining variables that are specific to each fiber that can be
used to control the low-level memory access, mutation, and creation
functions. This allows one fiber to subscribe to the procedural trace
events of another fiber without receiving procedural trace events of
its own execution, which would lead to an infinite regress, halting the
system. Further, because the virtual machine is inherently a parallel
processing system, a given fiber will often start a number of child fibers
that handle part of the processing for the parent fiber. When a new fiber
is created, the child fiber inherits the causal variable bindings of its
parent fiber, enabling the same procedural tracing options for the child
as well. Causal reflective tracing is one of the basic tools for keeping
track of which pieces of memory were created, mutated, or read by
which other fibers. When evaluating the theoretical time complexity of
concurrent procedurally reflective control algorithms, it should be noted
that creating procedural trace events for the execution of a given fiber
slows the fiber down only by a constant factor, not affecting the algo-
rithm’s “big-O” time complexity on an ideal concurrent shared-memory
system, of which the virtual machine is an approximation.

While causal reflective tracing focuses the procedural event tracing
to memory interactions of specific groups of fibers, this still results in
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millions of events to consider every real-time second of execution. To
further focus on specific objects within the memory system, specific
pieces of memory can be created called semantic memory. Semantic mem-
ory objects are created, mutated, and accessed in roughly the same way
as all of the frame-based objects in the memory system with a few extra
reflective tracing features. For example, semantic objects provide event
streams that can be subscribed to by a number of different parallel lis-
teners in different fibers. Also semantic object pointers are bidirectional
to ease traversal by reflective pattern matching algorithms.

Because it becomes awkward to subscribe to each and every frame-
based object that may be interesting to the reflective focus, semantic
frames that are created by specific fibers can be added to collections
of semantic frames that are called semantic knowledge bases. Semantic
knowledge bases are good for organizing entire layers or subsets of
reflective layers that contain different types of semantic frame objects.
Semantic knowledge bases allow the same forgetful event stream sub-
scription services as semantic frames with the additional capability of
tracing the addition and removal of entire semantic frames to and from
the knowledge base.

While knowledge base reconstructions are extremely fast to reference,
O(1), they require a duplication of the memory requirements of the
focus knowledge base for every different point in time that is required.
To allow efficient access of the state of knowledge bases at arbitrary
points in the past, semantic event knowledge bases are another type of
representation that is reflectively and asynchronously maintained to
not slow down the primary procedure under reflective focus. chapter 4
describes how the SALS asynchronous learning algorithm uses the event
knowledge base object to calculate partial state transframes. I will briefly
review the features of the event knowledge base as well as a few details
about how this object is initialized and used in the SALS low-level
Lisp-like programming language.

The semantic event knowledge base stores a type of semantic frame
called a semantic event. A semantic event is a type of semantic frame
object that represents an interval in time, which may include partial
knowledge if the start or end times do not exist, making the interval
potentially open-ended. Semantic event knowledge bases are reflectively
traced and the knowledge is always stored in two different representa-
tions, the basic semantic event frames as well as a balanced interval tree
that always represents the current state of the semantic event knowl-
edge base. The balanced interval tree allows accessing the state of the
focus knowledge base in O(log(n)) time, where n is the number of
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events stored in the semantic event knowledge base. Although the time
complexity is not as efficient as the constant, O(1), access time of the
reflectively reconstructed semantic knowledge base, the semantic event
interval tree knowledge base only requires O(n) memory complexity
to allow access to the structure of the knowledge base at any point in
the past, where n is the number of semantic events. Figure 26 shows
how to create a new “semantic_event_knowledge_base” type object in
the SALS low-level Lisp-like interactive programming language.

in-> [new semantic_event_knowledge _base nil [new semantic_realm]]

out-> [semantic_event_knowledge_base
semantic_event_tree [semantic_event_tree ...]
semantic_frame_set [set ...]
trace_remove_semantic_frame []
trace_callback_funks_frame [frame ...]
semantic_realm [semantic_realm ...]
trace_event_stream [forgetful_event_stream ...]
trace_add_semantic_frame [1

.

Figure 26: How to create a new “semantic_event_knowledge_base” type ob-
ject. When “semantic_event” type objects are added, removed, or
modified while they are in this type of knowledge base, the knowl-
edge base updates an always-accurate event interval tree structure
for all of the events for efficient, O(log (n)), access to the events at
any point in time.

By default, when there are no listeners to the procedural event streams
of a semantic frame-based object, no reflective events are created, allow-
ing the use of the object to run at full speed. When a listener subscribes
to the procedural use of a specific semantic memory object, events are
added to ordered streams for the listening subscribers. To conserve
memory resources, when multiple parallel listeners are subscribed to a
given event stream, only those events that have not already been seen
by all of the subscribers are remembered. Once all subscribers have
processed an event, all events before this event are forgotten. This type
of memory conserving event stream is referred to as a forgetful event
stream. In this way semantic frames report the addition and removal
of slot values to reflective forgetful event stream subscribers. Once a
knowledge base is created and we have an important event stream iterator,
we can define a concurrent reflective fiber that processes the events
reflectively after the real-time execution of the processes that modify
this knowledge base. Figure 27 shows an example of how a reflective
fiber can be created to process a forgetful_event_stream generated
by a semantic_knowledge_base, which includes the state of a planning
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machine, represented by a semantic_planner object. Note that this ex-
ample runs at a constant factor slower than full speed because of the
creation of mutation events for the semantic_planner object, but this
factor has been kept relatively small, so this example completes almost
immediately. The reflective process runs slower because it must consider
how to print these events to the terminal in a readable form. Figure 28
shows the last two events created by the last line of this example that
mutates the imagine_time slot value for the planner.

in-> [letx [[realm [new semantic_realm]]
[knowledge_base [new semantic_event_knowledge_base
nil realm]]
[iterator [get knowledge_base
new-event_stream_iterator]]
[planner [new semantic_planner realm]]]

'Start parallel reflective fiber.’
[fiber [funk []
[while t
[let [[event [have iterator wait_for_current]]]
[print event]
[have iterator increment]]]]
[1]

[set planner trace_add t]
[set planner trace_remove t]

[have knowledge_base add_semantic_frame planner]

[set planner imagine_time [new semantic_time [time]]]]
out-> []

Figure 27: A reflective fiber can  be created to pro-
cess a forgetful_event_stream generated by a
semantic_knowledge_base, which includes a traced
semantic_planner.

While every parallel fiber is allocated a unique cause object that
provides a representation of the reflective tracing features for that fiber,
sometimes it is useful to collect events from overlapping sets or different
hierarchies of many fiber objects. A convenient solution to causally
organizing very dynamic sets of fibers is provided by a cause group object.
Cause groups are added to cause objects and inherited from parent to
child when new causes are created. Because cause objects and cause
group objects exist at the locus of every memory creation and mutation
event in the SALS virtual machine, they provide a means of tracing any
event that modifies any part of the SALS virtual machine. Figure 29
shows an example of causal reflective tracing that takes advantage of
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cause group objects to gather run-time statistics of a fiber execution.
Figure 30 shows another example of using a hierarchy of multiple cause
group objects to causally scope the tracing of 30 parallel fibers that are
hierarchically organized into 3 cause groups that contain 10 fibers each.

Sometimes it is helpful to know which fiber or cause created a specific
piece of memory. For this reason, every piece of memory in the entire
virtual machine includes a reference to its creation cause as well as its
creation fiber. Figure 31 shows how a fiber can retrieve the creation
cause of a semantic event object, it is useful to know which fiber or
cause is responsible for creating a given semantic event object so that
a reflective fiber can learn from the separate effects of different causal
scopes that make modifications to semantic objects within a given knowl-
edge base. This form of causal tracing is used in the SALS cognitive
architecture to detect when one resource interacts with another resource,
for example, by activating that resource or waiting for that resource
to complete execution. An entire reflective knowledge base of current
parallel resource interactions is maintained by tracing the causes of
resource interactions in this way.
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[semantic_frame_event

time [time
years 2012
months 8
days 31
|
event_type remove

semantic_frame [semantic_planner
property phenomenal_name
property planner_type
property imagine_time
relation execute_plan
relation imagine_plan
relation focus_plan
-

property

key_type
key imagine_time
value [1]

semantic_time ...]]

[semantic_frame_event

time [time years 2012 months 8 d

event_type add

semantic_frame [semantic_planner
property phenomenal_name
property planner_type
property imagine_time
relation execute_plan

.

key_type property
key imagine_time
value [semantic_time
value [time
years 2012
months 8
days 31

111

ays 31 hours 23 ...]

Figure 28: The last two events created by the last line of the example

in Figure 27: “[set planner

imagine_time [new semantic_time

[time]]1”. This command mutates the imagine_time slot value
for the planner. Notice that the first of the two events is a remove
type of event, while the second is an add type event. This event
knowledge is used in the SALS Al to create reconstructions of entire

knowledge bases of physical

as well as deliberative object types,

like planners. Note that the first event removes the [] slot value of

the imagine_time property of
the second event adds the new

the semantic_planner object, while
value, thus completing the mutation.

111



112 VIRTUAL MACHINE AND PROGRAMMING LANGUAGE

in-> [globalize cause_group [new cause_groupl]
out-> []

in-> [with-new-cause
[have [this-cause] add_cause_group cause_group]
[partimes [i 10]
[print i]]]

NOoO B~ WNFEO

58
9
out-> []

in-> cause_group
out-> [cause_group
execution_nanoseconds 533248657
bytes_allocated_count 2766181
bytecode_count 19495
bytes_freed_count 0]

Figure 29: Using a cause_group object to gather statistics from causally scoped
executions. A new cause_group object is first created in the global
environment. The gathering of run-time statistics involves creating
a new cause with the “with-new-cause” operator, adding this cause
to the cause_group object, and subsequently running an experiment.
This example creates ten parallel fibers that each print their numeri-
cal index from 0 to 9. At the final output of the example, the global
cause_group object is printed to the screen, showing processor exe-
cution time, total bytes allocated, total bytecodes executed, and also
the number of bytes garbage collected during the experiment.
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in-> [globalize cause_group [new cause_groupl]
out-> []

in-> [let [[begin_time [time]]
[frame [new frame]]l
[with-new-cause
[have [this-cause] add_cause _group cause _group]
[partimes [i 3]
[let [[subcause_group [new cause_group]]]
[have frame add i subcause_group]
[with-new-cause
[have [this-cause] add_cause_group subcause_group]
[partimes []j 10]
[terminal_format standard-terminal j11]11]
[have frame add ‘real-time [- [time] begin_time]]
framel
024031548162062794915695337878
out-> [frame
0 [cause_group
execution_nanoseconds 3535418608
bytes_allocated_count 7715763
-1
2 [cause_group
execution_nanoseconds 3012761500
bytes_allocated_count 7590735
.1
1 [cause_group
execution_nanoseconds 3976116760
bytes_allocated_count 9598095
.1
real-time [relative_time
seconds 1
milliseconds 694

.11

in-> cause_group

out-> [cause_group
execution_nanoseconds 10730429054
bytes_allocated_count 25622218
bytecode_count 215649
bytes_freed_count 0]

Figure 30: Gathering run-time statistics using parallel hierarchies of causal
scopes. Overall, 30 parallel fibers are created, each prints a number
from 0 to 9, and run-time statistics are gathered in two layers of
causal scope hierarchy. The overall cause_group object is shown
last, while three sub-cause_group objects are printed as the return
value of the second expression. Notice that the algorithm uses 10.7
seconds of processor time, while only using 1.7 seconds of real-time.
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in-> [letx [[realm [new semantic_realm]]
[knowledge _base [new semantic_event_knowledge_base
nil realm]]

[iterator [get knowledge_base
new-event_stream_iterator]]
[planner [new semantic_planner realm]]]

'Start parallel reflective fiber.’
[fiber [funk []
[while t
[letx [[event [have iterator
wait_for_current]]
[event-cause [get event cause]l]]
[if [eq ‘my-test [have event-cause lookup
‘cause-name]]
[print ‘event-in-causal-focus]
[print ‘event-out-of-causal-focus]]
[have iterator increment]]]]

[11

[set planner trace_add t]
[set planner trace_remove t]

[have knowledge_base add_semantic_frame planner]

[with-new-cause

[cause-define cause-name ‘my-test]

[set planner imagine_time [new semantic_time [time]]]1]]
out-> []
event-out-of-causal-focus
event-out-of-causal-focus
event-out-of-causal-focus
event-out-of-causal-focus
event-out-of-causal-focus
event-out-of-causal-focus
event-out-of-causal-focus
event-out-of-causal-focus
event-in-causal-focus
event-in-causal-focus

Figure 31: Causally scoped reflective event tracing. Since every piece of mem-
ory in the virtual machine has a reference to its cause object,
causally focusing the reflective tracing example shown in Figure 27
is simply a matter of accessing the creation cause of each event,
using the expression, [get event cause].
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5.4 CONJUNCTIVE HYPOTHESIS VERSION SPACE RULE-LEARNING

The SALS architecture includes a version space (Mitchell 1997) hypoth-
esis rule-learning algorithm. A use of this hypothesis version space
rule-learning algorithm was described in chapter 4 as part of a larger
asynchronous learning algorithm that learns to predict the partial state
transframe (Minsky 1975) effects of resource executions given the par-
tial state preconditions of the execution. The hypothesis version space
rule-learning algorithm included in the SALS architecture predicts one
binary output feature given a number of binary input features. The
benefit of the version space rule-learning algorithm is that it provides
a relatively compact representation of an entire conjunctive hypoth-
esis space by only representing the most general and most specific
boundaries in the overall lattice of potential hypotheses. The included
rule-learning algorithm is incremental, meaning that it refines its space
of hypotheses as new examples of training data become known. The
SALS AI hypothesis version space learning algorithm also includes re-
moval callbacks for most general and most specific hypotheses, so that if
these hypotheses are no longer supported given new training data, these
hooks allow tracing dependencies for correcting hypothetically sup-
ported counterfactual knowledge in the counterfactual knowledge base
of each planning layer of the SALS Al. Figure 32 shows how to create a
concept_version_space object that can be trained. Figure 33 shows an
example of training the concept_version_space object, given training
examples. Figure 34 shows how hypothesis removal callbacks can be
used to monitor the loss of support for a specific example, attempting to
find new support whenever the previous hypothetical support is lost.

in-> [new concept_version_space]

out-> [concept_version_space
specific_hypotheses [[concept_version_space_hypothesis]]
general_hypotheses [[concept_version_space_hypothesis]]
variable_name_set [set elements []]]

Figure 32: Creating a new concept_version_space conjunctive hypothesis
learning algorithm. This object keeps a list of the most specific
hypotheses that support positive output predictions as well as the
most general hypotheses that support negative output predictions.
There is a set of variable names, or frame slot names, that the
algorithm has seen previously.
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in-> [let [[concept [new concept_version_space]l]

'Add a positive training example to the concept.’

[let [[example [new concept_version_space_example t]]]
[have example add_variable_value ‘color ‘blue]
[have example add_variable_value ‘shape ‘cube]
[have concept train_on_example example]]

[terminal_format standard-terminal
"\ntrain-1: ' concept]

'Add a negative training example to the concept.’

[let [[example [new concept_version_space_example nil]]]
[have example add_variable_value ‘color ‘blue]
[have example add_variable_value ‘shape ‘pyramid]
[have concept train_on_example example]]

concept]
train-1: [concept_version_space
specific_hypotheses [[concept_version_space_hypothesis
shape cube
color bluel]
general_hypotheses [[concept_version_space_hypothesis
shape ?
color ?]]1]
out-> [concept_version_space
specific_hypotheses [[concept_version_space_hypothesis
shape cube
color bluel]l
general_hypotheses [[concept_version_space_hypothesis
shape cube
color ?]11]

Figure 33: Training a concept_version_space conjunctive hypothesis learn-
ing algorithm. A new concept_version_space is created. Two
concept_version_space_examples are created, one positive and
one negative. The concept is printed after learning from the positive
example. The final concept is returned after being trained on both

examples.
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in-> [let [[concept [new concept_version_spacel]]
[print 'Training on positive example.’]
[let [[example [new concept_version_space_example t]]]
[have example add_variable_value ‘color ‘blue]
[have example add_variable_value ‘shape ‘cube]
[have concept train_on_example example]]
[print 'Adding removal callbacks to hypotheses.’]
[let [[example [new concept_version_space_example t]]1]
[have example add_variable_value ‘color ‘green]
[have example add_variable_value ‘shape ‘cube]
[label find_new_support []
[mapc [funk [hypothesis]
[terminal_format standard-terminal
"\nNew supporting
"hypothesis: ' hypothesis]
[have hypothesis add_removal_callback
[funk []
[print ’'Lost support.’]
[find_new_support]]
[111
[get concept supporting_hypotheses example]]]
[find_new_support]]
[print 'Training on negative example. ']
[let [[example [new concept_version_space_example nil]]]
[have example add_variable_value ‘color ‘bluel]
[have example add_variable_value ‘shape ‘pyramid]
[have concept train_on_example example]]
[print ’'Done.’]
nil]
'Training on positive example.’
'Adding removal callbacks to hypotheses.’
New supporting hypothesis: [concept_version_space_hypothesis
shape ?
color ?]
'Training on negative example.’
"Lost support.’
New supporting hypothesis: [concept_version_space_hypothesis
shape cube
color ?]

’

'Done.’
out-> []

Figure 34: Hypothesis removal callbacks monitor the loss of support for a
specific example, attempting to find new support whenever the
previous hypothetical support is lost. In this case, a positive example
of a green cube is attempting to maintain hypothetical support in
the concept’s hypothesis space. Each sharp cornered rectangular
box introduces an additional causal scope for all of the processes
this interpretation step causes to execute.
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5.5 COMPILING, IMAGINING AND EXECUTING A NATURAL LANGUAGE
PLAN

The causal reflective tracing features introduced in the SALS virtual
machine allow simple but powerful forms of organizational structure
in the implementation of complex reasoning processes. As an example,
the process that compiles natural language plans is the part of the SALS
Al that is the most complex and that benefits the most from the causal
reflective tracing features of the virtual machine. Natural language
plans are compiled in each planning layer, including the deliberative,
reflective, and super-reflective planning layers. The main overview and
structure of the natural language plan interpretation process is described
in chapter 3. The low-level causal reflective tracing features of the SALS
virtual machine are critical to the organization of this plan interpretation
process. Figure 35 shows a procedural trace of a partially imagined plan
execution during the compiling phase of natural language interpretation.
Procedural traces such as this one are easy to create because of the causal
context that is provided by default in the SALS virtual machine. The
causal context for a natural language plan that is being interpreted is as
follows:

¢ execution_mode: Compiled plans can either be interpreted in one
of two modes: imagine or execute. When a plan is executed in
the imagine mode, the plan uses learned hypothetical models of
actions in order to predict their effects in a counterfactual event
knowledge base within the planning layer. A plan is generally
interpreted in the imagine mode before it is interpreted in the
execute mode. The reflective trace that is produced from interpret-
ing a plan in the imagine mode is used for a second compile stage
that produces an executable plan that contains neither natural
language nor other forms of ambiguity. Sensory functions that
check for the existence of partial states access the counterfactual
knowledge base when a plan is interpreted in the imagine mode.
When a plan is interpreted in the execute mode, actions are ac-
tually executed by activating and suppressing resources in the
layer below. Also, a plan interpreted in the execute mode directly
accesses the layer below when checking whether or not partial
states exist for sensory functions.

* top_plan: The initial top-level plan that has caused the rest of the
procedural trace structure to exist. A plan interpretation process
usually begins with a natural language phrase, such as “stack a
cube on a pyramid.” Analogous plans are then found that might
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<'stack a cube on a pyramid')

!

'stack a [? top-shape] on a [? bottom-shape]'
top-shape = 'cube'
bottom-shape = 'pyramid’

—»( 'pick up a cube'

‘pick up a [? shape]’
shape = 'cube'

—»('move until over a cube'>

'move until over a [? shape] "

shape = 'cube'

'if a cube is to my left, move left until over a cube,
otherwise if a cube is to my right, move right until over a cube'

— =

'if [? condition], [? true-branch], otherwise [? false-branch]'
condition = 'a cube is to my left'
true-branch = 'move left until over a cube’
false-branch = 'if a cube is to my right, move right until over a cube'

I

| @
'if [? condition], [? true-branch]'
condition = 'a cube is to my left'

true-branch = 'move left until over a cube,
otherwise if a cube is to my right, move right until over a cube'

‘ ®)
‘ ®)
—»(‘move slowly until over a cube '>

—>< ‘attempt to grab block' >

—»( 'assert that I am holding a cube'>

—»Cdrop the block I am holding on a pyramid>
I

—>< ‘assert that a cube is on a pyramid' >

Figure 35: Procedural trace of partially imagined plan execution during com-
piling phase of language interpretation. Rectangles with rounded
corners represent language expressions that must be interpreted.
The top rounded rectangle is the initial language phrase that causes
this entire procedural trace to be created. Rectangles with sharp
corners represent abstract analogy pattern templates that match
the rounded rectangle immediately above them. Analogy templates
expand into multiple step plans that include more language phrases
to be interpreted. Labels (A) and (B) mark two analogy patterns
that simultaneously match the language phrase above them. (A)
will eventually lead to a correct and complete interpretation, while
(B) will lead to an incomplete interpretation.
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provide interpretations of this initial phrase. These newly created
analogous plans are each interpreted as top-level plans to see
if the result of their imagined interpretations are complete and
successful.

e imagine_time: Only used when the execution_mode is set to imagine,
the imagine_time causal context slot stores the current hypotheti-
cal time that an imagined action would occur during the current
imagined plan interpretation process. This causal context is used
for the addition of partial state existence events to the counter-
factual event knowledge base of the planning layer. Also, this
imagined time is used when imagined sensory functions access
the counterfactual event knowledge base, which stores all events
in an interval tree for efficient access.

* check_exists_partial_state_set: A set of partial states that have
been checked for by sensory functions within the currently inter-
preted plan. This set is used as an auxiliary set of hypotheses
about the effects of plan execution. This set is useful when the
SALS Al has very little experience executing a specific type of
plan or set of actions. For example, if a plan assures a partial state
exists for “a gripper that is me to be holding a cube,” then
although the SALS Al has no experience executing this plan, it can
hypothesize that this might be an effect of the plan, given this set
from the causal context of the plan interpretation.

e current_plan_execution_set: When the execution_mode is set to
imagine, all possible conditional branches of a plan are interpreted
and their effects are imagined with distinct causal contextual
scopes. The current_plan_execution_set is used to keep track of
which plans are currently being interpreted on the plan stack. This
allows for stack-based recursive loops to be compiled and their
effects completely imagined, while avoiding the potential infinite
loops that may result from the actual execution of these plans.

e imagine_event_tree: The current set of events that have been
imagined within this causal scope. This is necessary for scoping
the results returned from the counterfactual event knowledge base
required for sensory functions to check whether or not partial
states may hypothetically exist.

® resource_activation_set: The current set of resource activations
that have occurred within this causal scope.



5.6 SUMMARY

The ability to quickly add various new forms of causal context that
are available at any point in a compiled plan greatly simplifies that
task of maintaining intricate procedural traces of the most complex
aspects of the SALS Al, the multiple-staged process of compiling natural
language plans, including processes that imagine the effects of various
interpretations during the second compile stage.

5.6 SUMMARY

The SALS virtual machine and low-level programming language are
the foundation upon which the SALS cognitive architecture has been
constructed. I have described the details of the concurrent hardware
abstractions, including multiple core and hyperthreaded CPUs as well
as distributed memory pointers. The low-level basics of causal reflective
tracing have been discussed, along with how a simple rule-learning
algorithm may be applied to a hypothetical prediction, and how new
hypothetical support for knowledge can be regained when previous
supports have been lost. Basic programming examples have been given
for implementing basic causal reflective tracing as well as this simple
rule-learning example. Finally, I have discussed how the most complex
processes in the SALS Al are organized by the scoping of causal contexts
in the multiple-staged compile process that is used for compiling natural
language plans through imagining their possible conditional effects. In
the next chapter, I will describe related research to the four contributions
that I have described in the previous four chapters. In chapter 7, I
will present multiple evaluations that defend the point that the time-
complexity of the SALS Al only increases linearly as more reflective
layers are added to the architecture.
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The term reflection is a commonly used word in computer science and
Al The idea is extremely simple and is a modeling contribution of this
dissertation, but because of its simplicity, it is a widely applicable idea.
In fact, Maes (1987, 1988) distinguishes over 30 different types of “com-
putational reflection,” grounded in the computer science literature. The
type of computational reflection that is introduced in this dissertation
is not included in Maes’ overview, although it is based on many of the
forms of computational reflection that Maes describes, i.e. procedural
reflection, type reflection, and frame reflection.

The SALS Al has been inspired by a previous implementation of an
Emotion Machine cognitive architecture, called EM-ONE (Singh 2005).
EM-ONE implements reflective thinking using a commonsense narrative
representation based on an Allegro Prolog extension of Allegro Lisp.
The EM-ONE architecture is a critic-selector model of problem solving
(Sussman 1973, Singh 2002, Singh et al. 2004, Singh & Minsky 2005,
Singh 2005, Minsky 2006, Morgan 2009). Knowledge in the EM-ONE
architecture is divided into three domains: (1) physical, (2) social, and (3)
mental. The EM-ONE Al controls a physical simulation that contains two
one-armed robots that can work together to build a table. The EM-ONE
Al contains three layers of reflective control: (1) reactive, (2) deliberative,
and (3) reflective. While the EM-ONE cognitive architecture represents
the first major implementation of the Emotion Machine theory of mind,
it was limited in a number of ways:

1. Critics are specified in a declarative logical form, which does not
allow for learning to optimize the procedural aspects of Prolog’s
implicit declarative search.

2. The implemented Critic-L language allows for inserted procedural
Lisp code, but any procedural code inserted in this way is not
reflectively traced.

3. Only learns from being told commonsense narratives and does not
learn from its experience to better predict the effects of executing
its physical or mental actions.

4. Commonsense narratives cannot be specified in natural language.
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5. All activities execute in serial, so no critics or selectors can execute
in parallel. Reasoning activities in each layer also occur in serial,
so that the layers of control cannot execute concurrently.

6. Does not take advantage of multiple CPUs or CPUs with multiple
cores.

7. Allegro Lisp and Allegro Prolog are expensive tools, barring collab-
orative research with many independent researchers that cannot
afford such tools.

The SALS cognitive architecture aims to provide one cohesive solution
to these limitations in the foundation of the EM-ONE Emotion Machine
implementation. In focusing on solving these limitations, the SALS
architecture has failed to model some good aspects of the EM-ONE
architecture. The following are a number of parts of EM-ONE that are
still future research for the SALS Al:

1. Self-reflective social knowledge.
2. The ability to refer to arbitrary partial states of a problem domain.
3. Critics.

The EM-ONE architecture includes a separate knowledge base for stor-
ing self-reflective social knowledge, the knowledge in the minds of other
Als, such as their beliefs and goals. The ability of an Al to learn abstract
models of its own mind and use these models to hypothesize the state of
mind in other Als is referred to as self-reflective thinking in the Emotion
Machine theory. This type of self-reflective thinking is also referred to
as “theory of mind” in the cognitive science literature and has been
found to exist in different neural circuits in the brain when compared
to deliberative or “executive” functions (Saxe et al. 2006). Because the
EM-ONE architecture is based on a Prolog substrate, it has the ability to
refer to arbitrary partial states of a problem domain, while the SALS Al
is currently limited to the two simple “relationship” and “property”
types of partial states. This limitation is not fundamental to the SALS
approach. The addition of more specific types of partial states requires
modification of the existing partial state reification process. Chapter 8
describes a plan for defining a process that would allow general types
of subgraphs as partial states that could be reified automatically by the
SALS AL The EM-ONE architecture can easily define critics that rec-
ognize arbitrarily complex declarative patterns in the problem domain.
The disadvantage of relying on a declarative substrate, such as Prolog,
is that the procedural aspects of this substrate are not reflectively traced
and cannot be optimized by the EM-ONE architecture. While the SALS
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architecture must have explicit plans for recognizing more complex
partial states, the fact that these procedures are plans in the SALS Al
means that different procedures for recognizing these partial states in
the problem domain can be reflected upon, modified, compared and op-
timized by the SALS Al The addition of critics as well as self-reflective
and self-conscious layers of thinking is described as a future extension
for the SALS architecture in chapter 8.

6.1 COMPUTATIONAL METACOGNITION

The type of reflection implemented in this thesis is a form of computa-
tional metacognition (Cox & Raja 2008, 2010), which begins with a ground
level, the problem domain for the Al to control. A reasoning layer rea-
sons about and solves problems in this ground level problem domain.
This problem solver is refered to as the object level reasoner. In addition
to the object level reasoner solving problems in the ground domain,
a meta-level reasoner solves problems in the object level reasoner. This
cascading of two levels of reasoners, where one reasoner reasons about a
problem domain and another reasoner that reasons about the first object
level reasoner is similar to the lower four layers of the Emotion Machine
architecture that have been implemented in this thesis. The bottom two
reactive layers of the SALS Al can be roughly thought of as analogous to
the ground level of computational metacognition. The object level of com-
putational metacognition is a control loop that receives inputs from the
ground level, processes these, and sends commands back to the ground
level. The object level of computational metacognition is analogous to
the deliberative planning layer in the SALS Emotion Machine cognitive
architecture. The meta-level of computational metacognition completes
two cascaded control loops: the object level controlling the ground level
and the meta-level controlling the object level. The meta-level of compu-
tational metacognition is analogous to the reflective planning layer of
the SALS Emotion Machine cognitive architecture. Table 10 shows how

Metacognition Meta Level =~ Emotion Machine Reflective Layer

Metacognition Ground Level =~ Emotion Machine Reactive Layers

Metacognition Object Level ~ Emotion Machine Deliberative Layer

Table 10: The levels of computational metacognition mapped to the Emotion
Machine cognitive architecture presented in this dissertation.
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the levels of computational metacognition map to the Emotion Machine
cognitive architecture presented in this dissertation.
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6.2 META-PLANNING AND META-PLAN RECOGNITION

Wilensky (1981) describes meta-planning as representing and using knowl-
edge about planning in problem solving and natural language under-
standing domains. He describes PAM, a story understanding system,
and PANDORA, a story understanding and problem solving system,
that both use higher-level goals and plans that he calls meta-goals and
meta-plans. The basic goals and plans in PANDORA are analogous to
the goals and plans in the SALS deliberative planning layer, while the
meta-goals and meta-plans are analogous to the goals and plans in the
SALS reflective planning layer. Wilensky describes story understanding
as a form of inverse planning or plan recognition (Kautz 1987, Charniak
& Goldman 1993, Kerkez & Cox 2003). In this sense, a planning system
is given a set of goals that are used to generate a sequence of actions
that accomplish the goals, while a story understanding system is given
a sequence of actions that are used to generate a set of goals that explain
those actions. Wilensky emphasizes that both story understanding and
planning require representations of meta-goals and meta-plans to reason
about common types of human thinking. Wilensky gives the following
two example story understanding problems:

1. John was in a hurry to get to Las Vegas, but he noticed that there
were a lot of cops around so he stuck to the speed limit.

2. John was eating dinner when he noticed that a thief was trying to
break into his house. After he finished his dessert, John called the
police.

In Wilensky’s first example, John is understood to have two goals: (1) to
get to Las Vegas as quickly as possible, and (2) to avoid getting a ticket.
Wilensky’s reasoning system recognizes that these two goals conflict
and that John has pursued the meta-goal of resolving goal conflicts.
Because getting a ticket has more negative value than the positive
value of getting to Las Vegas quickly, it understands that the goal of
speeding is abandoned due to pursuing this meta-goal. In the second
story, Wilensky’s reasoning system recognizes that John has made an
unintelligent decision to continue eating his dessert while someone is
robbing his house. In terms of meta-goals, Wilensky’s system recognizes
that John did not have the meta-goal to delay pursuing a less valuable
goal in light of the presence of a new more valuable goal. So, Wilensky’s
system is able to perform meta-planning and meta-plan recognition,
which are both future research goals for the SALS architecture. There are
a few key differences between the SALS architecture and PANDORA:
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1. Goals and meta-goals in PANDORA are both considered to be the
same type of knowledge and are stored in the same knowledge
base that is reasoned about by one monolithic planner, while the
SALS Al keeps these categorically different types of knowledge
separated into hierarchical layers of different knowledge bases and
types of planning processes.

2. PANDORA is not connected to an external problem domain, while
the SALS Al is capable of responding to the various types of
plan failures that result from executing plans, such as physical
expectation failures.

3. PANDORA only learns from being told knowledge, while the
SALS Al learns from both being told natural language plans as
well as from the experience of executing these plans.

Winston (2011) describes Genesis, an Al that performs reflective story
understanding on English language stories. The Genesis Al has a ground
level problem domain that consists of the knowledge that is directly
stated in the story. The ground level story knowledge in the Genesis
Al is analogous to the physical knowledge in the SALS Al, except
that the Genesis Al does not explicitly separate physical knowledge
from knowledge about the intentions and emotional states of social
agents, which I see as self-reflective knowledge, requiring the Al to have
self-models, a future extension of the SALS Al The Genesis Al has a
deliberative reasoning layer that uses analogies to English stories that
the AI has been told in the past to infer causal connections between the
ground level story elements.

The knowledge that causally connects the ground level of the Genesis
Al is referred to as an elaboration graph, which I will refer to as the
deliberative elaboration graph. The deliberative elaboration graph in
the Genesis Al is analogous to the deliberative plans and transframes in
the SALS AI, which provide causal explanations for changes between
physical partial states. The construction of the deliberative elaboration
graph in the Genesis Al is analogous to the deliberative interpretation
and compiling of natural language plans in the SALS Al Above the
deliberative reasoning layer in the Genesis Al is a reflective reasoning
layer that has a separate collection of reflective English stories that it
has been told in the past. Reflective English stories in the Genesis Al are
used to find analogical causal explanations that are combined to create
a reflective elaboration graph that explains the deliberative elaboration
graph. Winston describes two of the primary motivating hypotheses
that have guided the development of the Genesis Al:
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1. The Strong Story Hypothesis: The mechanisms that enable humans
to tell, understand, and recombine stories separate human intelli-
gence from that of other primates.

2. The Directed Perception Hypothesis: The mechanisms that enable
humans to direct the resources of their perceptual systems to
answer questions about real and imagined events account for
much of commonsense knowledge.

Winston sees the current Genesis Al to be mostly a demonstration of
progress at demonstrating a solution to the strong story hypothesis. In
pursuit of the directed perception hypothesis, Rao (1998) has imple-
mented the Architecture for Visual Routines (AVR). Preliminary success
at combining the Genesis Al with Rao’s AVR Al have been demonstrated
(Winston 2011). The AVR Al uses a visual processing plan language that
is based on an idea originally proposed by Ullman (1984), visual routines.
Ullman proposes that there are two stages to visual processing: (1) a
uniform low-level calculation over the entire visual scene, such as calcu-
lating the Z%D sketch, and (2) visual routines that extract abstract spatial
relations. Visual routines define objects and parts by having a visual
plan interpreter that is focused on a specific part of the low-level sketch
at any given point in time. Ullman suggests the following primitive
visual operations:

1. Shift of Processing Focus: A process that controls where a visual
operation is applied.

2. Indexing: Locations that are “interesting” in the base sketch, such
as a blue patch in an otherwise completely red scene.

3. Bounded Activation or Coloring: The spreading of activation from
the point of focus to “fill” a local region, which stops at boundaries
in the base representation.

4. Boundary Tracing: Moves the focus along the edge of a region in
the base representation.

5. Marking: Remember the location under the current focus so that it
can either be ignored or returned to in the future.

These primitive visual operations are used to construct visual routines
that become plans to perceive (Pryor et al. 1992, Pryor & Collins 1995,
Velez et al. 2011) in the low-level visual system.

Although the first planning layer in the SALS Al is the deliberative
layer, one can imagine that a solution to combining Winston’s Genesis
Al with Rao’s AVR AI would be to extend the SALS planning layers
into the learned reactive layer of the SALS Al, so that the translation
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of visual knowledge from the built-in reactive visual knowledge base
to the physical knowledge base in the learned reactive layer would be
performed by a planning layer below the deliberative layer. Thus, the
technique of extending the SALS AI’s planning layers to higher layers
of super-reflective control could be just as easily reversed by extending
the SALS Al’s planning layers to lower layers of planned control, so that
reflective control could be applied to the types of planning-to-perceive
problems as a coherent integration of Ullman’s visual routines into
deliberative reasoning layers of reflective control.

63 OPTIMALITY IN METACOGNITION

Al researchers often approach problem solving from the perspective
of theories of “rationality” from the fields of decision theory and eco-
nomics. From this perspective, rationality requires the AI to decide
upon optimal actions with respect to the values or costs of its goals
and activities. In the basic formulation, different actions have different
costs and the optimal decision is the decision that minimizes this cost
over some time period, possibly an infinite horizon. In simple domains,
the solution to a problem of optimal control can be specified in closed
form (Bertsekas 1995). In complex domains, optimal decision making
requires intractable computations to be performed, and approximate
or “satisficing” solutions to problems become necessary (Simon 1957,
1982). Good (1971) describes a decision making problem that includes
costs for acting as well as costs for decision making that he calls type II
rationality, a type of metacognition. Zilberstein (2011) describes optimal
metareasoning as an approach to developing a formalism for evaluating
the performance of a problem solver that is performing type II rational-
ity. Optimal metacognition does not imply that the object level problem
solver is optimal but instead that the meta-level problem solver is op-
timal. In bounded optimality the object level problem solver has certain
trade-offs, such as solution quality versus time, that can be optimally
manipulated by the meta-level problem solver (Russell & Wefald 1991).
Zilberstein (2011) describes bounded optimality:

This approach marks a shift from optimization over actions
to optimization over programs. The program is bounded
optimal for a given computational device for a given envi-
ronment, if the expected utility of the program running on
the device in the environment is at least as high as that of all
other programs for the device. When the space of programs
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is finite, one can certainly argue that a bounded optimal
solution exists. Finding it, however, could be very hard.

While the SALS Al is neither an optimal problem solver nor an optimal
meta-level problem solver, the field of optimal problem solving does
have the attractive feature that there is an objective metric of performance
for all problem solving algorithms when viewed through the lens of
optimality. There are a few key differences between most optimal meta-
planning algorithms and the SALS AL

1. Optimal metacognitive algorithms only learn from experience,
while the SALS Al learns both from being told natural language
plans as well as from the experience of executing these plans.

2. Optimal metacognitive algorithms tend to only consider simple
control parameters of an object-level algorithm, such as the allo-
cated execution time for a contract or anytime algorithm, while the
SALS Al considers all possible programs that implement object-
level reasoning.

While the SALS AI does not currently have an objective performance
metric, it is interesting to consider how the field of bounded rationality
could benefit from being told deliberative and reflective natural language
plans as a method of more quickly searching the space of all possible
planning programs.

64 MASSIVELY MULTITHREADED PROGRAMMING

While the SALS architecture will run on any hardware platform that
supports POSIX threads, SALS has been optimized to take advantage
of hardware platforms that utilize multithreaded and multicore CPUs
as well as multiple CPUs. Also, the SALS memory layer is designed
to be extended to peer-to-peer grid processor configurations. To avoid
excess heat dissipation, current chip designs are trending toward higher
transistor counts with slower clocks and lower voltages. Toward this
end, chip designs have increased numbers of processor cores, memory
caches, and SIMD coprocessors on each chip. The traditional approach
to High-Performance Computing (HPC) has been the Symmetric Mul-
tiprocessor (SMP) model, which assumes that two or more processors
access a shared global memory in an equivalent way. The current trend
toward multicore and multithreaded CPUs is beginning to make old
assumptions about HPC obsolete. The pin-out and interconnect problem
increasingly means that memory latency is the bottleneck for high-
performance applications. The cache memory configurations in new
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CPUs, such as the Intel Core iy, which includes four cores, each with
two hyperthreads, as well as L1 and L2 cache, means that data locality
to threads will only become more of a software design problem for HPC
as the number of cores in each CPU is expected to continue to double
every 18-24 months (Sodan et al. 2010, Dongarra et al. 2007). Indeed,
in an extreme case, the ATI RV770 GPU has more than 1,000 cores with
10 hyperthreads in each core and 8o floating point units on a single
chip with very limited access to any global memory. Given the right
software architecture, these massively multithreaded chips use their par-
allelism and concurrency to hide resource latency problems. The current
economical trend in HPC is to build computers with thousands of com-
mercially available CPUs and GPUs, which means that these trends in
the consumer PC market are beginning to require software changes for
high-performance scientific modeling applications. Sodan et al. (2010)
describes two types of performance scaling in parallel algorithms:

1. strong scaling, and

2. weak scaling.

In strong scaling, more processors linearly decrease the overall execution
time for a given algorithm, regardless of problem size. In weak scaling,
the problem size must increase with the number of processors to see a
linear decrease in the overall execution time for the larger problem size.
Algorithms that demonstrate weak scaling will improve with additional
processors only up to a given constant number of processors. Thus, al-
gorithms that demonstrate weak scaling will generally increase in speed
for a given problem size only when individual processor cores increase
in speed. Like many traditional high-performance software libraries,
traditional high-performance linear algebra libraries, such as LAPACK
and ScaLAPACK, have relied on weak scaling to take advantage of
new hardware platforms with more processor cores. As processor core
speeds increase, linear algebra problems of a given size will increase in
speed, while as processor core numbers increase, problems involving
larger matrices benefit from the additional processor cores. The problem
is that the current trend is for processor core speeds to be plateauing
or even decreasing as processor core numbers increase, causing these
traditional weak scaling algorithms to actually slow down as multicore
and multithreaded CPUs are used in the next generation of HPC. Ex-
acerbating the problem, cores in the new multithreaded and multicore
CPUs increasingly share on-chip resources, such as L2 and even L3
caches, as well as sets of heterogeneous specialty resources, such as
GPUs, SIMD coprocessors, and NICs for more efficient communication
between many CPUs. These shared on-chip resources make execution



6.5 NAUTILUS

speeds of a thread on a single core to be heavily dependent on how
other threads on the chip use those resources. For example, on multi-
threaded and multicore CPUs, threads should be grouped that access
the similar memory locations to maximize the efficiency of the shared
on-chip cache lines. In effect, new HPC architectures are not SMPs and
require new algorithm, compiler, and scheduler designs that emphasize
strong scaling so that larger numbers of simpler processing cores with
heterogeneous shared resources result in performance gains, regardless
of problem size.

6.5 NAUTILUS

The SALS virtual machine has been compiled and tested on Nautilus,
an SGI Altix UV 1000 system, the centerpiece of National Institute for
Computational Sciences (NICS) Remote Data Analysis and Visualization
Center (RDAV) (www.nics.tennessee.edu). Nautilus is a SMP architec-
ture with 1024 cores (Intel Nehalem EX CPUs), 4 terabytes of global
shared memory and 8 GPUs in a single system image. Nautilus has
a 427 terabyte Lustre file system, a CPU speed of 2.0 gigahertz and
a peak performance of 8.2 teraflops. The SALS Al has been tested on
Nautilus with an allocation of 32 processors and 128 gigabytes of RAM.
The evaluations of the SALS virtual machine in chapter 7 focus on a
desktop personal computer with an Intel Core iy CPU with 4 cores each
with 2 hardware hyperthreads.
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EVALUATION

The primary contribution of this thesis is a recursive implementation of a
reflective planning layer that controls a deliberative planning process. Be-
cause of the recursive nature of this implementation, a super-reflective
layer is also used to control and learn about the reflective planning
process. The benefit of adding each additional reflective layer is that
more can be learned from each deliberative failure by adding each ad-
ditional reflective layer, but there is a computational trade-off in that
each additional reflective layer also increases the computational com-
plexity of the overall architecture. This chapter evaluates the Emotion
Machine cognitive architecture contribution of this thesis by measuring
the computational complexity introduced by adding additional reflec-
tive planning layers to the SALS deliberative planning process. First, the
perceptual inputs to each planning layer are described and evaluated.
Next, the time-complexity of natural language plan interpretation at
each reflective layer is evaluated. Finally, the performance of the SALS
virtual machine at efficiently executing parallel processes concurrently
on multicore and hyperthreaded CPUs is evaluated.

7.1 COMPLEXITY OF PERCEPTUAL INPUTS

The key to beginning to think about the computational complexity in a
given planning layer of the SALS cognitive architecture is in considering
the perceptual inputs to that layer. The perceptual inputs to a planning
layer determine the complexity of the goals that the planner can attempt
to accomplish or avoid as well as the complexity of the causal models
that the planning layer will construct for a given rule-learning algorithm.
There are two different types of inputs to a SALS planning layer from
the layer below:

1. Procedurally Reflective Event Streams

2. Direct Read Access

The first, procedurally reflective event streams, is the basis of the asyn-
chronous learning from experience that was discussed in detail in
chapter 4. To briefly review, learning from experience asynchronously
abstracts a small subset of all possible partial states from a stream of
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events that represent changes that have occurred in the knowledge base
that the planning layer is trying to control. These abstracted partial
state events are woven together with resource activation and completion
events through a rule-learning algorithm to learn abstract hypothetical
models of resource executions in the layer below. These hypothetical
models are used by the planning layer to imagine the effects of plans
before they are executed. The second type of input to a planning layer,
direct read access, allows an executing plan to access the real-time state
of the knowledge base that it is trying to control. The important thing
to realize about both of these different methods of accessing and re-
ferring to the knowledge base in the layer below is that both of these
methods work exclusively through a small subset of possible partial
state abstractions. chapter 3 describes two specific types of these partial
state abstractions that can be perceived by the planning layer: (1) the
“relationship” expression, and (2) the “property” expression. The fact
that all perceptual input to a planning layer is limited to these specific
types of partial state abstractions limits the complexity of the control
problem that the planning layer confronts. For example, because of the
simplicity of the included partial states, the SALS Al cannot directly
pursue a single goal to create a stack of three blocks. Instead, the de-
liberative layer of the SALS AI must be instructed, by either a user or
the reflective layer, to pursue two goals composed of these simpler par-
tial states to make a plan to stack three blocks: (1) “Block-1 to be on
Block-2" and (2) “Block-2 to be on Block-3.” The important point is
not that the abstracted partial states are currently simple but instead that
the planning layer is limited to perceiving its problem domain through
partial state abstractions that reduce the complexity of the problem
domain to a set of symbolic reifications that either exist or do not exist
in the control domain.

Knowledge in a SALS planning layer includes plans, goals, a planner,
and other knowledge used in the planning process. In addition to the
planning objects, knowledge in a planning layer includes symbolically
reified references to the knowledge in the layer below. Keeping clear
distinctions between knowledge in different layers is critical to reducing
the potential complexity of the SALS architecture. For example, while
the deliberative plan knowledge base references physical knowledge
in the learned reactive physical knowledge base, the deliberative plan
knowledge does not actually contain physical knowledge. Instead, the
deliberative plan knowledge base contains symbolized reifications of
potential partial states of the physical knowledge base. Figure 36 shows
a simple example of a deliberative goal that refers to a potential partial
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Figure 36: Deliberative physical partial state reification. (A) A visualization of
the idea that a deliberative goal object can refer to a potential partial
state of the physical knowledge base. (B) The actual representation
of a deliberative goal object that has a symbolic “partial-state”
property, the symbolic phrase, “a cube is on a pyramid,” being
a reference to the potential physical partial state visualized in (A).
Each planning layer is limited to reflecting upon reified symbols
that refer to partial states in the layer below and not the complexity
of the partial states themselves.

state of the physical knowledge base and how this partial state is sym-
bolically reified in the deliberative layer. Because deliberative knowledge
only contains symbols that refer to physical partial states, this allows
the deliberative layer to ignore the internal details of the physical partial
state and simply treat the goal symbolically.

The number of partial states that are abstracted from any given knowl-
edge base depends primarily on the structure of the knowledge within
that knowledge base and whether or not that structure contains the
types of partial states that the SALS Al is prepared to abstract. The
partial states that are currently included in the SALS Al are meant to be
both specific enough to handle the simple types of meaningful relation-
ships that have been engineered to exist in each knowledge base while
being general enough to leave room for those serendipitous abstrac-
tions that have not been engineered but may still end up being useful
to the rule-learning algorithm in building causal models of resource
executions. Table 11 shows how the sizes of the knowledge bases in the
layers of the SALS Al relate to the numbers of partial states that are
abstracted from these knowledge bases by the layers above. Notice that
the total number of partial states that are abstracted from any given
knowledge base is not directly a function of the number of frames in
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Knowledge Base Frames | Partial States Abstracted
Learned Reactive Physical 6 174
Deliberative Plan 120 122
Reflective Plan 224 103
Super-Reflective Plan 208 N/A

Table 11: A comparison of the sizes of knowledge bases in the layers of the
SALS Al to the numbers of partial states that are abstracted from
these knowledge bases. Notice that the number of partial states ab-
stracted from any given knowledge base is not directly a function
of the number of frames in the knowledge base. For example, the
learned reactive physical knowledge base contains very few frames
with a highly interconnected structure that contains many of the
types of partial states that SALS is designed to abstract, while the
plan knowledge bases contain a relatively large number of frames
with fewer and more sparse relationships that result in fewer ab-
stracted partial states. The super-reflective layer is currently the high-
est layer in the SALS Al, so no partial states are currently abstracted
from the super-reflective plan knowledge base.

that knowledge base. For example, the learned reactive physical knowl-
edge base contains relatively few frames with a highly interconnected
structure that contains many of the types of partial states that SALS is
designed to abstract, while the plan knowledge bases contain a relatively
large number of frames with fewer and more sparse relationships that
result in fewer abstracted partial states. The number of partial states that
are the perceptual input to each planning layer decreases as subsequent
layers of reflective planning are added to the SALS Al In general, this
rule may not hold for two reasons:

1. Planning layers may become more interconnected as the Al gains
experience.

2. More types of partial states may be added to the SALS Al in the
future.

Both of these situations may cause the total number of partial states
abstracted from a plan knowledge base to grow intractably. Because of
this potential problem, an eye must be kept on these numbers when
designing new types of knowledge representations for each planning
layer in the SALS Al. A general solution would consider the number
of perceptual inputs to a planning layer as a control problem in itself.
Currently, the number of perceptual inputs to a planning layer in the
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SALS architecture grows sub-linearly with each subsequently higher
layer of reflective control.

7.2 COMPLEXITY OF PLAN INTERPRETATION

While the perceptual inputs to higher-level planning layers in the SALS
Al are currently kept at a tractable sub-linear complexity for each addi-
tional layer, there is still the question of how the planning process scales
in time-complexity for each subsequently higher layer in the SALS Al
The planning process can be broken down into two main stages:

1. Plan Interpretation and Imagination

2. Plan Execution

Plan interpretation and imagination involves a search through a number
of possible partial interpretations of natural language phrases expressed
in the simple SALS template matching programming language, which
has been described in chapter 3. To briefly review, the search through
possible natural language interpretations involves finding analogies to
other already known natural language plans that match the phrase that
is currently being interpreted. The interpretation process (1) considers
the current state of the domain that the planning layer is trying to
control, (2) ignores interpretations that compile to programs that are
imagined to have bugs, such as passing the wrong argument type to
a low-level function, and also (3) ignores interpretations that do not
accomplish the current goals of the planning layer or fail to avoid
negative goals. Depending on the type of reflectively chosen planning
process, plan execution generally occurs after a natural language plan
has been interpreted, all natural language ambiguity has been compiled
away, and the plan has been deemed relevant to either accomplishing
positive goals or avoiding negative goals.

Because the plan interpretation process requires a search through a
number of ambiguously specified analogies to previously known nat-
ural language plans, this process can potentially have a considerable
time-complexity as natural language phrases become longer and more
complex at higher level reflective layers. There is a distinction between
the time-complexity of learning from being told and learning from expe-
rience. When a planning layer in the SALS Al learns from experience, a
stream of procedurally reflective trace events are received from changes
in the layer below and these are abstracted into partial states that are
symbolically reified before being stored in the causal hypotheses of
the planning layer. When these hypotheses are used to hypothesize the
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effects of a plan, only the reified symbol that refers to the partial state
in the layer below is stored as related to the plan in the planning layer.
When a reflective layer above the planning layer learns from experi-
ence, it receives a stream of events that includes the new relationship
between the plan and the symbolized partial state in the planning layer.
The reflective layer itself symbolically reifies this partial state of the
planning layer. As this process continues up through each additional
reflective planning layer, each reflective layer performs one symbolic
reification that is again symbolically reified by the next layer as part of
a higher-level partial state that ultimately may refer, through symbolic
reference, to the original physical knowledge, the ground knowledge
layer." Figure 37 shows an example of three layers of recursive symbolic
reification. The following are three pieces of knowledge from different
layers of the SALS Al, where the first piece of knowledge is symbolically
referred to by the second, and the second is symbolically referred to by
the third:

1. Physical Knowledge: “a pyramid is on a cube.”

2. Deliberative Knowledge: “a deliberative planner is focusing
on a plan that has failed to achieve the goal for a cube to
be on a pyramid.”

3. Reflective Knowledge: “a reflective planner is focusing on
a plan that has failed to avoid the negative goal for a deliberative
planner to be focusing on a plan that has failed to achieve
the goal for a cube to be on a pyramid.”

To continue to reference physical knowledge in higher layers, the natural
language phrases become longer, more complex, and take more time to
interpret and compile to their reified symbolic forms. Table 12 shows
a comparison of the time-complexities for interpreting each of these
three natural language phrases. As can be seen in this table, interpreting,
imagining and compiling natural language phrases that refer to physical
knowledge at higher layers of reflective planning grows quickly in time-
complexity in just the first few layers. For this reason, while the SALS
Al is capable of interpreting these types of natural language phrases
that reference knowledge in multiple layers below a given planning
layer, these types of natural language phrases are strictly avoided in
the implementation of the natural language planning algorithms in

[=

It should be clear that reflective knowledge has no requirement to be ultimately
grounded in physical knowledge. Knowledge can ultimately refer to the partial states
of any layer. See Minsky (2011) for a more detailed discussion of interior grounding in
reflective and self-reflective thinking.
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Figure 37: Three layers of knowledge that form a hierarchy of reified symbolic
reference. (A) A physical partial state that is symbolically reified
in the deliberative layer. (B) A deliberative partial state that is
symbolically reified in the reflective layer. The deliberative partial
state contains the symbolic reification of A. (C) A reflective partial
state that is symbolically reified in the super-reflective layer. The
reflective partial state contains the symbolic reification of B. Also,
the reflective partial state indirectly references A through its direct
reference to B.
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Referent Reference Execution Nodes
(A) Physical Deliberative 18
(B) Deliberative | Reflective 92
(C) Reflective Super-Reflective 125

Table 12: A comparison of the execution node time-complexity of three differ-
ent natural language phrases that reference one another in recursive
hierarchy. (A) A natural language phrase that compiles to a physical
knowledge partial state in the deliberative layer. (B) A natural lan-
guage phrase that compiles to a deliberative knowledge partial state
in the reflective layer that includes a symbolically reified reference
to the physical partial state in A. (C) A natural language phrase that
compiles to a reflective knowledge partial state in the super-reflective
layer that includes a symbolically reified direct reference to the de-
liberative partial state in B and an indirect reference to the physical
partial state in A.

the reflective and super-reflective layers. These types of hierarchical
references through all of the layers below any given planning layer are
commonly abstracted by the process of learning by experience, where
the time complexity is sub-linear per additional layer, but while these
knowledge references are possible to express in natural language to the
SALS Al they are avoided in the definitions of the plans that define the
planning processes because of this problematic scaling factor in learning
these types of complex knowledge from being told.

The only knowledge references that are told to the planning layers in
the SALS Al are the goals in the immediate layer below the planning
layer that the planning layer should try to accomplish or avoid. Examples
of these goals are as follows:

1. Reflective Plan: “want a cube to be on a pyramid.”
2. Reflective Plan: “want a pyramid to be on a cube.”

3. Super-Reflective Plan: “Avoid a deliberative planner being focused
on a plan that has failed.”

Table 13 shows the time-complexities of interpreting these natural lan-
guage phrases in the reflective and super-reflective layers that specify
goals for the deliberative and reflective layers, respectively. The time-
complexity of interpreting these natural language phrases that specify
goals in the deliberative and reflective layers have equal time-complexity.
This result implies a linear time-complexity for specifying more goals in
each additional reflective layer in the SALS Al
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Plan Layer Execution Nodes
(A) Reflective Plan 18
(B) Reflective Plan 18
(C) Super-Reflective Plan 18

Table 13: Time-complexities of interpreting natural language plans that specify
goals in only the immediate layer below the plan. Note that the
time-complexity of interpreting these natural language phrases that
specify goals in the deliberative and reflective layers have equal time-
complexity. This result implies a linear increase in time-complexity
for each additional layer of plans that specify goals in only the one
layer immediately below the plans. As previously shown, plans that
specify goals that indirectly reference knowledge in layers multiple
levels below the plan have a greater than linear increase in time-
complexity.

Because the natural language plans in the reflective and super-reflective
layers that define the planning algorithms are independent of any spe-
cific goals that they may be trying to accomplish, these plans do not
contain any knowledge references at all. Instead, the natural language
plans that define the planning algorithms are simply composed of re-
source activations in the immediate layer below. The following are plans
of action in each of the three planning layers of the SALS Al

1. Deliberative: “stack a cube on a pyramid.”
2. Reflective: “find recent plan to accomplish my positive goals.”

3. Super-Reflective: “find recent plan to avoid my negative goals.”

Table 14 shows the time-complexity of interpreting these plans for
action in the each of the three planning layers of the SALS Al The
reflective planning plans are roughly of the same time-complexity as
the super-reflective planning plans. The fact that planning plans are
of the same time-complexity independent of their interpretation layer
implies a linear increase in overall complexity as more planning layers
are added to the SALS Al
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Plan Layer Execution Nodes
(A) Deliberative Physical Plan 3003
(B) Reflective Planning Plan 170
(C) Super-Reflective Planning Plan 152

Table 14: The time-complexity of interpreting plans for action in the three
planning layers of the SALS Al (A) The deliberative physical plans
take much more time-complexity to interpret because they are id-
iosyncratic to the Blocks World planning domain, including specific
references to shapes, colors, and prepositional relationships. Each
different problem domain will have a different set of deliberative
plans in order to manipulate that domain. (B) The reflective planning
plans are interpreted and become the deliberative planning processes.
(C) The super-reflective planning plans are interpreted and become
the reflective planning processes. Notice that the reflective planning
plan is roughly of the same time-complexity as the super-reflective
planning plan. The fact that planning plans are of the same time-
complexity independent of their interpretation layer implies a linear
increase in overall complexity as more planning layers are added to
the SALS AL

7.3 EFFICIENCY OF CONCURRENT EXECUTION

The SALS virtual machine is built to take advantage of multiple proces-
sors and multicore processors with hardware hyperthreads. chapter 5
discusses the details of the parallel and concurrent processing features
of the SALS virtual machine and low-level Lisp-like programming lan-
guage. To briefly review, to reduce cache misses, a separate memory
pool is allocated for each separate hardware hyperthread in the target
hardware platform. Each of these memory pools is allocated a virtual
processor object in the SALS virtual machine. Each concurrent virtual
processor has a separate scheduler that simulates parallelism for a
number of parallel processes, called fibers to distinguish them from the
low-level operating system thread objects. The SALS garbage collector is
a concurrent implementation of a tricolor garbage collection algorithm.
Figure 38 compares the speedup gained by executing multiple processes
in parallel on the SALS virtual machine to the optimal speedup that
could be expected. These tests were executed on a GNU/Linux system.

Each parallel process in this experiment is performing the same numeri-
cal processing task on memory that is independent of other tasks. The
number of computations performed by a single parallel process is used
as the unity standard for the speedup comparisons. These tests were
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Figure 38: The speedup gained by executing multiple processes concurrently in
the SALS virtual machine. The solid line plot represents the speedup
experienced by the SALS Al as more fiber processes are executed in
parallel. The dashed line plot represents the optimal speedup that
can be expected on this specific hardware. Each parallel process
in this experiment is performing the same numerical processing
task on memory that is independent of other tasks. The number
of computations performed by a single parallel process is used
as the unity standard for the speedup comparisons. These tests
were run on an Intel Core iy processor with 4 cores, each with
2 hardware hyperthreads. In these tests, 8 virtual processors and
8 memory pools were allocated, one for each hyperthread in the
target hardware platform. Each test was performed 100 times to
average out variations caused by intermittent garbage collections.
The optimal speedup is calculated by a short C program that uses
POSIX thread primitives, optimized C arithmetic, and no memory
allocation or garbage collection. The SALS Al has a small overhead
for each additional parallel process, which is seen by the downward
slope of the solid plot. The SALS virtual machine performs most
efficiently on this hardware with 7 parallel fibers executing. These
tests were executed on a GNU/Linux system.
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Figure 39: Parallel processing speedup on Dual AMD64 CPUs with 4 cores

each.
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run on an Intel Core iy processor with 4 cores, each with 2 hardware hy-
perthreads. In these tests, 8 virtual processors and 8 memory pools were
allocated, one for each hyperthread in the target hardware platform.
Each test was performed 100 times to average out variations caused
by intermittent garbage collections. The optimal speedup is calculated
by a short C program that uses POSIX thread primitives, optimized C
arithmetic, and no memory allocation or garbage collection. The SALS
Al has a small overhead for each additional parallel process, which is
seen by the downward slope of the solid plot.

All of the time-complexities that have been presented in this chapter
do not incorporate any speedup that is gained by using concurrent or
parallel hardware. There are many aspects of the SALS Al that take
advantage of the concurrent processing capabilities of the SALS virtual
machine. For example, because the SALS natural language planning
language is a simple functional grammar, any ambiguous interpretations
are performed in parallel processes in the SALS virtual machine. Also,
each planning layer contains two asynchronous learning stages that
each contain two parallel agencies that concurrently process streams of
procedurally reflective trace events.
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The primary focus of this thesis is a tractable implementation of a
cognitive architecture for the recursive application of reflective layers
of planning and learning. Because the focus of this dissertation has
been on the larger recursive structure of the SALS cognitive architecture,
one layer of which is a closed-loop non-reflective Al, each necessary
sub-component of a single planning layer in the SALS AI has been kept
relatively simple. Therefore, each of these components of the current
skeleton of the SALS Al can be fleshed out in the future, while keeping
the core tractable cognitive architecture for a many-layered reflective Al
The following are four areas of research that would improve every layer
in the SALS Al:

1. General partial state abstraction. The ability to abstract more gen-
eral partial states from a control domain would allow the addition
of critics that recognize relatively specific and intricate problematic
partial states in the control domain, as is done in the EM-ONE
architecture (Singh 2005), the precedent for this work.

2. A propagation model of knowledge maintenance that traces knowl-
edge provenance from refined hypotheses learned from experience
to plan goal accomplishment and avoidance hypotheses (Radul
& Sussman 2009). Currently, the SALS Al must completely re-
imagine the effects of a plan when new hypotheses are learned
from experience.

3. General grammar definitions in the natural language program-
ming language, such as those presented by Winograd (1970). Cur-
rently, the SALS natural programming language is limited to a
simple functional grammar.

4. More efficient usage of multicore, hyperthreaded, and multiple-
processor hardware platforms as well as completion of the dis-
tributed processing model that is partially implemented in the
memory layer of the SALS virtual machine, which would allow
peer-to-peer distributed processor support.

In addition to making improvements to the existent structure of the
SALS Al there are a number of aspects missing from the SALS Al that
could be added to the architecture to better model human commonsense
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thinking. A few selected ideas for new additions to the SALS Al are as
follows:

1. Self-reflective and self-consciously reflective thinking, the top two
layers of the Emotion Machine theory of human commonsense
thinking (Minsky 2006), including self-models and social knowl-
edge.

2. Extending reflective planning layers downward into the domain
of plans-to-perceive (Pryor et al. 1992, Pryor & Collins 1995, Velez
et al. 2011), so that the SALS Al can learn plans for abstracting
spatial relations between symbolic perceptions, such as the visual
routines first implemented by Ullman (1984).

3. Plan and meta-plan recognition as a way to include current re-
search on reflective story understanding architectures that attempt
to explain the actions of actors in terms of goals and meta-goals
that the actor may be trying to accomplish (Wilensky 1981, Cox &
Ram 1999, Cox & Raja 2010, Winston 2011).

8.1 GENERAL PARTIAL STATE ABSTRACTION

The SALS Al is currently restricted in the types of partial states that it
can abstract from the knowledge base that it is trying to control. The two
types of partial states that are included in the current implementation are
the “relationship” and “property” types that have been described in
chapter 3. Implementing more general types of partial state abstraction
in the SALS Al must be done carefully to keep the architecture tractable
at higher layers. One goal for implementing perceptual partial state
abstractions of greater complexity would be to allow for implementing
critics from EM-ONE (Singh 2005). Putting efficiency aside for the
moment, implementing new types of partial state abstractions for the
SALS Al is a straightforward task. There are two places in each planning
layer where partial state abstraction processes are executed:

1. Asynchronous Procedural Event Stream Abstraction: The asynchronous
learning algorithm that exists in each reflective layer abstracts par-
tial states from a historical reconstructed copy of the knowledge
base that the planning layer is trying to control.

2. Direct Real-Time Read Abstraction: An executing plan may execute
a procedure that checks to see if a specific type of partial state
currently exists in the knowledge base that it is trying to control.

Asynchronous learning from procedural event streams requires that
when a planning layer receives a change event from the knowledge base
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Figure 40: An example of a more complex type of partial state than the SALS
Al can currently abstract, which represents an arch.

in the layer below, the planning layer integrates this change into a re-
constructed copy of that knowledge base. The reconstructed knowledge
base represents the state of the knowledge base that the planning layer
is trying to control at a point in the past. The asynchronous abstraction
process works on this reconstruction to determine whether or not the
change has either created a new instance of a type of partial state or has
removed a previously existing instance. The asynchronous procedural
event stream abstraction of partial state types works to learn causal hy-
potheses for the effects of resource executions in the layer below. When
a plan is currently executing in the planning layer, it is sometimes useful
to determine whether or not a specific partial state currently exists in
the knowledge base that the planning layer is trying to control. The
asynchronous partial state abstraction cannot be used for this type of
real-time query because the asynchronous abstraction algorithm works
on an historical copy of the knowledge in question. Therefore, the direct
real-time read abstraction of a specific partial state from the current
state of the knowledge base is sometimes necessary for this purpose.
To demonstrate the difference in time-complexity between these two
methods of abstracting types of partial states, let us consider that a
partial state is a specific subgraph that is to be symbolically reified
both asynchronously as well as by direct read access from a graph
representation of the frame-based knowledge base that the planning
layer is trying to control. Figure 40 shows an example of a more complex
type of partial state than the SALS Al can currently abstract, which
represents an “arch,” similar to the arch category learned by near-miss
learning by Winston (1970). As these types of partial states become more
complex, the direct real-time read approach to abstraction becomes very
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Figure 41: Five minimum spanning trees between the edges of the arch exam-
ple partial state. One minimum spanning tree is shown for each
edge in the partial state of interest. Precomputing one minimum
spanning tree rooted at each edge in the partial state of interest
reduces the general NP-complete graph isomorphism decision prob-
lem to a rooted tree matching problem.

similar to the NP-complete subgraph isomorphism decision problem,
which quickly becomes intractable for large subgraphs.*

Consider how the asynchronous abstraction of subgraphs from change
event streams can improve upon the intractable subgraph isomorphism
problem. The key to realize is that the change event focuses the task of
the asynchronous abstraction process, which changes the general graph
isomorphism problem into a focused tree matching problem, given that
spanning trees are precomputed for each edge in the partial state graph
of interest. Figure 41 shows an example of five minimum spanning
trees, one for each edge of the arch example partial state. Computing
a minimum spanning tree for a connected graph has polynomial (FP)
time-complexity. Precomputing one minimum spanning tree rooted at
each edge in the partial state of interest reduces the general NP-complete
graph isomorphism decision problem to a rooted tree matching problem.

1 Given a set of subgraphs that are of interest, preprocessing these subgraphs can lead to
a practically more efficient hierarchical “graph stitching” algorithm for finding which of
this set of subgraphs exist within a target graph (Messmer 1995, Messmer & Bunke 2000).
For large enough graphs, however, these algorithms are still intractable for real-time
queries. These algorithms have been implemented and are included in the SALS AI, but
are not used for the examples in this dissertation.



8.2 PROPAGATION BY PROVENANCE OF HYPOTHETICAL KNOWLEDGE

While there may be a more efficient solution to the asynchronous
abstraction of partial states in the SALS Al, the problem of real-time
abstraction is still an NP-complete problem. I do not see any easy so-
lutions to this problem, but there are two ways that I see to avoid it.
One way to avoid the problem is to limit the real-time partial state
abstraction to a predefined set of small graphs that only involve 5 to 10
nodes. Messmer (1995) describes an efficient algorithm for this type of
query. Note that this type of query would still allow the asynchronous
learning of causal models from partial states with precomputed min-
imum spanning trees rooted at change events. Another way to avoid
the NP-complete problem of real-time abstraction of partial states is
to ignore it. If the asynchronous abstraction of partial states can run
quickly enough, perhaps by allocating a parallel processor and a sep-
arate reconstructed knowledge base to each type of partial state, the
asynchronous algorithm could potentially show little enough latency to
make it near enough to real-time to be practically useful.

8.2 PROPAGATION BY PROVENANCE OF HYPOTHETICAL KNOWLEDGE

Currently in the SALS Al, when a resource is executed by a planning
layer, generalized hypotheses are learned that are used to predict the
effects of those resource executions in the future. For example, these
hypotheses are used to predict the effects of a plan when that plan is
imagined being executed as part of the planning process in a planning
layer. When a plan is imagined in this way, these effects are associated
with the plan object in the plan knowledge base of that layer. Subse-
quently, when the hypotheses that support these conclusions are refined
due to new experience gained through the execution of similar plans or
actions, the hypothetical support for these original conclusions may be
lost. The problem is that these original conclusions remain associated
with the plan objects, even in the case when the hypothetical support
for those conclusions is lost through the refinement of the hypothesis
spaces from which they were originally derived. Because of the potential
loss of hypothetical support for the effects of plans, the plan must be
completely re-imagined whenever the asynchronous learning algorithms
have learned new information through the experiential event streams.
Radul & Sussman (2009) explain a type of Truth Maintenance Sys-
tem (TMS) (Doyle 1978) called a propagator. A propagator network is
composed of cells that represent variables in a computational process
that can have multiple ambiguous values. The propagator network also
has the ability to track the provenance of the derivations for the values
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stored in these cells. The advantage of TMSs and propagator networks
is the ability to perform dependency directed backtracking to find new
justifications for beliefs when contradictions in knowledge are encoun-
tered. If the knowledge derivations in the SALS AI were built based
upon a propagator network, the contradictions between hypothetical
assumptions and new experiential input could be propagated efficiently
to the effects that are associated with plan objects. One advantage of
propagator networks over traditional TMS systems is their ability to
maintain multiple possibly contradictory sets of beliefs that are derived
from different sources of information. The ability to maintain multiple,
possibly conflicting belief structures in a propagator network would
allow the SALS Al to consider the source of the knowledge and develop
ways of reasoning that determine when one source is more reliable than
another. For example, when the SALS Al learns new plans from being
told, the source of this knowledge could be associated with different
users or other specific Als that are the source of these new assertions.
When one source is found to be valid for one domain but invalid for
another, the SALS Al could use the features of a propagator network
to easily switch between reasoning using different sets of knowledge
sources in different circumstances.

83 GENERAL NATURAL LANGUAGE GRAMMAR

The SALS Al currently interprets natural language plans, while simulta-
neously considering syntax, semantics, current environmental context,
learned hypothetical knowledge about the effects of actions as well as
the current positive and negative goals of the Al. The SALS natural
programming language is currently limited to a simple functional gram-
mar. One problem with many natural language grammars are that they
usually assume a specific language, such as English, as the basis for their
grammar. Although the SALS Al grammar is simple, the benefit of this
simplicity is that because it is based on a Unicode string matching tem-
plate, it is able to represent and reason with natural language phrases
from any natural human language, including languages like Chinese
and Japanese, which do not have words separated by spaces. While
there are many ways to improve the SALS natural language interpreter,
the following are four that are immediately applicable to the SALS Al

1. Mutation, Side-Effects and Causal Variables: One immediate way to
maintain the generality of the SALS natural language interpreter,
while adding the complexities of a general natural language gram-
mar, is to allow the language to have mutation side-effects, so that
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the interpreter can be stateful. Adding mutation side-effects to
the SALS natural language interpreter introduces a complexity
to the current interpretation search process that would become
intractable without an explicit additional method of curbing this
complexity. Dependency tracing would be a promising way to
reign in the complexity of this search process.

. One Consolidated Natural Language Interface: The SALS Al currently
receives natural language plans through a separate interface to
each planning layer. One future goal for the architecture is to have
one natural language input to the entire architecture that enters
the architecture through the lowest-level perceptual knowledge
bases of the built-in reactive layer and propagates upward through
the planning layers until the natural language phrase is completely
understood.

. Incremental Natural Language Understanding: To increase the real-
ism of the SALS natural language interpreter, the ability of the
interpreter to receive and process a stream of phonetic or character-
level symbols in temporal order, rather than in template form,
could allow the SALS AI to begin imagining multiple possible
interpretations of a statement or phrase before that statement or
phrase has been completely communicated to the SALS Al

. Natural Language Analogies Between Layers: The inherent ambiguity
of natural language plans allows analogies to be made between
plans within any given planning layer. An exciting avenue for
future research is the creation of analogies between planning layers
in the SALS Al For example, consider that the Al has learned a
plan for stacking blocks in the Blocks World domain that involves
first dividing the blocks into two groups on the table: (1) cubes
and (2) pyramids. The Al can execute a simple block stacking
plan that simply selects blocks from the group with only cubes in
order to create a stack without again considering the shapes of the
blocks in question. This plan for physical action, could provide
an analogy for the reflective thinking layer if the Al confronts a
problem that requires plans to be grouped into two lists: (1) those
plans that activate resources concurrently, and (2) those plans
that execute resources sequentially. This could be a way to plan
quickly without imagining potential resource conflicts in plans
with concurrent resource executions. Finding analogies between
natural language plans of different layers in the SALS Al could
lead to faster learning in new domains of reflective thinking, for
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example, if the Al knew many plans for physical action and few
for reflective action.

Natural language plans are an important part of a cognitive architecture
because of the potential for the Al to be able to explain its own reasoning
processes in terms of this natural language understanding. There are
many directions for extending the use of natural language in the SALS
AL

84 SELF-REFLECTIVE THINKING

The self-reflective and self-conscious layers are the top two layers of the
Emotion Machine theory of human commonsense thinking (Minsky
2006). These two layers are not included in the current version of the
SALS AL The self-reflective layer includes plans that control the planning
resources in the lower reflective layers. The self-reflective layer contains
self-models which represent large-scale reconfigurations of the thinking
resources in the lower reflective layers of the Al These global changes
to the way an Al is thinking are sometimes referred to as “emotions” or
“personalities” depending on the time-scale. My usage of these terms
is analogous to the usage of the terms “weather” and “climate.” A
personality is a longer-term plan involving shorter-term emotion actions.
The following is a list of some simple emotion and personality plan
definitions that could be added to a self-reflective layer of the SALS Al:

* Be happy: Do nothing.
* Be tired: Make a plan to go to sleep.

* Sleep: Imagine executing recently used plans in a variety of con-
texts.

* Be frustrated: Try to find goals to give up that are not worth
accomplishing.

¢ Grieve: Replace old plans and goals that depend upon lost re-
sources.

* Be athletic: Get better at making plans that require me to exercise.

* Be friendly: Get better at making plans to help friends accomplish
their goals.

The self-reflective layer’s plan knowledge base could include the follow-
ing types of self-model knowledge, which would be reflections of the
above plans being executed:

¢ I am happy.
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I am tired.

I am frustrated.

¢ [ am grieving.

I am athletic.

¢ I am friendly.

One distinguishing factor of the self-reflective layer is that it not only
includes self-models but also analogous other-models. The following is a
list of other-model knowledge:

¢ Joe is happy.

e Carol is tired.

Carol is frustrated.
¢ Suzy is grieving.
Ralph is athletic.

* Lauren is friendly.

The self-reflective layer has the capability to abstractly simulate self-
models and other-models in terms of all of the partial states in the layers
below. This simulation can probably be performed tractably because
only a linear increase in complexity has been seen to be added to the
SALS overall architecture with each additional layer in the current
architecture.

One way to simulate other-models and self-models analogously is
by adding an ontology to the SALS Al’s knowledge bases. Currently
the SALS Al can only abstract and simulate symbolically reified partial
states that represent the problem domain. These collections of symbols
that are the input to each planning layer of the SALS Al are not object-
oriented. Meaning that they are not organized into frame-based object
representations. Learning an ontology of object types is future research
for the SALS Al The ability to abstract and simulate object types may
be related to learning object binding affordances (Stoytchev 2005). Also,
learning these object types may lead to an object model that could
naturally be extended for learning self-models and other-models.

85 SELF-CONSCIOUS THINKING

The self-conscious layer is the top layer of the Emotion Machine theory
of human commonsense thinking. The self-conscious layer is a plan-
ning layer that controls the self-reflective layer below. Self-conscious
thinking involves thinking about what one person is thinking about
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another person. The representations in the self-conscious thinking layer
include relationships between self-models and other-models from the
self-reflective layer. The following are examples of self-conscious knowl-
edge:

* Joe is imagining that Lauren is happy.

Ralph is unaware that Suzy is grieving.

Carol imagines that Ralph knows a plan to stack two blocks.
Lauren knows that I failed to stack two blocks.
Ralph and Lauren are Suzy’s children.

The self-conscious thinking layer is the first reflective layer in the Emo-
tion Machine theory to include reasoning about the roles of individuals
in the context of social groups. Minsky (2006) explains one of these types
of relationships that allows the direct inheritance of high-level goals
from one agent to another agent that he calls the imprimer relationship.
An imprimer functions in a developmental situation where a learner in-
herits high-level goals from their imprimer. A parent or caregiver in the
context of raising a child might be seen as imprimers to the developing
child that teach the child what kinds of social roles, personality traits,
and other ways of thinking should be practiced or ignored.

8.6 PLANNING TO PERCEIVE

Section 6.2 describes the Architecture for Visual Routines (AVR) (Rao
1998) that is based on an idea originally proposed by Ullman (1984).
To briefly review, visual routines define objects and parts by having a
visual plan interpreter that is focused on a specific part of the low-level
visual input at any given point in time. Although the first planning
layer in the SALS Al is the deliberative layer, one can imagine that a
solution to including a perceptual planning layer would be to extend
the SALS planning layers into the learned reactive layer of the SALS Al,
so that the translation of visual knowledge from the built-in reactive
visual knowledge base to the physical knowledge base in the learned
reactive layer would be performed by a planning layer below the delib-
erative layer. Thus, the technique of extending the SALS AI’s planning
layers to higher layers of super-reflective control could be just as easily
reversed by extending the SALS Al’s planning layers to lower layers of
planned control, so that reflective control could be applied to the types
of planning-to-perceive problems as a coherent integration of Ullman’s
visual routines into deliberative reasoning layers of reflective control.
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87 PLAN RECOGNITION AND STORY UNDERSTANDING

section 6.2 has described the relationship between the planning im-
plemented in the SALS Al and the related problems of plan recogni-
tion, meta-plan recognition, and story understanding. To briefly review,
Wilensky (1981) describes story understanding as a form of inverse plan-
ning or plan recognition. In this sense, a planning system is given a set of
goals that are used to generate a sequence of actions that accomplish the
goals, while a story understanding system is given a sequence of actions
that are used to generate a set of goals that explain those actions. Wilen-
sky emphasizes that both story understanding and planning require
representations of meta-goals and meta-plans to reason about common
types of human thinking. Plan recognition could occur analogously in
each layer of the SALS Al Resource executions are the actions of each
planning layer. The plan recognition problem for the deliberative layer
could be considered to be a problem that takes a collection of resource
execution events and gives as output the goals that these actions could
be hypothetically trying to accomplish. One method for accomplishing
this would be to compare the input traces to the imaginative traces from
executing each plan for physical action, then, hypothesize the goals that
the plans with matching traces are hypothesized to cause. Currently,
the SALS Al is directed more toward planning, so that plans for plan
recognition can be reflected upon by the SALS Al The SALS Al is
currently more of a planning system than a plan recognition system for
one simple reason: methods for plan recognition can be written in the
planning system so that they can be automatically learned about and
debugged by the SALS AL
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CONCLUSION

Building a model of general human intelligence is a massive engineering
effort that includes the shared expertise of all the disciplines of cogni-
tive science, including: philosophy, artificial intelligence, psychology,
linguistics, anthropology, and neuroscience. While this dissertation is
focused on building an Al that scales to novel forms of metacognition
that occur at higher layers of reflective intelligence than have before
been modeled, I hope that the future of the SALS architecture enjoys
contributions from all of the diverse sub-disciplines of cognitive science.
The SALS Al is meant to be a user-friendly platform for encoding many
examples of intelligence from each of these disciplines that are usually
researched separately. While the current strengths and weaknesses of
the SALS Al have been discussed throughout this dissertation, I hope
that the following features of the SALS architecture help toward this
collaborative end:

1. Simple Syntax.
Natural Language Programming Interface.

Object-Oriented Frame-Based Representations.

Rl S

Cognitive Architectural Primitives, such as Resources, Agencies,
Planning Layers, and Reflectively Traced Knowledge Bases.

Causal Organization of Parallel Processes.
Concurrent Virtual Machine.

Included Machine Learning and Graph Algorithms.
Extension Package Manager.

O N w7

On-Line Documentation (Morgan 2012).

10. Open-Source Community.
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CONCLUSION

Given that the current five-layered version of the SALS Al is designed
to take advantage of multicore processors with local cache, as computer
hardware trends toward CPUs with more cores on each chip with each
core being simpler and with more on-chip cache storing memory local
to computations, the SALS virtual machine is well placed to benefit from
this coming wave of distributed multithreaded hardware platforms. This
dissertation has described the four contributions of this thesis:

1. Emotion Machine Cognitive Architecture (chapter 2)

2. Learning from Being Told Natural Language Plans (chapter 3)
3. Learning Asynchronously from Experience (chapter 4)

4. Virtual Machine and Programming Language (chapter 5)

chapter 6 has compared the SALS Al to a number of related contem-
porary research disciplines, including: computational metacognition,
meta-planning and meta-plan recognition, optimality in metacognition,
and massively multithreaded programming. chapter 7 evaluates the
SALS Al by showing the reflective architecture to scale at a tractable lin-
ear increase in time-complexity for each additional layer, which implies
an N layered metacognitive architecture that allows not only planning
and learning about a problem domain but also any number of reflective
layers of planning and learning about the thinking processes themselves.
A number of promising directions for future research with the SALS Al
have been described in chapter 8:

1. Self-reflective and self-consciously reflective thinking, the top two
layers of the Emotion Machine theory of human commonsense
thinking (Minsky 2006), including self-models and social knowl-
edge.

2. Extending reflective planning layers downward into the domain
of plans-to-perceive (Pryor et al. 1992, Pryor & Collins 1995, Velez
et al. 2011), so that the SALS Al can learn plans for abstracting
spatial relations between symbolic perceptions, such as the visual
routines first implemented by Ullman (1984).

3. Plan and meta-plan recognition as a way to include current re-
search on reflective story understanding architectures.

4. General partial state abstraction processes.

5. A propagation model of knowledge maintenance that traces knowl-

edge provenance from refined hypotheses learned from experience
to plan goal accomplishment and avoidance hypotheses.

6. General grammar definitions for the natural language program-
ming language.
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7. More efficient usage of multicore, hyperthreaded, and multiple-
processor hardware platforms as well as completion of the dis-
tributed processing model that is partially implemented in the
memory layer of the SALS virtual machine, which would allow
peer-to-peer distributed processor support.

For more information about downloading and getting started experi-
menting with the freely distributed open source implementation of the
SALS Al, please see Appendix A.
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APPENDIX






THE CODE

A.1 OPEN SOURCE

All of the code developed for this PhD is open source, free software,
and is distributed under the terms of the GNU General Public License.
A copy of this program should be available on-line or by contacting the
author, Bo Morgan (bo@mit.edu).

A.2 README

funk2: causally reflective parallel programming language
funk2
funk2 <source.fu2>
funk2 —x <command>
funk2 —i <bootstrap—image>

<source.fuz>

A user supplied filename of file from which to read and
execute source code after booting and before exiting.

—Xx <command>

A user supplied command to execute after booting and before
exiting .

—i <bootstrap—image>
The bootstrap image to load before parsing any other
commands. This option is useful for scripting Funk2 programs
without needing to recompile.

—p <portnum>

The localhost peer—command-server port number.

TO PERFORM LOCAL BUILD:

./ configure
make

TO RUN LOCAL BUILD:

source funk2—exports
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bin/funk2

(from original compile directory)

TO PERFORM SYSTEM-WIDE INSTALLATION:

./ configure
make
make install

(as root)

TO RUN SYSTEM-WIDE INSTALLATION:

funk2

HOMEPAGE:

(from anywhere on system)

http://funk2.org/

GIT ACCESS:

https://github.com/bunuelo/funk2

LICENSE:

GNU General Public License v3

Last Modified:

2013.02.26

Code Mass
Lines of Funk2 Code.....: 60673 total
Words of Funk2 Code.....: 294830 total
Characters of Funk2 Code: 3026879 total
Lines of C Code.........: 157729 total
Words of C Code.........: 611577 total
Characters of C Code....: 8331511 total
Total Lines of Code.....: 220241 total
Total Words of Code.....: 912309 total

Total Characters of Code: 11506475 total

README Last Generated: Tue Feb 26 21:49:25 EST 2013
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built—in/alien/alien . fpkg

built—in/alien/alien . fu2

built—in/ansi/ansi.fpkg

built—in/ansi/primfunks—ansi.fuz

built—in/basic_bug_responses/basic_bug_responses.fpkg

built—in/basic_bug_responses/basic_bug_responses.fu2

built—in/graph_cluster/bootstrap—graph_cluster . fu2

built—in/graph_cluster/graph_cluster . fpkg

built—in/graph_cluster/primfunks—graph_cluster . fuz

built—in/graph_match_error_correcting/graph_match_error_correcting . fpkg

built—in/graph_match_error_correcting/graph_match_error_correcting.fu2

built—in/graph_match_error_correcting/graph_match_error_correcting—
primfunks. fuz

built—in/graphviz/graphviz. fpkg

built—in/graphviz/graphviz.fuz

built—in/graphviz/graphviz—primfunks. fuz

built—in/math/math. fpkg

built—in/math/math. fuz

built—in/mutex/mutex. fpkg

built—in/mutex/mutex. fu2

built—in/natural_language/dictionary_frame.fu2

built—in/natural_language/natural_language_command. fu2

built—in/natural_language/natural_language.fpkg

built—in/natural_language/natural_language—primfunks.fuz

built—in/natural_language/parse_tree.fuz

built—in/natural_language/skb—test .fuz

built—in/number/bootstrap—number. fuz

built—in/number/number. fpkg

built—in/number/primfunks—number. fuz

built—in/utilities /errno.fuz

built—in/utilities/fcntl.fu2

built—in/utilities/ioctl.fuz

built—in/utilities /socket.fu2

built—in/utilities /utilities .fpkg

built—in/xmlrpc/bootstrap—xmlrpc.fuz

built—in/xmlrpc/primfunks—xmlrpc. fuz

built—in/xmlrpc/xmlrpc. fpkg

c/configurator.c

c/debugbreak.c

c/f2_ansi.c

c/f2_ansi.h

c/f2_apropos.c

c/f2_apropos.h

c¢/f2_archconfig.h

c/f2_array.c

c¢/f2_array.h

c/f2_atomic.h

c/f2_buffered_file.c

c/f2_buffered_file.h

c/f2_buffered_socket.c

c/f2_buffered_socket.h

c/f2_bug.c

c/f2_bug.h

c/f2_bytecodes.c

c/f2_bytecodes.h

c/f2_cause.c
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c/f2_cause.h

c/f2_chunk.c

c/f2_chunk.h
c¢/f2_circular_buffer.c
c/f2_circular_buffer.h

¢/ f2_command_line.c
c/f2_command_line .h
c/f2_compile.c

c¢/f2_compile.h
c/f2_compile_x86.c
c¢/f2_compile_x86.h
c/f2_core_extension.c
c/f2_core_extension_funk.c
c/f2_core_extension_funk.h
c/f2_core_extension.h
c/f2_cpu.c

c/f2_cpu.h
c/f2_debug_macros.h
c/f2_defragmenter.c
c/f2_defragmenter.h
c/f2_dlfen.c

c/f2_dlfen.h

c/fa_dptr.c

c/f2_dptr.h

¢/ f2_dynamic_memory. c
c¢/f2_dynamic_memory.h
c/f2_faptr_set.c
c/fa_faptr_set.h

c/f2_fiber.c

c/f2_fiber.h

c/f2_fileio.c

c/f2_fileio .h
c/f2_frame_objects.c
c/f2_frame_objects.h
c/f2_funk2_node.c
c¢/f2_funk2_node.h
c/f2_funktional.c
c/f2_funktional .h
c/f2_garbage_collector_block_header.c
c/f2_garbage_collector_block_header.h
c/f2_garbage_collector.c
c/f2_garbage_collector.h
c/f2_garbage_collector_pool.c
c/f2_garbage_collector_pool.h
c/f2_globalenv.c
c/f2_globalenv.h
c/f2_global.h

c/f2_glwindow.c
c/f2_glwindow.h
c¢/f2_gmodule.c

c/f2_gmodule.h

c/f2_graph.c
c/f2_graph_cluster.c
c/f2_graph_cluster.h
c¢/f2_graph.h
c¢/f2_graph_match_error_correcting.c
c/f2_graph_match_error_correcting .h
c¢/f2_graphviz.c
c/f2_graphviz.h




c/f2_hash.c
c/f2_hash.h
c/f2_heap.c
c/f2_heap.h
c/f2_html.c
c/f2_html.h

c/f2_larva.c

c/f2_larva.h

c/f2_load.c

c/f2_load.h

c/f2_malloc.c
c/f2_malloc.h

¢/ f2_management_thread .c
c/f2_management_thread .h
c/f2_math.c

c/f2_math.h

c/f2_matlab.c
c/f2_matlab.h

¢/ f2_memblock. c
c/f2_memblock.h
c¢/f2_memory. c
c/f2_memory.h

¢/ f2_memorypool.c

¢/ f2_memorypool.h
c¢/f2_module_registration.c
c/f2_module_registration.h
c¢/f2_natural_language.c
c¢/f2_natural_language.h
c/f2_never_delete_list.c
c/f2_never_delete_list.h
c/f2_nil.c
c/f2_nil.h
¢/ f2_number.
¢/ f2_number.
c/f2_object.
c/f2_object.
c/f2_opengl.
c/f2_opengl.
c/f2_optimize.c
c/f2_optimize.h

c/f2_os.h

c/f2_package.c
c/f2_package.h
c/f2_package_handler.c
c/f2_package_handler.h
c/f2_packet.c
c/f2_packet.h
c/f2_partial_order.c
c/f2_partial_order.h
c¢/f2_peer_command_server.c
c/f2_peer_command_server.h
c/f2_primes.c
c/f2_primes.h
c/f2_primfunks.c
c¢/f2_primfunks__errno.
c¢/f2_primfunks__errno.
c/f2_primfunks__fentl.
c¢/f2_primfunks__fentl.
c¢/f2_primfunks.h
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c¢/f2_primfunks__ioctl.c
c/f2_primfunks__ioctl.h
c/f2_primfunks__locale.
c¢/f2_primfunks__locale.
c/f2_primfunks__stdlib .
c¢/f2_primfunks__stdlib .
c/f2_primmetros.c
c/f2_primmetros.h
c¢/f2_primobject__boolean.c
c/f2_primobject__boolean.h
c¢/f2_primobject__char_pointer.c
c/f2_primobject__char_pointer.h
c/f2_primobject__circular_buffer.c
c¢/f2_primobject__circular_buffer.h
c/f2_primobject__counter.c
c¢/f2_primobject__counter.h
c/f2_primobject__doublelinklist.c
c¢/f2_primobject__doublelinklist.h
c¢/f2_primobject__dynamic_library.c
c/f2_primobject__dynamic_library .h
c¢/f2_primobject__environment.c
c/f2_primobject__environment.h
c¢/f2_primobject__fiber_trigger.c
c/f2_primobject__fiber_trigger.h
c/f2_primobject__file_handle.c
c¢/f2_primobject__file_handle.h
c/f2_primobject__frame.c
c¢/f2_primobject__frame.h
c/f2_primobject__hash.c
c¢/f2_primobject__hash.h
c¢/f2_primobject__largeinteger.c
c/f2_primobject__largeinteger.h
c¢/f2_primobject__list.c
c/f2_primobject__list.h
c/f2_primobject__matrix.
c¢/f2_primobject__matrix.
c/f2_primobject__object.
c¢/f2_primobject__object.
c/f2_primobject__object_type.c
c¢/f2_primobject__object_type.h
c¢/f2_primobject__ptypehash.c
c/f2_primobject__ptypehash.h
c¢/f2_primobject__redblacktree.c
c/f2_primobject__redblacktree.h
c/f2_primobjects.c
c/f2_primobject__scheduler_ptypehash.c
c/f2_primobject__scheduler_ptypehash.h
c¢/f2_primobject__set.c
c/f2_primobject__set.h
c/f2_primobjects.h
c¢/f2_primobject__stream.
c/f2_primobject__stream.
c¢/f2_primobject__tensor.
c/f2_primobject__tensor.
c¢/f2_primobject__traced_cmutex.c
c/f2_primobject__traced _cmutex.h
c/f2_primobject_type.c
c¢/f2_primobject_type.h
c/f2_primobject_type_handler.c
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c/f2_primobject_type_handler.h
c¢/f2_print.c

c¢/f2_print.h

c/f2_processor.c
c/f2_processor.h
c¢/f2_processor_mutex.c
c/f2_processor_mutex.h
c/f2_processor_readwritelock.c
c/f2_processor_readwritelock.h
c/f2_processor_spinlock.c
c/f2_processor_spinlock.h
c/f2_processor_thread.c
c/f2_processor_thread.h
c/f2_processor_thread_handler.c
c/f2_processor_thread_handler.h
c/f2_protected_alloc_array.c
c/f2_protected_alloc_array.h
c/fa_ptype.c

c/f2_ptype.h

c/f2_ptypes.c

c/f2_ptypes.h
c/f2_ptypes_memory.h
c/fa2_ptypes_object_slots.c
c/f2_ptypes_object_slots.h
c/f2_reader.c

c/f2_reader.h
c/f2_redblacktree.c
c/f2_redblacktree.h
c/f2_reflective _memory.c
c/f2_scheduler.c
c/f2_scheduler.h
c/f2_scheduler_thread_controller.c
c/f2_scheduler_thread_controller.h
c/f2_set.c

c/f2_set.h

c/f2_signal.c

c/f2_signal.h
c/f2_simple_repl.c
c/f2_simple_repl.h
c/f2_socket.c
c/f2_socket_client.c
c/f2_socket_client.h
c/f2_socket.h
c/f2_socket_server.c
c/f2_socket_server.h
c/f2_sort.c

c/f2_sort.h
c/f2_staticmemory.c
c/f2_staticmemory .h
c/f2_status.c

c/f2_status.h

c/f2_string.c

c/f2_string .h
c/f2_surrogate_parent.c
c¢/f2_surrogate_parent.h
c/f2_system_file_handler.c
c/f2_system_file_handler.h
c/f2_system_headers.h
c/f2_system_processor.c
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c¢/f2_system_processor.h

c¢/f2_terminal_print.c

c¢/f2_terminal_print.h

c/f2_termios.c

c/f2_termios.h

c/f2_time.c

c/f2_time.h

c/f2_trace.c

c/f2_trace.h

c/f2_tricolor_set.c

c¢/f2_tricolor_set.h

c/f2_user_thread_controller.c

c/f2_user_thread_controller.h

c¢/f2_virtual_processor.c

c/f2_virtual_processor.h

c¢/f2_virtual_processor_handler.c
c¢/f2_virtual_processor_handler.h
c¢/f2_virtual_processor_thread.c
c¢/f2_virtual_processor_thread.h

c/f2_xmlrpc.c

c¢/f2_xmlrpc.h

c/f2_zlib.c

c/f2_z1ib .h

c¢/funk2.c

c/funk2.h

¢/funk2_main.c

c/test.c
documentation/phdthesis/gfx/deliberative_plan_knowledge_base_graph.fu2
documentation/phdthesis/gfx/hierarchical _partial_state_graph.fu2
documentation/phdthesis/gfx/physical_knowledge_base_graph.fu2
documentation/phdthesis/gfx/plan_execution_node_graph.fu2
documentation/phdthesis/gfx/property_partial_state_graph.fuz
documentation/phdthesis/gfx/reflective _plan_knowledge_base_graph.fuz
documentation/phdthesis/gfx/relationship_partial_state_graph.fu2
example/cannons_algorithm/cannons_algorithm . fpkg
example/cannons_algorithm/cannons_algorithm . fu2
example/divisiz2/divisi2.fpkg

example/divisiz2/divisiz2.fuz
example/em_two_webpage/em_two_webpage . fpkg
example/em_two_webpage/em_two_webpage. fuz
example/english_language/english_dictionary.fu2
example/english_language/english_dictionary_parse.fu2
example/english_language/english_language . fpkg
example/facebook/facebook. fpkg

example/facebook/facebook. fuz
example/funka—htmldoc/funk2—htmldoc. fpkg
example/funka—htmldoc/funk2—htmldoc. fuz
example/funk2—webpage/funka—webpage . fpkg
example/funka—webpage/funk2—webpage . fuz
example/graph_match/graph_match. fpkg
example/graph_match/graph_match. fuz
example/graph_match/graph_match—test . fpkg
example/graph_match/graph_match—test . fu2
example/gtk_timeline/gtk_timeline . fpkg
example/gtk_timeline/gtk_timeline . fu2
example/isis_world_client/isis_world_client . fpkg
example/isis_world_client/isis_world_client.fu2
example/isis_world/isis_agent_body.fuz
example/isis_world/isis_visual_agent.fu2
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example/isis_world/isis_visual_object.fu2

example/isis_world/isis_world. fpkg

example/isis_world/isis_world. fuz

example/macbeth/macbeth . fpkg

example/macbeth/macbeth . fu2

example/mind/agency . fuz

example/mind/agent_body. fu2

example/mind/character . fuz

example/mind/mental_layer.fu2

example/mind/mind . fpkg

example/mind/mind. fuz2

example/mind/mind_runtime_metric. fuz

example/mindmon—1.0/mindmon—1.0.fpkg

example/mindmon—1.0/mindmon—1.0.fuz

example/mindmon—blocks_world/mindmon—blocks_world—deliberative _action_
activator.fuz

example/mindmon—blocks_world /mindmon—blocks_world—deliberative _plan_
activator.fuz

example/mindmon—blocks_world /mindmon—blocks_world . fpkg

example/mindmon—blocks_world /mindmon—blocks_world . fu2

example/mindmon—blocks_world /mindmon—blocks_world—reactive_action_
activator.fu2

example/mindmon—blocks_world /mindmon—blocks_world—reactive_plan_
activator.fu2

example/mindmon—blocks_world /mindmon—blocks_world—reflective_action_
activator.fuz

example/mindmon—blocks_world /mindmon—blocks_world—super_reflective_
action_activator.fuz

example/mindmon—isis _world/mindmon—isis _world—builtin_reactive_physical
_activator.fuz

example/mindmon—isis_world/mindmon—isis_world—deliberative_goal_
activator.fuz

example/mindmon—isis_world/mindmon—isis_world . fpkg

example/mindmon—isis _world/mindmon—isis _world. fu2

example/mindmon—isis _world/mindmon—isis _world—learned_reactive_physical
_activator.fu2

example/mindmon/mindmon_agent . fu2

example/mindmon/mindmon_agent_tool . fuz2

example/mindmon/mindmon_agent_tool_widget. fuz

example/mindmon/mindmon_agent_widget. fu2

example/mindmon/mindmon_file . fu2

example/mindmon/mindmon. fpkg

example /mindmon/mindmon. fuz2

example/mindmon/mindmon_knowledge . fu2

example/mindmon/mindmon_preference_editor.fuz

example /mindmon/mindmon_world . fu2

example/mind/physical_world. fuz

example/mind/resource . fu2

example/mind/self_model. fu2

example/mind/story . fuz

example/mind/story—graph. fu2

example/mind/vital _resource.fuz2

example/moral_compass—isis_world/moral_compass—isis_world—builtin_
reactive_physical_agency_resources.fu2

example/moral_compass—isis_world/moral_compass—isis_world . fpkg

example/moral_compass—isis_world/moral_compass—isis_world. fuz

example/moral_compass—isis_world/moral_compass—isis_world—learned_
reactive_physical_agency_resources.fu2
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example/moral_compass—isis_world/moral_compass—isis_world—learned_
reactive_physical_agency_resources—functions.fuz
example/moral_compass/moral_agent_body. fuz
example/moral_compass/moral_compass. fpkg
example/moral_compass/moral_compass . fuz
example/moral_compass/self_conscious_imprimer_agency.fu2
example/moral_compass/self _conscious_layer.fu2
example/moral_compass/self_conscious_resource.fu2
example/moral_compass/self _reflective_layer.fu2
example/moral_compass/self _reflective_other_agents_knowledge_agency.fuz
example/moral_compass/self_reflective_resource.fuz
example/rct_webpage/rct_webpage. fpkg
example/rct_webpage/rct_webpage. fuz
example/reflective _mind—blocks_world/reflective _mind—blocks_world—
builtin_reactive_physical_agency_resources.fuz
example/reflective _mind—blocks_world/reflective _mind—blocks_world. fpkg
example/reflective _mind—blocks_world/reflective _mind—blocks_world. fu2
example/reflective _mind—blocks_world/reflective _mind—blocks_world—
learned_reactive_physical_agency_resources.fuz
example/reflective _mind/builtin_reactive_layer.fu2
example/reflective _mind/builtin_reactive_neural_plug_agency.fu2
example/reflective _mind/builtin_reactive_physical_agency.fu2
example/reflective_mind/builtin_reactive_resource.fu2
example/reflective _mind/builtin_reactive_sensory_agency.fu2
example/reflective _mind/controllable_object.fu2
example/reflective _mind/deliberative1_type_property_relation_goal.fu2
example/reflective _mind/deliberative_action.fu2
example/reflective_mind/deliberative_layer.fu2
example/reflective _mind/deliberative_resource.fu2
example/reflective _mind/learned_reactive_language_agency.fu2
example/reflective_mind/learned_reactive_layer.fu2
example/reflective _mind/learned_reactive_physical_agency.fu2
example/reflective _mind/learned_reactive_physical_knowledge_agency.fuz2
example/reflective _mind/learned_reactive_resource.fu2
example/reflective _mind/learned_reactive_sensory_agency.fu2
example/reflective _mind/nonsemantic_plan.fu2
example/reflective _mind/object_type_property_relation_goal.fu2
example/reflective _mind/physical _type_property_relation_goal.fuz
example/reflective _mind/plan_mental_layer_execution_agency.fu2
example/reflective _mind/plan_mental_layer.fu2
example/reflective _mind/plan_mental_layer_imagination_agency.fuz
example/reflective _mind/plan_mental_layer_object_type_agency.fuz
example/reflective_mind/plan_mental_layer_plan_agency.fuz
example/reflective _mind/plan_mental_layer_resource.fu2
example/reflective_mind/plan_mental_layer_resource_knowledge_agency.fu2
example/reflective _mind/reflective_layer.fu2
example/reflective _mind/reflective _mind. fpkg
example/reflective_mind/reflective _mind. fu2
example/reflective _mind/reflective _mind_perception.fu2
example/reflective _mind/reflective _mind_proprioceptual_object.fu2
example/reflective _mind/reflective _mind_visual_agent.fu2
example/reflective _mind/reflective _mind_visual_object.fuz2
example/reflective_mind/reflective _resource.fu2
example/reflective _mind/reflective_timer.fu2
example/reflective_mind/super_reflective _layer.fu2
example/reflective _mind/super_reflective_resource.fu2
example/reflective_timer/reflective_timer.fpkg
example/reflective_timer/reflective_timer.fu2
example/roboverse/roboverse . fpkg
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example/roboverse/roboverse . fu2
example/socket—client/socket—client . fpkg
example/socket—client/socket—client . fuz
example/socket—server/socket—server.fpkg
example/socket—server/socket—server.fuz
example/traced_mind/traced_mind. fpkg
example/traced_mind/traced _mind. fuz
example/traced_mind/traced_resource.fuz
example/visualize/isismon_agent_visualization.fpkg
example/visualize /isismon_agent_visualization.fu2
example/visualize/visualize_test.fpkg
example/visualize/visualize_test.fu2
extension/blocks_world/blocks_world_block. fuz
extension/blocks_world/blocks_world.c
extension/blocks_world/blocks_world—core . fuz
extension/blocks_world/blocks_world. fpkg
extension/blocks_world/blocks_world. fuz
extension/blocks_world/blocks_world_gripper_controller.fu2
extension/blocks_world/blocks_world_gripper.fuz
extension/blocks_world/blocks_world .h
extension/blocks_world/blocks_world_physics. fuz
extension/blocks_world/blocks_world_sprite . fuz2
extension/blocks_world/blocks_world_table . fuz
extension/blocks_world/blocks_world_window. fu2
extension/cairo/cairo.c
extension/cairo/cairo—core.fu2
extension/cairo/cairo.fpkg
extension/cairo/cairo.h
extension/conceptnet/conceptnet.c
extension/conceptnet/conceptnet—core.fuz
extension/conceptnet/conceptnet.fpkg
extension/conceptnet/conceptnet.h
extension/concept_version_space/concept_version_space.c
extension/concept_version_space/concept_version_space—core.fuz
extension/concept_version_space/concept_version_space.fpkg
extension/concept_version_space/concept_version_space.h
extension/equals_hash/equals_hash.c
extension/equals_hash/equals_hash—core. fu2
extension/equals_hash/equals_hash.fpkg
extension/equals_hash/equals_hash.h
extension/event_stream/event_stream.c
extension/event_stream/event_stream—core.fuz
extension/event_stream/event_stream.fpkg
extension/event_stream/event_stream.h
extension/fibermon/fibermon1.fuz2
extension/fibermon/fibermon.c
extension/fibermon/fibermon—core . fuz
extension/fibermon/fibermon. fpkg
extension/fibermon/fibermon. fuz
extension/forgetful _event_stream/forgetful _event_stream.c
extension/forgetful _event_stream/forgetful_event_stream—core.fu2
extension/forgetful _event_stream/forgetful _event_stream.fpkg
extension/forgetful _event_stream/forgetful_event_stream.h
extension/forgetful_semantic_event_knowledge_base/forgetful _semantic_
event_knowledge_base.c
extension/forgetful_semantic_event_knowledge_base/forgetful _semantic_
event_knowledge_base—core . fuz2
extension/forgetful _semantic_event_knowledge_base/forgetful _semantic_
event_knowledge_base . fpkg
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extension/forgetful _semantic_event_knowledge_base/forgetful _semantic_
event_knowledge_base.h

extension/forgetful _semantic_resource_event_knowledge_base/forgetful _
semantic_resource_event_knowledge_base.c

extension/forgetful _semantic_resource_event_knowledge_base/forgetful _
semantic_resource_event_knowledge_base—core . fu2

extension/forgetful _semantic_resource_event_knowledge_base/forgetful _
semantic_resource_event_knowledge_base. fpkg

extension/forgetful_semantic_resource_event_knowledge_base/forgetful _
semantic_resource_event_knowledge_base.h

extension/forward_planner/forward_planner.c

extension/forward_planner/forward_planner—core . fu2

extension/forward_planner/forward_planner. fpkg

extension/frame_ball/frame_ball.c

extension/frame_ball/frame_ball—core.fuz

extension/frame_ball/frame_ball.fpkg

extension/graph_isomorphism/graph_isomorphism.c

extension/graph_isomorphism/graph_isomorphism—core . fuz

extension/graph_isomorphism/graph_isomorphism. fpkg

extension/graph_isomorphism/graph_isomorphism.h

extension/gtk_extension/gtk_extension.c

extension/gtk_extension/gtk_extension—core . fuz

extension/gtk_extension/gtk_extension.fpkg

extension/gtk_extension/gtk_extension.h

extension/gtk_extension/old_primfunks. fu2

extension/image/image.c

extension/image/image—core . fuz

extension/image/image. fpkg

extension/image/image.h

extension/image_sequence/image_sequence .C

extension/image_sequence/image_sequence—core.fu2

extension/image_sequence/image_sequence . fpkg

extension/image_sequence/image_sequence.h

extension/interval_tree/interval_tree.c

extension/interval_tree/interval_tree—core.fuz

extension/interval_tree/interval_tree.fpkg

extension/interval_tree/interval_tree.h

extension/keyboard/keyboard.c

extension/keyboard/keyboard—core . fuz

extension/keyboard/keyboard. fpkg

extension/keyboard/keyboard.h

extension/keyboard/keyboard—repl.fuz

extension/lick/lick.c

extension/lick/lick—core. fu2

extension/lick/lick.fpkg

extension/lick/lick.h

extension/meta_semantic_knowledge_base/meta_semantic_knowledge_base.c

extension/meta_semantic_knowledge_base/meta_semantic_knowledge_base—
core.fu2

extension/meta_semantic_knowledge_base/meta_semantic_knowledge_base.
fpkg

extension/meta_semantic_knowledge_base/meta_semantic_knowledge_base.h

extension/movie/movie. c

extension/movie/movie—core . fuz

extension/movie/movie. fpkg

extension/movie/movie.h

extension/pattern_match/pattern_match.c

extension/pattern_match/pattern_match—core . fuz

extension/pattern_match/pattern_match. fpkg
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extension/pattern_match/pattern_match.h
extension/propogator/propogator.c
extension/propogator/propogator—core . fuz
extension/propogator/propogator.fpkg
extension/propogator/propogator.h
extension/semantic_action_event/semantic_action_event.c
extension/semantic_action_event/semantic_action_event—core. fu2
extension/semantic_action_event/semantic_action_event. fpkg
extension/semantic_action_event/semantic_action_event.h
extension/semantic_action_knowledge_base/semantic_action_knowledge_base
.C
extension/semantic_action_knowledge_base/semantic_action_knowledge_base
—core . fu2
extension/semantic_action_knowledge_base/semantic_action_knowledge_base
.fpkg
extension/semantic_action_knowledge_base/semantic_action_knowledge_base
.h
extension/semantic_action/semantic_action.c
extension/semantic_action/semantic_action—core. fu2
extension/semantic_action/semantic_action.fpkg
extension/semantic_action/semantic_action.h
extension/semantic_agent/semantic_agent .C
extension/semantic_agent/semantic_agent—core.fuz
extension/semantic_agent/semantic_agent.fpkg
extension/semantic_agent/semantic_agent .h
extension/semantic_category/semantic_category.c
extension/semantic_category/semantic_category—core.fu2
extension/semantic_category/semantic_category . fpkg
extension/semantic_category/semantic_category.h
extension/semantic_causal_concept/semantic_causal_concept .C
extension/semantic_causal_concept/semantic_causal_concept—core.fuz
extension/semantic_causal_concept/semantic_causal_concept.fpkg
extension/semantic_causal_concept/semantic_causal_concept.h
extension/semantic_causal_event/semantic_causal_event.c
extension/semantic_causal_event/semantic_causal_event—core.fuz
extension/semantic_causal_event/semantic_causal_event.fpkg
extension/semantic_causal_event/semantic_causal_event.h
extension/semantic_causal_object/semantic_causal_object.c
extension/semantic_causal_object/semantic_causal_object—core.fu2
extension/semantic_causal_object/semantic_causal_object.fpkg
extension/semantic_causal_object/semantic_causal_object.h
extension/semantic_cons/semantic_cons.c
extension/semantic_cons/semantic_cons—core.fu2
extension/semantic_cons/semantic_cons. fpkg
extension/semantic_cons/semantic_cons.h
extension/semantic_containment_object/semantic_containment_object.c
extension/semantic_containment_object/semantic_containment_object—core .
fu2
extension/semantic_containment_object/semantic_containment_object.fpkg
extension/semantic_containment_object/semantic_containment_object.h
extension/semantic_counterfactual_transframe/semantic_counterfactual _
transframe.c
extension/semantic_counterfactual_transframe/semantic_counterfactual_
transframe—core . fuz
extension/semantic_counterfactual_transframe/semantic_counterfactual _
transframe . fpkg
extension/semantic_counterfactual_transframe/semantic_counterfactual_
transframe.h
extension/semantic_dependency/semantic_dependency.c
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extension/semantic_dependency/semantic_dependency—core. fu2
extension/semantic_dependency/semantic_dependency . fpkg
extension/semantic_dependency/semantic_dependency.h
extension/semantic_directed_action_event/semantic_directed_action_event
.C
extension/semantic_directed_action_event/semantic_directed_action_event
—core. fu2
extension/semantic_directed_action_event/semantic_directed_action_event
.fpkg
extension/semantic_directed_action_event/semantic_directed_action_event
.h
extension/semantic_environment/semantic_environment.c
extension/semantic_environment/semantic_environment—core . fuz
extension/semantic_environment/semantic_environment. fpkg
extension/semantic_environment/semantic_environment.h
extension/semantic_event_knowledge_base/semantic_event_knowledge_base.c
extension/semantic_event_knowledge_base/semantic_event_knowledge_base—
core.fu2
extension/semantic_event_knowledge_base/semantic_event_knowledge_base.
fpkg
extension/semantic_event_knowledge_base/semantic_event_knowledge_base.h
extension/semantic_event/semantic_event.c
extension/semantic_event/semantic_event—core.fu2
extension/semantic_event/semantic_event.fpkg
extension/semantic_event/semantic_event.h
extension/semantic_event_sequence/semantic_event_sequence.c
extension/semantic_event_sequence/semantic_event_sequence—core fuz
extension/semantic_event_sequence/semantic_event_sequence. fpkg
extension/semantic7event,sequence/semanticfevent,sequence .h
extension/semantic_event_transframe/semantic_event_transframe.c
extension/semantic_event_transframe/semantic_event_transframe—core.fu2
extension/semantic_event_transframe/semantic_event_transframe . fpkg
extension/semantic_event_transframe/semantic_event_transframe.h
extension/semantic_event_tree/semantic_event_tree.c
extension/semantic_event_tree/semantic_event_tree—core.fuz
extension/semantic_event_tree/semantic_event_tree.fpkg
extension/semantic_event_tree/semantic_event_tree.h
extension/semantic_expectation_failure/semantic_expectation_failure.c
extension/semantic_expectation_failure/semantic_expectation_failure—
core.fuz
extension/semantic_expectation_failure/semantic_expectation_failure.
fpkg
extension/semantic_expectation_failure/semantic_expectation_failure .h
extension/semantic_frame/semantic_frame.c
extension/semantic_frame/semantic_frame—core.fu2
extension/semantic_frame/semantic_frame. fpkg
extension/semantic_frame/semantic_frame.h
extension/semantic_goal_action_causal_hypothesis/semantic_goal_action_
causal_hypothesis.c
extension/semantic_goal_action_causal_hypothesis/semantic_goal_action_
causal_hypothesis—core . fu2
extension/semantic_goal_action_causal_hypothesis/semantic_goal_action_
causal_hypothesis. fpkg
extension/semantic_goal_action_causal_hypothesis/semantic_goal_action_
causal_hypothesis.h
extension/semantic_goal_event/semantic_goal_event.c
extension/semantic_goal_event/semantic_goal_event—core fuz
extension/semantic_goal_event/semantic_goal_event. fpkg
extension/semantic_goal_event/semantic_goal_event.h
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extension/semantic_goal/semantic_goal.c
extension/semantic_goal/semantic_goal—core.fuz
extension/semantic_goal/semantic_goal. fpkg
extension/semantic_goal/semantic_goal.h
extension/semantic_knowledge_base/semantic_knowledge_base.c
extension/semantic_knowledge_base/semantic_knowledge_base—core . fuz
extension/semantic_knowledge_base/semantic_knowledge_base . fpkg
extension/semantic_knowledge_base/semantic_knowledge_base.h
extension/semantic_know_of_existence_event/semantic_know_of_existence_
event.c
extension/semantic_know_of_existence_event/semantic_know_of_existence_
event—core . fu2
extension/semantic_know_of_existence_event/semantic_know_of_existence_
event. fpkg
extension/semantic_know_of_existence_event/semantic_know_of_existence_
event.h
extension/semantic_know_of_relationship_event/semantic_know_of_
relationship_event.c
extension/semantic_know_of_relationship_event/semantic_know_of_
relationship_event—core.fu2
extension/semantic_know_of_relationship_event/semantic_know_of_
relationship_event. fpkg
extension/semantic_know_of_relationship_event/semantic_know_of_
relationship_event.h
extension/semantic_object/semantic_object .C
extension/semantic_object/semantic_object—core.fuz
extension/semantic_object/semantic_object.fpkg
extension/semantic_object/semantic_object.h
extension/semantic_object_type_event/semantic_object_type_event.c
extension/semantic_object_type_event/semantic_object_type_event—core fu
2
extension/semantic_object_type_event/semantic_object_type_event.fpkg
extension/semantic_object_type_event/semantic_object_type_event.h
extension/semantic_ordered_object/semantic_ordered_object.c
extension/semantic_ordered_object/semantic_ordered_object—core.fuz
extension/semantic_ordered_object/semantic_ordered_object.fpkg
extension/semantic_ordered_object/semantic_ordered_object.h
extension/semantic_packable_object/semantic_packable_object.c
extension/semantic_packable_object/semantic_packable_object—core.fu2
extension/semantic_packable_object/semantic_packable_object.fpkg
extension/semantic_packable_object/semantic_packable_object.h
extension/semantic_partial_state_property_relation/semantic_partial_
state_property_relation.c
extension/semantic_partial_state_property_relation/semantic_partial_
state_property_relation—core.fuz
extension/semantic_partial_state_property_relation/semantic_partial_
state_property_relation . fpkg
extension/semantic_partial_state_property_relation/semantic_partial_
state_property_relation.h
extension/semantic_partial _state_property/semantic_partial_state_
property.c
extension/semantic_partial_state_property/semantic_partial_state_
property—core . fu2
extension/semantic_partial _state_property/semantic_partial_state_
property . fpkg
extension/semantic_partial _state_property/semantic_partial_state_
property.h
extension/semantic_partial _state/semantic_partial_state.c
extension/semantic_partial_state/semantic_partial_state—core.fu2
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extension/semantic_partial_state/semantic_partial_state.fpkg
extension/semantic_partial_state/semantic_partial_state.h
extension/semantic_plan_execution_node/semantic_plan_execution_node.c
extension/semantic_plan_execution_node/semantic_plan_execution_node—
core.fu2
extension/semantic_plan_execution_node/semantic_plan_execution_node.
fpkg
extension/semantic_plan_execution_node/semantic_plan_execution_node.h
extension/semantic_planner/semantic_planner.c
extension/semantic_planner/semantic_planner—core. fuz2
extension/semantic_planner/semantic_planner. fpkg
extension/semantic_planner/semantic_planner.h
extension/semantic_plan_object/semantic_plan_object.c
extension/semantic_plan_object/semantic_plan_object—core.fuz
extension/semantic_plan_object/semantic_plan_object.fpkg
extension/semantic_plan_object/semantic_plan_object.h
extension/semantic_plan_object_type_event/semantic_plan_object_type_
event.c
extension/semantic_plan_object_type_event/semantic_plan_object_type_
event—core . fu2
extension/semantic_plan_object_type_event/semantic_plan_object_type_
event. fpkg
extension/semantic_plan_object_type_event/semantic_plan_object_type_
event.h
extension/semantic_plan_object_type_relation_event/semantic_plan_object
_type_relation_event.c
extension/semantic_plan_object_type_relation_event/semantic_plan_object
_type_relation_event—core. fuz
extension/semantic_plan_object_type_relation_event/semantic_plan_object
_type_relation_event. fpkg
extension/semantic_plan_object_type_relation_event/semantic_plan_object
_type_relation_event.h
extension/semantic_plan_operator_activation/semantic_plan_operator_
activation.c
extension/semantic_plan_operator_activation/semantic_plan_operator_
activation—core. fuz
extension/semantic_plan_operator_activation /semantic_plan_operator_
activation.fpkg
extension/semantic_plan_operator_activation/semantic_plan_operator_
activation.h
extension/semantic_plan_operator_parallel/semantic_plan_operator_
parallel .c
extension/semantic_plan_operator_parallel/semantic_plan_operator_
parallel—core . fuz
extension/semantic_plan_operator_parallel/semantic_plan_operator_
parallel . fpkg
extension/semantic_plan_operator_parallel/semantic_plan_operator_
parallel .h
extension/semantic_plan_operator_sequence/semantic_plan_operator_
sequence.c
extension/semantic_plan_operator_sequence/semantic_plan_operator_
sequence—core . fuz
extension/semantic_plan_operator_sequence/semantic_plan_operator_
sequence . fpkg
extension/semantic_plan_operator_sequence/semantic_plan_operator_
sequence.h
extension/semantic_plan_operator_suppression/semantic_plan_operator_
suppession . fpkg
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extension/semantic_plan_operator_suppression/semantic_plan_operator_
suppression.c
extension/semantic_plan_operator_suppression/semantic_plan_operator_
suppression—core . fu2
extension/semantic_plan_operator_suppression/semantic_plan_operator_
suppression. fpkg
extension/semantic_plan_operator_suppression/semantic_plan_operator_
suppression.h
extension/semantic_proprioception/semantic_proprioception.c
extension/semantic_proprioception/semantic_proprioception—core . fuz
extension/semantic_proprioception/semantic_proprioception.fpkg
extension/semantic_proprioception/semantic_proprioception.h
extension/semantic_proprioceptual_object/semantic_proprioceptual_object
.cC
extension/semantic_proprioceptual _object/semantic_proprioceptual_object
—core . fu2
extension/semantic_proprioceptual_object/semantic_proprioceptual_object
.fpkg
extension/semantic_proprioceptual_object/semantic_proprioceptual_object
.h
extension/semantic_proprioceptual_orientation/semantic_proprioceptual _
orientation.c
extension/semantic_proprioceptual_orientation/semantic_proprioceptual_
orientation—core.fu2
extension/semantic_proprioceptual_orientation/semantic_proprioceptual_
orientation . fpkg
extension/semantic_proprioceptual _orientation/semantic_proprioceptual_
orientation.h
extension/semantic_proprioceptual _position/semantic_proprioceptual _
position.c
extension/semantic_proprioceptual _position/semantic_proprioceptual _
position—core . fuz
extension/semantic_proprioceptual _position/semantic_proprioceptual _
position . fpkg
extension/semantic_proprioceptual _position/semantic_proprioceptual _
position.h
extension/semantic_realm/semantic_realm.c
extension/semantic_realm/semantic_realm—core.fuz
extension/semantic_realm/semantic_realm.fpkg
extension/semantic_realm/semantic_realm.h
extension/semantic_reflective_object/semantic_reflective_object.c
extension/semantic_reflective_object/semantic_reflective_object—core.fu
2
extension/semantic_reflective_object/semantic_reflective_object.fpkg
extension/semantic_reflective_object/semantic_reflective_object.h
extension/semantic_reflective_object_type_event/semantic_reflective_
object_type_event.c
extension/semantic_reflective_object_type_event/semantic_reflective_
object_type_event—core.fu2
extension/semantic_reflective_object_type_event/semantic_reflective_
object_type_event.fpkg
extension/semantic_reflective_object_type_event/semantic_reflective_
object_type_event.h
extension/semantic_reflective_object_type_property_event/semantic_
reflective_object_type_property_event.c
extension/semantic_reflective_object_type_property_event/semantic_
reflective_object_type_property_event—core. fu2
extension/semantic_reflective_object_type_property_event/semantic_
reflective_object_type_property_event.fpkg
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extension/semantic_reflective_object_type_property_event/semantic_
reflective_object_type_property_event.h
extension/semantic_reflective_object_type_relation_event/semantic_
reflective_object_type_relation_event.c
extension/semantic_reflective_object_type_relation_event/semantic_
reflective_object_type_relation_event—core.fu2
extension/semantic_reflective_object_type_relation_event/semantic_
reflective_object_type_relation_event.fpkg
extension/semantic_reflective_object_type_relation_event/semantic_
reflective_object_type_relation_event.h
extension/semantic_relationship _key/semantic_relationship_key.c
extension/semantic_relationship_key/semantic_relationship _key—core.fu2
extension/semantic_relationship_key/semantic_relationship_key.fpkg
extension/semantic_relationship_key/semantic_relationship_key.h
extension/semantic_resource_action_event/semantic_resource_action_event
.C
extension/semantic_resource_action_event/semantic_resource_action_event
—core.fu2
extension/semantic_resource_action_event/semantic_resource_action_event
.fpkg
extension/semantic_resource_action_event/semantic_resource_action_event
.h
extension/semantic_resource_action_sequence/semantic_resource_action_
sequence.c
extension/semantic_resource_action_sequence/semantic_resource_action_
sequence—core . fu2
extension/semantic_resource_action_sequence/semantic_resource_action_
sequence. fpkg
extension/semantic_resource_action_sequence/semantic_resource_action_
sequence.h
extension/semantic_resource/semantic_resource.c
extension/semantic_resource/semantic_resource—core.fuz
extension/semantic_resource/semantic_resource. fpkg
extension/semantic_resource/semantic_resource.h
extension/semantic_self/semantic_self.c
extension/semantic_self/semantic_self—core.fu2
extension/semantic_self/semantic_self.fpkg
extension/semantic_self/semantic_self.h
extension/semantic_situation_category/semantic_situation_category.c
extension/semantic_situation_category/semantic_situation_category—core.
fuz
extension/semantic_situation_category/semantic_situation_category.fpkg
extension/semantic_situation_category/semantic_situation_category.h
extension/semantic_situation/semantic_situation.c
extension/semantic_situation/semantic_situation—core.fu2
extension/semantic_situation/semantic_situation .fpkg
extension/semantic_situation/semantic_situation.h
extension/semantic_situation_transition/semantic_situation_transition.c
extension/semantic_situation_transition/semantic_situation_transition—
core.fu2
extension/semantic_situation_transition/semantic_situation_transition.
fpkg
extension/semantic_situation_transition/semantic_situation_transition.h
extension/semantic_somatosensation/semantic_somatosensation.c
extension/semantic_somatosensation/semantic_somatosensation—core.fuz2
extension/semantic_somatosensation/semantic_somatosensation.fpkg
extension/semantic_somatosensation/semantic_somatosensation.h
extension/semantic_somatosensory_object/semantic_somatosensory_object.c
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extension/semantic_somatosensory_object/semantic_somatosensory_object—
core.fu2

extension/semantic_somatosensory_object/semantic_somatosensory_object .
fpkg

extension/semantic_somatosensory_object/semantic_somatosensory_object.h

extension/semantic_temporal_object/semantic_temporal_object.c

extension/semantic_temporal_object/semantic_temporal_object—core.fu2

extension/semantic_temporal_object/semantic_temporal_object.fpkg

extension/semantic_temporal_object/semantic_temporal_object.h

extension/semantic_thought/semantic_thought.c

extension/semantic_thought/semantic_thought—core.fu2

extension/semantic_thought/semantic_thought. fpkg

extension/semantic_thought/semantic_thought.h

extension/semantic_time/semantic_time.c

extension/semantic_time/semantic_time—core.fuz

extension/semantic_time/semantic_time. fpkg

extension/semantic_time/semantic_time.h

extension/semantic_visual_object/semantic_visual_object.c

extension/semantic_visual_object/semantic_visual_object—core.fu2

extension/semantic_visual_object/semantic_visual_object.fpkg

extension/semantic_visual_object/semantic_visual_object.h

extension/timeline/timeline.c

extension/timeline/timeline—core. fu2

extension/timeline/timeline . fpkg

extension/timeline/timeline .h

extension/transframe/transframe.c

extension/transframe/transframe—core.fu2

extension/transframe/transframe. fpkg

extension/transframe/transframe.h

fuz2/action.fuz

fuz/actor.fu2

fu2/actortest.fu2

fuz/assembler. fuz

fu2/bootstrap—apropos.fuz

fu2/bootstrap—array . fuz

fuz/bootstrap—boot. fuz

fuz/bootstrap—bug. fuz

fuz/bootstrap—bugs. fuz

fuz/bootstrap—cause . fuz

fu2/bootstrap—cause_group . fu2

fuz/bootstrap—command_line . fu2

fuz/bootstrap—compound_object.fuz

fuz/bootstrap—conditionlock.fuz

fuz/bootstrap—cons. fu2

fuz2/bootstrap—core_extension.fuz

fuz/bootstrap—core_extension_funk. fu2

fuz/bootstrap—critic . fuz

fuz2/bootstrap—critics —reactive . fuz2

fuz/bootstrap—default_critics.fuz

fuz2/bootstrap—defragmenter . fuz2

fuz/bootstrap—dotimes . fuz

fuz/bootstrap—dynamic_library . fuz2

fuz/bootstrap—fiber . fuz2

fuz/bootstrap—frame. fuz

fuz2/bootstrap . fuz

fu2/bootstrap—garbage_collector . fuz

fu2/bootstrap—graph. fuz2

fuz/bootstrap—graph—old . fuz2

fuz/bootstrap—grid . fu2
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fuz/bootstrap—hash.fu2
fu2/bootstrap—largeinteger.fuz
fu2/bootstrap—list . fu2
fuz/bootstrap—math. fuz
fu2/bootstrap—nil . fuz
fu2/bootstrap—object . fuz
fu2/bootstrap—package . fuz
fu2/bootstrap—primobject. fuz
fu2/bootstrap—ptypes.fuz
fu2/bootstrap—reader . fuz
fuz/bootstrap—redblacktree.fu2
fu2/bootstrap—repl.fu2
fu2/bootstrap—set_theory.fuz
fuz/bootstrap—sort.fu2
fu2/bootstrap—string . fuz
fu2/bootstrap—surrogate_parent.fuz
fu2/bootstrap—terminal_print.fu2
fuz/bootstrap—time. fu2
fu2/bootstrap—type_conversions.fuz
fu2/bootstrap—zlib . fuz
fuz/brainviz . fuz

fuz/cardgame—ai. fuz
fuz/cardgame. fuz

fu2/cause.fu2

fuz/characters.fu2

fuz/compile. fuz
fu2/emailcharacters.fu2
fuz/emotionmachine . fuz
fu2/english—eval.fu2

fuz/graph. fu2
fuz/graph_match_test.fuz
fuz/graphviz. fu2

fuz/internet. fu2
fu2/link—grammar—wrapper . fuz
fuz2/miscfunks. fuz
fu2/neuralmom—brain_area.fuz
fu2/neuralmom—demo. fuz2
fuz/neuralmom—nervous_system. fuz
fu2/neuralmom—occipital _cortex.fuz
fuz/opengl. fuz

fuz/pattern.fuz

fuz/planner. fuz
fuz/primfunks—apropos.fuz
fuz/primfunks—arithmetic.fuz
fuz/primfunks—array . fuz2
fuz/primfunks—bug. fuz
fuz/primfunks—cause . fuz
fuz/primfunks—hunk. fuz
fu2/primfunks—command_line . fuz
fuz/primfunks—compile. fuz
fuz/primfunks—core_extension.fu2
fuz/primfunks—core_extension_funk. fuz
fuz/primfunks—cpu. fuz
fuz/primfunks—defragmenter . fuz
fuz/primfunks—dlfcn . fu2
fuz/primfunks—errno . fuz
fuz/primfunks—fentl . fuz
fuz/primfunks—fiber . fu2
fuz/primfunks—fiber_trigger.fuz




fuz/primfunks—frame. fuz
fuz/primfunks. fuz
fu2/primfunks—garbage_collector . fuz
fuz/primfunks—gmodule. fuz
fuz/primfunks—graph. fuz
fuz/primfunks—hash. fuz
fuz/primfunks—ioctl.fu2
fuz/primfunks—largeinteger.fu2
fuz/primfunks—locale . fu2
fuz/primfunks—management_thread . fu2
fuz/primfunks—math. fuz
fuz/primfunks—memory . fuz
fuz2/primfunks—object.fuz2
fuz/primfunks—optimize. fuz
fuz/primfunks—package . fuz
fuz/primfunks—package_handler. fuz
fuz/primfunks—primes . fuz
fuz/primfunks—primmetros . fuz
fuz/primfunks—primobjects. fu2
fuz/primfunks—primobject_type.fuz2
fuz/primfunks—primobject_type_handler. fuz
fuz/primfunks—print.fuz
fuz/primfunks—ptypes.fuz2
fuz/primfunks—reader . fuz
fuz/primfunks—redblacktree . fuz
fuz/primfunks—scheduler. fuz
fuz/primfunks—set. fuz
fuz/primfunks—signal . fuz2
fuz/primfunks—socket . fuz
fu2/primfunks—sort. fuz
fuz/primfunks—stdlib . fuz2
fuz/primfunks—string . fuz
fuz/primfunks—surrogate_parent.fuz
fuz/primfunks—terminal _print.fuz
fu2/primfunks—termios . fuz
fuz/primfunks—time . fu2
fuz/primfunks—trace . fuz
fuz/primfunks—virtual_processor_handler.fu2
fuz/primfunks—zlib . fuz2
fuz/reactive . fuz
fuz/readline—wrapper. fuz
fuz/repl.fuz
fuz/rlglue—wrapper. fuz
fu2/serialize . fu2

fuz/story . fuz2
fuz/thought_process.fu2
fuz/trace.fuz

fuz/x86—compile . fuz
fuz2/x86—compile—machine_code. fu2
fuz/x86—compile—mov. fu2
misc/fables . fu2

misc/frog_and_toad . fuz
misc/frog—and—toad . fuz
misc/officer_joke.fuz2
misc/roboverse—blocks_world. fuz
misc/roboverse—demo. fu2
misc/simple_game. fu2
python/funk2module/c/funk2module. c
python/funk2module/c/funk2test.c
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test/cairo—test/cairo—test.fpkg

test/cairo—test/cairo—test.fu2
test/concept_version_space—test/concept_version_space—test .fpkg
test/concept_version_space—test/concept_version_space—test.fu2
test/gtk—test/gtk—test . fpkg

test/gtk—test/gtk—test.fuz
test/interval_tree—test/interval_tree—test.fpkg
test/interval_tree—test/interval_tree—test.fu2
test/keyboard—test/keyboard—test . fpkg
test/keyboard—test/keyboard—test . fu2
test/keyboard—test/ncurses—test.c
test/optimize—test/optimize—test . fpkg
test/optimize—test/optimize—test.fu2
test/propogator—test/propogator—test.fpkg
test/propogator—test/propogator—test.fuz
test/timeline—test/timeline—test . fpkg
test/timeline—test/timeline—test.fu2
test/xmlrpc—test/xmlrpc—test . fpkg
test/xmlrpc—test/xmlrpc—test . fu2
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