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Abstract

Embedded-sensor platforms are advancing toward such sophistication that they can
differentiate between subtle actions. For example, when placed in a wristwatch, such
platforms can tell whether a person is shaking hands or turning a doorknob. Sen-
sors placed on objects in the environment now report many parameters, including
object location, movement, sound, and temperature. A persistent problem, however,
is the description of these sense data in meaningful human-language. This is an im-
portant problem that appears across domains ranging from organizational security
surveillance to individual activity journaling.

Previous models of activity recognition pigeon-hole descriptions into small, for-
mal categories specified in advance; for example, location is often categorized as “at
home” or “at the office.” These models have not been able to adapt to the wider
range of complex, dynamic, and idiosyncratic human activities. We hypothesize that
the commonsense, semantically related, knowledge bases can be used to bootstrap
learning algorithms for classifying and recognizing human activities from sensors.

Our system, LifeNet, is a first-person commonsense inference model, which con-
sists of a graph with nodes drawn from a large repository of commonsense assertions
expressed in human-language phrases. LifeNet is used to construct a mapping be-
tween streams of sensor data and partially ordered sequences of events, co-located in
time and space. Further, by gathering sensor data in vivo, we are able to validate
and extend the commonsense knowledge from which LifeNet is derived.

LifeNet is evaluated in the context of its performance on a sensor-network platform
distributed in an office environment. We hypothesize that mapping sensor data into
LifeNet will act as a “semantic mirror” to meaningfully interpret sensory data into
cohesive patterns in order to understand and predict human action.

Thesis Supervisor: Walter Bender
Title: President, One Laptop Per Child; Senior Research Scientist, Media Lab, MIT
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Chapter 1

Introduction

1.1 Problem: Sensors are not meaningful to peo-

ple

We are entering a world in which it will become common for sensors on everyday

objects throughout the environment to report things like location, movement, sound,

temperature, etc. to computers. Research has resulted in examples of sensor-rich

environments, which are starting to evolve into real-world installations (McFarland

et al. (1998), Moore & Kennedy (2000), Tapia et al. (2004), Fulford-Jones et al. (2004),

Wyatt et al. (2005), Eagle & Pentland (2005), Lifton et al. (2005), Thiemjarus et al.

(2006), Edmison et al. (2006), Luprano et al. (2006)) due to their lower cost, lower

power, and smaller size—a trend that will continue.

Commonsense computing is a vision of computation where computers have

the set of general knowledge and ways of reasoning that a given community shares,

so that computers can have a deeper understanding of humans and become a more

integral component of daily life. Sensors do not speak human-language and do not

communicate using means that a human would consider commonsense; sensors gen-

erally produce unintelligible streams of numbers. We propose trying to make sensors

speak human-language by using commonsense representations, such as the recently

developed LifeNet representation, to perform context-expansion to understand full-
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vocabulary (Mohri et al. 1998) human-language understanding of arbitrary sensor

streams.

LifeNet (Singh & Williams 2003) is a model that functions as a computational

model of human life and attempts to anticipate and predict what humans do in the

world from a first-person point of view. LifeNet utilizes a commonsense knowledge

base (Singh et al. 2002) gathered from assertions about the world input by the web

community at large. In this work, we extend this commonsense knowledge with

sensor data gathered in vivo. By adding these sensor-network data to LifeNet, we

are enabling a bidirectional learning process: both bottom-up segregation of sensor

data and top-down conceptual constraint propagation, thus correcting current metric

assumptions in the LifeNet phenomenological model by using sensor measurements.

Also, in addition to having LifeNet learning general commonsense metrics of physical

time and space, it will also learn metrics to a specific lab space, the Third Floor of

the Media Lab at MIT, and recognize specific individual human activities. These

computational abilities will provide opportunities for making object-oriented spatial

and temporal inferences, such as predicting how many people are in a given room and

what they might be doing.

We hypothesize that the commonsense semantically related language-data that

have been gathered from the public, such as the OpenMind Commonsense knowl-

edge base, can be used to bootstrap quicker learning algorithms for classifying and

recognizing sensor events and in turn common human activities.

1.2 Solution: Commonsense semantic knowledge

bases

For technology to ultimately be helpful, it needs to be able to describe these events

in terms meaningful to people; for example, expressing the coordinates from an ac-

celerometer in a watch as the difference between shaking hands and opening a door-

knob.
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There are many applications and motivations for learning commonsense from raw

sensor data and most of these relate to having a deeper ability to self-reflect on

our world and the activities that are occurring. Whether we are wearing a sensor

network and getting feedback throughout the day, or if we are reviewing the monthly

online bulletin of occurrences within our local community, we are using this ability

to self-reflect on our past in order to plan our future. Within this theme, we will

discuss the general area of commonsense activity recognition as well as the more

specific domains of body sensor networks that are worn throughout the day, such

as cell phones and wristwatches, and also the environmental sensors that our body

networks can use as an information infrastructure, such as audio and video recorders

in buildings, temperature, humidity, and smoke detectors, etc. This polarity draws

the distinction between the personal sensor network and the environmental sensor

network.

1.3 Previous models: Too small and formal

Previous attempts at activity recognition force all descriptions into a very few cate-

gories specified in advance (Madabhushi & Aggarwal (1999), Luprano et al. (2006),

(Edmison et al. 2006)); for example, location can be: at home, the office, or elsewhere

(Eagle & Pentland 2005). Although these models perform very well at putting ac-

tivities into these small sets of categories, these models don’t adapt well to the very

rich, dynamic, and idiosyncratic range of human activities.

1.4 LifeNet: A large adaptive first-person model

We developed a new representation called LifeNet as a representation for sensor under-

standing. LifeNet gathers descriptions of commonsense events from a large community

of web volunteers, and creates a first-person model of events co-located in time and

space. Given partial knowledge of a situation, LifeNet models commonsense expecta-

tions people might have about spatial and temporal context of the event. We can use

15



those expectations both for interpreting sensor data and learning new descriptions

from the data.

LifeNet is a first-person commonsense inference model, which consists of a graph

with nodes of commonsense human-language phrases gathered from OpenMind Com-

monsense (Singh et al. 2002), ConceptNet (Liu & Singh 2004), Multilingual Con-

ceptNet (Chung et al. 2006) (English, Japanese, Brazilian), PlaceLab data (Tapia

et al. 2004), and Honda’s indoor commonsense data (Kochenderfer & Gupta 2004).

Examples of commonsense knowledge from OpenMind include: “washing your hair

produces clean hair”; “shampoo is for washing your hair”; “you can find shampoo in a

shower”; etc. This knowledge is related in three ways: logical existential relationships,

temporal probabilistic distributions, and spatial probabilistic distributions. LifeNet

might infer that “I am washing my hair” before “My hair is clean.” A concept

is a human-language Unicode string representing a human-language phrase, which

functions as the primary mode of indexing the ConceptNet reasoning algorithm. A

phenomenon (Heidegger 1962) is a more general sense of the ConceptNet “text

phrase” type of knowledge and forms the basic index to the LifeNet reasoning algo-

rithm. The set of LifeNet phenomena includes all ConceptNet concepts as well as

groups of sensor data. A recognized mode of text or sensor datum is a phenomenon

functioning as a percept, while a contextual mode of text or sensor datum functions

as a top-down projection phenomenon. A commonsense phenomenon is a mental

state that a given “club” or group of people share; for example, a specific sensory

experience that one might be able to express in conceptual human-language terms.

Any given group of people will most likely share language capabilities that provide the

ability to recall large sets of shared commonsense phenomena that are not necessary

human-language concepts themselves. The connotation of the word phenomenon also

leads the LifeNet algorithm closer to perceptual foundations in phenomenology and

phenomenological, ontological understanding of perception, which is an underdevel-

oped branch of artificial intelligence that we hope to pursue in future research.

All of the reasoning in LifeNet is currently based on probabilistic propositional

logic (Markov random fields and Bayesian mixtures of Gaussians); the benefits of

16



this design include: (1) probability eliminates the need to debug very large databases

containing millions of strict logical relationships; and (2) higher-order logical repre-

sentations, such as finite first-order logic and object-relative probability models, can

often be compiled into a propositional form before inference routines are performed,

so this compilation feature could be an extension to LifeNet. A basic visualization of

the graph structure of LifeNet is shown in Figure 1-1.

Figure 1-1: LifeNet, a graph of nodes connected by probabilistic relation-
ships This dynamic Markov random field (similar to some dynamic Bayesian networks)
consists of nodes of human-language phrases that are connected by tabular probabilistic
relationships that is duplicated in two temporal slices that can predict sequences of events
in simple sequential stories. The benefits of this simple view of LifeNet is that it is a very
efficient and simple representation for computing the existence of phenomena; but one of
the drawbacks of using only this representation is that it cannot calculate specific distances
between events in time, and it does not predict where events will occur in space. This view
is basically the same graphical representation of human-language nodes with probabilistic
relationships specified as edges.

1.5 Performance evaluation

We evaluate the LifeNet critical reasoning algorithm on two very different knowledge

bases: (1) Commonsense objects in a research office environment, and (2) Ubiqui-

tous Plug sensor-network platform audio streams. We demonstrate that using com-

monsense knowledge bases and inference tools, such as LifeNet, improves traditional
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bottom-up machine learning performance at understanding the human patterns in-

herent in these knowledge base. LifeNet can construct a mapping between sensor

streams and commonsense stories. A LifeNet story is a partially ordered sequence

of events expressed as conceptual human-language phrases (Unicode strings). Op-

tionally, some of the sensor streams can be annotated with story events. LifeNet uses

an analogy mechanism to perform logical belief propagation with a Markov random

field and mixtures of Gaussians.

1.6 Contributions

The contributions of this thesis are:

1. The algorithm for making inferences over continuous temporal-spatial distribu-

tions;

2. The commonsense propositional representation (using first-person English phrases);

3. The connection to sensors to enable commonsense inference over sensor data;

4. The way analogy is being used to learn probabilistic inference is similar to

analogies in Gentner (1983), but it is novel in the way it is being used to learn

probabilistic-inference graph structures;

5. An algorithm that measures the similarity between two probability distributions

using mutual information and modal similarity.

1.6.1 Future directions

We hypothesize that sensor data cannot be simply understood by machine learning

algorithms that do not have a human-level language description of what is going on. In

order to predict and understand human behavior in a sensor-rich environment, sensor-

networks will need to incorporate frameworks like LifeNet that contain first-person

commonsense phenomenological models of human behavior. We also hypothesize that

once human behavior can be explained by these top-down commonsense constraints,
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more specific commonsense patterns can be bootstrapped from this initial mapping of

sensor data to human behaviors, leading to the codification and extraction of typical

patterns of human behaviors, which would not be possible without the initial top-

down commonsense language constraints.
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Chapter 2

Problem: Sensors are not

meaningful to people

Although, there is a technical problem with using all of this sensor technology for

helping individuals to keep track of their daily lives: humans cannot naturally under-

stand streams of sensor data, which often come in packets of cryptic numbers that

are each labeled with their origin in time and space. The necessary problem of trans-

lating raw sensor data to a format that humans can understand involves mapping the

data into forms that are natural for human understanding. One of the most powerful

methods of natural social reference is some form of symbolic human-language, such

as English. Other forms of human understanding, such as translating sensor data

into a form natural to visual human understanding are also briefly discussed in this

thesis, but areas for future research involve more immersive human experiences in

sensor data. We hypothesize that one way to intimately extend this idea of virtual

existence within sensor data will eventually include adaptive bidirectional neural

interfaces to spatial and temporal world-model representations (Eden 2004).

We are entering a world where embedded-sensor platforms in everyday physical

objects report things like location, movement, sound, temperature, etc. to computers.

Commonsense object is an physical object that a human might use commonly to

solve everyday problems, such as a “stapler” solving the common problem of keeping

papers together in a document. Like all commonsense, these objects are specific to
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the social cultures, groups and clubs to which the individual belongs. In general, a

commonsense object is an object that all people within a context would consider to

be a common everyday object. Sensors that detect temperature, acceleration,

chemical composition, sound, as well as video are now very common, not only as

a part of the working and public environments of our society, but also as part of

our tools that we carry with us everywhere we go, such as cell phones, hearing aids,

prosthetics, portable digital assistants (PDAs), laptops, etc. Creating networks of

information-sharing applications that operate within security protocols have only be-

gun to be established between this variety of systems as new protocols for low-power

and short-range radio communication have become more emphasized in addition to

global standards for how these devices communicate (e.g. I.E.E.E. (2003) personal

low-power radio standard and other ISM radio bands). These international public

frequency ranges and standards are not owned or controlled by national or corpo-

rate interests, so the individual citizen is free to use these ranges and protocols,

and cell phones that run common computer languages are functioning as the current

ubiquitous platform for these technologies. These sensitive and open-information en-

vironments allow the development of applications for the individual user that allow

free access to the individual user to use these pervasive embedded sensor platforms

in order to enhance their own self-reflection on personal activity patterns that may

not have been obvious without such aids.

For example, a homeowner might find it inconvenient to look through endless

video footage of many video cameras that they could potentially put around their

home to identify a burglar after the fact of experiencing an illegal entry into their

homes. We propose that one very natural way for people to understand sensor data

is to provide human-language transcriptions of sensor data automatically. Given

the ability to search through very large amounts of sensor data, such as all of the

sensor data collected in a personal home through a human-language search capability

is a natural way for people to perform a focused search within a very large corpus of

collected sensor data about their personal life, which provides a powerful new means

of self-reflection As neural interfaces become more intimate, this form of indexing
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sensor memories by streams of symbolic phenomena, of which human-language is a

subset, will become more natural and helpful experience-based memory indexing—one

possible example of human-thought augmentation. human-language is not necessary

for this memory indexing to take place, and one can imagine directly indexing previous

experience directly by using a neural signal as the index to previous sensor data.

Simply put, sifting through packets of numbered sensor data is not a natural or

useful way for humans to interact with sensors.

2.1 Giving commonsense to computers

Commonsense computing is a vision of computation where computers have a general

knowledge capability and ways of reasoning that are analogous to humans, so that

computers then become a more integral component of daily life.

LifeNet (Singh & Williams 2003) is a model that functions as a computational

model of human life that attempts to anticipate and predict what humans do in

the world from a first-person point of view. LifeNet utilizes a commonsense knowl-

edge base (Singh et al. 2002) gathered by the web community at large. In this

work, we extend this commonsense knowledge with sensor data gathered in vivo.

By adding these sensor-network data to LifeNet, we enable a bidirectional learning

process: both bottom-up segregation of sensor data and top-down phenomenological

constraint propagation, thus correcting current metric assumptions in the LifeNet

phenomenological model by using sensor measurements. Also, in addition to having

LifeNet learn commonsense metrics of physical time and space, it has also been used

to learn metrics of a specific lab space, the Third Floor of the Media Lab at MIT,

while recognizing specific individual human activities. Thus LifeNet is able to make

both general and specific spatial and temporal inferences, such as predicting how

many people are in a given room and what they might be doing.

The recent emergence of large semantic networks of human commonsense has led

to a variety of applications. All of these applications provide an easier way for a human

to interact with a computer through the semantic relationships between commonly
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used and shared human-languages that have been gathered actively through online

webpages. LifeNet is a reasoning system that uses spatial and temporal relationships

within other commonsense knowledge bases (Liu & Singh (2004), Kochenderfer &

Gupta (2004)) in order to begin to make guesses as to the positions and times of

human-centered events. These relationships are initialized as being weak 1
1

probabil-

ities, but we will learn these relationships from data that is gathered from sensors

embedded in experimental powerstrips that can sense nine different modalities. These

are discussed in detail in the “Plug Sensor-network” Section in the Evaluation Chap-

ter.

2.2 Ubiquitous computing

The eight prototypical sensor networks of the 1970s (Kahn 1978) and the origins of

ubiquitous computing in the late 1980s (Weiser et al. (1999), Weiser (1991)) establish

a vision of computation where computers are so deeply integrated into our lives that

they become both invisible and everywhere. Realizing this vision requires building

computer systems that exist in our environment and on our bodies; it poses two

distinct directions for research: (1) the “human-out”—the influence of humanity’s

needs on technological developments; and (2) the “technology-in”—the influence of

new technology on humanity. For example, the telephone can be considered as human-

out by considering our social need to speak to one another; text messaging on cell

phones can be considered as technology-in, since a new technology has affected the

way that we express our humanity. Much sensor-network research emphasizes the

technology-in direction; the work discussed in this thesis attempts to add models of

human understanding to sensor networks emphasizing a human-out direction.

2.3 Top-down constraint hypothesis

Merleau-Ponty expresses a point relevant to this thesis:

It is, then, diffused with a power of objectification, a ‘symbolical func-
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tion’, a ‘representative function’, a power of ‘projection’ which is, more-

over, already at work in forming ‘things’. It consists in treating sense-data

as mutually representative, and also collectively representative of an ‘ei-

dos’; in giving a meaning to these data, in breathing a spirit into them,

in systematizing them, in centering a plurality of experiences round one

intelligible core, in bringing to light in them an identifiable unity when

seen in different perspectives. To sum up, it consists in placing beneath

the flow of impressions an explanatory invariant, and in giving a form to

the stuff of experience.

—Maurice Merleau-Ponty (Merleau-Ponty 1962)

Note that when Merleau-Ponty refers to as an “eidos” he stresses the importance

of the structured forms that comprise the meaning of sensory data, which are also used

in the activities of perceptual “projection”— top-down perceptual influences. These

structural forms of perception are similar to Jepson & Richards (1994) “modes”, and

LifeNet uses the latter terminology to refer to the functional structures that provide

generative explanations for the meaning of the data, and attempt at a generative

meaning, as in the answer to the question: “How were these data generated?” Future

research will deal with more complex generative processes as well as object-oriented

approaches to try to answer more difficult questions, such as the following:

� “What generated these data?”

� “Who generated these data?”

Also, social and intentional object-oriented models of generative processes might

provide hints toward how to answer the following questions:

� “What goals was this person pursuing while generating these data?”

� “What was this person thinking about that person when these data were gen-

erated?”
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We hypothesize that the commonsense data that have been gathered from the

public, such as the OpenMind Commonsense knowledge base, can be used to boot-

strap quicker learning algorithms for recognizing sensor events and for classifying

human activities. It has been shown that a two-slice bigram probabilistic model of

sequential events in time can learn to predict commonsense data that is provided by

sensors (Wyatt et al. 2005), given that the user is wearing an RFID reader on their

wrist that can scan RFID labeled objects. Our approach does not use RFID tagged

objects or a sliced Markov model of time, but instead considers time to be just an-

other data dimension that can be reasoned over in the same way as any other sensor

dimension, such as audio, power, or heat. In other words, instead of using a constant

time-interval sampling technique, we use a technique of recognition that we call a Per-

ception Lattice, which provides a way of recognizing phenomena of arbitrary lengths

of time based on a symbolic sampling method (See Chapter 5). This method of recog-

nizing phenomena of arbitrary lengths is reasoned over using mixtures of Gaussians,

which are not limited to reasoning over fixed distances between phenomena in the

same way that sliced bigram models are limited. We hypothesize that this ability for

LifeNet to symbolically as well as numerically reason over the relationships between

commonsense phenomena will allow humans to easily annotate numerical sensor data

using symbolic human-language, allowing a process of self-reflection on the sensor

data in their environment.
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Chapter 3

Solution: Commonsense semantic

knowledge bases

For technology to ultimately be helpful to the user, it needs to be able to describe these

events in terms meaningful to a person. LifeNet has the ability to provide a human-

language index into vast quantities of sensor data, allowing users to search through the

histories of their homes and communities. In this section of this thesis, we present

a prototype application of the LifeNet inference architecture: a cell phone diary

application that allows users to annotate their body-sensor network data using a diary

application. The knowledge for this diary application was seeded by the commonsense

semantic knowledge bases that have been gathered from the web community at large

((Singh et al. 2002), Kochenderfer & Gupta (2004), Chung et al. (2006)).

3.1 Commonsense activity recognition

Because LifeNet has already incorporated millions of semantic relationships from

other commonsense knowledge databases, the existing context that this semantic

knowledge will provide in the learned relationships between sensor events will be the

novel aspect of our approach to the problem of sensor network event recognition. In-

corporating sensory data into LifeNet’s commonsense knowledge will provide a rich

source of temporal event sequences and concurrencies. LifeNet will use what limited
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context it can infer from the raw sensor data in order to guide further sensing of

the environment. This technique of using context to narrow the scope of the sen-

sor network could focus the battery energy of the sensor network on specific sensor

modalities at a certain times that would be important for a type of resource limited

top-down inference to take place.

By way of example, let us consider a jogger that wants to use a device that

can be carried or otherwise worn in order to remember a commonsense description

in human-language of what is going on around her. Simple sensors do not tell us

this information directly. Simple sensors on the human body can detect a number

of dimensions of data in time, such as temperature, light level, sounds, vibrations,

accelerations, and also electrical measurements (e.g. EKG, EEG, BCI, GSR, EMG).

So, when she wants to see at the end of the day when she was “jogging” the system

can respond with when the sensor data most likely reflects “jogging” as it is related

to other commonsense concepts, which are in turn related to raw sensor data. As

will be shown in Chapter 5, LifeNet can infer these relations from a small amount of

supervised data. The remainder of this Chapter will focus on an online application

for gathering such supervised data from cell phone users.

3.2 Cell phone diary application

The Reality Mining diary application (See Figure 3-1) provides large life-pattern

self-reflection. The Reality Mining diary application was a project that augmented

systems of data collection (Eagle & Pentland 2005) that runs on a cell phone, com-

municating with a centralized server in order to create a centralized database that

consists of a person’s daily activities correlated with textual commonsense descrip-

tions of what they have done during that day. This information is displayed in the

form of an online webpage diary that not only allows users to enter new informa-

tion about themselves and descriptions about their activities, but also uses LifeNet

in order to understand how the person has moved through space and time and what

events would likely be the context of those events. An obvious benefit is that the user
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can effectively search their daily lives for commonsense events of special interest. An

example of a commonsense search might be “Tell me the time when I met that girl.”

The LifeNet commonsense engine would accept this query and augment the context

“meet girl” with “party” and “drink wine.” LifeNet knows that parties are loud and

involve many human voices so searching for audio power spectra that contain a lot

of energy as well as matching the power-spectrum signature of a collection of human

voices. LifeNet will consider the related events in both human-language stories and

raw sensor data in order to add even more context to this search. The LifeNet online

cellphone diary allows these methods of automatic self-reflection and life summariza-

tion. Also, the diary allows a method for the user to add personalized commonsense

information about their day that they would normally add to a conventional diary

and that LifeNet would use in recognizing trends in other, analogous parts of that

person’s life.

Figure 3-1: Automatically generated cell phone diary application This application
was developed to show how people can use an online diary in order to interact with data
that has been gathered by their cell phone throughout the day. 150 cell phones were
programmed to log nearby cell phones (through Bluetooth identification) every 5 minutes,
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and this information was presented along with approximate cell phone location identified
by recognizing user-provided cell-tower IDs. Cell phone usage was also displayed as the
bottom graph in this application. The relevant aspect of this application was the LifeNet
interface (top), where the user could provide human-language text labels in order to create
a commonsense diary. It could, in theory, be automatically generated, but the LifeNet
inference routine was never fully connected to the reality mining project (Eagle & Pentland
2005).
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Chapter 4

Previous models: Too small and

formal

One of the major roadblocks facing full-vocabulary human-activity recognition is the

fact that most models that are used to represent a human life are too small and too

formal. For example, many models attempt to categorize human-activities into 3–30

categories, such as “I am outside” versus “I am inside”, or “I am walking” versus

“I am sitting.” The development of body sensor networks that gather the data for

these categorization activity-recognition applications has initially attracted the use of

simple single-representation models of human-activity recognition. For example Ea-

gle & Pentland (2005) have used Hierarchical Hidden Markov Models (HHMMs), and

SenSys-151 (2006) have used Probabilistic Generative Grammars (PGG). Although

these are very powerful probabilistic techniques, we hypothesize that developing rea-

soning architectures that reason about different aspects of the probabilistic model

independently and incrementally combine their inferences will allow concurrent algo-

rithms to propagate belief constraints about much larger state spaces than a single

probabilistic representation would allow; the dynamic combination of many different

representations and reasoning techniques will be necessary in order to represent and

reason about the complexity of human life. LifeNet combines Markov Random Fields

(MRFs) for reasoning about complex logical existential and truth relationships, Mix-

tures of Gaussians for reasoning about numbers in real-numbered dimensions such as
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time and space, Dynamic Bayesian Networks for reasoning about sequences such as

discrete time-steps, Vector Quantizing Neural Networks (VQNN) (Kohonen 1995) for

the online learning of equiprobable symbolic mappings for streams of numerical sen-

sor data, and our Temporal Perception Lattice (Functional Generative Grammar) for

learning functional generative processes for perceptual data as a means for inference

and recognizing similarity between very large sets of partially-ordered data.

4.1 LifeNet does not assume specific sensor types

LifeNet contains many different forms of learning algorithms for different fundamental

types of sensor data. This allows us to use each of LifeNet’s algorithms for processing

more than one modality of data. Table 4.1 illustrates the types of data that LifeNet

can process and what algorithms process these types of data along with the modalities

that can be represented by each of these types.

Data Type Algorithm Type Modality Type
Partially-ordered
Sets, Perception
Lattices

Greedy Compression
Search, Belief Propaga-
tion

Text Stories, Symbolic
Sensor Streams

Real-numbered
Tuples

Vector Quantizing Neu-
ral Network

Audio Power Spectra,
Acceleration Power
Spectra

Bayesian Nets,
Markov Random
Fields

Belief Propagation Existence of Phenomena,
Truth of Phenomena

Mixtures of Gaus-
sians

Belief Propagation Spatial Positions of Phe-
nomena, Temporal Posi-
tions of Phenomena

Table 4.1: The LifeNet internal data representation types and algorithms These
data and algorithms are very general in their applicability to specific modalities that LifeNet
has been tested on thus far. Note the wide range of modality types that can be processed by
a few core data and algorithm types. Because LifeNet can transfer probabilistic inferences
and similarity calculations between different algorithm types, these interfaces can enable
critical cross-modal learning between these reasoning systems relatively easily.

Previous work has focused on using specific sensors in order to perform activity

recognition. For example, in Wyatt et al. (2005) 100 RFID sensors were placed on
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a number of different objects within a house, while a wrist-worn RFID reader was

used by the subject, while the subject performed one of 26 activities. This technique

of activity recognition requires a large effort on the part of the user because the

user must purchase and constantly wear a cumbersome wrist-worn RFID reader and

all of the objects in their home must have RFID tags on them. This technique is

a good technique for gathering data about what objects are used in commonsense

human activities, but it is an awkward technique for gathering a large amount of

commonsense data from many people. The Plug sensor-network (Lifton et al. 2005)

is a good example of a possibility for a sensor-network that could be easily and cost

effectively replace household power-strips. LifeNet is able to take advantage of the

Plug sensor-network and other networks that produce streams of real-numbered or

symbolic data distributed in space and time.

4.2 LifeNet does not assume specific temporal gran-

ularities or hierarchies

Many previous activity recognition techniques have focused on the use of Hierarchical

Hidden Markov Models (HHMMs) in order to model sequences of events at multiple

time scales. While this is a sound technique in theory, in practice the techniques used

have considered only a fixed number of hierarchical levels of temporal granularity

(usually 2–4); also within each of these levels, a fixed time-step length is used. Of-

ten also, as an additional assumption, these purely temporal hierarchical techniques

assume a type of activity at each layer, such as a user’s (1) goal, (2) trip, (3) trans-

portation mode, and (4) edge transition (Liao et al. 2004). Others use multiple layers

of Hidden Markov Models with each layer being a predefined fixed length of time

(Oliver et al. 2002).

The advantage of not assuming a specific temporal granularity for the LifeNet

architecture is that without this assumption LifeNet can answer questions about the

a wide range of temporal scales in the same query. LifeNet can learn relationships
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and perform inferences about temporal events on a wide temporal scale (x : 10−308 <

x < 10307 seconds).

4.3 Learning large numbers of natural language

activities

LifeNet inherits large numbers of semantic language relationships from the Concept-

Net projects (Liu & Singh (2004), Chung et al. (2006)). These projects bring more

than 300,000 semantically related English phrases and 30,000 phrases in other lan-

guages (Korean, Japanese, and Portuguese) to LifeNet’s range of textual phenomena.

Also, the OMICS (Kochenderfer & Gupta 2004) knowledge base contains stories that

link the English phrases together into 3,000 5–7 step sequences. Using this informa-

tion along with partially labeled streams of sensor network data distributed in space

and time gives us the learning and inference representations to develop algorithms for

recognizing human-activities using an unlimited full human-vocabulary descriptions.

Projects have previously focused on developing learning algorithms that learn to

categorize a small number of discrete categories (usually 3–30). For example Madab-

hushi & Aggarwal (1999) used their body sensor-network to categorize the activities

“sitting down”, “getting up”, “hugging”, “squatting”, “rising from a squatting po-

sition”, “bending sideways”, “falling backward”, and “walking.” Eagle & Pentland

(2005) developed an algorithm for activity recognition based on a cell phone as a

sensor that categorized the locations of “office”, “home”, or “elsewhere.” Luprano

et al. (2006) developed a body sensor-network platform that could detect the activ-

ity categories of “resting”, “lying”, “walking”, “running”, and “going up or down

stairs.” Recently, Edmison et al. (2006) built a body sensor-network platform that

detected the activities of “walking”, “running”, or “lying down.” Also, Liao et al.

(2005) have developed an activity recognition algorithm using a GPS sensor that not

only predicts the location where a subject is, “home”, “work”, “bus stop”, “parking

lot”, or “friend’s house”, but also predicts categories for how the subject transitions
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from place to place, “walk”, “drive”, “visit”, “sleep”, “pickup”, and “get on bus.”

Thiemjarus et al. (2006) used a sensor network to recognize different categories of 11

exercise activities including “sitting in a chair”, “standing”, “steps”, “sitting on the

floor”, “demi-plie”, “galloping left”, “skipping”, “galloping right”, “side kick”, “front

kick”, and “walking.” As far as we are aware, this thesis is the first sensor-network

activity recognition research that demonstrates algorithms that use full-vocabulary

human-language to recognize human activities.

4.4 Using many reasoning critics to tractably rea-

son over very large state-spaces

LifeNet has many different numerical and symbolic reasoning techniques in order to

reason over not only semantic relevance but also contextualized existence, spatial and

temporal relations with modal forms as well as functional generative similarity by

using a Temporal Perception Lattice. This combination of many critical reasoning

algorithms that judge the inferences of one another in iterative belief propagation

between fundamentally different data representations is the key to LifeNet’s ability

to very approximately reason over the incredibly large state space (300,000 binary

language variables results in 2300000 = 1090309 states) by relying on distributed criti-

cal algorithms using heavily contextualized evidence. Previous work that has dealt

very effectively with a large state space was (Dong & Pentland 2006), who achieved

relatively good categorization of subject activities, including eight location variables,

six speaking variables, seven posture variables, and eight high-level activity variables

resulting in their claim of being able to reason effectively over 8×6×7×8 = 2588 exis-

tential states. However, in order to not get caught up in number games, we emphasize

that LifeNet’s goal is to adapt to the language of the user and learn not only the sensor

patterns of specific users but also the language that the subject uses to describe his

or her activities to the system. Not only do people engage in very different activities,

perhaps warranting the ability reason over very large state spaces, but also people are
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probably only interested in a very small subset in the overall possible state space. For

example, one user may be interested in when they are “eating in a restaurant”, while

another user may be interested in something completely different such as when she

is “buying a cup of coffee.” Subramanya et al. (2006) have recently combined spatial

and temporal inference over GPS and partially labeled sensor data using an assumed

map of labeled locations, but the activities that are recognized using this approach

are limited to environmental context, “indoors”, “outdoors”, or “in a vehicle”, and

subject motion type, “stop”, “walk”, “run”, “drive”, and “up/down.” The combina-

tions of multiple critical reasoning algorithms operating in different modalities and

incrementally combining the results of their individual inferences through belief prop-

agation allows critical contextualized focus for the LifeNet reasoning algorithm that

narrows the search to only consider an intersecting subset of the possible states that

would be considered in individual modalities separately.
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Chapter 5

LifeNet: A large adaptive

first-person model

We use LifeNet as a representation for sensor understanding. LifeNet gathers de-

scriptions of commonsense events from a large community of Web volunteers and

creates a first-person model of events co-located in time and space. Given partial

knowledge of a situation, LifeNet models commonsense expectations people might

have about spatial and temporal context of the event. We use those expectations

both for interpreting sensor data and learning new descriptions from the data.

LifeNet has been built as a piecewise-reasoning system in the tradition of the

Society of Mind architecture (Minsky 1985), specifically the critic-selector model for

emotional reasoning. A critic-selector model is a theory of how humans perceive,

reason, and act. Minsky (2006) introduced the critic-selector model as a hierarchical

implementation of the agents within the society of mind where critics and selectors

are two specific types of agents. The model fits within a six-layered model of human

intelligence, which has increasing levels of abstraction from the peripheral aspects of

intelligence that interface directly with the physical world and the human sensations

and motor-control. LifeNet is meant to function as a robust human-scale implementa-

tion of the most peripheral and lowest layer of this Model-6 architecture, the Reactive

Layer, which handles only the simplest levels of intelligence that do not rely on the

self-reflective aspects of the subsequent layers, such as the Reflective Layer and the
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Deliberative Layer. See Singh (2005) for an implementation of the lower three layers

of the Model-6 architecture in a very limited reasoning domain

The LifeNet algorithm is divided into different reasoning critics that process differ-

ent types of data, while sharing constraining relationships between specific elements

of data. For example, the spatial reasoning algorithm can infer where an object is

most likely to be at a given time, while concurrently a temporal reasoning critic can

check for asynchronicities in the spatial inferences. This type of concurrent constraint

propagation between mental realms occurs between all critics in LifeNet. The shared

phenomena that exist in more than one reasoning critic are referred to as the shared

commonsense elements between these critics. These shared representational informa-

tion structures allow for efficient information flow between probabilistic constraints

that are processed in parallel (See Section 5.3.1 for details on automatically optimiz-

ing this information flow). The different reasoning critics that LifeNet is composed

of are as follows:

� temporal-distance critic

� spatial-distance critic

� existential critic

� superficial temporal-redundancy critic

� sensor percept-alignment critic

These critics operate over knowledge bases that are specific to these critics and

constraints between these knowledge bases provide the commonsense information flow

between operating critics.

� sequential human-language stories

� sensor power-spectrum streams

� sensor stories

38



� analogical

– human-language analogical stories

– sensor analogical stories

Most of the relationships that are stored within LifeNet are arranged on the time,

t, axis because this is the most general axis for considering sensor-data streams and

human- text stories in any language, which is currently the primary application for

the LifeNet reasoning system. LifeNet has also inherited the semantic knowledge

from ConceptNet, so LifeNet can make general assumptions about distances in three-

dimensional space, including the dimensions of longitude, latitude, and altitude, which

are referred throughout this document as x, y, and z.

5.1 Converting real data to symbolic data

Although LifeNet uses a variety of real-numbered inference and learning algorithms,

the abstract patterns that LifeNet is optimized to find in data are derived from

partially ordered sets of symbolic data. The incoming sensor data, which is initially

streams of real-numbers, must be converted to streams of symbols before LifeNet can

find abstract patterns and in turn abstract similarities between these data. LifeNet

uses a simple technique of considering a fixed-range power spectrum for each sensor

stream and categorizing these power spectra into streams of symbols for subsequent

stages of more abstract processing.
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5.1.1 Computing power spectrum streams

Figure 5-1: Symbolic sensor percepts These percepts start as streams of potential en-
ergy (voltages) (1) that exist with 100% certainty at specific points in space at specific points
in time. These potential energies are filtered through a fast Fourier transform (FFT)
algorithm, which performs approximately the same function as the human cochlear hairs
that transduce resonant signals to the human brain in order to detect specific frequencies.
This frequency power spectrum (2) is computed in time and is fed into an online-learning
algorithm that is also modeled after the human perceptual system called a Kohonen neural
network (Kohonen 1995), which turns the flow of frequency power spectra into a given num-
ber of categorical percepts that provide us with a stream of symbols (3) that the LifeNet
analogical redundancy critics can operate over. This symbolic manipulation of sensory data
operates over both commonsense language streams as well as sensor-signal streams in this
way.

In order to compute a power spectrum stream, a frequency bandpass range chosen

for each different sensor type, resulting in a set of frequencies with associated power

amplitudes that change over time. For example, the Plug (Lifton et al. 2005) audio-

stream data was high-pass filtered at 20 Hz and low-pass filtered at 1000 Hz. A fast
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Fourier transform (FFT) was performed on non-overlapping windows of audio data

in order to generate power spectra for each time-segment window of audio data. This

audio data was then saved to a bitmap file with the horizontal axis representing time

and the vertical axis representing frequency. Each horizontal pixel in this bitmap

represents 1/16 of a second—time increasing to the right—and each vertical pixel

represents each integral frequency band from DC to 512 Hz—frequency increasing

from top to bottom. The intensity of each pixel is calculated as the power, P = A2

(amplitude squared), of the voltage signal induced by the sound waves. See Figure 5-

1 for an overview of the process of converting numerical sensor streams to symbolic

streams.

5.1.2 Biological inspiration for using power spectra

Biology exploits power spectra throughout neural perceptual systems (Rosenweig et

al. 1999). For example, a similar usage of frequency power spectrum analysis is in

the human cochlea, where hairs called stereocilia select for specific frequency ranges

depending on frequency penetration depth within the tapering cochlea. A similar

but not nearly as sensitive frequency specificity of sensation appears in the tactile

or somatosensory afferents of the skin, where four main skin receptors operate based

on different temporal and spatial frequency ranges, resulting in responses to high-

frequency and low-frequency vibrational stimuli as well as the high-frequency and

low-frequency spatial distribution. Color vision is also a type of frequency power

spectrum analysis usually using three (and sometimes four in tetrachromats) visual

receptors that are each tuned to become excited within specific frequency ranges of

the electromagnetic power spectrum. These biological examples of how power spectra

provide an important aspect of the human perceptual system have encouraged us

to implement basic power spectra recognition as a part of LifeNet’s sensor stream

recognition process.
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5.1.3 Converting power spectra to symbols

In order to turn analog sensor power spectra into symbolic streams of data, which are

directly compatible with the analogy matching algorithm within LifeNet, an unsu-

pervised categorization algorithm—one of Kohonen’s earlier neural networks, a vec-

tor quantization neural network (VQNN) (Kohonen (1995), Hecht-Nielsen (1990)),

is used. VQNNs are also referred to as unsupervised density estimators or autoas-

sociators and are closely related to k-means clustering. Actually, Desieno’s version

(Warren 2004) of Kohonen’s VQNN algorithm was used in LifeNet. Desieno’s version

includes “Desieno’s conscience” factor to ensure equiprobability of clusters indepen-

dent of possible distribution irregularities. The VQNN was used for a number of

reasons:

1. incremental online learning;

2. human mental compatibility;

3. simple to implement;

4. efficient when implemented in hierarchical binary-decision-tree form.

An incremental online learning algorithm is important for an application that must be

deployed into an environment where the algorithm must adapt to learning the current

sensor power spectrum surroundings. The human mental compatibility of the LifeNet

algorithm will become more important as LifeNet becomes a better first-person model

of human mental activity through modeling and mapping low-level neural activity

with high-level human-language concepts and stories. Perhaps LifeNet can eventually

function as a mental prosthesis for storing, indexing, and recalling personal memories.

A shared mental commonsense of neural activities could begin to be recognized as long

as artificially intelligent algorithms maintain a mental compatibility for understanding

human minds.

The basic VQNN algorithm consists of k codebook vectors that are initialized to

random codebook vectors that represent cluster centers that will be learned from a

stream of sample vectors. For each sample vector in the stream, the closest codebook
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vector is found according to a given distance function. LifeNet uses a Huffman-

distance function or a metropolis-distance function,
∑

i |xi − ci|, where x is the pre-

sented vector and c is the codebook vector. LifeNet makes sure that every node gets

a chance to “win” an equal number of data samples. The formula for updating a

codebook vector to be a weighted average of the codebook vector and the training

sample is

cnew = cold
N

N + 1
+ x

1

N + 1
, (5.1)

where N is the number of samples that have already been learned by this codebook

vector. This update rule ensures that the codebook vectors are equal to the average

of all samples they have learned. LifeNet uses Desieno’s “conscience” factor to some-

times overrule the user-provided distance metric such that a codebook vector cannot

“win” more data samples than another codebook vector, ensuring the equiprobability

of the clusters in the limit of infinite training time—LifeNet uses 10 training passes

over the data, which appears to generate usable symbolic categories for our purposes.

The fact that VQNN is simple to implement allows it to easily be implemented

as part of more efficient algorithms, such as the hierarchical binary-decision-tree im-

plementation within LifeNet. VQNNs can be placed into a tree structure that can

be used for either training or pure categorization, both processes gain the advantages

of the structure of the tree, so that to perform a categorization among n = 210 in a

previously trained VQNN only 2×10, O(log n), distance comparisons must be made.

This tree is composed of a simple a root node, which is a flat VQNN with two code-

book vectors with each of these two nodes containing either another two-node VQNN

or a terminating leaf state.

5.2 Measuring abstract similarity

Measuring similarity between two pieces of data can be as simple as checking equality

or can be as abstract as considering the motivations of the people that may have

created that data. We introduce a representation called a perception lattice (See

Section 5.2.3) that allows us to efficiently calculate the mutual information between

43



two arbitrary pieces of data within the LifeNet reasoning algorithm.

5.2.1 Learning to recognize semantic relationships

Perception is the process of explaining the data: what caused the data and what pro-

cess generated the data. Data are explained by their generative causal regularities,

which is to say their consistent relationships with other types of data. These regular-

ities or patterns describe ranges or modalities of perception. A mode of perception

is a consistent relationship between elements within a subset of data. This consistent

relationship defines a regularity that serves to organize a larger set of data. A mode

of perception can act as a manifold in the space of percepts such that percepts lie on

a specific manifold or they lie off of that manifold. Given that a set of data points

lie on a mode of perception, these data points contain percepts that vary along the

mode. The specific percepts that define these data points are implicitly constrained

by this manifold or mode.

Jepson & Richards (1994) have developed a Bayesian formulation of the modes of

the probability densities of image features, which they have described briefly in the

following excerpt:

Our framework for understanding percepts is based on recognizing that

certain image structures point reliably to particular regularities of proper-

ties in the world with which we are familiar and expect in certain contexts.

In other words, these regularities have high priors in that context. ... We

regard these properties as special, in that their probability density func-

tions are “modal”, whereas in contrast [other] properties ... have broad

density functions.

An example of a modal percept in text processing is the generative function

Gis-a(x, y) = “The ” + x+ “ is a ” + y + “.” (5.2)

is a common modal textual pattern that is used in much of the natural-language-

processing community. Liu & Singh (2004) have built a semantic language network
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called “ConceptNet” that contains a generalization of this modal structure that in-

cludes all forms of the verb “to be” as well as other linguistic techniques (e.g. “is goal

of”) that allow a general type of semantic relationship between the conceptual text

variables x and y in Equation 5.2. In ConceptNet this is referred to as the is-a seman-

tic relationship. All semantic relationships in ConceptNet are binary relationships

(only take two variable arguments [x and y in this case]). ConceptNet is limited to 20

different types of hand-programmed types of English semantic relationships, which

are not limited to specific parts of speech such as verb or preposition relationships,

but instead represent more abstract “Mad-lib” relations; for example,

Gis-used-for(x, y) = “A ” + x+ “ is used for ” + y + “.” (5.3)

See Appendix Section B for a complete list of the ConceptNet relations. We propose

a theory of modal perception lattices for posets (partially ordered sets) in order to

generalize the ConceptNet relation to take any number of arguments (an N -ary re-

lation) and also support the automatic learning of these perception lattices from a

raw-text corpus of activity stories consisting of lists of common goal-oriented actions

in human-language. We demonstrate the effectiveness of our learning similar modal

relationships with sensor streams that have been categorized into symbolic posets as

well. In other words, these sequential modes are machine-learning tools that could be

compiled into forms that are as efficient and easy to use as hand-coded ConceptNet

relations.

Orderings of data representations within LifeNet (Singh & Williams 2003) infer-

ence, such as Unicode strings on an arbitrary axis (e.g. “time”) is one of the primary

functions that LifeNet serves in considering how data is arranged relative to one an-

other, while also considering all contextual dimensions for knowledge in whatever

axes the contextual relationships for data are provided. Axes’ names are allocated

dynamically by the LifeNet algorithm, so at any time a user can specify new data in

a relationship along a new axis and those data will then be reasoned about in those

dimensions.
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5.2.2 Recognizing generative functions

A generative function is a computational process that takes a set of arguments and

returns a set of data derived from those arguments. As computational processes, gen-

erative functions assume an algebra of data processing computation. This generative

functions in this paper assume an algebra of stacked poset concatenation functions,

which are easily implemented on classical digital computers, but in general, gener-

ative functions could assume biological neural networks or quantum computers as

other algebras of data generative computation.

Measuring relative similarities and differences between arbitrary pieces of data

depends on the generative modes that define the structure of the larger context of

the pieces of data in question. Perceptual modes can be used for a number of tasks,

including the detection irregular data in the context of regular data. This detection of

irregular data can be used to direct the focus of a learning algorithm that is trying to

develop a model of the regularities of a given set of generated data. This assumption

that the data is generated is in fact a very large assumption, especially once we give

a definition for generated data, but for the domain of the problem where LifeNet

is applied, the assumption of generated data is argued to be a good one: different

objects generate different patterns of sensor-data; different language is generated by

different structural patterns of language.

5.2.3 Searching for optimal generative functions

Optimal generative functions are only optimal relative to a knowledge base and how

well the function serves to reduce the overall number of bits necessary to functionally

generate the knowledge base. For example, the following set of two arbitrary data,

K = {“The sky is blue.”, “The house is green.”}, have the following shared genera-

tive function:

KG0 = Λ(x, y)“The ” + x+ “ is ” + y + “.” (5.4)

This generative function is chosen greedily with a heuristic. The heuristic estimates

the compression of the the overall knowledge base that would be accomplished by re-
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membering this specific generative function. Only one variable is supported currently

in the search for this generative function. It would be nice to have more than two

variables in the generating functions found by this search, which could be done by

searching down one level through larger patterns in the lattice and then searching for

similar parent patterns within nodes in that deeper functional layer.

If we find KG0 to be the highest heuristically ranked (KGr=0) generative function

for the knowledge base, K. We can remember the generative function, KG0 , and the

following sets of argument data:

KG0A = {{“sky”, “blue”},

{“house”, “green”}}

With the generative function, KG0 , and the arguments list, KG0A, the initial knowl-

edge base can be recreated or generated functionally:

KG0(“sky”, “blue”) = “The sky is blue.”

KG0(“house”, “green”) = “The house is green.”

These generative function explanations create hierarchical lattices of generative

functional explanation for perception data. A perception lattice is a lattice data

structure that represents the generative functional explanation for a given set of data.

This lattice structure is used for many algorithmic operations over perceived data.

For example, a perception lattice could be used to find the most likely top-down

explanation of bottom-up perceptions, or alternatively, a perception lattice could be

used for the projection of low-level details given high-level evidence. We use the

term “perception lattice” very similarly to the structure lattice in Jepson & Richards

(1994) except for the philosophical differences discussed in Section 5.4 regarding the

objective duality between the observer and the world and how to interpret these as

self-reflective computational processes.
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5.2.4 Temporal modes

The process of calculating mutual information between two pieces of data requires

certain assumptions of the generative processes that could have created these data.

Our generative model assumes a stacked functional model similar to a generative

grammar. All of the graphs that this method currently compares and abstracts

into function/argument temporal forms are hierarchical trees. In calculating anal-

ogy structures, rather than only using the nodes and edges of a predefined semantic

network (Gentner (1983) and Falkenhainer et al. (1989) similarity method), or just

the edges (Liu & Singh (2004) ConceptNet method), the method that LifeNet uses

compares mutual information between nodes by considering their generative func-

tional structures. These generative functional structures are generalized edge types

that are learned based on the given computational algebra, which is in this case a

stacked functional language of simple concatenation functions. We assume that Uni-

code strings within ConceptNet are created by a hierarchy of generative functions,

which as a whole can be structure mapped against other ConceptNet concepts result-

ing in analogical mappings that result in variable mappings that generalize the idea

of a binary ConceptNet relation to an N-ary LifeNet relation. N-ary LifeNet relations

are referred to as cliques rather than as edges, which are binary cliques. These gen-

eralized forms of ConceptNet links can, for example, recognize sentence forms, such

as:

G(A,B) = “The ” + A + “ is a ” + B + “.” (5.5)

These generative functional structures can be used to calculate mutual information

between two streams by considering the execution of a generative function to be

an event that occurs in the context of given argument values. The context of the

argument values provides a probability distribution over possible generative functions

for each branch in the hierarchical generative function structure. Once this probability

is defined in terms of specific probabilities for each structural change to a generative

function structure, a mutual information distance function can be defined between

each pair of data. LifeNet quickly calculates the probabilities for the generative
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function execution events by using a perception lattice.

LifeNet has the ability to recognize these generative function structures for tem-

poral sequences using a limited set of functions that involve different orderings of

the string concatenation function. LifeNet cannot yet recognize generative functional

structures for spatial relationships.

5.2.5 Learning perception lattices from data by greedy com-

pression search

A greedy compression search is a search algorithm that begins with a list of

uncompressed data, L. For all of the data in L the largest contiguous repetitive

section, x, of data is found. Every datum in L containing x is removed from L and

split into smaller non-contiguous pieces that do not contain x. These smaller non-

contiguous pieces are appended to L, and the process of removing redundant sections

of data continues until no such sections exist in L, at which point L will contain the

leaves of the perception lattice structure.

Simple examples of the perception lattices resulting from this greedy compression

search algorithm are shown in Figure 5-2.

A.

"A"

"ABC"

"C" "B"

"DBE"

"D" "E"

B.

"A"

"ABCDE"

"CDE" "B"

"FBGDH"

"C" "E" "D"

"GDH" "F"

"G" "H"

C.

"DJE"

"DJELF"

"F" "L"

"GKHLI"

"D" "E" "J"

"AJBKC"

"A""BKC"

"B" "C""K"

"GKH""I"

"G" "H"
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Figure 5-2: Simple perception lattices The lattices A, B and C are found by greedy
compression search. The lattice in A is generated from the two strings “ABC” and “DBE”,
which contain only the character “B” as similar data. The lattice in B is generated from
the two strings “ABCDE” and “FBGDH”, which contain the characters “B” and “D” as
similar data. The lattice in C is generated from the three strings “AJBKC”, “DJELF”
and “GKHLI”, which share a triangular relationship in the characters “J”, “L” and “K” as
similar data.

Figure 5-2.A is a simple perception lattice that contains a single generative func-

tion,

GA(x, y) = x+ “B” + y, (5.6)

such that

GA(“A”, “C”) = “ABC” and

GA(“D”, “E”) = “DBE”.

Notice that the because the compression search used to create these perception lattices

is greedy the generative functions that are found contain a maximum of one repeat-

ing phrase, which implies a maximum of two arguments. We have chosen a greedy

compression search as an efficient proof of concept algorithm that operates over very

large knowledge bases quickly (e.g. 3000 stories each containing approximately 1000

characters in the OMICS story knowledge base and 300,000 sentences each contain-

ing approximately 50 characters in the ConceptNet knowledge base). Figure 5-2.B is

another simple perception lattice that contains two generative functions,

GB0(x, y) = x+ “B” + y, and

GB1(x, y) = x+ “D” + y,

such that

GB0(“A”,GB1(“C”, “E”)) = “ABCDE” and

GB0(“F”,GB1(“G”, “H”)) = “FBGDH”.
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Similarly, for the simple perception lattice in Figure 5-2.C the generative functions

are

GC0(x, y) = x+ “J” + y,

GC1(x, y) = x+ “L” + y, and

GC2(x, y) = x+ “K” + y,

such that

GC0(“A”,GC2(“B”, “C”)) = “AJBKC”,

GC0(“D”,GC1(“E”, “F”)) = “DJELF”, and

GC1(GC2(“G”, “H”), “I”) = “GKHLI”.

5.2.6 Efficient context-dependent mutual information calcu-

lation using generative functional grammars

LifeNet’s most basic atomistic representational component is a symbol, and these

symbols occur in temporal streams. A power spectrum clustering algorithm provides

streams of symbols to LifeNet. Also, the story data also provides streams of textual

symbols (individual Unicode characters). The greedy compression search results in a

perception lattice that at its leaves contains the atomistic posets of the experience.

The leaves of the perception lattice (the parents in Figures 5-2 and 5-3) are where the

lattice interfaces with the external world. For example, if we would like to use the

perception lattice to find an explanation for how a given poset, x, was generated, we

would begin by checking which leaves in the perception lattice were used to function-

ally generate the poset, x. Those leaves, the few atomic posets of all experience, then

form the basis for a search algorithm that flows down the generative functions of the

perception lattice; note that this flow downwards in the perception lattice requires

that the generative functions be reversible. Piaget (1947) emphasizes how this form
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of reversibility is a fundamental aspect of “successive adaptations of a sensori-motor

and cognitive nature” of intelligence in the following excerpt:

[Reversibility], as we shall see, is the essential property of the oper-

ations which characterize living logic in action. But we can see straight

away that reversibility is the very criterion of equilibrium (as physicists

have taught us). To define intelligence in terms of the progressive re-

versibility of the mobile structures which it forms is therefore to repeat

in different words, that intelligence constitutes the state of equilibrium

towards which tend all the successive adaptations of a sensori-motor and

cognitive nature, as well as all assimilatory and accommodatory interac-

tions between the organism and the environment.

LifeNet compares the symbol streams and calculates the similarity of these streams

by using a form of mutual information. The calculation of mutual information mea-

sured in bits is as follows:

I(X, Y ) =
∑
y∈Y

∑
x∈X

P (x, y) log2

P (x, y)

P (x)P (y)
. (5.7)

Since our primary generative function is simply the string concatenation function,

we have implemented a very efficient means of calculating the mutual information

between two arbitrary streams of data. Calculating extremely fast mutual informa-

tion comparison functions that are experience dependent and context dependent is

an extremely important and central task to building artificially intelligent computer

systems that learn to perceive and act in the world.

The mutual information between two sets of posets, X and Y , depends on the

modes that make up those pieces of data relative to the perception lattice that has

been generated from the universal knowledge base. The mutual information between

sets of posets X and Y can be calculated by searching for which posets in the percep-

tion lattice exist within X and Y separately. Let us refer to these posets that exist

within the perception lattice and within X and Y as X̂ and Ŷ respectively. The calcu-

lation of Equation 5.7 directly with |X̂|∼|Ŷ |∼n takes time O(n2) and the calculation
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of P (x, y) is non-trivial so this is actually a very conservative estimate; however, if

we take advantage of Bayes’ rule and make a few reasonable assumptions, such as

treating the perception lattice as a probability network, over which an efficient belief

propagation algorithm can be run, the time complexity is reduced considerably. By

considering the approximation P (Ŷ |X̂) instead in order to cache approximate val-

ues for each conditional probability below the time complexity can be reduced to

O(n log n). The assumption that makes the mutual information calculation tractable

for simple queries over large knowledge bases with complex structure is explicitly

∀x∈X̂, y∈Ŷ : P (x|y) = P (x|Ŷ ), (5.8)

which is a reasonable assumption under the condition that the elements of the set of

posets, Ŷ , are highly dependent variables, which will often be the case when com-

paring one set of dependent poset variables, Ŷ , against a second test set of poset

variables, X̂, in order to calculate the mutual information between these internally

dependent clusters. Also, addressing this assumption becomes a moot point if the

set, Ŷ , is a singleton set. Bayes’ rule states

P (x, y) = P (x|y)P (y). (5.9)

Substituting into Equation 5.7 and making the simplifying assumption that allows us

to use a single application of the belief propagation algorithm, Equation 5.8, gives

I(X̂, Ŷ ) =
∑
y∈Ŷ

∑
x∈X̂

P (x|Ŷ )P (y) log2

P (x|Ŷ )P (y)

P (x)P (y)
(5.10)

=
∑
y∈Ŷ

∑
x∈X̂

P (x|Ŷ )P (y) log2

P (x|Ŷ )

P (x)
(5.11)

=
∑
y∈Ŷ

P (y)
∑
x∈X̂

P (x|Ŷ ) log2

P (x|Ŷ )

P (x)
. (5.12)
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We notice that the factor log2
P (x|Ŷ )
P (x)

tends to zero as x is independent of Ŷ , so if we

consider the Markov blanket, My|X̂ , for each y∈Ŷ with respect to X̂ we will avoid

these summations of zero. This gives

I(X̂, Ŷ ) =
∑
y∈Ŷ

P (y)
∑

x∈My|X̂

P (x|Ŷ ) log2

P (x|Ŷ )

P (x)
. (5.13)

Also, if we assume for the calculation of mutual information that the generative

functions within the perception lattice are fully representative and exact matches,

then we will have all children, Cx, of nodes, x, within the lattice to be a pure im-

plication relationship, ∀y∈Cx : y→x. If we consider specifically the situations where

y∈Cx, Equation 5.13 expands to

I(X̂, Ŷ ) =
∑
y∈Ŷ

P (y)

 ∑
x∈My|X̂∩Cx

− log2 P (x) +
∑

x∈My|X̂∩Cx

P (x|Ŷ ) log2

P (x|Ŷ )

P (x)

 .
(5.14)

We will refer to the second summation as the internal complexity, CI(y), of node y.

CI(y) =
∑

x∈My|X̂∩Cx

log2 P (x) internal complexity (5.15)

Because internal complexity can be cached for each node, this reduces the limit of

the amortized calculation of mutual information to the following equation:

I(X̂, Ŷ ) =
∑
y∈Ŷ

P (y)

−CI(y) +
∑

x∈My|X̂∩Cx

P (x|Ŷ ) log2

P (x|Ŷ )

P (x)

 (5.16)

= −
∑
y∈Ŷ

P (y)CI(y) +
∑
y∈Ŷ

∑
x∈My|X̂∩Cx

P (x|Ŷ ) log2

P (x|Ŷ )

P (x)
. (5.17)

For reference, we can refer to P (y)CI(y) as the internal information, II(y), of a node,

y:

II(y) = P (y)CI(y) internal information (5.18)

55



It makes intuitive sense that the internal information within a node would be a

negative quantity in the calculation of mutual information between that node and

other nodes with different structures of functional generation. Therefor, to calculate

the mutual information between two sets of posets, X and Y , the following optimized

algorithm may be used:

I(X̂, Ŷ ) = −
∑
y∈Ŷ

II(y) +
∑
y∈Ŷ

∑
x∈My|X̂∩Cx

P (x|Ŷ ) log2

P (x|Ŷ )

P (x)
. (5.19)

Because we have restricted the poset nodes in the perception lattice that we consider

due to the Markov blanket restriction, we now define the running time complexity of

the general optimized version of the mutual information calculation to be in terms of

|Ŷ |∼n and (5.20)

|My|X̂ ∩ Cx|∼ log n. (5.21)

So, after an O(n log n) belief propagation algorithm has been run with respect to an

internally dependent set of posets Ŷ , Equation 5.19 can be calculated for an arbitrary

set of posets X̂ within the perception lattice in O(n log n) time.

The assumption that the perception lattice is representative of the universal knowl-

edge base is a very strong assumption, which can be weakened if we instead assume

a finite horizon of unknown data, but we leave this calculation for future work. We

expect Equation 5.19 to be a helpful algorithm for recognizing small subposets within

large knowledge bases that are used as different arguments within the same sets of

generative functions. In text processing, this may provide a method for finding strings

of language that are used in synonymous generative constructions. Within streams

of sensor data posets within a perception lattice that have mutual information may

represent the sensation of events that may be superficially different, but may share

the same contextual causal relationships with surrounding sensor events (e.g. a metal

door slamming and a glass door quietly clicking shut may both be preceded by and

followed by footsteps).
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5.3 Reasoning critics in different mental realms

propagate beliefs to debug constraints

Figure 5-4: Critics working together to solve complicated constraint prob-
lems LifeNet uses a flat belief propagation method for solving these constraint problems.
A hierarchical self-reflective method is mentioned in Minsky’s (Minsky 2006) Model-6 ar-
chitecture for reasoning.

The critical inference routine that is used in LifeNet is loopy belief propagation

(Pearl 2000). This algorithm is used for a number of its properties: (1) scalable, (2)

distributable, (3) and other equivalence-class algorithms exist. The belief propaga-

tion algorithm is scalable in the way that the algorithm functions at a fine granularity

with respect to data it has to process. See Figure 5-4 for an example of how multiple

critics in different reasoning domains can work together to debug inferred beliefs. Be-

lief propagation runs in roughly linear, O(n), time with the number of nodes, which

is important when dealing with the millions of nodes in LifeNet; also, the memory

required to implement the belief propagation algorithm is constant, O(1), per node.
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The locality of these finely granular data structures for each efficient calculation makes

the belief propagation algorithm scalable and distributable in a heterogeneous net-

work of many different processor types and capabilities, which applies to flat as well

as heterogeneous sensor networks. Base stations may have a server class processor

available with gigabytes of RAM, thus they are able to process millions of nodes, while

other processors may be sleeping most of the time and are only able to process on the

order of 10 or 20 nodes when they are awake, which would mainly be used for limiting

radio communication between nodes. The third property of equivalence for the belief

propagation algorithm refers to the fact that it belongs to a more general class of

equivalent algorithms, namely Distributed Hill-Climbing algorithms. This class of al-

gorithms includes the max-product algorithm, recurrent neural networks (or recursive

sigmoidal regression networks), distributed genetic algorithms, and others. LifeNet

in its present form has been designed partly as a development platform for this class

of algorithm, all of which could span many processing nodes of different capabilities

spanning decentralized servers to sensor network leaves in the same process.

5.3.1 Distributed-processing characteristics

Part of learning from everyday experience is our ability to categorize and segregate

our knowledge into efficient domains of context-specific ways to think. We have briefly

looked into ways to automatically segregate a large LifeNet into multiple domains of

context-specific ways to think that can be processed independently, allowing for many

independent reasoning algorithms to be run in separate processes that communicate

a minimal amount of information. A hierarchical graph partitioning was calculated

by iteratively applying spectral partitioning by Chaco (Hendrickson & Leland 1995).

We are experimenting with graph-partitioning algorithms on the entire LifeNet

graph in order to separate very dense inference processing areas of the graph into

separate processing modes. Using these techniques to divide the LifeNet process-

ing and communication load across a heterogeneous sensor network has not been

attempted, but the belief propagation algorithm has been shown implemented in a

sensor network of this sort Ihler et al. (2004). Exact inference algorithms in sensor
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networks such as the Junction-Tree algorithm (Paskin et al. 2005) will not scale to

large belief networks such as LifeNet.

5.3.2 Logical truth inference

The LifeNet logical inference is based on a collection of truth relationships between

statements about a typical person’s life. The inference is used by providing LifeNet

with evidence in the form of language statements associated with truth values that

specify the probability of that statement. The logical model is specified as a Markov

random field (Weiss & Freeman 1999), which performs roughly the same purpose as

the first version of LifeNet (Singh & Williams 2003), except that the model in use

now specifies explicit distances between time events rather than simply using a sliced

model of time. The details of the temporal inference will be discussed with spatial

inference after reasoning about logical truth.

5.3.3 Probabilistic existential critics

Each existential truth relationship between LifeNet phrases exists as a tabular proba-

bility distribution, forming a propositional Markov random field. These relationships

relate the nodes within the Markov field. We will refer to these cliques as ψi for

i = {1, 2, . . ., C} when C is the number of cliques within LifeNet. ψi is defined in

terms of the probability distribution of the set of variables within that clique, ψiX .

LifeNet factors, ψi, are tabular functions of the states of those factors, ψiX .
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A B C ψi(A,B,C)
F F F 1
F F T 0.75
F T F 0.025
F T T 0.05
T F F 0.125
T F T 0.05
T T F 0.05
T T T 0.1

Table 5.1: Sample of LifeNet tabular potential factor of three nodes, ψi Note that
the symbols T and F are used as the true and false values for the variables A, B, and C.
Also,

∑
{A,B,C} ψi(A,B,C)6=1.

A sample tabular potential function for a three-node potential function is shown

in Table 5.1.

The potential functions, ψ, are indexed by the probabilities of their nodes, so

although what is stored in each tabular potential are the probabilities of each node

being 0 or 1 (false or true), these potential functions are actually linearly interpolated

functions of the probabilities of these nodes, which can take on any values from 0 to

1. These potential functions are calculated as a sum weighted by the probabilities of

all possible interpretations of a potential function:

Potential functions can be simplified relative to one variable, Xj, attaining a spe-

cific truth value, ν, which if the potential function is a probability table is effectively

conditioning on that variable attaining that value. To calculate this potential con-

ditioning, we sum over all possible combination of truth values within the potential

function, ψi, that contain the condition Xj = ν:

ψi(X = ν) =
∑

λ∈Λ∗
i \(X 6=ν)

ψi(λ), (5.22)

where Λ∗
i is the set of all combinations of binary truth values for the set of variables,

Λi, of the potential function ψi.

For each potential function ψi(λ), the domain, λ is not a binary space but is
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instead a bounded real space such that λ ∈ [0−1]|ψi|, where |ψi| is the dimensionality

of the clique, ψi. This function is calculated by making a weighted sum of every

tabular entry in the potential. The linear weighting is equal to the probability of that

entry being true, given the domain, λ.

λ(µ) =
∏
X∈Ψ

P (X = µX) (5.23)

ψ(λ) =
∑
µ∈Λ∗

λ(µ) · ψ(µ), (5.24)

where λi is a set of probabilities for all nodes within the potential function. Potential

functions need not sum to one and in general will not because they are not probabili-

ties, but are factors that when multiplied together result in probability distributions.

LifeNet’s belief propagation algorithm accepts evidence, E, for the probability of

a subset of the LifeNet nodes. Given this evidence, belief propagation can efficiently

estimate the probabilities of the remaining nodes. Let ξ0
X be the initial estimate

of P (X|E), which is the initial state of the iterating belief propagation algorithm.

Within LifeNet, we assume ξ0
X = 0.5 for all nodes, X, such that X 6∈ E. Our purpose

for using the belief propagation algorithm is that it is an efficient albeit unreliable

method of iteratively calculating the following limit:

lim
k→∞

ξkX = P (X|E). (5.25)

Unfortunately, although the belief propagation algorithm is efficient (O(n) time

in the number of nodes), belief propagation is (1) not guaranteed to find the correct

distribution when it converges, and (2) not guaranteed to converge. So, not only is

this algorithm prone to getting stuck in local minima or garden-path interpretations

of evidence but also could not converge to any solution ever. We have not yet im-

plemented the generalized belief propagation algorithm (Yedidia et al. 2000); it has

much better results for tightly interconnected constraints, such as turbo codes and

probably even some of the more intricate logical reasoning capabilities of humans.
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An efficient unreliable method is used in order to allow us to make the problem of

probabilistically reasoning over millions of relationships tractable. For each node,

X, we find a new estimate of P (X|E), based on the current probability estimates,

ξkX , which gives us ξk+1
X . At each iteration, the probabilities for the nodes within the

Markov blanket for each node is assumed to be equal to the most recent probability

estimates for those nodes in the blanket.

The Markov blanket1 for a node, X, in LifeNet, or any M.R.F., is equal to the set

of cliques that contain that node. The subset of all cliques, ψ, that contain a node,

X, is the Markov blanket, Xβ, of that node:

Xβ = {ψ : X ∈ ψ ∈ Ψ}. (5.27)

The Markov blanket of X is the minimal set of nodes that when known, effectively

make P (X) independent from any other evidence within the network.

The belief propagation algorithm uses the potential functions by setting the do-

main of the potential functions at iteration, k, to be

λk(µ) = P (µ|E, ξk). (5.28)

The iterative algorithm for updating the probability estimates, ξi, for each of the

nodes is

ξk+1
X =

∏
ψ∈Xβ

ψ(λk), for all X. (5.29)

We allow the belief propagation algorithm to iterate for a limited number of time-steps

(currently 10) in order to get an estimate of the limit.

1 Markov blanket : We refer to the Markov blanket as the set of cliques that a given node belongs
to because this is easier within the M.R.F. framework, but in general the Markov blanket is referred
to as the set of nodes that are contained within these cliques. Or more generally, the set of nodes
when whose probabilities are known fully specify the probability of a given node such that

P (X|Xβ) = P (X|Xβ , E) (5.26)

for any evidence, E.
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5.3.4 Probabilistic rendering and inference language

In order to easily render probabilistic distributions in N -dimensional space, a simple

N -dimensional probabilistic rendering language was written. This language was used

to render the gold-standard knowledge base in the 2-dimensional floorspace of the

Media Lab, but this same language easily renders probabilistic distributions in arbi-

trary named-dimensions—for example, “happiness” or “risky” could be dimensions

that human-language concepts could be probabilistically distributed by this rendering

language. The language is very simple and only consists of three drawing primitives:

Command Description

box Boxes are volumetric distributions that have a speci-

fied size for each dimension and 90-degree right angled

corners—rectangular prisms with constant probability

density.

ball Balls are volumetric distributions that have a specified

radius for each dimension—ellipsoids with constant prob-

ability density.

path Paths are volumetric distributions that have a specified

radius for each dimension—cylindrical lines extending be-

tween two points with constant probability density.

Table 5.2 demonstrates the use of a programming language that was developed to

represent commonsense objects of different shapes in N-dimensional space.

(or (at (box 1 x 43.75 -0.75 y 18.75 0.75) "coke vending machine")
(at (ball 1 x 34.75 0.25 y 19.75 0.25) "trashcan")
(at (path 1 x 6.75 6.75 0.03 y 9.25 18 0.03) "glass wall"))

Table 5.2: Example of the LifeNet programming language This representation for
commonsense objects in N -dimensional space uses three object shapes to create probabil-
ity distributions within the two-dimensional space, including the dimensions “x” and “y.”
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Arbitrary strings can be used to name arbitrary numbers of dimensions in this language, so
that objects can be placed in 4-vector space-time or any other space of conceptual (or phe-
nomenological) dimensions, such as “utility”, “risk”, “crime”, or “happiness” easily. The
specifications for this language are included in Section A.

Using these rendering commands as an abstract definition language for shapes

of probability distributions in N-dimensions is a very useful way to not only create

probability distributions as it is being used for in this thesis but may also be useful

as a representation for learning and recognizing concise descriptions from arbitrary

probability distributions, but this is left for future research.

The three shapes that can be rendered in this simple representation are interpreted

by LifeNet to create mixtures of Gaussians that are limited in resolution, so that any

single command only allocates a predetermined number of Gaussians for that distribu-

tion. This number is set to a relatively low number for current LifeNet computations—

typical 16 or 32 Gaussians per phenomenon. Figure 5-5 shows how changing this

resolution affects the resulting probabilistic distributions in two-dimensions (graphed

in three-dimensions with height representing instantaneous probability density).
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D. E. F.
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Figure 5-5: Example of compositional LifeNet probability distributions The
LifeNet language is used to compose these probability distributions into existential relation-
ships between phenomena. These two-dimensional boxes (A-C), balls (D-F), and paths (G)
are graphed in three dimensions with height representing instantaneous probability density.
These figures are each represented by either 3200 (A, D), 320 (B, E), or 32 (C, F, G) Gaus-
sians, which gives them high to low resolution forms. The resolution that LifeNet uses by
default for large-scale N -dimensional inference problems is 32 Gaussians.

5.3.5 Inferring past, present, and future.

The temporal (see Figure 5-6) and spatial (see Figure 5-7) reasoning within LifeNet

are now handled as part of a mixtures of Gaussians belief propagation algorithm that

uses mixtures of Gaussians to represent distributions in real-number spaces. This will

be the technology that allows us to incorporate the 9-dimensional sensor space of the

Plug network with LifeNet’s commonsense spatial and temporal inference.
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Figure 5-6: Temporal probability distribution of LifeNet phenomena The “make
coffee” node is set to have a probability distribution in time that is a simple Gaussian with
µ = 0 minutes and σ = 5 minutes. Time, t, is in minutes. The subsequent distributions
were generated by LifeNet’s commonsense knowledge and assumptions (to be corrected by
sensor data) of temporal distance.

5.3.6 Inferring nearby phenomena

The spatial representation uses a three-dimensional Gaussian subspace to represent

spatial relationships between propositions that can be true or false relative to a posi-

tion in latitude, longitude, and altitude dimensions measured in meters. For example,

if the system were given a list of objects that are known to exist together, LifeNet

can provide a probability distribution over all possible arrangements of those objects.
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Figure 5-7: Spatial probability distribution of LifeNet phenomena The “win-
dow”, “curtain”, and “door” nodes are set to have probability distributions that are simple
Gaussians in two-dimensional floor space measured in meters. The inferred probability dis-
tributions for the other concept nodes are shown as mixtures of Gaussians that are in this
case circular, but can be in general an approximation of any distribution.

The LifeNet graph is a heterogeneous network of different types of phenomenon

data nodes and modal phenomena pattern edges, such that it is a more general type

of artificial intelligence processing architecture. LifeNet is a graph with nodes and

cliques (N-member edges). LifeNet edges can be considered as the following different

types:

� concept phrases in Unicode text
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� symbolic sensor phenomena

� sensor modal stream patterns

� commonsense modal story patterns

� analogous modal patterns

� metaphorical modal patterns

The nodes of LifeNet are things that can be reasoned about in space and time—they

can each have a position—and they can also be reasoned about existentially—they

can each have a probability value of existing. See Figure 5-8 for a visualization of the

types of knowledge and critics within LifeNet.
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Figure 5-8: The LifeNet graph knowledge nodes and critics Critics operate over
knowledge nodes making sure that constraints are maintained between knowledge nodes.
(A) Story Redundancy Critics operate over all knowledge nodes that are sequential streams,
which includes superficial knowledge in the form of commonsense text stories or symbolic
sensor streams. Superficial streams are scanned for symmetries (redundancies) and these
are abstracted to analogical modal representations; this process of abstraction repeats in
order to gain metaphorical abstraction levels. (B) Story Modes are the knowledge layers
that the Story Redundancy Critics operate over. A repetition recognized in the Superficial
Story Mode layer is stored in the Analogical Story Mode layer and the repeating superficial
stream is reduced to a single copy in the Superficial Story Mode layer. Repetitions in
the Analogical Story Mode layer are similarly abstracted to the Metaphorical Story Mode
layer. (C,D) Phenomenological Bugs exist in the constraints between the Phenomenon
States, which are the states that are associated with the phenomenon knowledge nodes,
such as the position or probability of a phenomenon.
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5.4 Toward self-reflection by blurring the objec-

tive duality between algorithms and data

We use the term “perception lattice” very similarly to the structure lattice in Jepson

& Richards (1994) except that instead of storing elemental preference relations in a

separate lattice, which relies on the objective distinction being placed between the

two types of data, feature and percept (similar to Kant’s objective duality of neu-

menon and phenomenon respectively), our percept preferences are inherently part of

the same structure as the percepts themselves. To be clear, we have not avoided

the objective dualistic distinction between the observer and the world but by using

the perception lattice we have merely chosen to place the distinction between the

algebra of computation and the perceptual data that is to be explained by itself as

structured by the assumed algebra. In this sense, our perception lattice explicitly

includes a model of computation. The Harvard architecture for memory access and

storage makes the same dualistic distinction between a computational algorithm and

the data, over which this algorithm operates. Similarly, in the philosophical liter-

ature, Heidegger (1962) makes the distinction between logos (letting something be

seen) and phenomenon (that which shows itself in itself). Heidegger also introduces

the powerful idea of self-reflection when he introduces the idea of considering logos as

phenomenon, which in the present analogy maps to considering algorithms as data,

bypassing the assumptions of the traditional objectively dualistic Harvard architec-

ture. Some programming languages, such as Lisp and Python, allow algorithms that

dynamically process algorithms as data, which blur the objective duality between

algorithms and data, making a rich and under-explored area of self-reflective compu-

tational research. We feel that the perception lattice is more appropriate to future

research in self-reflective computational perception than the structure lattice, which

places the objective duality between two different types of data. For two proof-of-

concept examples of social robots with multiple layers of self-reflective debugging

algorithms that are processed as data for perception and action please see Singh

(2005).
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5.5 Toward abstraction using explanation-based sim-

ilarity

Using generative functions as modes of perception that provide explanations for what

it means for data to exist provides a means for considering how similar two pieces of

data are based on whether or not their “means of existence” are similar or, in other

words, how the processes that generated the data are similar. Explanation represen-

tations were used in a planning environment (Bergmann et al. 1994) in order to judge

similarity in a multiple-layered graph structure that makes the distinction between

rule nodes and fact nodes and takes advantage of fact abstraction and rule abstrac-

tion to map between different layers. The data nodes within the perception lattice

could be considered fact nodes, while the generative functions that form the edges of

the perception lattice could be considered rule nodes. Considering this mapping of

terminology, perhaps a similar method of fact abstraction could be employed where

multiple data nodes could be mapped to an abstract data node, and similarly, a sub-

lattice of generative functions and data nodes can be compiled to abstract generative

functions and data nodes. See Figure 5-9 for a visualization of the LifeNet process of

abstraction by recognizing similar generative functional explanations for data.
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Figure 5-9: LifeNet analogies by functional abstraction Perception lattice abstrac-
tions result from using a greedy compression search to find functional generative structures
in partially ordered text stories and partially ordered sensor streams. The generative func-
tion structures that take similar arguments could be considered as analogies because they
provide a measure of similarity between data, and the arguments that are analogous share
a large amount of mutual information. If the process of abstraction was generalized to work
over the generative function structures and arguments themselves then a second level of
metaphorical abstraction and similarity could be developed for more abstract cross-modal
mappings.
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Chapter 6

Performance evaluation

We evaluate the LifeNet critical reasoning algorithm on two very different knowledge

bases:

1. Commonsense objects in a research office environment

2. Ubiquitous Plug sensor-network platform audio streams

We demonstrate that using commonsense knowledge bases and inference tools, such

as LifeNet, improves traditional bottom-up machine learning performance at under-

standing the human patterns inherent in these knowledge base.

6.1 Commonsense English language spatial posi-

tion learning and inference

Our first task in evaluating LifeNet is to test how well the commonsense English

language phrases that were gathered from volunteers on the web reflect real-world

spatial relationships between commonsense objects.
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6.1.1 Gold-standard knowledge base for spatial inference eval-

uation

We use a gold-standard testing knowledge base that represents an example of a typical

office environment that contains desks, chairs, computers, and other common objects.

This knowledge base was collected by hand by a single researcher by printing a 4-foot-

by-4-foot poster of the architectural layout of the Third Floor of the Media Lab office

and research space and subsequently drawing and labeling all of the common objects

in a few select public spaces of this environment. This knowledge base consists of

14 public architectural spaces that contain a minimum of 15 and a maximum of 94

common objects. These spaces included a kitchen, a bathroom, private office spaces,

and public research and presentation spaces. Figure 6-1.A shows a visualization of

the boundaries of these lab spaces.

Description Code Object count, n Binary relations,
(
n
2

)
vending machines E15-300CB 11 110
kitchen E15-342 14 182
kitchen hallway E15-300CC 16 240
men’s bathroom E15-399 21 420
private office space E15-311 15 210
private office space E15-319 24 552
electronics lab space E15-344 36 1260
public research space E15-301 94 8742
public research space E15-305 20 380
public research space E15-310 16 240
public research space E15-318 31 930
public research space E15-368 86 7310
public research space E15-383 59 3422
public research space E15-384 63 3906
sum 506 27904
mean 36 1993

Table 6.1: Commonsense object architectural space data summary These data
were gathered from the Third Floor of the Media Lab at MIT. Commonsense objects were
enumerated with their simple shapes, sizes, orientations, and positions. This knowledge
base is an example of an average arrangement of commonsense objects in a research lab
environment. Positions of some objects in this knowledge base, such as oscilloscopes and
signal generators are atypical of common office environments, but most objects such as
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tables, chairs, bookshelves, filing cabinets, staplers, etc. are assumed to be relatively rep-
resentative of common office environment configurations of these more universally common
objects. Binary relations,

(
n
2

)
, between objects refers to the number of pairs of objects in

each space and subsequently the number of spatial pairwise relationships between objects
that LifeNet uses for learning performance evaluation. Descriptions are not used in the
evaluation of the LifeNet algorithm and are simply for the researcher’s reference.

The spatial gold-standard knowledge base is visualized in Figure 6-1.B. The map

is composed of polygonal architectural spaces. LifeNet reasons over each polygonal

space independently so as to confine reasoning to single rooms at any given time.

These single rooms contain on the order of 100 common objects that comprise a gold-

standard knowledge base for testing how well LifeNet performs spatial inference in a

real-world situation. See Figure 6-2 for a visualization of a single architectural space

with colored areas representing Gaussian distributions where commonsense objects

exist.
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A.

B.

Figure 6-1: Visualization of the commonsense objects in the Third Floor of the
Media Lab (A) The architectural spaces of the Third Floor of the MIT Media Lab
consists of both public and private research and office environments. This knowledge base
is composed of the positions, shapes, sizes, and rough orientations of 506 commonsense
office environment objects (B) that were collected by hand. These 506 objects exist in
14 architectural spaces, which (considered independently) contain 27904 pairwise spatial
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relationships for evaluating the LifeNet inference algorithm on real-world data.
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A.

B.

Figure 6-2: Visualization of the commonsense objects within a single public
research area in the Third Floor of the Media Lab The architectural layout of a
single public architectural space of the (A) Northwest corner of the Third Floor of the MIT
Media Lab is shown (B) filled with different common physical objects. Figure 6-1 shows the
complete overview of the lab space, while this figure shows only one space within the lab.
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6.1.2 Spatial evaluation tests and results

The method of evaluation for the spatial gold-standard knowledge base was to divide

the knowledge into separate sets in order to train the algorithm on some of the data,

while leaving some of the data for testing the performance of the inference algorithm.

The data was divided into 10 sets. One of these sets was used for testing, while

the remaining nine sets were used for training the LifeNet inference algorithm. The

LifeNet algorithm was evaluated in its ability to infer the existence of the common-

sense object phenomena within architectural spaces, given 90% of the other objects

in the space.

LifeNet’s spatial inference accepts a set of objects at locations (mixture of Gaus-

sians probability distribution of locations) as evidence. LifeNet’s belief propagation

algorithm was limited to return 1000 phenomena partitionings of the 350-thousand

English language phenomena. LifeNet is able to expand the context of a given ar-

chitectural space within the training data set. Of the inferences made by LifeNet,

13% of these accounted for 85% of the gold-standard testing sets, while 87% were

false-positive inferences. If we limit the perception lattice to be only trained on the

language in the OMICS (Kochenderfer & Gupta 2004) knowledge base, then the per-

formance drops to 17% of the returned inferences accounting for only 55% of the

gold-standard testing sets with 83% of inferences being false-positives.

6.2 The Plug sensor-network

The sensor network that we are using for both learning commonsense and for recog-

nizing and predicting human behavior is the Plug sensor network (Lifton et al. 2005).

This network is a heterogeneous network consisting of base-station power-strips that

contain 9 sensor modalities: sound, vibration, brightness, current (through 4 separate

plugs), and wall voltage. the Plug sensor network is augmented by small low-power

nodes with accelerometers that can be used to roughly position and track individual

common objects around our lab space, which has the base-station plugs scattered

throughout. Using this sensor network to monitor how individuals interact with their
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physical environment by moving specific objects or simply by their sensor impression

on the environment provides a stream of data that can be correlated with simple

conceptual human-language descriptions of the same events so as to define a super-

vised probabilistic learning problem. the Plug sensor network is a useful device that

theoretically could be readily deployed in both home and office settings.

We have supervised the data collection for the activities in Table 6.2. The data

collection with the Plug sensor-network took place in the four-hour period from 2:00

A.M. to 6:00 A.M. on Wednesday, July 12, 2006. This was a period of time when

there were very few people working in the Media Lab, providing a relatively quiet en-

vironment for collecting the audio power spectra for our proof-of-concept evaluation.

There was a group of people watching television in the background of some of the

data collection, and approximately 4–5 other researchers in the lab at the time. The

Plug sensor network was distributed across the length of the lab from the kitchen

area down a long hallway and into the men’s bathroom, passing through three sets

of doors, one glass and the other two metal.
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ID Description Plug Duration (s)
1 drinking fountain used 1E 43
2 drinking fountain cooler turned on 1E 110
3 flushing urinal 10 155
4 walking in bathroom 10 140
5 closing bathroom stall door 10 165
6 flushing bathroom toilet 10 140
7 washing hands in bathroom 10 90
8 pulling out chair, sitting, pushing chair in (by

drinking fountain)
1E 165

9 opening and closing latched metal door 15 60
10 laptop music 1D 155
11 opening and closing microwave door (with TV in

background)
01 17

12 conversation in next room (with TV in back-
ground)

01 45

13 coffee machine beep (with TV in background) 01 60
14 washing dishes (with TV in background) 01 125
15 opening and closing toaster oven (with TV in

background)
01 110

16 using urinal 10 23
17 walking by drinking fountain 1E 85
18 try to open locked glass door 1E 20
19 walking by printer in hall 17 150
20 walking by corner of TMG area 1D 120
21 pressing microwave buttons (with TV in back-

ground)
01 60

22 microwave on (with TV in background) 01 180
23 typing on a computer keyboard 17 110
24 opening and closing microwave door 01 100
25 pressing buttons on coffee machine 01 80
26 using vending machine 15 30
27 washing dishes 01 90
28 opening and closing toaster oven door 01 35
29 walking by outside of TMG door near vending ma-

chine
15 120

30 microwave on 01 180

Table 6.2: Plug sensor-network activities The Plug sensor-network was used to
collect data while these activities were being performed within audible range of one of the
sensor-network nodes. The ID column lists the identification numbers of the activities,
while the Plug column lists the identification code of the nearest plug that is also within
audible range of the activity. Note the free use of human-language in the descriptions.
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In order to evaluate whether or not the commonsense data within LifeNet helps

in order to predict these activities, we have told LifeNet the commonsense contextual

information about the six Plug sensor nodes in Table 6.3.

Plug Commonsense Context
01 kitchen
10 men’s bathroom
15 hallway
17 hallway
1D hallway
1E hallway

Table 6.3: Plug commonsense context This commonsense context is used to at-
tempt to show that when we use a simple piece of commonsense context to describe the
surroundings of a sensor node the inferences about that node become more accurate.

The commonsense context for each plug in the sensor-network in Table 6.3 is

purposefully very simple in order to demonstrate that only a small amount of com-

monsense context can refine an inference algorithm’s prior probability distribution so

that the posterior is limited to a much smaller range of inferences. This sort of top-

down effect on the posterior distribution allows the massive state spaces of LifeNet’s

350,000 language phenomena (1090309 existential states) to be quickly narrowed down

to a few thousand phenomena (10301 existential states). For example, one of the com-

monsense stories that LifeNet knows about kitchens is as follows: “go to the kitchen”,

“find the coffeemaker”, “put ground coffee”, “fill water in coffeemaker”, “turn cof-

feemaker on”, “wait for coffee to stop dripping”, “pour coffee from pot into cup.”

In this story, we see that LifeNet has learned existential and temporal relationships

between “kitchen” phenomena and “coffee” phenomena.

Without the commonsense context for each sensor-network plug, LifeNet infers

the existence of 22% of the correct activity language phenomena in 17% of the in-

ferences with 83% being false-positives. With the commonsense context for each

sensor-network plug, LifeNet infers the existence of 13% of the correct activity lan-

guage phenomena in 20% of the inferences with 80% being false-positives.
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6.3 Performance discussion

Although the large semantic networks that we have used to provide context to the

LifeNet inference algorithm did not increase the accuracy of the inferences on our

relatively small evaluation knowledge base, we do see promise in the semantic depth

of the inferences that were made.

6.3.1 Evaluation of human-scale state spaces

For example, in the context of the phrase “kitchen” LifeNet correctly associates the

commonsense knowledge that “dishes” are found in a “kitchen” with the activity

of “washing dishes”; however, LifeNet also associates “dishes in one stack”, “dishes

on the table”, “meal in dishes”, and “silverware” with this same context. The in-

troduction of these contextual phrases into the LifeNet inference algorithm reduced

the accuracy of the LifeNet algorithm in predicting the specific activity of “washing

dishes,” but if we look through the high number of false-positive inferences that the

LifeNet inference algorithm made we notice that some of these inferences did correctly

represent “silverware,” “dishes in one stack,” and “dishes on table,” which did exist

in the kitchen that we supervised but were not labeled within the small knowledge

base. We hypothesize that these contextual inferences were evaluated as false-positive

inferences because of the small size of our evaluation knowledge base. The collection

of a data set that is large enough to contain all of the commonsense descriptions of an

activity recognition environment, such as the one we used in this evaluation, would

likely prove to be a task at least as difficult as collecting the semantic commonsense

knowledge base itself. We propose that the formal machine-learning evaluation that

we have performed in this thesis is not appropriate for such a large state space, where

a human psychological evaluation may be more appropriate.

6.3.2 Context-expansion

These evaluations show the ability of LifeNet to perform context-expansion by limiting

a top-down activity recognition to detect objects in a room given the contextual
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knowledge of other objects within the room. However, because of the high false-

positive percentage of returned inferences, the LifeNet algorithm is not good for

accurately predicting exactly what objects are in a room when given only the other

objects in the same room. The limitation of the number of nodes that could be

included in the belief propagation algorithm (1000 phenomena) was due to limitations

in the processing requirements necessary. This limitation could be overcome in the

future by optimizing the matrix operations necessary for processing the Gaussian

mixtures. Also, optimizations using hash spaces for calculating Gaussian intersections

in mixtures would reduce many of the multiplication bottlenecks in high resolution

(100 Gaussians) mixtures of Gaussians.
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Chapter 7

Future directions

Sensor data cannot be simply understood by machine learning algorithms that do not

have a human-level language description of what is going on. In order to predict and

understand human behavior in a sensor-rich environment, sensor-networks will need

to incorporate models like LifeNet that contain first-person commonsense conceptual

models of human behavior. We also hypothesize that once human behavior can be

explained by these top-down commonsense constraints, more specific commonsense

patterns can be bootstrapped from this initial mapping of sensor data to human be-

haviors, leading to typical patterns of human behaviors, which would not be possible

without the initial top-down commonsense language constraints.

7.1 Learning metrical commonsense

We expect that gathering the spatial and temporal arrangements of commonsense

phenomena from web volunteers, which is a slightly different task from the origi-

nal OpenMind Commonsense knowledge acquisition project that mainly focused on

gathering commonsense semantic and language patterns, will be a fruitful path of fu-

ture research. The problem of gathering supervised descriptions of human activities

still remains the highest hurdle for automatic activity recognition algorithms such as

LifeNet. But we have shown that the processes of gathering commonsense from the

web community at large and the supervision of specific sensor data tasks can be used
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to bootstrap one another, such that commonsense language phenomena can be used

to improve human activity recognition, while human activity recognition can provide

new commonsense stories of human activities.

7.2 Learning commonsense privacy

The cell phone diary application touches directly on the complex issue of privacy and

learning trends from large numbers of user records. The issues of privacy and security

and how to share these personalized common senses between users within this system

are key issues that have not received enough focus, but here is a simple breakdown

of one possible axis with which to consider this issue of privacy and security:

Privacy

Complete No information is shared between individuals.

Commonsense Common patterns are shared, but personal information is not shared.

None All information is shared and used across diary accounts, so any activity

pattern for one person will be used to find patterns in all other users.

The optimal privacy strategy will lie somewhere between the complete isolationism

of complete privacy and the complete insecurity of having all information shared

between people. Perhaps there is a common sense threshold for information that

specifies that if a particular pattern of activity and description are associated among a

large enough percentage of the population then that piece of information is considered

to be commonsense within that population of people.

7.3 Goal-oriented people and objects

LifeNet learns and uses generative modes to explain the sensor data that it is trying

to relate to humans that are trying to reflect on themselves and their environment in

order to plan their future behavior. The future of LifeNet is the ability to not only

recognize and learn single activities, but to keep track of more complex models of

humans that involve keeping track of different people by trying to keep track of their

current goals. For example, if we know that someone is “trying to buy something
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to eat” maybe he would “drive a car” or “take a walk”, while someone who has the

different goal of “getting ready for work” would “take a shower” or “brush teeth.”

Possible avenues to realize the probabilistic models necessary to infer these more

complex goal states may include object-oriented representations (Daphne & Pfeffer

1997) (Minsky 1974) to try to answer more difficult questions, such as the following:

� “Which one of these types of objects generated these data?”

� “Who generated these data?”

Also, social and intentional object-oriented models (El Kaliouby & Robinson 2005)

(Baron-Cohen 1995) of generative processes might provide hints toward how to answer

the following questions:

� “What goals was this person pursuing while generating these data?”

� “Why would a person generate these data?”

� “Is this person the type of person that would generate these data?”

� “What was this person thinking about that person when these data were gen-

erated?”

Social and intentional models of goals and other aspects of human mental thought

processes will be necessary for the artificially intelligent robots, computers, and

sensor-networks of the future.

We have shown that the commonsense semantic language data, such as the Open-

Mind Commonsense knowledge base, can be used to bootstrap quicker learning al-

gorithms for classifying and recognizing sensor phenomena and in turn common hu-

man activities. This ability for LifeNet to symbolically and numerically reason over

multiple different mental realms of commonsense phenomena will allow people to

interact with sensors more easily in their own language or in a novel sensor environ-

ment. Also, we hypothesize that extending this architecture into a system that learns

object-oriented generative explanations for sensor data may lead to systems that can
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learn to objectify sensor data and use these objectifications to project more intelligent

perceptions onto the world.
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Appendix A

LifeNet Programming Language

(CriticsLang) Commands

A.1 System Commands

� quit()

� load(F )

F ≡ Filename of file containing of CriticsLang LifeNet programming lan-

guage commands

� print(E)

E ≡ LifeNet phenomenological evidence that should be printed to standard

output

� graph(E)

E ≡ LifeNet phenomenological evidence that should be graphed on x and y

dimension axes (vertical axis representing probability of phenomena).

A.2 Logical Operators

� not(E)

89



E ≡ LifeNet phenomenological evidence that is inverted by the not oper-

ator. The not operator currently only works for Boolean existential

truth evidence and does not currently work for mixtures of Gaussian

distributions.

� and(E0, E1, ..., En)

Ei ≡ LifeNet phenomenological evidences that are pointwise-multiplied to-

gether.

� or(E0, E1, ..., En)

Ei ≡ LifeNet phenomenological evidences that are pointwise-added together.

� xor(E0, E1, ..., En)

Ei ≡ LifeNet phenomenological evidences that undergo the operation∨
i∈{1,2,...,n}

(
Ei∧

∧
j∈{1,2,...,n}\iEj

)
.

� implies(E0, E1)

Ei ≡ LifeNet phenomenological evidences that undergo the operation

(E0∧E1) = E0→E1.

A.3 Probability Distribution Rendering Commands

� point(d0, v0, d1, v1, ..., dn, vn)

Creates a point-like (Gaussian with minimal variance) probabilistic distribution

with probability of 1.0

di ≡ A phenomenological mode specifying the symbolic reference for one

dimension of the n-dimensional point

vi ≡ A real-number specifying the position of the point along the dimension

di

� ball(p, d0, c0, r0, d1, c1, r1, ..., dn, cn, rn)

Creates a mixture of Gaussians probabilistic distribution that approximate the

shape of an n-dimensional ball
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p ≡ Total probability of the mixture

di ≡ A phenomenological mode specifying the symbolic reference for one

dimension of the n-dimensional ball

ci ≡ A real-number specifying the position of the center in the dimension di

of the n-dimensional ball

ri ≡ A real-number specifying the standard deviation along the di of the

n-dimensional ball

� box(p, d0, c0, l0, d1, c1, l1, ..., dn, cn, ln)

Creates a mixture of Gaussians probabilistic distribution that approximate the

shape of an n-dimensional box

p ≡ Total probability of the mixture

di ≡ A phenomenological mode specifying the symbolic reference for one

dimension of the N -dimensional box

ci ≡ A real-number specifying the position of the corner in the dimension di

of the N -dimensional box

li ≡ A real-number specifying the length (can be negative) along the di of

the N -dimensional box

� path(p, d0, a0, b0, r0, d1, a1, b1, r1, ..., dn, an, bn, rn)

Creates a mixture of Gaussians probabilistic distribution that approximate the

shape of an n-dimensional path

p ≡ Total probability of the mixture

di ≡ A phenomenological mode specifying the symbolic reference for one

dimension of the N -dimensional path

ai ≡ A real-number specifying the position of one end of the path in the

dimension di

bi ≡ A real-number specifying the position of the other end of the path in

the dimension di

ri ≡ A real-number specifying the standard deviation along the di of the

N -dimensional path
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A.4 Phenomenological Relationship Commands

� at(D,m)

Creates LifeNet evidence that places a phenomenological mode, m, and a prob-

ability distribution, D. Within the LifeNet algorithm this datatype is referred

to as a reaction, which is a reference to the reactive layer of the Model-6 archi-

tecture mentioned in Minsky (2006). This LifeNet reaction forms the universal

representation that all of the diverse reasoning algorithms within LifeNet share.

As LifeNet grows beyond simply a reactive algorithm, other types of data will

be necessary that will be used for ways of thinking beyond simply probabilistic

inference.

D ≡ Probability distribution (either mixture of Gaussians or simply existen-

tial)

m ≡ A phenomenological mode specifying the symbolic reference for the

phenomena that is distributed as D

� related(D,E0, E1)

Creates a binary relationship within LifeNet that relates two pieces of evidence,

E0 and E1, by the distribution D. LifeNet uses these relationships to infer

posterior probability distributions from prior evidences.

D ≡ Probability distribution (either mixture of Gaussians or simply existen-

tial)

Ei ≡ LifeNet evidences that are related by the distribution D.

� north(d,E0, E1); south(d,E0, E1); east(d,E0, E1); west(d,E0, E1); above(d,E0, E1);

below(d,E0, E1); before(d,E0, E1); after(d,E0, E1)

All of these functions are similar in that they are wrappers for the related

function above. These functions create a binary relationship within LifeNet

that relates two pieces of evidence, E0 and E1, by a precompiled distribution.

The positive dimensions of “x”, “y”, “z”, and “time” are used to specify the

relationships of east, south, above, and after respectively.
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d ≡ Real-numbered distance between the two LifeNet evidences, E0 and E1,

in the specific dimension of the relationship

Ei ≡ LifeNet evidences that are related by the distance d

� around(d,E0, E1)

Creates a relationship within LifeNet that is used mainly for relating modal

phenomena in the north-south-east-west plane. The assumed mixture of Gaus-

sians for this distribution is a circle with density at distance, d, in the plane of

the ground, which are the LifeNet dimensions of x and y internally.

d ≡ Real-numbered distance between the two LifeNet evidences, E0 and E1

Ei ≡ LifeNet evidences that are related by the distribution D

A.5 Inference Commands

� infer(E)

Creates a new set of LifeNet evidence that is the posterior distribution that

results from the prior evidence, E, which includes all of the concepts that have

been related to these concepts through the LifeNet network. This function in-

vokes all of the critical belief propagation agents (spatial, temporal, existential)

within the LifeNet reasoning algorithm.

E ≡ LifeNet evidence that functions as the prior distribution over all modal

phenomena that are used by the critical belief propagation agents that

reproduce and spread in parallel over the LifeNet network, computing

the posterior distribution when considering all of the relationships that

have previously been programmed into LifeNet.

A.6 Data Structure Commands

� set(m,E)

Binds the LifeNet evidence, E, to the LifeNet phenomenological mode, m, which

can later be used within the LifeNet programming language to quickly refer to
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the evidence, E. This command is the beginning of a self-reflective program-

ming language that allows first-person Commonsense probabilistic inference to

become a part of a full programming language with symbolic variable refer-

ences as part of the probabilistic inference process itself—getting closer to a

self-reflective programming language based on the current probabilistic context

of the reasoning algorithm. This function marks the beginning of the develop-

ment of the deliberative layer that will function above the reactive layer of the

LifeNet reasoning algorithm.

m ≡ Phenomenological mode specifying the symbolic reference for the phe-

nomena that is to serve as a k-line (Minsky 1985) reference to the

evidence, E.

E ≡ LifeNet evidence that subsequently (in the current context) can be ref-

erenced simply by the symbolic mode, m.
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Appendix B

ConceptNet Semantic

Relationships

1. conceptually-related-to

2. superthematic-k-line

3. thematic-k-line

4. capable-of

5. is-a

6. effect-of

7. location-of

8. capable-of-receiving-action

9. motivation-of

10. desire-of

11. property-of

12. used-for

13. last-subevent-of
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14. part-of

15. subevent-of

16. defined-as

17. desirous-effect-of

18. made-of

19. prerequisite-event-of

20. first-subevent-of
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Glossary

commonsense computing Vision of computation where computers have the

set of general knowledge and ways of reasoning that

a given community shares, so that computers can

have a deeper understanding of humans and be-

come a more integral component of daily life, 13

commonsense object Physical object that a human might use commonly

to solve everyday problems, such as a “stapler”

solving the common problem of keeping papers to-

gether in a document. Like all commonsense, these

objects are specific to the social cultures, groups

and clubs to which the individual belongs. In gen-

eral, a commonsense object is an object that all

people within a context would consider to be a com-

mon everyday object, 21
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commonsense phenomenon Mental state that a given “club” or group of peo-

ple share; for example, a specific sensory experi-

ence that one might be able to express in concep-

tual human-language terms. Any given group of

people will most likely share language capabilities

that provide the ability to recall large sets of shared

commonsense phenomena that are not necessary

human-language concepts themselves, 16

concept Human-language Unicode string representing a

human-language phrase, which functions as the pri-

mary mode of indexing the ConceptNet reasoning

algorithm, 16

critic-selector model Theory of how humans perceive, reason, and act.

Minsky (2006) introduced the critic-selector model

as a hierarchical implementation of the agents

within the society of mind where critics and selec-

tors are two specific types of agents. The model fits

within a six-layered model of human intelligence,

which has increasing levels of abstraction from the

peripheral aspects of intelligence that interface di-

rectly with the physical world and the human sen-

sations and motor-control, 37
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generative function Computational process that takes a set of argu-

ments and returns a set of data derived from those

arguments. As computational processes, genera-

tive functions assume an algebra of data process-

ing computation. This generative functions in this

paper assume an algebra of stacked poset concate-

nation functions, which are easily implemented on

classical digital computers, but in general, genera-

tive functions could assume biological neural net-

works or quantum computers as other algebras of

data generative computation, 46

greedy compression search Search algorithm that begins with a list of uncom-

pressed data, L. For all of the data in L the largest

contiguous repetitive section, x, of data is found.

Every datum in L containing x is removed from L

and split into smaller non-contiguous pieces that do

not contain x. These smaller non-contiguous pieces

are appended to L, and the process of removing

redundant sections of data continues until no such

sections exist in L, at which point L will contain

the leaves of the perception lattice structure, 49
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LifeNet Model that functions as a computational model of

human life and attempts to anticipate and pre-

dict what humans do in the world from a first-

person point of view. LifeNet utilizes a common-

sense knowledge base (Singh et al. 2002) gathered

from assertions about the world input by the web

community at large. In this work, we extend this

commonsense knowledge with sensor data gathered

in vivo, 14

LifeNet story Partially ordered sequence of events expressed

as conceptual human-language phrases (Unicode

strings), 18

mode of perception Consistent relationship between elements within a

subset of data. This consistent relationship defines

a regularity that serves to organize a larger set of

data. A mode of perception can act as a manifold

in the space of percepts such that percepts lie on

a specific manifold or they lie off of that manifold.

Given that a set of data points lie on a mode of

perception, these data points contain percepts that

vary along the mode. The specific percepts that

define these data points are implicitly constrained

by this manifold or mode, 44
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perception lattice Lattice data structure that represents the genera-

tive functional explanation for a given set of data.

This lattice structure is used for many algorithmic

operations over perceived data. For example, a per-

ception lattice could be used to find the most likely

top-down explanation of bottom-up perceptions, or

alternatively, a perception lattice could be used for

the projection of low-level details given high-level

evidence, 47

phenomenon More general sense of the ConceptNet “text phrase”

type of knowledge and forms the basic index to the

LifeNet reasoning algorithm. The set of LifeNet

phenomena includes all ConceptNet concepts as

well as groups of sensor data. A recognized mode

of text or sensor datum is a phenomenon function-

ing as a percept, while a contextual mode of text

or sensor datum functions as a top-down projection

phenomenon, 16
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Index

abstraction layer , see analogy

activity recognition

commonsense, 27

analogical mapping, 48

analogous modal patterns, 67

analogy, 18, 42, 71

autoassociation, 42

belief network, 51, 58

belief propagation, 18, 57, 61, 62

bidirectional neural interface, 21

binary relationships, 45

Bluetooth identification, 29

cell phone, 15, 22, 28, 29

cell-tower, 29

cochlea, 40, 41

codebook vector, 42

commonsense computing, 13, 23

commonsense object, 21

commonsense phenomenon, 16

concept, 16

constraint propagation, 14, 23, 37

critic, reasoning, 35, 37, 57

distance

spatial, 37, 38, 57

temporal, 38, 57

existential, 38, 57

redundancy

analogical, 40, 67

metaphorical, 67

superficial, 38, 40, 67

sensor cluster alignment, 38

critic-selector model, 37

decision-tree, binary, 42

Desieno’s conscience, 42

diary application, 29

equiprobable clustering, 42

existence, 35

existential reasoning, 59

existential truth, 59

experience-based memory indexing, 22

fast Fourier transform , see FFT

FFT, 40

first-person model, 37

focused search, 22

generative function, 46

greedy, 46

optimal, 46
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gold-standard knowledge base, 73

graph partitioning, 58

greedy compression search, 49

hearing aid, 22

hierarchical graph partitioning, 58

homeowner, 22

Huffman-distance function , see metropolis-

distance function

human mental compatibility, 42

human thought augmentation, 22

human-language, 13, 16, 17, 21, 23, 29

information infrastructure, 15

is-a semantic relationship, 45

k-means clustering, 42

Kohonen neural network, 40

LifeNet, 14, 15

LifeNet story, 18

Markov blanket, 62

Markov random field, 16–18, 26, 35, 59

mental realms, 37, 57, 87

metaphorical abstraction, 68

metropolis-distance function, 42

mixtures of Gaussians, 18, 65

modal similarity, 18

mode, 25

sequential, 45

temporal, 48

mode of perception, 44

MRF , see Markov random field

mutual information, 18

N-ary relation, 45

natural social reference , see human-language

open-information environment, 22

open-information environment , see in-

formation sharing

PDA , see portable digital assistant

perception lattice, 47

personal life, 22

phenomenological ontology, 16

phenomenon, 16

portable digital assistant, 22

potential energy, 40

power spectrum, 41

converting to symbols, 42

power spectrum stream, 40

privacy

commonsense, 86

projection, 25

prosthetic, 22

reasoning , see critic, reasoning

self-reflection, 22

sensor-network, 14

“The Plug”, 24

giving commonsense to computers, 23

sensors, 22

sequential mode , see mode
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spatial inference, 59, 79

spatial reasoning, 65

spectral graph partitioning, 58

story, 17, 18, 29, 38, 39, 42, 68

string concatenation, 53

symbolic phenomenon, 22

tetrachromat, 41

top-down constraint, 24

ubiquitous computing, 24

unsupervised density estimator, 42

vector quantization, 42

vector quantization neural network , see

vector quantization

video footage, 22

virtual existence, 21

visual human understanding, 21

VQNN , see vector quantization

world-model, 21
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