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Abstract

Quadrasense explores futuristic applications in environmental sensing by integrating
ideas of cross-reality with semi-autonomous sensor-aware vehicles. The cross-reality
principals of telepresence, augmented reality, and virtual reality are enabled through an
Unnamed-Aerial-Vehicle, a specialized imaging system, a Head-Mounted-Display, a video
game engine and a commodity computer. Users may move between any of the three
modes of interaction, in real-time, through a singular visual interface.

Utilizing an environment built with video game technology, a system was developed that
can track and move a UAV in the physical world, towards goals of sensing, exploration
and visualization. This application expands on the use of video games engines for
simulation by directly joining the virtual and real worlds.
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Chapter 1

Introduction
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1.0 Sensors: Past, Present and Future

We are continually evolving our understanding of the world through a variety of means

including the scientific process of hypothesis, observation, data collection and analysis. In

this pursuit we have used a number of sensing mechanisms, often in novel ways, to record

phenomena of interest. With the progression of technology, the once simplistic and limited

view of sensors as data collection instruments is shifting. The domain of sensors and the

informed world are becoming more intertwined. Ubiquitous sensing also ushers in the

challenges of information collection and meaningful data extraction, previously problems of

big science.

A predominant use of sensors is in terrestrial sensing. This application utilizes sensors to

record some limited number of parameters in geographies such as oceans, volcanos, jungles

and so on. Historically this usage has relied on sensors as data logging devices. However,

with advances in electronics, power storage, and signal processing capability, sensor nodes

can now autonomously inform users about events of interest as they occur.

The concept of a sensor network moving from a passive informant to an active participant

in the world is becoming a recognized perspective. If sensors can interact with and exert

control of physical instruments in response to measured data, we can view this network as

possessing the concept of agency. In looking towards the future, integrating the extensive

informative capability of modern sensors and emerging capabilities of autonomous vehicles

will result in combined agency, blending the best of both disciplines. Quadrasense aims to

explore this unique and largely unrealized combination. Figure 1-1 illustrates a conceptual

view of problem solving ability vs. increasing capability of sensor networks.

Problem Solving
Space

SI 111
Data logging Sensors with Sensing with Sensors

sensors agency autonomous +
vehicles Autonomous Vehicles

Technical capability

FIGURE 1-1: CONCEPTUAL VIEW OF PROBLEM SOLVING ABILITY OF SENSOR
NETWORKS VS. SENSOR NETWORK CAPABILITY
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1.1 Terrestrial Sensing

Individuals from scientists, researchers and engineers to farmers, environmental agencies,

industrialists and energy producers are relying on environmental sensors to provide key

insight to their respective needs. With low-power semiconductors, advanced wireless

communication and large non-voltage storage, sensors nodes now have the ability to

measure, store and transmit tremendous amounts of information, all in real-time. Early

environmental research work at Great Duck Island, conducted by UC Berkeley, College of

Atlantic and Intel[1] helped explore key aspects of hardware, software and system-

architecture necessarily for successful environmental sensing. This work helped pave the

road for future low-power sensor node designs, and sensing applications.

A typical, modern environmental sensor node,

such as the one shown in Figure 1-2,

developed by the Responsive Environments

group at MIT MediaLab, has the ability to

capture among other parameters, light levels,

temperature, humidity, pressure, physical

orientation (via an accelerometer) and voltage
levels at very low electrical power levels. This
particular node can communicate to a central
network concentrator and also form a mesh

GURE 1-2: RESPONSIVE ENVIRONMENTS network using custom software interfacing to
ENSOR NODE.

the on-board 2.4 GHz Radio Frequency IC.
While this node was designed with a fairly
generic set of measurement capabilities, other

node designs can measure a more specialized

spectrum of data including toxic gasses,

radiation, pH, soil moisture and so on.

According to a recent survey publication

"Environmental Sensor Networks: A
revolution in earth science system?"[21,

IGURE1-3:ACTUALVOC MEASUREMENTS, CITY sensor networks have morphed from simple
F LOS ANGELES, 2014 [VALARM] data logging instruments to a collective

system of intelligence which will become a

standard tool for all aspects of environmental science. Environmental sensing has in fact

already expanded from beyond traditional remote sensing applications to include data

collection for urban environments, through the use of networked nodes distributed in

modern buildings. Figure 1-3 shows distribution of Volatile-Organic-Compounds (VOCs)

taken from such a network, in the City of Los Angeles.
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1.2 Sensor Data as Agents for Action

Advanced sensor networks, with increased intelligence, are now more tightly coupled into

explorations, experiments and engineering than ever before. For example, in scientific

research, sensors are often used at the outset of an experiment to provide data for

informed decisions about necessary fieldwork, thus driving both future sensor usage and

additional experiments. Other industries such as ecological engineering, agriculture, and

water treatment often use environmental sensor data to validate that a process is working

as expected.

In a farming application where deployment of fertilizer needs to be precisely distributed,

ground-based phosphorous and nitrate sensors can indicate if there is unexpected run-off

or improper dispersal. In a water processing facility, sensors can be used to verify that all

harmful pathogens and toxic substances are removed or within established norms. Figure

1-4 depicts these two typical uses for sensor networks.

Sensor Networks for Scientific
Research

+

I

Sensor Networks for Environmental
and Engineering Use

11!

4

Yes
+

Analyze

No

FIGURE 1-4; COMPARISON OF SENSOR NETWORK USAGE IN RESEARCH VS.

ENGINEERING
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Thus in these examples environmental sensor networks are used in a more engineering-

oriented or process control sense verifying that measured data is not outside established

standards and alerting users if these condition are violated.

However, observing both modern research and engineering aspects of environmental

sensing, we can consider the wireless sensor network and the "informed data" as jointly

active participants in the experiment or research process. This high-level concept of sensor

networks as "actors" or "agents" as a proxy for action, be it informing humans for further

investigation or commanding other semi-autonomous agents to carry out a task, is

emerging. This field is called Wireless Sensor and Actor Networks or "WSAN" by

researchers in the Electrical Engineering Department at Georgia Tech [3].

f3Wireless Sensor and Actor Components of

'/Networks (WSANs) Sensor & Actor Nodes

Sensors
Passive elements sensing from the environment

Limited energy, processing and communication
capabilities

Actors
Active elements acting on the environmentgAaspecNsdofOthe WSAn
Higher processing and communication capabilities Acto hies such das frobo s in
Less constrained energy resources (Longer is d r o int igital data con trolsse
bttiay expnan eporaso andpromControler generates action commands based on data

Digital action comm nd is converted to analog signal
Action is performned

IFA'2004 IFA'2004

FIGURE 1-5: HIGH-LEVEL VIEW OF SENSOR AND ACTOR NODES, WSAN CONCEPT [AKYILDIZ &

KASIMOGLU]

As sensor networks evolve "intelligence", distribution of processing and control is yet

another dimension to explore. Perhaps one of the more interesting aspects of the WSANs

is how they can exert a physical influence by controlling machines such as robots in the

sensed landscape. By introducing robotic agents under joint human and WSAN control, we

can potentially expand exploration and problem solving from one under sole human

command to a hybrid domain where human needs are translated into parameters for the

WSAN to carry out. A multitude of autonomous robotic agents to aid in sensing have been

already been explored as part of WSAN research. These actors include remote-controlled

cars/trucks, Unmanned-Aerial-Vehicles (UAV) and even sub-miniature, limited functions

robots.
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FIGURE 1-6: ROBOTIC ACTORS TESTED IN WSAN RESEARCH, TOP ROW: RC HELICOPTER, RC ALL-

TERRAIN-VEHICLE, BOTTOM ROW: MINIATURE ROBOTS [AKYILDIZI

1.3 UAVs as Semi-Autonomous Sensing Agents

The use of UAVs, especially multi-rotor vehicles such as quad-copters, has attracted

significant attention for use as agents in sensing networks. While aircraft such as fixed-

wing planes and gliders offer significant benefit in terms of longevity and high-altitude

observability, multi-rotor vehicles have tremendous maneuverability, geographical coverage,

payload carrying capacity and flexible frame configuration. A typical multi-rotor can be

launched from small platforms, and can carry sensor packages, cameras and radios for

extended range based transmission. Combined with developments in battery storage

technology, lower cost Brushless-DC motors and low-noise Inertial Measurement Units
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(IMU), multi-rotors span from diminutive in size to formidable with commensurate
capability.

16-ROTOR AGRICULTURAL UAV NIXIE, WRIST-WEARABLE QUADROTOR W/CAM
FIGURE 1-7

Many innovative sensing platforms are now looking to incorporate UAVs as agents.
Lockheed Martin has demonstrated a sophisticated wireless sensor network called "SPAN"
- "Self Powered Ad-hoc Network" that dynamically routes sensor traffic without the need
for a fixed central node and autonomously notifies users of potential threats [4]. In a newer
configuration of SPAN, the intelligent sensor mesh informs a UAV agent to use its more
precise instrumentation to investigate potential threats. All of the sensor and UAV
coordination is done completely without human intervention. While this application is

defense-oriented, the case towards integration of sensor technology and semi-autonomous

UAVs for environmental research is equally strong.
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Several projects underway such as[5,6,7,8] are leading efforts to integrate UAVs in

innovative environmental sensing applications. These projects carry payloads that enable a

diverse set of measurements from the monitoring of soil erosion, ice crystal formation in

clouds and urban water quality to algae blooms in ocean environments. Figure 1-9 shows

results from some of these experiments. Along with many of these sensing applications is

the tight integration of high-resolution 2D and 3D imagery. If image capture and depth

sensing is real-time and compelling enough, the agency concept of UAVs for sensing can

now be extended to include the capabilities of telepresence and augmented reality.

FIGURE 1-9: Standard color digital photo Multispectral CIR photo
TOP: UAV PROJECT MEASURING ALGAE BLOOMS W/COLOR+FLIR CAMERA [LEIGHTON, MIT]

BOTTOM: MULTISPECTRAL SENSING FOR CLIMATE CHANGE [DESERT RESEARCH INSTITUTE,

FENSTERMAKER]

Current research also carried out at MIT by Ravela, et all [9] has already looked at the use of

single and multiple UAV agents to image environmentally occurring phenomena such as

volcanic ash plumes. This work examines real-time coordination of many UAVs to capture a

given environmental event. Part of the developed system utilizes sensors and real-time

imagery to plan trajectories for coordinating UAV-based sensing.
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domain

TRACKER initialize adapt MAPPER

US u da nnce guNE pidance A

FIGURE 1-10: FLIGHT PATH GENERATION FOR SENSING A VOLCANIC
EVENT, FLIGHT PATH SHOWN IN WHITE [RAVELA]

1.4 UAVs as Vehicles for Collaborative Exploration

The union of semi-autonomous vehicles with advanced wireless sensor networks opens the

door to interesting possibilities beyond purely sensing applications or dynamic imaging. The

goal of this thesis is to explore and develop a system that merges sensed data with visual

imagery, taken in real-time from a UAV agent. Ideally multiple variants will be realized

including systems that enable individuals to interact with a single or many UAV agents

simultaneously. Similar to video conferencing where many parties are unified despite

differences in geographical location, enabling multiple people to see the world through a

singular UAV agent, and even further, interact using multiple UAV agents opens the door to

true collaborative exploration. In this thesis I present Quadrasense, a project that intersects

people and sensors with UAVs and cross-reality[10] for the purposes of enabling new

modalities of exploration.

1.5 Video game technology for UAV control

Quadrasense employs the use of a video game engine to unify the domains of sensor data,

graphics visualization and UAV control. The concept of using such technology for sensor

graphics rendering and visualization is perhaps not unique, but this approach to control a

physical UAV agent is novel and previously unexplored. Modern video game engines excel

at reconciling all aspects of real-time player positioning for thousands to millions players,

simultaneously. Extending this concept to control a physical UAV leverages video game

engine advantages while simultaneously forging new ground for real-time UAV applications.

15 of 75



Chapter 2

Quadrasense Concept
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2.1 Overview

Quadrasense aims to use UAVs and cross-reality concepts to connect people with
environments through the conduit of sensors. By creating a context for interpreting the
combined real-time stream of video and sensor data, Quadrasense expands and enhances
our ability to explore using a semi-autonomous agent. Utilizing video game software to
realize key aspects of the system, compelling graphics, animations and rich interactions are
enabled without the challenges of creating these elements completely anew. After
considering forward-looking aspects of sensor agency and semi-autonomous sensing in the
previous sections, key objectives of Quadrasense, outlined in this section, are defined.

A mock-up of the desired primary User Interface is shown in Figure 2-1. This
snapshot of an "on UAV" perspective (telepresence), with sensor data (shown
black circles) alpha blended into the video stream (augmented reality).

UI provides a
in white &

FIGURE 2-1: MOCK-UP OF QUADRASENSE UAV VIEW: AUGMENTED REALITY + TELEPRESENCE UI
[HADDAD]
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High-level Overview
of Quadrasense

Augmented Live Video + Sensor Data

Audio + Video Stream

Control View + Control
Information

Cloud-based Sensor
Network

FIGURE 2-2: QUADRASENSE HIGH-LEVEL BLOCK DIAGRAM

A highly simplified proposed system architecture to enable a cross-reality UAV system for

terrestrial sensing is shown in Figure 2-2.

1) The proposed system consists of an Oculus Rift Head-Mounted-Display which is the

primary user interface. Users will be presented, via the HMD, with three modes of

interaction. These three different modes, together, aspire to implement cross-reality

concepts:

a) An "On UAV" mode to experience an environment immersively with

augmented reality capabilities

b) A Birds Eye View for mission planning and selection of relevant sensors for

investigation

c) A virtual "On the Ground" view, which is a purely computer rendering of the

environment a user would see if he were physically placed on the ground next

to the sensors

2) A commodity computer, to which the HMD is attached, brings in real-time sensor

data via a wireless connection using Responsive Environment's ChainAPl[11] and software

real-time blends rendered sensor data with the incoming video. Users head pose and gaze
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are transmitted real-time, wirelessly to the quad-copter to enable mechanical or electronic

pan-tilt-zoom functionality in the video stream.

3) The desired UAV needs autonomous flight modes (guided by GPS and waypoints),

the ability to stay relatively stable in a fixed location ("hover" mode), and the capacity to

autonomously land. Guidance and control of the UAV agent is governed by a user's high-

level input (i.e. a gaze or a mouse click on a particular sensor node) which is then translated

into flight commands that result in locomotion. To communicate commands and retrieve

telemetry information, the UAV needs a flight computer that provides open access to this

key functionality.

4) The UAV agent should carry a digital camera imaging system with a very wide field of

view (-180 deg horizontal -180 deg vertical) that either mechanically or digitally tracks the

users pose and provides a near normal (50 deg) rectified, flattened, distortion-free field-of-

view. To minimize payload for equipment, the same 802.11 stream that carries command/

control information is also desirable for carrying the video stream.

5) The software environment (running on the control computer) to coordinate all

operations including User Interface, video blending and UAV agency uses the Responsive

Environments Tidmarsh project, created in Unity, as a starting point. Unity is a video game

design environment that provides rich OpenGL graphics including various shader models,

scripted behavior and a physics engine.

6) To enable realistic telepresence and augmented reality experiences, the target end-

to-end transmission of video and telemetry data was less than 10 milliseconds (ms). An

average of 10 ms latency provides for system update rates of 100 Hz which is a reasonable

trade-off between responsiveness and bandwidth for data transmission.

The Tidmarsh landscape[12] in Plymouth, MA will serve as the testing grounds for

Quadrasense. Up until recent years this landscape has been used as a cranberry farm.

Currently it is part of a large state sponsored restoration project. The environment has

been instrumented with Responsive Environments sensor nodes and in conjunction with

traditional field work, the space will be observed as it is restored to a more natural

condition.

By leveraging existing wireless infrastructure at Tidmarsh, Quadrasense only needs to

support WiFi connectivity and Chain API to query and pull data from sensors. The existing

Tidmarsh Unity video-game based visualization provides a "First-Person" interaction with a

simulated (virtual) version of the Tidmarsh environment. Figure 2-3 shows a sample of this

existing visualization. The real environmental topology including vegetation, elevation &

water channels have been very closely modeled in the game world. This allows users the
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ability to experience the landscape virtually with reasonable accuracy. The Tidmarsh Unity

project communicates with deployed sensor nodes and displays data such as temperature,

light levels, humidity and so on as simple text on top of a virtualized sensor node.

FIGURE 2-3: EXISTING TIDMARSH UNITY EXPERIENCE, SENSOR DATA RENDERED INTO VIRTUAL WORLD
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Chapter 3

Motivation
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3.1 Limits of Existing Sensor Visualizations

An examination of traditional sensor visualizations and their applications reveals how they

can benefit from the immersive capability that Quadrasense attempts to provide. Many of

the existing sensor visualizations are based around either classical statistical analysis of data

as a function of time or an overlay of sensor data on static terrain maps. These

visualizations are very powerful and extremely useful for detecting trends, characterizing

behavior and helping to model environments.

The sensor data shown in Figure 3-1 is measured by Responsive Environments

environmental sensor nodes, with visualizations driven by a web browser. This data depicts

temperature in the sensed environment and is displayed in a map view giving users an

instant understanding of temperature distribution over the measured area for a snapshot in

time.

FIGURE 3-1: TEMPERATURE DATA OVERLAID ON A 3D MAP OFA CRANBERRY FARM INSTRUMENTED

WITH ENVIRONMENTAL SENSORS [TIDMARSH]
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PrecisionEdge

AJ UAW&-,V

FIGURE 3-2: WATER DISTRIBUTION OVER A 2D MAP FOR
AGRICULTURAL USE; SENSOR DATAACQUIRED VIA UAV
[PRECISION EDGE]

Another sample visualization in Figure 3-2 shows water sensor data for a farm, overlaid with

a 2-D map of the sampled space. The water distribution data was acquired using a UAV,

flying a prescribed flight plan. The different colors and their intensities specify water

concentration, or lack thereof.

The previous Tidmarsh example and this agricultural visualization are highly suitable for

offline use, as the time scales for data collection and expected analysis do not depend on

real-time use. They are clear and straightforward representations of slowly varying data.

3.2 Applications of Real-time Sensor Visualizations using
UAV agents

Some of the existing UAV and non-UAV based sensor visualizations demonstrated are very

similar to the sensing flowcharts introduced in Figure 1-4. These applications are non-real-

time and follow the scientific research model of capture, process and re-iterate. In contrast,

applications that need real-time fusion between sensors and sensed landscapes require a

new approach. A UAV possessing augmented reality and telepresence capabilities has the

potential to serve this function.
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It is beneficial to examine a few use cases that might directly benefit from UAVs possessing

augmented reality and telepresence capability used in-conjunction with sensing

applications. One set of target applications is proposed by CCMSS, Center of Cooperative

Mobile Sensing Systems, a joint research effort between University of Colorado, University

of Alaska, MIT and University of Oklahoma [13]. CCMSS aims to use sensors and UAV

agents in three mainly identified use cases: "Wildfire", to combat wildfires, "Polar" to support

data collection in a variety of environments from oceanic to atmospheric and lastly "Storm",

collecting volumetric data in severe storm conditions. The CCMSS proposal in-fact

specifically calls out the needs for an interactive, immersive technology environment with

real-time display and visualizations coming from UAV sensing agents. The left image in

figure 3-3, from the CCMSS proposal, illustrates the various environments suggested for

UAV usage and the right image shows a potential real-time visual relayed by the UAV

sensing agent network.

POLR

FIGURE 3-3: UAVS IN CCMSS IMMERSIVE SENSING
LEFT: WILDFIRE/POLAR/STORM COMBINED[CCMSSJ, RIGHT: ARTIST RENDITION OF VISUALIZED DATA

FROM UAV SENSING[HADDAD]

For the Wildfire configuration, the authors are looking to use a network of UAVs to help in

fire-fighting operations. The ground conditions around large fires is very dynamic and

extremely unpredictable. In this situation bulk collection of data and offline processing is

simply too slow for the turbulent environment. Fightfighters could instead make use of

terrestrial sensors along with real-time imagery, guided by UAV agents, to help track and

ultimately curtail the destruction. Quick, responsive, and effective collaboration among

remote and ground personnel through enhanced hybrid visuals is clearly a benefit in this

application
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Real-time visualization of high energy transient weather patterns is another use case

outlined by CCMSS. The "Storm" configuration proposes the use of sacrificial UAVs as

direct sensing agents to help identify conditions leading to tornado formation. While the

phenomenon is grossly predicted by tracking cold and humid air mixing, developing an

understanding at a microlevel could help to detect and possibly prevent such events from

occurring. As referenced in the CCMSS publication, prior efforts for storm visualization

have utilized balloons, augmented with sensors, to limited success. The ability to measure

and visualize various parameters within clouds in real-time, even under non-threatening

conditions, is another area of interest[14]. Such imagery could return particulate matter and

pollutions levels as a result of human activity.

Quadrasense is not intended to replace classical statistical analysis or rigor. Rather,

Quadrasense gives users an easy to use interface, providing an intuitive understanding of

data and environments. Other off-line techniques such as use of Machine Learning

algorithms, Hidden-Markov-Modelling and other heuristic behaviors can reveal latent

information in the plethora of data a sensor network collects, guiding future research.

However, as demonstrated, there are a growing number of applications that can benefit

from the new sensor interactions Quadrasense aims to enable.
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Chapter 4

Related Work
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4.1 Overview

In addition to exploring a number of the sensing projects outlined in the Introduction and

Motivation sections, when contemplating the design of a telepresenced, multi-user UAV

system, a number of related research endeavors were examined to narrow the design space.

4.2 Telepresence / Augmented Reality / CAVE

The goal of realizing end-to-end 3D telepresence, i.e. blending augmented reality (AR) and

virtual reality (VR) is perhaps mostly readily identified with research at University of North

Carolina, Chapel Hill. The research group at UNC, headed by Henry Fuchs, has been

investigating the concept of immersive technologies, 3D video conferencing and low-

latency collaboration systems for almost two decades.

In "Enhanced Personal Autostereoscopic Telepresence System using Commodity Depth

Cameras"[15], the authors' work combines multiple remote users in a single 3D

environment possessing the ability to interact with virtual objects. Maimone suggests for

collaboration that motion tracking in mixed-domains (where virtual objects and real-world

objects are synthetically blended) provides users with a tremendously increased sense of

collaboration. The research emphasizes that the depth cues afforded by free head

movement enhances the user experience, corroborating the design choice of a Head-

Mounted-Display for Quadrasense.

FIGURE 4-1: TWO TELEPRESENCE USERS IN A SINGLE
3D ENVIRONMENT [2011 PAPER]
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Prior work by Fuchs et all [16] combined head-mounted displays and augmented reality

concepts to help with surgical biopsies. This project mixed imagery between off-line

ultrasound and real-time video. Many of the AR lessons outlined in the paper on topics

such as graphics re-projection, culling and camera/optics alignment suggest necessary

approaches for convincing augmentation.

IGURE 4-2: EARLY HMD+AUGMENTED REALITY SURGI

A recent publication from Fuch's group, "Minimizing Latency for Augmented Reality

Displays"[17] demonstrates a custom augmented reality display using TI Digital Mirror

Displays to project synthesized graphics on real-world objects. This implementation is

highly novel, in that only part of the display is updated during the refresh cycle. By

employing concepts of estimation between a perceived image and actual output, the system

sacrifices some absolute image quality to minimize delays. The authors of the paper strive

for a total system delay of 2ms. The concepts of estimation as it applies to head tracking

and system rendering are highly relevant to Quadrasense since similar problems are faced in

Tracking --- enderer Rendered -*Renring----*
1 

Warp

System --- Rnee)---I ma ge ----

%tgae Estimate Desired
Per dError Image

Update Display's Update
- Percvd Output Signal Display

FIGURE 4-3: LOW- LATENCY AUGMENTED REALITY DISPLAY USING PERCEPTIVE RENDERING [FUCHS]
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the reception of telemetry data via a low-bandwidth, high-latency lossy link. In augmented

reality use cases, the latency of the telemetry link will manifest itself as misalignment

between the real-time imagery and the rendered sensor data.

4.3 Omnidirectional Imaging

Yaw

FIGURE 4-4: HMD MOVEMENTS SHOULD
TRANSLATE TO CORRESPONDING CAMERA
VIEW [OCULUS]

A clear goal of this project was to enable users to

experience the actual environment the UAV is
placed in. The intention is, by providing a video
stream which allows users to see in any forward
direction, the experience mimics physically being

on the UAV. To enable this, the camera
perspective should track in real-time the user's
HMD pose. Low-latency and omni-directionality
are more highly desired than absolute resolution,
so a camera that is either physically gimbaled or

has super-wide angle of view was an objective.
The ability to image in 3D, while not a strict
requirement, was also desired, so all hardware

selection was done with this long-term
goal in mind.
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FIGURE 4-5: OPTIMAL PARABOLOID F
CATADIOPTRIC-BASED 360 DEG IMAC
CAPTURE [BAKER, NAYAR]

Early research into omnidirectional imaging
i1m systems by Baker & S.K. Nayar and associated

researchers at Columbia proved highly relevant for
single-capture, omni-directional imaging. This
work carried out in the late 90's and early 2000's
used a catadioptric configuration of hemispherical
mirrors and conventional CMOS/CCD imagers to
capture images and video in 360 deg[18]. The
image in Figure 4-5 shows an optimized
configuration of a catadioptric reflector & sensor

assembly for this application. Such a system has

numerous advantages over a traditional
mechanically gimbaled system. Work by Nayar and

et. all was extended beyond stills to include
concepts of immersive video. Demonstrated work

OR used an early Head-Mounted-Display in-

E conjunction with a 360 deg catadioptric system to

allow real-time seamless panning of captured

video. This work was later expanded to include
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FIGURE 4-6: EXPERIMENTAL 360-DEG CATADIO
UNWRAPPED IMAGE (BOTTOM) [2001, NAYAR]

IMAGE CAPTURE (TOP-RIGHT) AND

FIGURE 4-8: 360-DEG CATADIOPTRIC IMAGE CAPTURE AND REAL-TIME
UNWRAPPED VIEWING USING HMD [2001, NAYAR

360 imaging on remote control vehicles, such as remote controlled cars.

Similar work into the area of fisheye imaging, another mechanism for 360 deg simultaneous

capture was also explored. Fisheye imaging, due to smaller implementation size and lack of

mechanical obstructions, has become popular in robotic applications. Work in this domain

includes calibration and algorithms for flat-field dewarp image reconstruction.
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4.4 Omnidirectional Imaging with UAVs

In the 2011 paper "An Image-Processing-Based Gimbal System Using Fisheye Video"[19],

the authors detail a fisheye imaging system for omnidirectional imaging using a Head-
Mounted-Display. Their goal was to enable the functionality of pan-tilt-zoom without
moving parts, targeting UAV applications. The system captures and transmits the entire
fisheye image, and performs the image orientation/rectification from head-tracked data on
a receive-side computer While this demonstrated system is novel, there are a number of

drawbacks. Their use of analog imaging and transmission required digitization on the

receive side prior to dewarp, resulting in latency. Additionally their analog capture was
limited to only NTSC/PAL resolution (approximately 480i). As noted by the authors, in

recording the full fisheye image, de-warped imaging resolution was sacrificed, resulting in a

rectified image only 180px x 144px in size.
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FIGURE 4-9: FISHEYE IMMERSIVE VIDEO, NO MOVING PARTS [2011, RAWASHDEH & SABABHAJ
TOP LEFT: EXPERIMENTAL SYSTEM, TOP RIGHT, USER USING HMD FOR NAVIGATION
BOTTOM LEFT SYSTEM FLOW, BOTTOM MIDDLE WARPED IMAGE, BOTTOM RIGHT DE-WARPED
IMAGE
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Work carried out in 2014 "Oculus FPV" [20] approaches the same problem of immersive

video for UAVs by utilizing a pair of analog video

cameras mounted on an inexpensive custom-

made gimbaled system along with the Oculus

Rift Head-Mounted-Display and a downstream

computer for post-processing. Their low-cost

gimbal utilizes two servo motors enabling pan
(horizontal rotation) and tilt (vertical translation)

in conjunction with a micro controller and

wireless link which receives in real-time, user's

head pose and gaze information. Similar to the

FIGURE 4-10: LOW-COST GIMBAL FOR prior approach, to present the images to the

STEREO IMAGE CAPTURE, TARGETING UAV user, the analog video is digitized by a
+HMD [HALS ET. ALL] commodity PC using twin video capture cards.

Due to the distortion of the Oculus Rift's optical

objectives, the authors "pre-distorted" the captured video so when viewed through the Rift,

the images appear approximately flat-field. While the approach presented is low-cost, there

are a few drawbacks. Without a carefully architected system that synchronizes analog

video capture/transmission (genlocking) and the digitization process, as the authors note,

slight miss-matches in timing occur when presenting the video stream to the end-user. As a

result of poor synchronization, the authors observed eye strain, fatigue and even motion

sickness.

FIGURE 4-11: REALIZED OCULUS FPV, WITH CAPTURED VIDEO [HALS ET. ALL]

In comparing the two image capture systems, fisheye/catadioptric vs. "normal" field of view

image capture, if omnidirectional imaging is possible, this approach provides a clear

advantage in that users may examine and experience different viewpoints from recorded

video via the HMD, post-image capture. With normal imaging, the real-time perspective is

the only perspective ever recorded. Thus, for flying and safety applications normal imaging
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is reasonable, for immersive and exploratory uses, with sufficient imaging resolution and
transmission bandwidth, omnidirectional capture is a worthy technique.

4.5 Multi-rotor UAVs and mixed-domain sensing

Prior sections have outlined projects that either proposed the use of UAVs for immersive
use cases, or UAVs acting under control of a sensor network. In "Environmental Sensing
Using Land-Based Spectrally-Selective Cameras and a Quadcopter"[21]

the authors have used a sparse array of ground sensors to measure temperature, with the

UAV acting as an agent to increase sensing density by physically sampling in-between
sensor positions. In this work the authors have used a FLIR (Forward Looking InfraRed)
camera as part of sparse set of sensors to fuse with data acquired by a UAV+on-board
temperature sensor. This project is very illuminating as a potential use case for
Quadrasense. Temperature measurement data acquired by the UAV is a real-time process,
as-is the capture by the thermal camera. However the outlined data fusion is currently non-

real time. Visualizing the status of sensor interpolation, as the measurements are taken, can

certainly benefit numerous remote sensing applications.

w e aaee t m v" t -e- I" -W o v 4"M 4"" esa ees ee

FIGURE 4-12: USING A UAV TO INTERPOLATE COARSELY SAMPLED THERMAL DATA [DAS, ET. ALL
2013]
LEFT: EXPERIMENTAL SETUP,
RIGHT-TOP: SPARSE DATA FROM THERMAL CAMERA
RIGHT-BOTTOM: INTERPOLATED DATA AFTER SENSING WITH UAV
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4.6 Video game engine use for immersive visualization

Published work carried out by Paul Bourke at University of Western Australia in 2009

details iDome[22], an immersive experience concept using Unity for visualization

generation. iDome utilizes a large 3m hemispherical "hull" as a surface for projection in

conjunction with a commodity 1080p projector and spherical mirror. iDome's aim is to

visually surround a user and present a view that is all encompassing, similar to an IMAX

theater experience ; by using a spherical mirror surface and curved dome, the end user does

not see any projection apparatus and the system engages peripheral vision cues.

hole in
dome

mirror" 
projector

FIGURE 4-13: IDOME AN IMMERSIVE ENVIRONMENT THAT ENGAGES PERIPHERAL VISION

[BOURKE]

Unique and relevant aspects of iDome are the use of Unity gaming environment to

prototype and explore the graphics concepts of compositing multiple "normal" 50/60 deg

rectilinear views into a curved image suitable for immersive viewing. While Qudrasense

explores the dual, fisheye and catadioptric imaging with rectified views for HMDs, iDome's

approach has significant merit as catadioptric and fisheye image capture systems already

provide a warped view. Additionally work outlined in iDome discusses the use of vertex

shaders on commodity graphics hardware to perform all computations with low-latency,

and at video frame rates (60 fps+) all from with-in Unity. Use of Unity for image processing

takes advantage of a Graphics-Processing-Unit (GPU), in contrast to previous approaches in

this section which rely on general purpose CPU cycles to handle all image processing,

including rectification.
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FIGURE 4-14: REAL-TIME IDOME VIDEO GENERATION USING UNITY[BOURKE]

FIGURE 4-15: UNITY-BASED RENDERED GAME CONTENT IN IDOME [BOURKE]
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Chapter 5

Quadrasense High-Level Design
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5.1 Overview

The following sections will briefly describe the design choices, the next chapter covers

detailed implementation. Figure 5-1 highlights keys components of the realized system.

QuadraSense System Level View

3DR X8+ Multi-Rotor UAV

WiFi 900 MHzU-------------Downstream Control

I

FIGURE 5-1: QUADRASENSE SYSTEM LEVEL BLOCK DIAGRAM
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5.2 The UAV

FIGURE 5-2: EIGHT ROTOR X8+ UAV SELECTED FOR USE IN
QUADRASENSE [3DRI

A 3D Robotics X8+ was selected as the UAV agent for several key reasons:

1) The multi-rotor configuration was selected over other vehicles such

as planes and gliders due to the extreme maneuverability and

payload capacity. The eight rotors on the X8 offer additional

payload carrying capacity compared to a traditional quad-rotor.

Excess capability was selected with the forethought of carrying

and deploying sensor packages in addition to any imaging

hardware.

2) The 3DR UAVs make use of an open-source flight computer

system called the Pixhawk. This control computer implements a

well documented open-source control protocol called "MAVlink",

an underlying messaging system for sending telemetry and

receiving control information. A key motivator in choosing the

3DR platform and the Pixhawk was clear, and documented access

to the telemetry link.

3) The 3DR X8+ utilizes a discrete wireless telemetry/control link

TOP PIXHWK module. Two identical units are used, one is placed on the UAV

BOTTOM TELEMETRY and interfaces to the Pixhawk via an RS-232/UART and the
RADIOS [3DR] second radio links to a downstream computer or tablet via

standard UART-over-USB connection. Although there are

numerous advantages to merging telemetry control with a video-

link interface, such as the potential for higher update rates for
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telemetry, having a separate control radio simplified the software

development process, as no demultiplexing or additional complex

protocols needed to be handled. The control plane and data

plane (video) are cleanly separated.

5.3 Camera Complex

The camera complex in Quadrasense (figure 5-1) refers to the on-UAV components needed

to realize wireless transmission of omnidirectional video. The complex is composed of the

GC6500 camera sub-system and the OpenWRT wireless router.

Camera sub-system

After careful consideration of many potential solutions,

including devices such as a GoPro and custom gimbaled

cameras, an evaluation platform from GeoSemiconductor

utilizing the GC6500 SoC was selected. This platform

uses a 5 MegaPixel sensor in conjunction with a near

180-deg fisheye lens to enable real-time wide-angle

capture. The GC6500 SoC platform implements several

key features that were strong motivators for its use:

1) The SoC, in hardware and in real-time, can dewarp the
fisheye (to provide an approximately normal field of view)
while compressing the image. The dewarp engine is

under user control so a new perspective can be

communicated to the SoC which in turn provides an

updated, rectified image stream . Virtual parameters of

the GC6500 such as horizontal pan, vertical pan and tilt

can be mapped to the yaw/roll/tilt angles from a

FIGURE 5-4: FISHEYE CAMERA USED traditional Head-Mounted-Display, easing
IN QUADRASENSE PROJECT implementation. The use of fisheye imaging and dewarp

was highly appealing owning to (in theory) only a single

frame of delay for all panning and movement operations.

2) The compression engine in the SoC is capable of an all "Intra coded" mode where

each compressed image does not depend on a previous or next image (motion
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estimation / motion prediction), as is normally done with video CODECs.

Maximum latency for compression, using H.264 in this mode, is sub-10ms .

3) The GC6500 interfaces to a host processor via single USB2.0 High-Speed link and

is bus powered, drawing less than 500 mA. Since the target platform is moving,

a battery-based power delivery system was required and a low-power platform

eased the burden of additional batteries

Dewarp Settings

FIGURE 5-5: TOP DEWARP CONTROL IN GC6500, BOTTOM FISHEYE & DEWARPED IMAGE
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Wireless video link and camera control

FIGURE 5-6: TPLINK ROUTER SELECTED FOR QUADRASENSE,
USB2.0 HS + LITHIUM-ION BATTERY [TPLINK]

An off-the-shelf TPLink router was selected to interface to the GeoSemi camera

system. This commercial router has several benefits including a built-in battery, a USB2.0

high-speed interface and 802.11n 108 Mbps WiFi. OpenWRT, a Linux-based wireless

router distribution, is supported on this device and the complete OpenWRT Linux-based

toolchain makes cross-compilation fairly straightforward.

In addition to streaming video, by adding an external USB 2.0 High-Speed hub and

USB2.0 flash drive, the platform was extended to include local recording of the fisheye

video (which is not sent wirelessly due to bandwidth limitations).

5.4 Syphon GPU texture sharing

The Syphon software framework[23] allows different programs running on the same Apple

OSX machine to share GPU textures with next to zero overhead. Owing to its cross-

platform capability, Unity supports a very limited number of native video CODECs and relies

on the main CPU for all decoding. By decoding the incoming video in a separate application

and making the decoded frames available to Unity via a Syphon GPU texture, video streams

using arbitrary compression formats can be piped into the game environment.

Syphon video frames in Unity appear simply as a graphics texture, meaning all hardware

accelerated data paths of the GPU including tessellation, shaders and so on supported by

Unity and can be applied in real-time to the video. Figure 5-7 shows an example of live

video, sent via Syphon texture to Unity, with translation and rotation applied in the Unity

game environment.

41 of 75



* Unity File Edit Assets GameObject Component Terrain Window Help
r e 4 SyphonChentScene.unity - SyphonUni

_ U _'

FIGURE 5-7: VIDEO SCALED, TRANSLATED AND COMPOSITED REAL-TIME IN UNITY FROM A SYPHON

VIDEO FEED [SYPHON]

5.5 UniMAV: UAV Telemetry and Guidance Control

As mentioned previously, the Pixhawk flight computer uses a protocol called MAVLink for

guidance commands, relying telemetry, battery status, and system status. To enable Unity

the ability to access telemetry data and to relay guidance waypoints back to the UAV, a

custom module named "UniMAV" was written for the open-source Python-based

application called MAVProxy.

MAVProxy is a text-mode interface that translates high-level human readable commands to

the lower level MAVLink messages which are ultimately sent via the wireless telemetry link

to the Pixhawk. The processed MAVLink messages result in the UAV taking action. For

example a MAVProxy human-readable request of "takeoff 10m" is translated into the

necessary MAVLink messages that command the UAV to takeoff to an altitude of 10

meters.
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5.6 H MD and Unity environment

MAVCMD

iimad t)Q Xbe O excti ''e PAV They 7a Is Sxtu4tiQ U'n .Uer feu91 'ii as parf of
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CUD Field Name Description
ID

16 MAV CUD NAV WAYPOINT Navigate to MISSION.

Mission Param #1 Hold time in decimal seconds. (ignored by fixed
wing, time to stay at MISSION for rotary wing)

Mission Param #2 Acceptance radius in meters (it the sphere with
this radius is hit, the MISSION counts as reached)

Mission Param #3 0 to pass through the WP, if > 0 radius in meters
to pass by WP. Positive value for clockwise orbit,
negative value for counter ckockwise orbit. Allows
trajectory control.

Mission Param #4 Desired yaw angle at MISSION (rotary wing)

Mission Param #S Latitude

Mission Param #6 Longitude

Mission Param #7 Altitude

17 MAV CMDNAV LOITER UNUM Loiter around this MISSION an unlimited amount
of time

FIGURE 5-8: SAMPLE MAVLINK COMMAND MESSAGE [MAVLINK WEBSITE]

As mentioned, the Responsive Environment's Tidmarsh Unity project was used as a starting

point for the UI visualization and control aspects of Quadrasense. The existing Unity

Tidmarsh application is able to communicate with the Responsive Environments Sensor

nodes with ChainAPI. An Oculus Rift DK2 device was used as the Head-Mounted-Display.

A Unity script was created to relay head position to Camera Complex via a UDP stream.

Unity communicates commands to the UAV via UniMAV and also receives telemetry data

via UniMAV.

FIGURE 5-9:, LEFT: OCULUS RIFT DK2, RIGHT PRE-DISTORTED IMAGES FOR LEFT/RIGHT

OBJECTIVES
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Chapter 6

Quadrasense Implementation
Details
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The next sections will cover the hardware, embedded software and Unity software

developed in the course of the project with associated details and trade-offs.

6.1 Camera

A small, cross-platform C++ program, running on the router device sent video frames and

proxyied head-mounted-angles to the GC6500. In the final implementation this program

sends video frames, compressed in H.264 over a dedicated UDP port and receives angle

position information from the Oculus Rift in a simplified 12-byte format. In addition to

transmitting a dewarped video stream, the developed software also saves a local copy of the

unwarped video stream to a file whose name is auto generated by the current day and time.

The GC6500 SoC utilizes a USB2.0 host interface and sends compressed video using the

Universal-Video-Class of USB. Because the GC6500 can send up to eight compressed

multiplexed video streams (e.g. dewarped video and regular video), GeoSemi supplies a

custom driver that was cross-compiled for the Linux router platform. All video is

transported to the host via a single Linux UVC end-point and the Geosemi driver/libraries

provide a C-language API which allows user applications to demultiplex the many video

streams completely in software. Users associate their application to a specific video stream

by registering a C-callback function. For Quadrasense, two video callbacks were registered,

one for the fisheye image stream and a second for the dewarped video. Use of callbacks

enables psuedo-threading as the user's callback function is only activated on an event (new

frame), but does not use any polling.

Compressed Video flow with OP-WRT

Callbacks Stream1 Newe
GCS500 Camr

Stream 1

USB2 .eato omlt

Stream 2

-- dewre

- iertOn pmagete ,

FIGURE 6-1: VIDEO FLOW THROUGH GC6500 + UVC DRIVER
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6.1 Low-latency Video

To deliver an immersive experience, with conservative 802.11n bandwidth usage, the H.264

video CODEC was chosen, in an all Intra-coded mode with a Constant-Bandwidth-Rate

inside the GC6500 set to 5 Mbps (-600 KBytes/second). To minimize end-to-end latency

from capture to delivery, network delays had to be carefully considered. To transport video

to the downstream computer a cross-platform approach was also required. TCP was ruled

out due to packet acknowledgements adding significant delay ; wireless links are notoriously

lossy and if acknowledge packets are lost, then video delivery halts until a backlog of

packets are successfully transmitted. To meet the demanding <10 ms latency figures, two

different network approaches were implemented and tested:

1) UDT[24], a TCP-like protocol that uses UDP for its underlying transport but includes

the concept of retries for only lost packets. UDT API and member functions have

close correspondence to Berkley sockets and can almost be used interchangeably.

UDT is written in C++.

2) A pure UDP implementation which does not include any kind of re-tries, where each

image frame is enqueued into a large buffer and the appropriate send function is

called.

1 1 Dewarped video callbac
2 static void video cb(unsigned char *buffer, unsigned int size, video infot info, void *user-data)

3B {
4 struct channelinfo *vch info = (struct channel-info*) user-data;
5
6 if (use UDT = 1)
70 {
8 // Send frame out using UDT
9 UDT:ssendWsg(UDTclient, buffer, size, -1, false);

10 }
11 else
12n {
13 // Send out the video frame via UDP
14 sendto(andsock-fd, buffer, size, 0, (struct sockaddr *) iandsock, socketlength);
15 }
16
17 printf("Sent frame: %d \n\r", frame-cnt);
iB frame_cnt++;
19
20 // Update dewarp engine on frame sync
21 muvecvideoset dearpparams(ch, dw_panel, dw mode, &dw_params);
22
23 // Done with callback
24 mxuvcvideocb_buf_done(vch-info->ch, info.bufindex);
25 )
FIGURE 6-2: UDT AND UDP CODE FOR SENDING DEWARPED VIDEO PACKETS

In UDT, packets sent and received are accounted for in a "bitmap" and the receiver

compares bitmaps with the sender so that only lost packets are re-sent if the network

experiences packet loss. Actual end-to-end testing revealed that under low-loss network

conditions UDT performed quite well, however under heavy packet loss, UDT would take an

unpredictable amount of time before new video frames would appear. Because UDT is
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designed for reliable file transfer over UDP, the concept of "semi-reliable" transport is

difficult to achieve.

With a wireless link that both experiences packet loss and possess unused capacity, a

reasonable system-level implementation will utilize excess bandwidth to resend lost video

frames with some expiry time before retries are stopped (as to not present user with stale

or outdated video frames). While in principal UDT's retry/acknowledge scheme provides for

this highly desirable functionality, in practice it did not deliver satisfactory results. UDT

estimates the channel latency and bandwidth to most effectively transport data without

causing excessive packet-loss and uses a software control-loop algorithm to adjust

interpacket-delays, window size (packets per frame) and retries. Unfortunately wireless

packet loss is often random and difficult to predict i.e. interference caused by microwave

oven usage or a car passing by. Because UDT attempts to adapt to the dynamic network

conditions, testing with random interference resulted in an oscillatory behavior in UDT's

control-loop. The control-loop oscillations ultimately resulted in oscillatory bandwidth

utilization, causing extraneous delays, loss of video and poor recovery. UDT's instability

under random packet loss has been noted in other literature[25], shown in Figure 6-3.

200-

i.I 5(1

1 4 7 10 13 16 19 22 25 28 31 34 37

lime I sec I

UDT throughput changes with time

FIGURE 6-3: UDT BANDWIDTH OSCILLATIONS [REN, TANG, QIAN]

The UDP implementation of wireless video delivery was quite straightforward to implement

and test. Each received video frame is enqueued into a recipient UDP buffer in the callback

and the appropriate socket API to send is called to send the data. The TCP/IP stack

automatically fragments the large packet into smaller frames (up to the MTU of 1500-

bytes). This particular implementation of video-over-UDP does not implement any kind of

acknowledge, re-try, or re-transmission. With the assumption of a 30 fps video stream and

a new frame arriving every 33 ms, any partial loss of a fragmented UDP message will result

in a complete loss of the video packet, causing a minimum of 33 ms of no video. In practice

this scheme was found to be robust both in degrading and in recovering from interference
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- highly desirable characteristics for a real-time system. Because no acknowledge or

retransmission system is used, as soon as the wireless link is free of interference, new

frames will be delivered with zero software synchronization delay. Additionally UDP is

supported on numerous platforms, easing software implementation tremendously.

In examining details of 802.11n networks, there is a salient reason why a pure UDP over

802.11n approach is perhaps close to optimal. At the MAC-layers 802.11n actually

implements a bitmap / re-try mechanism that automatically resends only lost Ethernet

packets, similar to the mechanism UDT implements in software. Any software

implementation of the same scheme will result in latencies and delays since the 802.11

Frame # Type
4579 Block ACK
4580 MPDU #1
4581 MPDU #2
4582 MPDU #3
4583 MPDU #4
4584 MPDU #5
4585 MPDU #6
4586 MPDU #7
4587 MPDU #8
4588 Block ACK

4589 MPDU #1
4590 MPDU #2
4591 MPDU #3
4592 MPDU #4
4593 MPDU #5
4594 MPDU #6
4595 MPDU #7
4596 MPDU #8
4597 MPDU #9
4598 MPDU #10
4599 Block ACK

Prloir

Sequence # Bitmap (64 bits)

Start Sequence # 1381+ 64 = 1445 FF FF .... FF FF
1445
S1446 F
1447
1448
1449 lost frame 0
1450 1 E
1451
1452 1
Start Sequence # 1389 + 64 = 1453 FF FF .... FF EF

1449 retransmitted
1453 frame
1454
1455
1456
1457
1458
1459
1460
1461
Start Sequence # 1398 + 64 =1462 FF FF .... FF FF

802.11n 802.11

! A-MPDU 1

More Bit

A-MPDU 2

RIFS-* Ii- More Bit

Aggregated MAC Protocol Data Units

A-MPDU last

RIFS-' s- More Bit

Multiple Ethernet Frames

Radio 802.11 n A-MSDU 1 A-MSDU 2 A-MSDU last 80

Aggregated MAC Service Data Units

FIGURE 6-4:
TOP: BITMAP ACK/RETRY IN 802.11N, MIDDLE: A-MSDU PACKET COALESCING, BOTTOM A-MPDU

PACKET COALESCING [LEUTART]
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hardware is monitoring packet loss, signal strength and adjusting numerous other

parameters all in real-time.

Secondly, 802.11n supports the ability to aggregate Ethernet frames into larger packets via

two independent methods: A-MPDU orA-MSDU. Frame coalescing enables more

throughput at the expense of larger packet loss during interference. Since a compressed

video frame fragments into many 1500-byte MTU Ethernet frames, A-MPDU/A-MSDU
aggregation will automatically combine the 1500-byte fragments and places them into

larger messages. Owing to these key features, acknowledge-free transmission of video over

UDP via 802.11n will most likely result in the best "reasonable" delivery of real-time

streams.

6.2 Oculus Head Position and Dewarp communication

The GC6500 driver and APIs provide a very simple interface to control parameters of the

dewarp engine. The calling parameters are the virtual horizontal position, the virtual

vertical position, tilt, zoom (field of view) and a "divisor" which controls the effective

granularity of panning movements. To allow cross-platform development and debugging of

dewarp control, UDP again was selected as the transport mechanism for the head position

information

12-byte UDP Dataoram. HM

28 // Dewarp parameters
29 dewarpparams_t dwparams;
30 dewarp_ modet dw mode = EMODE WM_1PaneI.EPTZ;
31 STRUCT_Q_EPTZNODEWM_1PANELEPTZ *eptz;
32
33
34
35
36 // Dewarp code
37 eptz = &dwparams.eptzmode wm lpaneleptz;
38 memset(eptz, 0, sizeof(STRUCT_Q_EPTZMODEWMlPANELEPTZ));
39
40 eptz->HPan = (int) occulus-yaw;
41 eptz->VPan = (int) occuluspitch;
42 eptz->Tilt = (int) occulus_ tilt;
43 eptz->Zoom = ZOOM*ANGDIVISOR;
44 eptz->Divisor = (int) ANGDIVISOR;
45
46 mxuvc _videoset dewarp params ( ch, dw panel, dw-mode, &dwparas );

FIGURE 6-5:
TOP: UDP DATAGRAM FOR CONTROLLING DEWARP ENGINE
BOTTOM: EXAMPLE OF UPDATING GC6500 DEWARP ENGINE
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A very simplified packet structure of 12-bytes was defined, for roll, pitch, yaw. On the

sender side the packet is formatted as several IEEE-754 32-bit floats, with bytes enqueued

into the packet buffer in "network byte ordering" (big endian for Ethernet). Software on the

router platform asynchronously receives these UDP packets and updates the dewarp engine

on the next video frame sync. Because a user may change their head pose only slightly, a

simple software filter was used to only communicate changes larger than a reasonable

threshold, to minimize jitter in the dewarped video.

6.3 OpenWRT Router
OpenWRT, an open-source Linux based router

software platform was utilized due to ease of

access, well defined tool chains and support for

64MB ISS1D:OPenWRT64MB3 a broad number of router SoCs. The chosen

router was also physically modified to upgrade

the SDRAM from the standard 32 MBytes to

64 MBytes. An SMA connector was added to

enable the use of an external antenna,- bypassing the internal high-loss, low-sensitivity
PCB antenna.

FIGURE 6-6: ROUTER USED FOR WIRELESS
VIDEO TRANSMISSION

The wireless router is configured as a "client" to connect to the Tidmarsh Access Point,

meaning the Quadrasense wireless video, control computer and sensor nodes are all

accessible via the same, single network. The software written for the GC6500 platform is

cross-compiled and stored on an SDXC memory card, attached via a USB reader/hub to the

router. Since onboard non-volatile storage is limited to 4 Mbytes, external USB flash

memory stores all executables, GC6500 drivers and modules, in addition to the raw fisheye

image stream.

6.4 Syphon Video

An open-source program called SyphonNetCamera[26] was used as a starting point for the

Syphon-based video sharing aspect of this project. SyphonNetCam is an OSX, Objective-C

program which connects to web cameras over TCP and streams MJPEG data, decodes the

data and presents the decoded video as a GPU texture to downstream Syphon applications.

For this project SyphonNetCam was modified to:

0 Support video reception carried by UDP & UDT transports
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• Decode video in MPEG-2 and H.264 video formats to Syphon/GPU buffers 

using the x264 libraries 

• Record any incoming video stream to a local file for offiine use, with file naming 

based on time and date stamps 

Router Sending Dewarped Video 
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·~ 
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FIGURE 6-7: END-TO-END VIDEO TRANSMISSION AND DECODING 
TOP: ROUTER PLATFORM SENDING DEWARPED VIDEO VIA UDP 
BOTTOM : OSX COMPUTER RUNNING MODIFIED SYPHONNETCAM, DECODING VIDEO 
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6.5 UniMAV and Software-In-The-Loop Simulator

The multi-rotor's Pixhawk flight computer receives control and transmits telemetry(i.e.

latitude/longitude, yaw, pitch, roll) using a low-level, non-human readable protocol called

MAVLink. MAVLink messages can command the multi-rotor to perform a number of semi-

autonomous operations such as fly to a way point, takeoff or land. Creating low-level

MAVLink messages directly to control the UAV is error prone and dangerous, thus a third-

party Python program called MAVProxy was utilized. MAVProxy translates "human

readable" commands into a succession of correctly formatted MAVLink messages which are

transmitted to the UAV via the dedicated telemetry link. In reverse, MAVProxy can parse

received MAVLink telemetry information into more human readable data such as yaw, pitch

and roll angles. Unfortunately MAVProxy only offers a command-line interface or Python

API for interaction.

9Unity to UAV Control via
V ~UnIMAV + MAVProxy

MAVnk MAVProxyAPITOn

URottet Al*4G.

tCotrolUDP 
41L231 5p

ALW

FIGURE 6-8: SYSTEM VIEW OF UNITY, UNIMAVAND MAVPROXY

To enable flow of telemetry and control information between Unity and the UAV, a custom

program called UniMAV was created. UniMAV translates Unity high-level commands (i.e. fly

to destination) into MAVProxy commands, which are ultimately formatted as MAVLink

messages and sent via the telemetry link to the UAV. UniMAV also receives telemetry data

from MAVProxy as soon as the data is parsed, and updates Unity with the latest

information.

UniMAV uses two UDP sockets to communicate with Unity; one socket (41235) listens for

commands, while telemetry data is relayed to Unity via destination socket 41236. Figure

6-8 shows a diagram of data flow between the telemetry radio, MAVProxy and Unity.

UniMAV listens for a stream of four 32-bit IEEE-754 floating-point values and makes the

appropriate MAVProxy function calls after parsing the data. The first value UniMAV

receives specifies a desired command for the UAV to execute with the following values

acting as arguments. The implemented command-set is a very small subset of operations
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the Pixhawk supports. Figure 6-9 shows key sections of UniMAV used to send telemetry
and to process Unity requests.

19 # Commands:
20 # 0 -.LAD,1 - TAKEOFF, <alt> , 2- WAYPT <long,lat,alt>, 3 = YAW <yaw angle> , 4 = RTL
21
22 # Commands come in on any IP, and this port via UDP
23 UDP_IPIN - "0.0.0.0"
24 UDP_PORT_IN - 41235
25
26 # Telemetry data is send to this IP (Unity) via UDP
27 UDP IP OUT - "192.168.64.110"
28 UDP~PORT_OUT - 41236
29
30 # Create UDP socket and bind to address
31 controlsocket - socket.socket( socket.AFINET,socket.SOCKDGRAN
32 control socket.bind( (UDP_IPIN,UDP PORTIN) )
33 telenwtrysocket - socket.socket( socket.AFINET,socket. SOCKDGRA)
34
35 # First get an instance of the API endpoint
36 api - local connect 4
37 # Got the connected vehicle (currently only one vehicle can be returned).
38 vehicle - api.get_vehicles()[ ]
39
40 def output vehicle state(attribute):
41
42 lattitude = vehicle.location.lat
43 Longitude - vehicle.location.lon
44 altitude - vehicle.location.alt
45
46 # Get vehicle parameters, convert from radians to degrees
47 yaw - vehicle.attitude.yaw * (360/(2*math.pi))
48 pitch - vehicle.attitude.pitch * (360/(2*math.pi))
49 roll - vehicle.attitude.roll * (360/(2*math.pi))
50 airspeed - vehicle.airspeed
51
52 tellmtrydata -
53
54 telemetrydata + struct.pack("f",lattitude)
55 telemetrydata +- struct.pack("f",longitude)
56 telemetrydata +- struct.pack("f',altitude)
57 telametrydata +- struct.pack("f",yav)
50 telemetrydata +- struct.pack("f ",pitch)
59 telemetrydata + struct.pack("f" ,roll)
60 telemetry_data + struct .pack( "f" , airspeed)
61
62 # Push the packet out
63 telemetry_socket.sendto(telemetrydata, (UDPIPOUT,UDP_PORTOUT)
64

FIGURE 6-9: KEY SECTION OF UNIMAV PYTHON CODE

To safely debug Unity/UAV interaction prior to actual flights, a software-based simulator

was used to emulate the UAV. The Pixhawk software codebase offers an accurate simulator

called "Software-In-the-Loop" (or SITL). The SITL program enables testing of MAVLink
commands and flight plans even without a flight computer or physical UAV. SITL runs on

standard desktop Linux and Windows computers and faithfully emulates operation of the

physical Pixhawk-based UAV.

Calibration data from the physical UAV's Pixhawk was extracted, so the SITL used same

rates of movement ("time constants") and control capability as the actual UAV. Access to a

software simulator for critical UAV operations proved immensely useful, Unity and UniMAV

interactions were debugged fairly quickly and confidence was built that the physical UAV
would behave properly under Unity control.

An open-source software package called "APM" (Advanced Plight Mission) was used in

conjunction with Unity and UniMAV/MAVProxy to observe simulated flights at a virtual
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Tidmarsh. The upper image in figure 6-11 shows successful communication between

UniMAV & MavProxy, while the bottom image shows the virtual quadcopter is correctly

placed at Tidmarsh.

a

ArduCopter : bash

APM Planner v2.0.18-rc2 (T3500: 192 16864.115) x

File Helo

Primary Flight Display

Info View

Quirk Actions Status MVessnges

U.UU oHme Last Finished n]

FIGURE 6-11: VERIFYING UNITY+SITL IS FUNCTIONING, QUADCOPTER IS CORRECTLY
PLACED ATTIDMARSH

TOP:
BOTTOM:

CONSOLE-BASED ARDUCOPTER SITL
APM PLANER SOFTWARE
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6.6 Unity

An object-oriented approach was taken in modifying the existing Tidmarsh Unity project for
Quadrasense. Unity virtual objects such as the UAV, virtual fisheye camera and so on are
modeled after real-world elements, with interactions and behaviors attached to the relevant
Unity objects. This made software design more straightforward as there was a one-to-one
correspondence between physical objects, virtual objects and their respective behaviors.

6.6a UAVAgent and on UAV Virtual Cameras

A UAV agent called Drone was introduced into the Unity environment. To adjust the
position of the virtual UAV in-tandem with movements from the physical UAV, a script
called "UDPReceive.cs" was created ; this script subscribed to UDP packets sent by
UniMAV. Received yaw, pitch, roll and latitude/longitude are used to re-position the virtual
Unity UAV on every UDP update.

Unity Drone and Camera
Hierarchy

x,y~z position -1

El

II

El

El

Unity and QuadCopter
Interfaces

~I~eemetry:UDP422iW

Co~mandsU0P4235i

HMDSend.cs
HMDAng~es: UDP41235 L

Decoded
Video

Angles ,.

FIGURE 6-12:
LEFT: ORGANIZATION OF QUADRASENSE UNITY MODULES
RIGHT: SYSTEM-LEVEL INTEGRATION OF UNITY IN QUADRASENSE

55 of 75



A script called QuadcopterControl.cs was also attached to the Unity UAV object. This

script, when in the mission planning mode, translates a mouse click in the Unity game

coordinate system to standard latitude/longitude values and sends this via a UDP datagram

to UniMAV, which results in the UAV flying to the desired (clicked) location.

A virtual camera with field-of-view modeled after the actual dewarped GeoSemi camera

was attached to the UAV agent. The physical camera platform was attached to a two-axis

gimbal in order to enable smooth video during UAV movements. To enable image

registration adjustment between the physical camera and the virtual world, the Unity UAV

camera behavior takes Unity x,y,z + yaw coordinates from the UAV, but tilt and pitch are set

to zero assuming the gimbal will counteract any movement. This approach, in software,

stabilizes the rendered camera. In addition, via Unity, offsets are provided to enable

alignment and corrections for "open-loop" image registration between the rendered world

and the real-time video. To enable the Oculus Rift interface, an additional Unity camera

object named "FPVOcculusCAM" was added. The Oculus Rift camera object has access to

the real-time head gaze and pose angles from the physical Rift hardware. A script called

"HMDSend.cs" was attached to the Unity Rift object and real-time transmits the Oculus

head angles, via UDP, to the router/camera sub-system.

6.6b Sensor markers and simple sensor visualizations

The original Tidmarsh Unity project simply overlaid data readings in the terrain where the

sensor was located. To make the information more similar to a map with "call outs" for

sensor location and sensor values, several 3D objects were modeled and created in Rhino.

First a "sensor marker" depicted as a series of concentric circles, similar to the circles in the

original UI mock-up, was created. This 3D object was imported into Unity and is auto

center-positioned with each sensor node displayed in the Unity Tidmarsh environment. A

shader was used to light the sensor indicator with some transparency as to not be visually

overwhelming or distracting when alpha blending with real-time video.

%.*aer Cflame Seew ragle $56.t 'AWPsWL a t t Twasklm '.,Tel &Oha*o| SeBOTath RhmiT**l RwedvT
v'S 1k* 7

FIGURE 6-13: NEW SENSOR MARKER FOR UNITY
LEFT: DESIGN OF MARKER IN RHINO
RIGHT: MARKER IN UNITY AFTER IMPORT AND APPLYING SHADERS
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A second item was modeled and created in Rhino as well, a "tag" for which sensor data
appears inside. The choice of a chevron-like symbol was chosen for it's ability to inform
users of data values with 3D relief from the surface, similar to markers used in mapping
programs and GPS navigation applications.

* fthl,,,., Fie Ed-L _VeW Cr Suf Soi Mesh Diniso Trnft Tool A, lez Re, Vliw

M11, Id.

0, 1 AA
N T~

SCA Q 0

FIGURE 6-14:
LEFT:
RIGHT:

NEW DATA CONTAINER FOR SENSOR INFORMATION
DESIGN OF CONTAINER IN RHINO
MARKER AFTER IMPORTING INTO UNITY, BEFORE SHADER-BASED LIGHTING

As the user moves around in Unity (in any view) the tags re-orient themselves automatically

to face the camera, so the user always sees the sensor data (updated in real-time). While

this visualization / rendering of sensor data is fairly basic, the approach was taken as a first

step towards a more sophisticated augmented reality view. Any sensor data that Unity has

access to via ChainAPI (i.e. temperature, humidity, lux levels, etc) can be displayed in the

tags

FIGURE 6-15: COMPLETED SENSOR VISUALIZATION IN UNITY, WITH REAL SENSOR DATA
DISPLAYED

57 of 75



6.6c Syphon real-time video, alpha blending and scaling

As mentioned, Syphon GPU sharing technology was used to take decoded video frames

from the SyphonNetCam application and bring them into Unity. To display the Syphon

video in Unity, a quad primitive was used. In the graphics domain, a quad resembles a

plane, but has only one rendering surface composed of four vertices and two triangles. In

graphics, it is common to render simple 2D images (i.e. a billboard or sprite) into a quad, as

other graphics primitives such as a plane or cube are more complex. In Unity the Syphon

scripts were attached to a quad object which is a child of the FishEyeCameraObject

FIGURE 6-16 [UNITY]
LEFT: QUAD IN UNITY, TWO TRIANGLES, FOUR VERTICES
RIGHT: PLANE IN UNITY, TEN EDGES

However, using the Syphon video with the quad posed an interesting challenge. The Unity

rendered world is a 3D, and the real-time video was a 2D capture. In order for the

augmented reality metaphor to function and to have clean registration between the virtual

and physical worlds, it was important that the Unity 3D objects render "on top" of the real-

time video stream. To ensure the virtual world is rendered on-top of the video stream, the

quad was placed at a location near the far limit of the Z clipping plane. The Z clipping plane

is the furthest distance from the camera that Unity will render. This approach ensures the

Unity 3D objects are always rendered into the scene and will appear on top of the Syphon

video.

Because the quad is placed in the Unity scene far away, it needs to be resized to fill the

entire field of view of the Unity camera. Additionally several different Unity cameras are

available (real-time video, virtual player on the ground) so the quad not only had to be

placed and scaled appropriately, it also had to be oriented normal to the current camera's

surface. To solve these issues, a script was written to always to auto-scale the quad to fill

the screen and simultaneously guarantee it to be within the clipping plane of the active

camera.
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The following formula[27] is used for scaling the quad:

quadheight = tan (camFOV * * quad position * 2

In Unity, the FOV angle related to the vertical field of view, so the vertical quad size is

computed first, and the screen's aspect ratio is used to determine the horizontal size.

ScaleSyphonQuad.cs 0
caleSyphonQuad ' Update 0

1 using UnityEngine;
2 using System.Collections;
3
4 public class ScaleSyphonQuad MonoBehaviour {
5
6 private Camera cam;
7
8 //Use this for initialization
9 void Start ()

10 {
11 cam = GameObj ect. Find("DroneFPVCam").GetComponent<Camera>);
12
13 //cameraRTS = (ameObject.Find("RTSPlayer/Camera" ).GetComponen t<Camera>();
14 }
15
16 void Update()
17 {
18
19 /1 Put quad with-in the clipping plane
20 float pos = (cam.farClipPlane - 1.0f);
21
22 / Find current camera position

23 transform.position = cam.transform.position + cam.transform.forward * pos;
24 transform.LookAt (cam.transform);
25 transform.Rotate (0.0f, 0.0f, 0.0f);
26
27 / Unity Camera Field-of-View specifies vertical
28 // Compute quad's height based on camera FOV and distance of quad to camera
29 float h = (Mathf.Tan(cam.fieldOfView*Nathf.Deg2Rad*0.5f)*pos*2f);
30
31 // Scale quad ; compute width based on aspect ratio
32 transform.localscale = new Vector3(h*cam.aspect,h,1.0f);
33 }
34 }
35

FIGURE 6-17: SCALESYPHONQUAD.CS , APPROACH TO AUTO-SCALING AND PLACING SYPHON

QUAD IN CAMERA FIELD OF VIEW

Using the Arducopter SITL to simulate UAV movements, the alpha-blending, object distance

rendering and visualizations were all carefully examined. Figure 6-18 shows testing of

ScaleQuad, Syphon and alpha-blending interaction. This scene is taken from a UAV agent

above the ground with the top image capture showing no Syphon video blending and the

bottom showing a test Syphon video stream. The image demonstrates key Unity sensor

objects are not culled or occluded when using the scaled quad.
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On-UAV view without video blendin

On-UAV with video blendir

FIGURE 6-18: TESTING OF SYPHON AND QUAD SCALING FOR AUGMENTED REALITY MODE

TOP: VIEW FROM UAV IN UNITY WITHOUT SYPHON VIDEO BLENDING

BOTTOM: SAME VIEW FROM UAV WITH SYPHON VIDEO ENABLED
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Chapter 7

Quadrasense Results
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7.1 Quadrasense Unity Views
There are three key modes of interaction with Quadrasense/Unity: "OTG" or On-the-

Ground, "PLN" or Planning and "FLY" or Flying. In OTG users explore the Tidmarsh

environment as if they were physically walking in the terrain ; this mode is nearly the same

as the initial Tidmarsh Unity interaction. In PLN users explore Tidmarsh with a Bird's Eye

2D view, and choose destinations for the UAV. FLY mode enables a virtual reality,

augmented reality or telepresence interaction, taken from the perspective of the UAV.

7.1a) Mission Planning

Users initially interact with Quadrasense using the Planning or "PLN" view (shown in lower

right of Unity screen). Users have the ability to pan in this view and zoom into sensor nodes

of interest using standard keyboard arrow keys and mouse movements. Figure 7-1 shows a

starting point for planning (top) and zooming into an area of interest (bottom). Note that

the mode has not changed between images.

FIGURE 7-1: MISSION PLANNING VIEW IN QUADRASENSE/UNITY
TOP: INITIAL VIEW IN MISSION PLANNING
BOTTOM: ZOOMED INTO AREA OF INTEREST
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Once an area of interest has been determined, users hold down a special activation key and

mouse-click on the map to transmit the destination to the UAV. In the Unity screen

capture, Figure 7-2(Unity), we can see a small red circle is placed on the clicked location and

the computed "Mission waypoint" longitude/latitude is shown in the lower right of the top

image. This lat/long pair is immediately sent to UniMAV via UDP and the UAV moves to the

destination as a result. Taken from an end-to-end simulation, the circle in 7-2(UniMAV)

shows the received destination latitude/longitude and the image in 7-2(APM) shows the

traveled flight path of the UAV. This simulation successfully demonstrated Quadrasense/

Unity control over the UAV, and synchronization between Unity and the real UAV.

FIGURE 7-2: SIMULATED MISSION IN QUADRASENSE/UNITY ; ANNOTATIONS IN WHITE

TOP: UNITY MISSION PLANNING
RDTT^lM- I VI II IIMAV+MAVPROXY: RIGHT: APM VIEW OF ACTUAL FLIGHT

UatAonl Go home, 'LaSt PO Cche leaWr#4ap Cerm an UAW F I Otos

a i ~:b
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7.1b) On UAV View: Telepresence and Augmented Reality Use Cases

Once a user has issued a destination, the main mode of interaction can be switched from

PLN to FLY which changes the Unity camera perspective to match the actual on-UAV

fisheye camera. In FLY mode there are three possible views, with the notion of enabling

virtual reality, telepresence and augmented reality during a flight. Images in figures 7-3

through 7-5 are generated by Unity with terrain footage from Tidmarsh farms piped in

through Syphon.

1. Users see a purely Unity generated
view from the UAV; the Unity UAV
position is synchronized to the actual
UAV, so this is a virtualized view of what
the real UAV sees.

'1 3:PUR UIT ON UV VIEW

2. The user may hit a key which brings in
the actual UAV's real-time video stream
via Syphon into Unity (full-screen). As
the user moves their head,
correspondingly the camera complex
sends a new view. In this mode there
are no Unity graphics overlaid into the
video. This mode implements the
concepts of immersive remote

IGURE 7-4: TELEPRESENCE ON UAV VIEW telepresence.

3. By pressing the same toggle key again
the video stream is blended with Unity
generated sensor visualizations. The
UAV's real-time position is continually
tracked so the generated sensor graphics
are correctly registered to the real world.
This third-mode enables augmented
reality interactions.

FIGURE 7-5: AUGMENTED REALITYON UAV VIEW

Not shown is the "OTG" or On-the-Ground mode. This is nearly the same as the existing

Tidmarsh Unity interaction except for the updated sensor markers and virtual UAV agent.
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7.2 Data captured from Live Flight

Actual results taken from flying Quadrasense at Tidmarsh Farms are presented in this

section. The sequence of images shown follow the UAV on a simple point-to-point flight,

demonstrating the interaction between Unity and the UAV.

Due to damage of the main fisheye camera prior to final test, these results are from an

earlier version of the Unity project without updated map visuals featuring the circular

sensor indicators and newer sensor tags. Only the mission planning and augmented reality

use case is illustrated, the other (fully-functional) modes of operation such as telepresence

(using the HMD), Oculus integration and mode transitions are not shown here.

Figure 7-6 shows the control computer used to drive the system, the UAV on the launching

point at Tidmarsh and the UAV directly after autonomous take-off.

1* .

FIGURE 7-6: TEST FLIGHT AT TIDMARSH
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The top image in Figure 7-7 shows the mission planning view in Quadrasense/Unity while

the bottom image is a capture of the actual UAV at the same instant in time. The top image

of figure 7-7 also shows real-time video (lower left) composited into the planning view with

a requested destination depicted by a white circle. Lower-left video shows the expected

water channel features based on the location, orientation and altitude of the UAV.

FIGURE 7-7
TOP: MISSION PLANNING IN UNITY
BOTTOM: REAL UAV POISED FOR ACTION
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The images in Figure 7-8 are taken some seconds after the images from Figure 7-7. We can

see the UAV has physically advanced, moving towards the mission destination. The top

image is taken from the mission planning view in Unity, the bottom image is a time

synchronized photo of the UAV. The Unity visualization lacks some foliage detail, there are

in fact a greater number of trees in the vicinity of the UAV, as seen in the actual photo.

FIGURE 7-8
TOP: UNITY UAV IS MOVING TOWARDS DESTINATION
BOTTOM: SNAPSHOT OF REAL UAV MOVING IN TANDEM
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Figure 7-9 (top) shows the UAV at the destination point, as rendered by Unity. The bottom

image shows the augmented reality mode of Quadrasense, the live video stream is alpha-

blended with sensor readings rendered by Unity. Due to use of an early implementation of

the software, this augmented-reality view retains synthetic terrain in addition to the sensor

renderings. In current versions the augmented reality mode disables all graphics except

sensor data and associated markers, as seen in Figure 6-18 (bottom).

FIGURE 7-9
TOP: UNITY UAV HAS REACHED DESTINATION
BOTTOM : AUGMENTED REALITY VIEW GENERATED FROM UNITY AT DESTINATION
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Figure 7-10 shows UniMAV/MAVProxy interface (top left console window) and the APM
Planner software view (top right) captured during the entire Quadrasense UAV mission.
APM recorded flight path, circled in white, confirms the UAV has physically flown to the
correct location requested by Quadrasense. Other trajectories in APM (in red) are from
earlier testing sessions.

FIGURE 7-10:
TOP: APM TELEMETRY CAPTURE OF UAV DURING QUADRASENSE TEST MISSION
BOTTOM: TARGET DESTINATION FROM QUADRASENSE/UNITY
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Chapter 8

Conclusions and Future Work
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8.1 Contributions

Quadrasense makes three specific contributions. First, it provides UAV users with real-time
telepresence, providing the experience of riding on a remote UAV sensing agent. Secondly,
it blends data from in-field environmental sensor networks to augment that telepresence.
Third, it enables users to seamlessly switch between a telepresence/augmented reality view
to a virtual model of the environment. Actuation and control of the UAV agent is
accomplished entirely through video-game based software.

Environmental Telepresence

The core system consists of a UAV with a unique real-time near omnidirectional camera
system and a Head-Mounted-Display. Quadrasense uses low-latency networking transport,
high-quality, low-bandwith video compression and an optimized display pipeline to feed the
video and graphics to the Head-Mounted-Interface. This gives UAV users the illusion they
are on-board their UAV agent, immersed in the remote location. The user interface is
designed to be intuitive and unobtrusive, allowing users to explore the remote geography
however their interests and the data may guide them.

Augmented Reality

Users see graphics, informed by sensor data, synthetically blended with a visual frame of the
sensed environment. The video game engine based software continually receives physical
location information from a semi-autonomous UAV agent which is used to render graphics
registered to incoming video stream, in real-time. Using a video game engine for rendering
sensor data visualization enables rich augmented reality experiences without the complexity
of custom graphical frameworks or trackers.

Virtual Reality

Quadrasense users may freely move between telepresence or augmented reality view of an
environment to an on-ground, virtual reality view of the geography. The virtual reality
implementation is based off the existing Responsive Environments Unity Tidmarsh
visualization. This mode faithfully reproduces an actual landscape using synthetic graphics
allowing users free-form exploration without the considerations of a physical UAV agent.
Because the Quadrasense software is continually tracking the physical UAV, users in the
virtual view can still see a rendered version of the agent and access related video streams.
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8.2 Future Work

Quadrasense has integrated a very diverse set of hardware and software components in an
attempt to realize the outlined vision. There are a number of areas for future exploration
with-in the established frame work.

Visuals
By employing a video game engine for graphics rendering the possibilities for interactive
and compelling visualizations is tremendous. The implemented sensor "tag" illustrates this
- an "inert" 3D solid model, combined with shaders and associated software resulted in a
useful sensor informant.

Future visuals could include circular modalities rendering pictorially into the red sensor
marker, dynamic shapes based on sensing category and even the use of other Syphon
applications to post-process and "remix" Unity's renderings. These visualizations can be rich
and yet latency free using the capabilities built into modern GPUs.

Interaction
The current interaction model has users click on areas of interest to explore, and the UAV
follows. Because the sensor data agency concept is mostly realized in Quadrasense/
Tidmarsh, future iterations of this program could guide users on sensor-informed paths,

providing for "curated experiences". The technical groundwork has been laid out to enable
this, only a small amount of effort would be needed to support this modality.

Latency and Agent Tracking
The augmented reality implementation in Quadrasense relies on the UAV's telemetry link
for control data. Update rates from this link neighbor in the 5-15 Hz territory. By utilizing
the WiFi radio instead this update frequency could be increased, possibly beyond 100 Hz.

A 10ms update rate would be significant in reducing jerkiness.

Similar to the work by Fuchs[16] in low-latency AR, using a Kalman filter and other
statistical and techniques, it is also possible to interpolate and estimate the actual position
of the UAV, reducing the perceived AR latency in Unity.

3D Image Capture
There are numerous ideas that are planned for 3D image capture. These include using a

pair of the GC6500 platforms to enable omnidirectional stereoscopic capability, enabling
360 deg image capture rather than 180 deg, adding depth sensing through stereo &
structured light, and even using two completely separate UAVs to generate a stereo pair,
providing variable inter-occular distance.
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Interface
The iDome project mentioned in related work examines one possible new immersive
display. By jointly examining the capture and display problem, it is possible other unique
arrangements could provide more compelling experiences than an HMD.

Video game engine / multi-party collaboration
The use of Unity to control a singular UAV is unique. By embracing modern video game
capabilities, one could enable the control of numerous UAV agents, and also enable many
different users to simultaneously experience the data from these UAV agents. Such
accomplishments can extend collaborative and immersive sensing. The Quadrasense
imaging hardware can already transmit eight different, independent dewarped views -
capitalizing on this capability to enable multiple-party collaboration is highly feasible with
additional time.

Safety
Many UAV systems implement "geofencing", a safety measure that prevents the vehicle
from going beyond a set distance from the takeoff point. Usually the geofence model is a
sphere, limiting the range of the UAV motion to the boundaries of this particular shape.
Because Quadrasense enables true remote operation of the UAV while abstracting the
physical environment through synthetic graphics, there is an extra need for proper
boundary enforcement.

By using graphics textures and simple boolean operations, it should be possible to "paint" a
geofence mask. This would ensure the UAV can never enter forbidden zones or accidentally
collide with a building or other physical edifice while still enabling navigation of safe areas.
This geofence can take on any arbitrary shape and could even be discontinuous unlike the
existing geofence implementation in the Pixhawk.

UAV and Sensor Interactions
A number of useful applications exist for the direct integration of UAVs and sensing. UAVs
can carry a precise and accurate instrumentation package suitable for in-field calibration of
sensor nodes. Nodes tuned for one band of operation (i.e. high temperature sensing) can be
dynamically re-purposed or adjusted as seasons and environmental conditions change. The
UAV agent can also be used to deploy sensor nodes with "fly by" collection of data. Such
remotely deployed nodes may not need network connectivity, instead the UAV can connect
and retrieve data on demand when passing by the node. For measuring data in tenuous
conditions (i.e. flowing water and streams), the UAV can carry probes or waterproof
cameras, attached via a tether. Such probes can be submerged, on-demand, in remote
locations by lowering the altitude of the UAV in the geography. Such a sensing approach
can augment the quantity of measurements in traditionally challenging and sparsely
sampled environments.
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